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Abstract. We discuss N-body kinematics and study the Berezin-Sigal equations
in configuration space. Assuming that the threshold of the continuous
spectrum is zero and that the pair potentials satisfy |V(x)|<C(1+|x|*)~¢,
xeR3, 9>1 (together with some technical hypotheses), we show that the
discrete spectrum of the hamiltonian in the center of mass system is finite. The
case of negative threshold will be treated in a further publication.

1. Introduction

The basic theorem on the quantum mechanical hamiltonian in the center of mass
system, due to Hunziker [5], van Winter [14], and Zhislin [19], states that under
suitable assumptions on the potentials the essential spectrum of this hamiltonian
consists of a half-line [y, o0), £ <0, while the discrete spectrum lies below y and its
only possible accumulation point is u itself. This immediately suggests the
question of determining conditions for finiteness or infinitude of the discrete
spectrum. This problem has been attacked successfully by several authors under
various conditions on the potentials. Zhislin [19] has shown that atoms have
infinite discrete spectrum. Simon [12] proved that if the potentials decay as
|x|72%?, §=0, at infinity then the discrete spectrum may be infinite. In the three
body case conditions for finiteness and/or infinitude have been obtained by
Combescure and Ginibre [3], Iorio [6], Yafaev [15-17]. The N-body case was
analysed by Sigal [10], Yafaev [18], Simon [13] (using geometrical methods). In
this article we prove finiteness of the discrete spectrum in case p=0 for potentials
falling-off as |x| "2 7°, § >0, (together with some technical assumptions ; see Section
5), using the Berezin-Sigal equations, and working entirely in configuration space.
The following notation and definitions will be used throughout this work. If X and
Q) are Banach spaces we denote by B(X, 9)) [resp. B,(X, )] the set of all bounded
(resp. compact) operators from ¥ to 9. In case X=9) we write simply B(X) and
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Bo(X). If T'is a closed operator in X we let 2(T) and P(T) denote its spectrum and
resolvent set. If X is a Hilbert space and T is self-adjoint we define the discrete
spectrum of T, denoted X (T), to be the set of all isolated eigenvalues of finite
multiplicity and the essential spectrum of T, denoted X ,(T) to be Z(T)/X(T).
Operator norms will be denoted simply by |. |, and the letter C will represent
various positive constants whose precise values are of no interest. Integrals
without explicit domains of integration are to be taken over all of IR", where n will
be clear from the context.

2. N-Body Kinematics

First we introduce some notation. By a cluster decomposition a with clusters
€,,%,,....4, we mean a partition of the set {1,2,..,N}, and we write
a=1{%4,,%,,...,%,;. We denote by </ the set of all cluster decompositions and by
o the set of all cluster decompositions with s clusters. Small script letters are used
to denote the elements of .7 and in particular the letter / is reserved for the
elements of o7 _ ;. If @, c€ o/ we say that « is contained in ¢ and write « C ¢ in case
« can be obtained by breaking up one or more clusters of ¢. The symbol #C¢
means that either «Ce¢ or «=c. We also let #:o/—Z" be defined by
# («)=number of clusters in a.

Consider now a system of N particles with masses m,, position vectors X,
interacting through pair potentials ¥;;e L*(IR%), i,je{1,2,...,N}. This system is
described by a total hamiltonian H, = Z(2m) "y + Z . acting in LA(R3Y)

where the sums are taken over the set {1, 2 SN, Ay ds the laplacian with respect
to the variable X; and V;; is the operator of multlphcatlon by V,(X;—X ) (we take
Planck’s constant to be 1) Let x=(X,,...Xy)eR*N, «={%,,%,, ... (g}eﬂ and
define:

N
U:{erR3N: Y miXi=0}, V={xeRN:X, =X,= ... =X,}; 2.1
=)
U‘L:{er: Y m,.Xi=O,r=1,2,.‘.,s}; (2.2)
i€b,
U,={xeU:exists Y,eR® with X,=Y,ie%, r=1,...,s}. (2.3)

