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Some Limit Theorems for Random Fields
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Abstract. We prove a central limit theorem with remainder and an iterated
logarithm law for collections of mixing random variables indexed by Zd, d ̂  1.
These results are applicable to certain Gibbs random fields.

1. Introduction

In this paper we extend various classical limit theorems to collections of random
variables indexed by Zd,d^ι 1. The study of such collections is motivated by
Gibbs random fields. For example we may define our probability space (Ω, J ,̂ P)
in the following way. Let Ω = {— 1, + l}zd, with ̂  the σ-algebra generated by
finite-dimensional cylinder sets. Then if Φ is a translation-invariant, finite-range,
real-valued potential function on the finite subsets of Zά with Φ(φ) = 0, the Gibbs
state for the potential Φ is a probability measure P on (Ω, J^) for which, if neZd,

(1.1) P(<φ)

is a regular conditional probability distribution for the "spin" at site n given the
configuration on Zd — {n}. Here OFA is the σ-algebra depending on the coordinates
in the set A <= Zd.

In [2] a unique such P is shown to exist for certain choices of Φ. Moreover
conditions on Φ which imply that mixing occurs are stated. That is, it is shown
that for certain Φ and for A, B c Zd the dependence of sets in ^'A on sets in 2FE

decreases as d(A,B), the usual Euclidean distance between A and B, increases,
but may increase as A , the cardinality of A, increases.

In [5] the F. K. G. inequalities are used to determine conditions on Φ which
imply that events at sites n,meZd are positively correlated. For example if Φ is
a nearest-neighbor potential

Φ({n,m})>0forφ,w)=l

is sufficient.
Thus we are led to study random variables (Xn)9neZd, which are positively
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correlated and which satisfy some sort of mixing condition. In the above example,
for instance, we may consider Xn(ω) = ω(n\ the "spin" at n. We are interested
here in asymptotic properties of sums SA= ^Xn.In [9] it is shown that a suffi-

neA
ciently strong mixing condition together with positive correlation between sites
and certain moment conditions implies a central limit theorem for the sequence
SA when A\Zά sufficiently nicely. In this paper we show that the same properties
of P and the random variables Xn may be used to estimate the speed at which
SA converges to a normal random variable. This estimate is then used to obtain
results about a.s. convergence, namely an iterated logarithm law and its conse-
quences. The techniques used are modifications of those which work for d = 1
[see e.g., 14, chapter 5.] The question of when the central limit theorem holds
for random fields has, of course, been studied repeatedly (see, e.g., [3]), but ques-
tions about a.s. convergence seem not to have been looked at much up to now.

The statements of our results are in Section 3 and the proofs are in Section 5.
Section 2 contains some necessary notation and some basic estimates. In Section 4
we discuss some of the known results on mixing for random variables indexed by
Zd. So far it seems that in models where mixing can be shown to occur it occurs
at an exponential rate. However some of the results in [10] strongly suggest
that slower mixing rates are possible, perhaps for infinite range potentials. Because
of this and also because our proofs in the exponential case are easily modified
to work for more slowly decreasing functions we have included such functions
in the statements of the results.

2. Notation and Some Basic Estimates

Let d ̂  1 be fixed. We assume throughout that we are given a probability space
(Ώ, J*% P), with Ω = Uzd and J^ the σ-algebra generated by finite-dimensional
cylinder sets, and a collection of real-valued random variables (Xn\ πeZd, with

. We also assume

(2.1) E(Xn) = 0 and 0 < E(X2

n) < σ2 for all n .

For simplicity we assume AN is a d-dimensional cube of side TV or sphere of radius
N. We set

\neAN

and we assume that there is a C > 0 for which, if A a Zd,

(2.2)

Condition (2.2) is implied, of course, if the Xn are positively correlated or indepen-
dent and identically distributed or if events at sites m and n,m=^n, are sufficiently
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close to being uncorrelated. If the Xn are independent we are reduced to the
case d=l. Here we assume instead an asymptotic independence or "mixing".