If c/cw we let U5=U"nU, We introduce in R*" the inner product,

[x,y]= Z mX,-Y, where the dot denotes the ordinary dot product of R®. From

now on we will always consider IR*" with the structure provided by this inner
product. It is easy to see that ULV, U“1LU,, U LU, & S« We have ([11]):

Lemma (2.1). Let « and « be as above. Then
) IR3N=U(-BV; LZ(IR?’N):LZ(U)@LZ(V),'
b) U=U"®U,, L*(U)=L*U"QL*U,),
c) U“=U‘{®U§, L} (U")=L*(U)QL*U%);
N
d) Z (2mi)“1AXi:H0®1’+1®T, H,= —27MA, T==27%4";
1
¢) Hy=H{®1,+1°®T, Hi=—-2""'4"T,=-2""4,,
H{=H{®12+1°®Ts, Ty=—-2""47;
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where A, A', A°, A, A%, denote the laplacian in L*(U), L*(V), L*(U*), L*(U ),
LA(U?) respectively, and 1, 1, 1, 1, 1% stand for the identity operators.

If P is the orthogonal projection onto U, we have X, — X ;= (Px), — (Px),, xe R*¥,
so that H,,=H®1'+1Q®T, where H=H,+ ) V,;. The operator T describes the

i<j
uniform motion of the center of mass and its properties are well known. The
interesting part of H,, is H, which describes the internal structure of the system. If

acd, we let V=% Vi where the symbol Y
i<j i<j
indicates that the sum is taken ovér all i,j belonging to the same cluster of a,J.
If #/Ca, welet V7 denote the operator of multiplication by V, in L*(U=), and we
define H, =H§+ V¢ and H*=H¢. We remark that the operators H, # C «, are all
self-adjoint, bounded from below, and have domains D(H %)= D(H)([9]). We write
R#(z)=(H%—z)""' and observe that R%(z)=R{(z)=(H§—z)"' for /ey, and
H=H* for ac.</,. If P* denotes the orthogonal projection onto U“ and if the
particles i,j belong to the same cluster of «, we have X, —X;=(P"x),—(P"x);.
Hence HY=H*®1%+1“®T¢, « C «. Finally, the following identity holds:

1“4 VeRa(z)=(H%— 2)RE(2), z¢[0,00), /S ay 4 (/) SN—1. (2.4)

With the notation established above, the Hunziker-van Winter-Zhislin theo-
rem can be stated as follows (for a proof see [137):

Theorem (2.2). Suppose Ve LX(R®). Then X (H)={[u, o), p=min{infX(H):2
S #(a)EN -1} =min{infX(H) : e« ,}. Moreover, X (H)=2Z(H)n(— co,u) and
its only possible accumulation point is p itself

3. The Berezin-Sigal Equations

The equations which we employ in the study of X (H) were first introduced by
Berezin [2] and extensively used by Sigal [9, 10]. We assume for the time being
that Im(z)+0. Latter on [see Theorem (3.2)] we will extend our definitions for
z¢[u, o0). Let @ be a total order in .of extending the partial ordering defined by the
inclusion relation (for an explicit example of such an order relation see [9]), and
let @Ue denote the smallest element of .«/ containing both « and ¢. The Berezin-
Sigal equations are defined by induction as follows: let «, /e, 4 Ca, #* (),
#()SN—-1 If #(«)=N—1, define:

Lif2)=ViRy), Filz)=Ry(). (3.1)

From (2.4) we conclude that 1“4 Li(z)=(H%—z)F%(z) and also that
(14 L(z)” '€ BILA(U*)). Assume that we have defined L(z) for all /C « and that
(1“+ Ly(2))” 'e BL}(U)). Then let,

14 Lgfz)= (1 + Vi Rg(2)G(2),
Fi(z)=Ry(2)G(2).

Gi)= [T (A +Ly2) ", (3.3)
scd

(3.2)
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where the product is taken in the order . By (2.4) we (1“+ V/Rg(2))” *e B(LA(U“)).
Therefore, (1“+ L%(z))~'e B(L*(U*)). Define:

L(2)=Li(z), F*(2)=F(2), G"(2)=Gi(2), (3.4)
L(z)=L%z), F(z)=F*z), G(z2)=G%z) for aecsd,. (3.5)

From (2.4) it follows that 1“4 L%(z)=(H%—z)F*(z) and we have:

Gz) M1+ LY2) =1+ GYz)VFz). (3.6)

In order to use the Berezin-Sigal equations one must expand L¢(z) into
products of resolvents and potentials. In particular we need the following result to
prove that X (H) is finite in case u=0:

Lemma (3.1). L%(z) can be written as a linear combination of terms of the form

617 Yoy b2 Vet

VEREVERS VIR, o;Cd, 6,Cd, biesdy_, 1Si<k, U bi=d.
i=1

The proof of this lemma can be found in [9] [note that the equations used
there are adjoints in L*(U*) of the ones used in the present work ]. The main tool in
the analysis of the Berezin-Sigal equations is the following representation of R%(z),
¢Ca, in terms of spectral integrals (see Appendix 2):

Theorem (3.2). Suppose z¢[ 1, ). Then ze P(H?), ¢C a, and,
R(z)= j E{dE)@R 1z j Re(z— )@ E 4(do), (37

where Rp«(z)=(T~2z)" U and E¢, Era denote the spectral families of H® and T
respectively. In particular the Berezin-Sigal equations hold for z¢[u, o0).

4. Properties of L7(z) and F%(z)—Case u=0

From now on we will assume that =0 and that the potentials are short-range, i.e.,
WV ISCU+P) % e>1, ije{l,2,...,N}. It should be noted that the results in
this work hold for potentials V;(y)=f(y)(1 +[y|*)~¢, fe L*(R*)+ Loo(R%). We do
not prove this explicitly because it would lengthen con51derably the present article
without introducing any new ideas. We will now define the function spaces in
which we analyse the operators L?(z)and F ;(z). Let oZy_(a)={bedy_, (S al,
#()EN-1 I b={(i,)),(k),...,(n)}eAy_,(a), we let g5 denote the operator of
multiplication by ¢(X;,—X ) in LZ(U“) where g =1 +y*») 92 yeR3. In parti-
cular we may write V= fg (g9)% f,eL(U%). Let | |, and (}),_, denote the norm
and inner product of L*(U*), and define:

=Y @H;, lgls=Qllg, 50" Q9=23.479,, (4.1)
where H;=L*U*), tedy_ (@), 9=9))sery ,EH® and the sums are over
Ay (a).

Definition (4.1). Let S,(U”) be the set of all functions u=Q"g, ge H”, provided
with the norm |uf, —mf“gljo u=Q“g}, and let S¥(U) be the set of all complex
valued measurable functions v such that ||v]*= sup{l]qgvno,a beddy_}<o0.
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The spaces S, (U”) and S}(U”) are Banach spaces and it is easy to see that
S Q(U“)CLZ(U“)CS;“(U“), the inclusions being continuous. Moreover if we let

ruo)= | ulxp(x)dx, ueS,(U"), veSHU"), 4.2)
Je
it follows at once that |I"(u,v)| < |lull ||v]|*, and also I'*(u,v)=(ulp), , if ve LA(U").
It is convenient to introduce the following definition:

Definition (4.2). Let D be an open set in R or € and let X, Y be Banach spaces. An
operator valued function ze D— A(z)e B(¥X,9)) is said to be WB (for well behaved)
in B(X,9) if it is uniformly bounded, uniformly continuous with respect to the
norm topology of B(X, ). If in addition A(z)e By(X, ) we say that A(z) is CWB
(for compactly WB) in B(X,9)).

Theorem (4.3). Let fe.ofy_ (). Then z¢[0,0)— L z) (resp. z¢[0,0)—F%(z)) is
CWB in B(S (U")) (resp. WB in B(S (U*), S5(U"))). Moreover, L%(z) tends to zero in
the norm of B(S, (U?) as Re(z)— — 0.