Definition (2.3). We shall say the measure P satisfies mixing condition (M) if
there exists a continuous function α:[l, oo) -> (0, oo) such that α(ft)lO as /zΐoo
and, for A,B^Zd with d(A, B) = h, El e^A and E2 e J%,

(M) I P(E1E2) - P(E1)P(E2) I ̂  α(Λ) \ A \ \ B \ .

Obviously this definition is nontrivial only if A and B are both finite. Now (M)
implies the following estimates, the proofs of which may be found in [1] and [16]:

Lemma (2.4). Suppose (M) holds, A,BaZd with d(A9B) = h, and
with \\f\\p< °° and || g || q < oo for some p,q^ 1, where the norms are with respect

to the measure P. Then if p, q, r ̂  1 satisfy - H --- h - = 1,

(2.5)

(2.6) I E(fg) - E(f)E(g) \ £ 4α(λ) \A \ \ B \ \\ f \\ „ \\ g \\ n .

3. The Main Theorems

Let φ(x) denote the distribution function of a normal random variable with mean 0
and variance 1. Then we have the following results:

Theorem (3.1). Suppose (2.2) holds and (M) holds with a(h) = e~βh for some β>Q.
Suppose also that there is a C > 0 with E\Xn

 5 ^ C for all neZd. Then for xe[R
and d>l

Ifd=l

Theorem (3.2). Suppose (2.2) holds and (M) holds with

i

Suppose also that there isaC>0 with E\Xn

 5 ̂  Cfor all neZd. Then for xε R

(3.3) P(XN/ΣN <x) = φ(x) + 0(Σ~

Theorem (3.4). Suppose (2.2) holds and (M) holds with

for some ε > 0. Suppose there is a C > 0 with \\ Xn\\ ^ ̂  Cfor all nεZd. Then (3.3}
is true.

These results slightly better the remainder terms obtained in [12] for d = 1,
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but the error is still considerably larger than in the independent case, where the
example of coin-tossing random variables, Xn= + 1, each with probability 1/2,
d=l, shows that 0(Σ~ί) is best possible.

These theorems have the following consequences:

Theorem (3.5). Suppose the Xn satisfy the hypotheses of (3.1) or(3.2). If we set

(3.6) ίjv = 2

then

(3.7) lim -jj| = 1 a.s.

and

Π R Ϊ lim SN - _ 1 / 7 cv j °/ ,1/2 ~~ i α Λ

N-CO rN

Theorem (3.9). Suppose the Xn satisfy the hypotheses of (3.4) with a(h) ••
0(h~8d~6~ε)for some ε > 0. Then (3.7) and (3.8) are true for tN given by (3.6).

Theorem (3.9), of course, improves (3.5) and (3.10) below only for d ̂  3.

Corollary (3.10). If the Xn satisfy the hypotheses of (3.5) or (3.8) and if (a
are constants for which

where tN is defined by (3.8) then

(3.11) lim — = 0 a.s.

Notice that (3.10) implies

for any p > 1. In [9] it is shown that if E(X*) ^ C for all n, and (M) holds with

then (3.11) is true for aN = Σ2k,k> 1/2, if we replace "α.s." by "in probability",

while (3.11) holds a.s. for k ̂  1 if d = 1 and k> \ M + - if a > 1. These results

do not require (2.2).
Results similar to those stated here are also proved in [13, especially Chapter

7] and [15], while in [17] a functional law of the iterated logarithm is obtained
for d ̂  1 for processes with independent increments.
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4. Examples of Mixing

In general determining when mixing occurs and at what rate seems to be an open
problem. Perhaps the simplest method which has been developed to show that
mixing occurs is that outlined in [2]. We describe the method and show how
it applies to a simple example. Let us define (Ώ, J^) as in Section 1. For ωeΩ, neZd,
let ω be & > d _ and let

where P( | •) is given by (1.1). For ω1 , ω2 εΩ let p(q(nωί , •), q(nω2 , •)) be the distance
in variation between the measures g(nω1? ) and g(nω2, ),

(4.1) P(q(nωl9')9q(nω29-))