Proof . By Definition (4.1) it is enough to show: z¢[0, c0)— f,q5R%(z)q5 is CWB in
B(L*(U?%) and tends to zero in norm as Re(z)r— 0. Let £={(k,j), (m),...,(n)},
k<j. Identifying U* with R* through the isomorphism &= @(x)=X, —X ,, xe U’,
we see that f,qiR4(z)q, has kernel Cf(&)g(E)IE—n|~ 1exp(——z[/_lf nha(n),
Im(z)>0. Since o>1, ¢?eL’(R3NL(R?), with p=(3/2)—5, s=(3/2)+6,
0€(0,30—3). The CWB properties then follow by combining the Sobolev in-
equality ([8], p. 31) and the estimate |exp(itz)—exp(itz')| <2 1"z~ z'|?, Im(z2),
m(z)=0, ye[0,1]. Since |[Ry(2)| £|Re(z)]"! for Re(z)<0 and f,,¢5e L*(U?) we
are done. Q.E.D.

Theorem (4.4). Let 4 («)<N—1. Then L*(z)€ By(S (U)), z¢[0,00) and tends to
zero in the norm of B(S (U")) as Re(z)— — co.

Proof. The proof of compactness is long and technical and can be found in
Appendix 3. As for the second statement, it is enough to show that operators of the
form

(fgﬂglR@ (2) cZ)(fgz%zRa (2) %3 f&kqﬁkRak(Z)q?)’
k
bobesdy (a), ¢Ca, \Jbli=a,
i=1

tend to zero in the norm of B(L*(U*)). Since u=0, we have |R“(z)| £|Re(z)| ! for
¢Ca, Re(z) <0, the result follows. Q.E.D.

Theorem (4.5). Let /S, #(a)<N—1, #(Z)SN—1, and assume that for all
/ Cd wehave: i) \e(—c0,0)~L7(A) is WB in B(S (U”)) (and therefore CWB by the
preceding theorem) : ii) Je(—00,0)—F7()) is ‘WB in B(S(U7), S¥U7)); iii)
0¢ X L7(0). Then the map ie(— 00,0y~ L:(2) is WB in B(S, (U“))

Proof. It is enough to show that le(— c0,0)~ f,qsR*(A)q}., 4,6'e A y_ (@), cCd, 1s
WB in B(L*(U“)). The proof of this fact with ce .oy [in which case R“(1)=Rg(1)],
can be found in Appendix 4. If c¢.oZ, there are several cases:
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Case 1. £,4' Ce. By 1), iii) and the preceding theorem, Ae(— 00,0)—(1+ L*(4)) !
WB in B(S,(U)). Combining this with ii) and Theorem (3.2) we obtain,

Sz RE = jfﬁ‘]gR =8y ®E;, (dé)

= g JaiF U= &1+ L~ &) ®E(dd),

and the result follows in this case from Lemma (A.2.1) of Appendix 2.

Case 2. £Ce, /’(I:c This follows from Case 1 and the resolvent equation R?#(1)
=R§(A)—RYAVRAA). Indeed, V2= > f,(qs)* and we may write,

6 ed N~ 1(c)

JaiRA(Aag = f,a; RG(Aag — Z

6 ed N - 1(e)

(feas RGNz gz Rz
Case 3. £Ce, 4’ € c. This case is similar to Case 2.

Case 4. £ { ¢, 6’ ¢ c. Follows from Cases 2, 3 and the resolvent equation. Q.E.D.

Corollary (4.6). Suppose that the conditions of Theorem (4.5) are satisfied. Then
re(—0,00>GHA) ", Ae(—0,00-»ViFYl) are WB in B(S,(U") and
Ae(— 0,00~ Fy(4) is WB in B(S,(U"), S¥(U")).

Proof. This result follows by observing that V;eB(SHU”), S, (U”), oAt
= [T Ao+ Ly), Foh=TT [T 17+ LYA)1“— VRYA), where the prime in-

£cd fCd ACf
dicates that the product is taken in the inverse order of the order ), and by using

Definition (4.1), Theorem (4.5) and the results of Appendix 4. Q.E.D.