= λ

2{\q(ωίΛ)-q(nω2^)\ + \q(ω^-l)-q(nω2y

If rc,meZd,rc^m, let

where the sup is over all pairs nω1?nω2 with ncofl) = nω2(l) for l±m. Finally if
S c= Zd set

where the sum is over all paths n19...9nk with nί eS, n. ̂  S for 1 <j ^ fc, n.+ x ^ ̂
for 7 = 1,..., k — 1, and d(nk,S) ^ ft. Then the following is true:

Theorem (4.2). (Theorems 2 and J, [2]). Suppose there is an α < 1 wiίft

(4-3) Σ Pπ > m<α

/or α// neZd. Then there is a unique (translation invariant) probability measure
P on (Ω,^) with regular conditional probability distribution given by (7.7) If in
addition

(4.4) JL P»,»<α

for all meZd and if Sί,S2c: Zd with d(S^ ,S2)^h then

(4.5) sup I P(AB) - P(A)P(B) \ ̂  α(,S1, (SJJ.
s\' s2

It is obvious that (4.5) is actually stronger than (M), since the right hand side of
(4.5) does not depend on | S2 \. Theorem (4.1) as stated in [2] is actually true with
{—1,1} replaced by any finite set and with the definitions above modified accord-
ingly.

As a specific case of (4.1) let us consider the Ising model with

Γκ/2 if \A =1
φ(A) = V/2 if A = {n, m} and d(n, m) =

0 otherwise
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where K and J are real numbers. Then if x, y = ± 1, d(n, m) = 1, and nω(m) = y,

q(nω, x) = [1 + exp(Kx + Jxy

where the sum is over allj 7^ m with d(/, n) = 1. Thus if we set μ = min K +
we find that

_ f sinh I J (/(cosh | J \ + cosh(μ)) if φ, m) = 1
Pn'm ~ JO otherwise

and that δ^m does not depend on the sign of K or of J. Since each neZd has exactly
2d neighbors at distance 1, the sums in (4.3) and (4.4) are identical and thus Theorem
(4.2) tells us that in this case there will be (a unique P and) exponential mixing
exactly when, for some α < 1,

sinh I J I /(cosh I J\ + coshμ) < a/2d.

For example if J = 0 then there is no interaction and trivially mixing occurs.
If K = 0 we must have tanh | J | < 1/d, and thus for d = 1 there is mixing for all
choices of J, while if d = 2 we can show mixing only if tanh | J \ < 1/2. When
K φ 0 and J is fixed and nonzero, K sufficiently large implies mixing while K \ =
\J\ implies mixing occurs only if sinh \J\/(1 +cosh | J|) < l/2d, a more stringent
condition than in the case K = 0. In fact it is known [7] that for this model, if
K=/=Q, there is a unique P with the given conditional distributions. However
if d = 1 and K = J = 2 we have sinh | J |/(cosh | J | + 1) > 3/4 and (4.3) and (4.4)
are not satisfied. Thus Theorem (4.2), while easy to apply, is not best possible.

A result similar to Theorem (4.2) is proved in [6, Theorem (4.24)]. In the
example above, condition (a) Theorem (4.24) [6] is the same as our condition
(4.4). The two conditions, in fact, would be equivalent for (1.1) with any pair
potential and possible states ± 1. Mixing conditions of a slightly different type
are obtained in [4].

Now if (4.3) is satisfied for this model the right-hand side of (4.5) is less than
or equal to | Sί \ of /(I — α) and so (M) certainly holds with α(/z) = of /(I — α). Physi-
cally-motivated examples where mixing occurs at a slower than exponential
rate seem hard to come by. Suppose, however, we set, for rc,weZd, | |w,m| | =
max I n. — m. I and let u( {n, m}, K) be the two point Ursell function for Φ( { n] ) =
l^i^d
K, Le.,

u({n,m},K) = E(XnXJ-EXnEXm.