5. Finiteness of X ,(H)—Case u=0

We will now prove that X (H) is finite. Similar proofs have appeared in [3.10]. A
proof of the following lemma can be found in these references.

Lemma (5.1). Let Ale(— 00,0)— A(A)e BX) be CWB and {1,}, {x,}, n=1,2,..., be
such that —x,= A(A,)x,, llx,| =1. Then there are subsequences {x, }, {4, }, and
xeX such that xX= hm x, , —x=A0)x.

ni?

Theorem (5.2). Suppose that (—1)¢ZL*0), 2< # («)SN—1. Then X (H) is finite.

Proof. Assume that X (H) is infinite and define W=2Xq,Mq,, H(t)=H +tW, L(4,t)
= L(A)+tWF(A), where te[0,1], A <0, Me B,(L*(U)), M = M*, M strictly positive,
q,=q;, «€A,, and the sum is taken over .o/,_,. It follows that 1+ L(4,t)

=(H(t) /I)F(/l ) and that Ae(—c0,0)—L(4,1) is CWB in B(S (U)). From Theorem
(2.2), the mini-max principle and the invariance of the essent1a1 spectrum under
relatively compact perturbations we conclude that X (H(¢))=2 (H), 2 (H(t)) is
infinite and accumulates at zero. Using Lemma (5.1) twice we construct sequences
{t,}10, {,}, and @eS(U) such that —¢,=L(0.t)p, @=lme, [¢l,=1,
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—@=1L(0)p. Hence, (t,)"'I'((1+L(0)p, FO)p)=I(WF0)p, F(O)), where
I'=T* «esf, is defined in (4.2). But
0=I((1+ L), F(O)p,) = lim (F(A)e,|(H — 2)F(2)p),
= lim (1 -+ L(2)e,| F(2)p)o =T (1 + L(0)@,, F(O)g).

Therefore, (WF(0)p, F(0)p)=0. Applying the definition of W, and Corollary (4.6),
we conclude that F(0)p=0. By (3.6), G(A)-(1+ L(A))p=9—G(A) ' VF(Lo,
V=V*, acsf,, 2<0. Letting A -0, we get ¢ =0, a contradiction. Q.E.D.

a

Appendix 1. Structure of U~ in Terms of Relative Coordinates

Let ze.o/ consist of a cluster ¥ with K particles, K =2 and (N — K) one-particle
clusters. To simplify the notation we will  write «={%}. Let

B = {/l,ﬁz, 6 Co/y_, be such that « = U ¢;. 1f K=2 we must have o=/,

= . If K>2 we may assume that ¢; :#5 1f i=j because Fus’ =4"Uf for all
4, ﬁ/eﬂ,\, . Let ¢, ={(i,,i,)} and set ¢/, =4, ,@(//) {¢e% £} This set must
be non-empty for 0therw1se a={41,2a contradlctlon since K > 2. Moreover there is a
#={(i,j)}€ 2(¢") such that either i or j belongs to the set {i,i,}. Otherwise every
element of 2(#)) must have the form {(k,n),...,(i;).(i,)} so that (i,,i,) will be a
cluster of «, a contradiction because K >2 and « has only one cluster with more
than one particle. Let 4, be the smallest such # and note that the two particle
clusters of 4 and ¢, have exactly one particle, say i,, in common. Hence
¢, ={(i,,i5)} with i;€% and ¢ ud’, ={(i,i,,15)}. Moreover if k=3 we must have
a=40t,. If K>3 we set 2¢,0%)={¢/ePB (¢4 0F,}. Arguments similar to
those used above show that there is a 4,e2(4,4,) with the property that two
particle cluster of 45 and the three particle cluster of #,U#, have exactly one
particle, say i,, in common. Thus 5 ={(i5,i,)}, i,€% and #, U, Ul
={(i,i5,15,14)}. If K=4 we must have « =4 0/, U} Otherwise proceed as above
[ie., define 2(¢',4%,4%) and so on] until we exhaust the particles in %. In this way
we obtain the first part of the following lemma:

Lemma (A.1.1). Let « and # be as above. Then kzK—1 and there is a
subsequence £, £,,....6%_, such that, é =g 1)) B 1., €%, U £ =1,

K-

iyl )hj=12...,K=1and o= U /!.. Moreover the map,

D= (P Py ) URIE D, (1) =X, ~ X, (A1.1)

JK 1
where s;=min{i;i;, },S;=max{i i, } is an isomorphism of U onto R** =) In
partzcular U and LU can be ldentzfled with R® and L*(R3*~D),

Proof. Let x=(X,,...,Xy)e U% Then z m; X; =0,X,=0,i¢%. Now, if d“(x)=
n=1

we must have X; =X, =... =X, . Taking this into the preceding equations we

conclude that x=0. Q.E.D.
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Now let «={%¢,,%,,...,%,(j,),...,(j,)}, where each cluster %, contains K,
particles, K, =2, 1=m<t, t=1 and the remammg clusters contam one particle

each. Let «,={%,}. Then, o= U a, and Z @ U™  Let

m=1 m=1

B={(,,0,,...,4,} be such that w= U /4. Without loss of generality we may

=1
assume that #4,<{%,} and that the elements of # are all distinct. Let

B,={=1{(,))}:i,je¥,}. It follows that 4, and 4, are disjoint if m+=m’ and
an= | ¢. Applying Lemma (A.11) to each a, we obtain subsequences
4 t

&y, ﬂg _, of B, and isomorphisms @ : U'm—>R3¥*»~ Y Then ¢*= )
m=1
@ ¢ U*—>R*, s= Z (K,,—1) is an isomorphism of U“ onto IR3. It
m=1
may be written as @”—(éﬁm) Dy (x)= X, —Xs, . s, =min{i}, 7},
S, =max{i; .i; .} j,=12... K, 1,1<m<t and €, = ("1, ... sz)

Appendix 2. Spectral Integrals

Let Z be a Hilbert space and F(£), £eIR a (right continuous) spectral family in Z. If
b

A:[a,00)—~B(Z) is a function, we define [A(£)F(d) to be the norm limit of

Riemman-Stieltjes sums. The integral over [5, o0) is then defined as the strong limit
of integrals over [a,b] as b—oo. In Theorem (3.2) we used the nota-
tion  E(d)@Rpe(z— ) =(1Q@Rp(z—)EN)®1) and  R(z—E)®Er«(dd)
=(R(z— @)1 R E+(df)). It can be shown that,

Lemma (A.2.1). If A:[a,00)—=B(Z) is continuous,- A(&)F(n)=Fn)A(E), for all
&,nela, o) and || A(E)| =0 as é—»oo then jA(é)F (d&) exists, the strong limit may be

replaced by norm limit and F(d&)||Ssup{||A(&)| : éela, 0)}.

For a proof of this lemma, that of Theorem (3.2) and for further properties and
applications of spectral integrals see [1, 4, 6, 7].

Appendix 3. Compactness of L“(z), z¢[0, o)

By Lemma (3.1) and Definition (4.1) it is enough to show that any operator of the
form Q(2)f, 4, R: (2)q; belongs to By(L*(U*)), where
k—1
0(z)= H LaiRi@Das . . b bedy ((a),
(A3.1)

¢ Ca= U 4, fﬂ,eL(Uﬁi).
i=1
Since z¢[0, o) f,qiR“(z)qs e BILX(U")), 4,4’ € dy_ (), ¢Ca, is analytic, it suf-

fices to show that Q(z) is compact for z= Ae R sufficiently negative ([12], Appendix
3). Let N{(A)=(gz,,,.--q5)" 'R: (A, , - g7, Then,

k—1
Q)= 1,,45, R (A)ag, - 45, 11 Je,N{4). (A32)
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Lemma (A.3.1). NY()=(q7 . ...q5)" 'R§(Aaf , ... q5,e BALAHU®) for /.<0, and
tends to zero in norm as A— — co.