Then in [10] it is shown that whenever

lim sup In | φ(n, m)\f\\n,m\\ =0
| |n,m||->oo

there is a KQ for which

lim supln|w{x,3;},X|/| |n,m|| =0
\\n,m\\

for almost all K with K<K0. By Lemma (2.4) if mixing occurs the function
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α(/z) must satisfy, for d(n, m) = h,

a(h)^A\u({n,m},K)\

for some constant A. Thus physically-motivated examples of slower rates of mixing
may exist.

5. Proofs of the Theorems

We first decompose SN into "almost independent" summands and a "negligible"
summand, a standard technique for dealing with mixing random variables.

Definition (5.7). We define a sequence of annuli

A A' A A' A A' A'Λ Λ M ' Λ Λ U > Λ ΛΓ,2 ' Λ Λr,2> '" ' ̂ N,1N> N,1N> ^N,1N+ 1 >

all contained in AN, and random variables

γ«j= Σ χa,

where we choose ANJ to be the largest annulus outside A'NJ_ ί for which

and A'NJ to be the annulus outside ANJ with radius kN, where η and kN will be
defined in the following lemmas.

Lemma (5.2). Suppose the hypotheses of (3.1) are satisfied. Then if we set

η = d— 1-M, 0 < ε < l ,
and

we have

(5.3)

(5.4)

(5.5)
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and

(5.6) E( Σ ZNX = Nd~ε(r log N)(l + 0(1)).

Lemma (5.7). //fΛe hypotheses of (3.2) or (3.4) are satisfied, and if we set

η = d — ε, 0 < ε < 1 ,

and

kN = Nε\εί^ε,l-εί>ε,l>ε + 81,

then (5.3), (5.4) and (5.5) are satisfied, while

and

(5.8) N

Proof of (5. 2) and (5. 7). The proof is similar to the proof of Lemma 5 in [11].
Note that (2.1), (2.2), (2.4), and (5.3) together imply that Σ2~Nd and that the
number of terms in a YN . is about Nη, while the number of terms in a ZN . is
0(kNNd~1).

Theorem (5.9). Suppose the hypotheses of (3.1), (3. 2), or (3.4) are satisfied. Then
the central limit theorem holds for XN/ΣN, i.e., the distribution function of XN/ΣN

converges to the distribution function of φ.

Proof. As usual, we prove that E(Qxp(ίtXN/ΣN) converges to e~t2/2 for ίεR. In
each case N2d~ηlNu(kN) -> 0, so that applying (2.6) 1N times gives

E(exp(itYN/ΣN))= Π E(exp(itYNj/ΣN)) + o(l).

Also (5.6) or (5.8) implies E(exp(ίtXN/ΣN)) = E(exp(ίtYN/ΣN)) + o(l)9 so it is
enough to show that

Π E(πp(ίtYNJ/ΣN))
j*ιN+ι

converges to e~t2/2. Now Ίipj is the number of summands in YN ., (2.5), the hypo-
theses of (3.1), (3.2), or (3.4), and the fact that Σ2

n - Nd can be used to show

Thus

E\YNJ\
3

= 0(N3η/2)

and thus

(5.10) Σ-i Σ E\YN\3
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which proves (5.9) by Liapounov's theorem [8, p. 275].

Proof of (3J),(3.4),and (3.6). We follow the procedure outlined in [12]. Set g* =

8Σ~3 Σ ^|^Λr 3< Now, following the proof of Lemma 3 in [12], we may

show that for large N and for 0 5Ξ t ̂  '.

\ / V \ —t2!') ^^ v^ ^ ̂  •)/2 ) — c ' <c ^
j<lN+l

where

{ 0(N~εr\ogN) for (3.1), d> 1

0(N-η/2) for(3.1),d=l

0(NB1 + *-1) for (3.2) or (3.4^

Now the same proof as that of Lemma 4 in [12] gives

E(exp(itYN/ΣN))- Π E(exp(ttYNJ/ΣN)) = 0(t2)

uniformly in 0 rg t ̂  1, and then the proof of (14) in [12] yields that for T =

\E(exp(ίtYN/ΣN)) - e~t2/2 Γldt = 0(gl + R).
0

Thus by the basic inequality [8, p. 285]

(5.12) P(YN/ΣN<x)-φ(x) = 0(g3

f, + R).