Proof. Let x,ye U, £ ={(i,k),(m), ..., (n)} € oy _,(«). Using the triangle inequality
and the fact that the function ue[0,00)—~(1+u?)(1+u)”? is bounded with
bounded inverse it is easy to see that g(X;—X,) ' <(1+[x—y]*)%(Y,—Y)"*
Using the notation and results of Appendix 1 we identify U“ with IR, Consider,

w(&)=(as,, - q5) "exp(—tH{)qs .. q5.0)E), @eL*(R®), (A.33)

The operator exp(—tHg) has kernel g(¢&—n)=at*?exp(— ft~1|¢—n|?), where
a, B are positive constants. Using the estimate for g(X;—X,)” !, we obtain:

[W(&) S Ct™ > [dn(1+[E=nl*)'g(& —mleMm), (A.3.4)

where y is a positive integer larger or equal to g(k—j+1). Now, (1+]]*)g(-)
belongs to L'(IR*) for ¢ >0 so that by Young’s theorem on the convolution ([8], p.
28) we get |y, =Ce™ 2|1 +]- 1))l ll@ll, >0, where |||, denotes the L?
norm. Using spherical coordinates and the binomial theorem it is easy to show
that |[(1+]12)7g()l, SC*?w(t), w(t) a polynomial with positive coefficients.
Since,

R§(A)=— fdtexp(it)exp(-tH“) A<0, (A.3.5)

it follows that |N%(4)| =C [ dtexp(iw(t). Q.E.D.
0

Lemma (A.3.2). There is a 1;<0 such that N (%)e B(L*(U*) for al I A=,

Proof. Since R (2)=Rg(4)— R7(A)V/RG(A) and V7 is a bounded function, the
preceeding Jemma implies that [| V“NO(/I) =1 for l<i for some 4;<0. Thus,

Rfj(i)qﬁﬂ ) ...qgl(:RO(/l)qgJ+ g+ Vc‘jN?(l)) t LS4
Multiplying both sides by (g%, ,...q5,) "' the lemma follows. Q.E.D.
Similar arguments show that,
Jo,a5,RE(Dag, . a5, = 12,45 Ry, .. 45, (L +VANY(A) T, (A.3.6)

for sufficiently negative. Thus to prove that Q(A)e Bo(L*(U<)) for /4 sufficiently
negative it is enough to show that g R§(A)qy, ... g7 € Bo(L*(U*), Le(— oo ,0). Let
a={€,€5....%,(),....(.)}, K, be as in Appendix 1. Recall that «= U 4, and

let 27, j,=1,...,K,—1 be the sequence constructed after the proof of Lemma
(A1, 1) (note that #, =/} by construction). Since g(y)<1, it suffices to prove that
T(2)=q5 R5(Aas - a5, € Bo(LA(U)). Identifying U* with IR® we see that:

(TN &) =q(&}) [ dnK(E—n)
qny) ... alny, - Deln),  @eL*(R>), (A.3.7)

where K{e L1 (IR) ([8, p. 58, 59) is the resolvent kernel. Compactness then follows
from the next lemma. In order to state it let C_(IR") denote the set of continuous
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complex valued functions defined on IR” that vanish at infinity. It is well known
that such functions can be uniformly approximated by functions in Cg(IR").

Lemma (A.3.3). Let FeC_(R%), GeC_(R*73) and SeL'(R*). Let M,, Mg
denOte the operators of multiplication by F(&) and
G(E1,.... & 1) in LA(R®). Let B=Sxq, pe L*(IR*). Then M"BM ;e B°(L*(IR*)).
Proof Tt is easy to see that [|[M, BM [|<|1F]| Gl IS Thus if F,, G,, S,,

n=1,2,... converging to F, G, S in L°°(]R3) L°°(]R3S %), LYIR%%), the sequence
MF"B,]MGn converges to M .BM ; in the norm of B(L*(IR*)). Finally it is easy to see
that M, B,M is Hilbert-Schmidt for all n since all functions involved have

compact support. Q.E.D.