Now for εN > 0

(5.13)

= Φ(x) + 0(g* +R) + θ + 0(sN)
\ ZNSN /

by (5.12) and Chebyshev's inequality. Now set ε = .395, εN = N~'3 if the hypotheses
of (3.1) are satisfied with d > l,e = ,5,εN = N~'35 if the hypotheses of (3.1) are
satisfied with d = 1, and ε = 1/4, ε1 - 3/8, SN = N~1/8 if the hypotheses of (3.2)
or (3.4) are satisfied. Together with (5.4), (5.11), and (5.6) or (5.8) this allows us
to show that (5.13) gives the desired estimate.

Proof of (3. 5) and (3. 9). Since (3.7) implies (3.8) when we replace SN by —SN9

it is enough to show (3.7) is true. This is most easily accomplished in the manner
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outlined in [14, pp. 320 ff.], where results from [15] are proved in detail. First
f o r | ( 5 | < l a n d £ > 0

(5.14) (log4Γ(1+')2(1 + 0 < P(SN > (1 + <5)(4/2))

follows from (3.1), (3.2), or (3.4). We also need that for x > 0 and TV ̂

(5.15) p( max S, > x } ̂  2P(SN >x- 2ΣN) + CN~ξ

\ J^N J

for 0 < ξ < 1/4 and C > 0. This we may prove as follows :
Setting Bj = (S7 ̂  x, / < J, S, > x), 1 ̂  J ̂  N, we have

PI

where ̂  is over all J with P(Bj) > CN~(1 + ξ). So it suffices to show

Now

J=l

and thus it suffices to show

P(\SN-SJ\>2ΣNBJ)ίl/2

if P(Bj) > CN~(1 + ξ\ Now for N large enough and for some 7, 0 < y + ξ < 1/2,
α(ΛP) ̂  1(Γ5. Fix τ,0 < τ < 1/2, and J ^ 1 with P(Bj) > CN~(1+ξ\ IϊN-J>Nγ,
then

P(\SN-SJ\>2ΣN\BJ)^p(
\

Σ
neAfl — Aj

Σ

CN1 + ξN2da(Nγ)

where we have used Chebyshev's inequality and (M) to obtain the first and second
terms respectively. But

3
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1
100

for N large enough, and, again by Chebyshev's inequality and (M),

by the conditions on α( ) specified by (3.5) or (3.9), if we choose ξ =
on the other hand, N-J^Ny,

P(\Sli-SJ\>2ΣN\BJ)^-

? γ = -^. If,

= 0
N3d/2

Thus (5.15) is true. Now, as in the standard proof of the law of the iterated logarithm,
we have, for δ > 0, p > 1, and Nj = ρjj ^ 1, by (5.15),

max

<oo,

and thus

(5.16) P max ~j^>l + δ i.o. -0.

Now for N > 1 and ^ > 0, if we set

Ck = (SNk - SNk- ί+Nkl2 > (1

where

χfc

2 = Var (SNk - SNk

then by (5.14), for k large,

log(log χ2,))1'2)

for I δ I > 1 and ξ > 0. If ξ is chosen so that (1 - <5)2(1 + ξ) < 1 then

(5.17)
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since for N and k sufficiently large

Now, by (M) and (3.5) or (3.9),

! + m \ n + m / oo \

Π cl ) - Π P(C$ = θ{ f a(h)h4ddh \ = 0(1).

This estimate, together with (5.17) gives

(5.18) P(Ck i.o.)=l.

If

Bk = (SNk+ί + Nk/2 > - 2(2χ2 log(log^))1/2),

where

χ2 = Var(S k + 1 k/2) ~ (Nk + 1 + Nkl2}d,

then by (5.16) and (5.18)

(5.19) 1 = P(Bk n Ck ί.o.) < P(SNk > (1 - δ'}^2 ί.o.)

for δ' > δ. Now (3.5) and (3.9) follow from (5.16) and (5.19).
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