Appendix 4. The Map Ae(— o0, 0) f,q5R5(4),
45 bob' ety _(a), #(2)SN—1, f,eL(U?)

We will show that this map is WB in B(L2(U#)). If £=¢', it follows from Theorem
(3.2) that,

TaiRe(Aas J LR — O R E o (dE). (A4.1)

The result then follows Theorem (4.3) and Lemma (A.2.1). Now consider £/,
and let # =/uU/4". Tt follows that:

faiRe(2az = ffﬁq R§(2— &g @ E+(dS). (A4.2)
Using (A.3.6) with a replaced by d we see that it is enough to show,

[ dtllqf exp(—tHg)qzl| <o (A4.3)

0

Case 1. The two particle clusters of / and 4" have one particle in common. Let
£={@,j),(m),....,(n)} and b ={(,k),(m),....,(n)}. Then, if xeU? we have
mX;+mX +mX,=0,X =0, s=i,j, k. Define,

(=X,—X;, n=X,—m+m) (mX,+mX). (A.4.4)

Then xeU“~((,n)eR® is an isomorphism and X,—X;=al+by, a, beR
Consider :

(&) =(qf exp (— L HL@1)q7 o), n)
=at~>2q(0) [ dl exp (— ™ 1= P)alal + b))l n)

where o, are positive constants and ¢@eLl*(R®). Let v satisfy Ov
<min{1,(3—0)o !} and let p=3—v. Then p>2 and ge L*(IR?) since (3—v)o>3.
Choose r,s such that 27 '4p t=¢"1 ¢y l4si=1 s '4p =271 (note
that 1<r<2). Using the Riesz-Thorin interpolation theorem ([&], p. 27), it is
easy to show that w(-,n) belongs to L*Rd¢) and [y(-,n) 1,00
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SCt3gli (Ml ,ue  Thus g7 exp(—t(Ho®17)qz | <Ce™*P. Since
H{=H{®14+1°®@T; we have:
fexp (—t(HG®17)q7 |

lgf exp (—tH)q7 <Cmin {1,673/},

from which (A.4.3) follows in this case.

Case 2. The two particle clusters of / and 4’ have no particle in common. Let
6={(i,j),(m), ...,(n)} and &' = {(k,r),(m),...,(n")} with {i,j}, {k,r} disjoint. If xe U“
we have mX,+mX,=mX,+mX, =0, X;=0, s+ijkr. Assuming without
loss of generality that i<j, k<r we may write x=(0,...,X,,...,X,;,0,...,0)
+(,...,0,X,,0,...,X,,0,...,0). Note that the first vector in the right hand side
belongs to U’ while the second is in U”. Also, it is easy to see that U? L U?, so that

=U’@®U?, the direct sum being orthogonal. From Lemma (2.1) it follows that
U"" U?, and we have,

qf exp (= tHg)qs = qf exp (— t(HG®1))exp (= t(1’®H"))qy.. (A4.5)

We start by estimating g7 exp (— t(HG®1"). Let {=X,—X , n=X, —X,. Identifying
U? with R® through the isomorphism xe U“—((, n)e [R" we have

(&) =(qf exp (— H,@ 1)), n)
=t 2g(0) [ dUK({C =)l ), pe LA(R),

where K()=exp(— Bt Y{|?), o, f>0. Since ¢>1 there is a >0 such that
gelLP(R?), p=3-5. Let p'+p '=1 Then p'>3/2 and KelF(R?). Using
Young’s theorem on the convolution ([8], p. 28) in the variable { and then
integrating with respect to # we find fp[,<Ct *?|K], H(/)Hz Using spherical
coordinates 1t follows easily that K|, =Ct**" so that lqs exp(~l(H"Ol/))|1
<Ct 30T P 27 Similarly, Hexp(—t(lb®H”))q6 I=Ct 3=r7N27" From (A.4.5)
we obtain |g7 exp(—«t(H‘i))q{; ?"Y which implies (A.4.3) in this
case. The proof is now complete.
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