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Asymptotic Completeness
for Quantum Mechanical Potential Scattering*

I. Short Range Potentials

Volker Enss**
Department of Mathematics, Indiana University, Bloomington, Indiana 47401, USA

Abstract. A new (geometrical) proof is given for the asymptotic completeness
of the wave operators and the absence of a singular continuous spectrum of
the Hamiltonian for potentials which decrease faster than in the Coulomb
case, the space dimension is arbitrary.

Introduction and Results

Quantum mechanical potential scattering is completely under control for most
potentials of interest. As long as the potential vanishes at infinity fast enough
to exclude the Coulomb potential the completeness of the ordinary wave operators
can be proved using eigenfunction expansions (see e.g. [1] and references given
therein) or other methods in special cases.

Instead of using these rather abstract methods we give a new proof for the
completeness of the wave operators and the absence of a singular continuous
spectrum in the Hamiltonian which follows the intuition of how a scattering
particle behaves in space and time. That this "geometrical" approach to the
completeness problem is the natural one was pointed out to me years ago by
R. Haag. This point of view has also recently been advocated by Deift and Simon
[8], Simon [7].

The main idea of our proof is as follows: a state from the continuous spectral
subspace of the Hamiltonian is known [6] to leave in the time-mean any finite
region of space. Such a far out localized state is decomposed into its outgoing
components where x p is positive (up to a tail) and the remaining incoming compo-
nents. The outgoing components cannot interact any more, i.e. (Ω_ — H) is small
on them, thus they lie in the range of the outgoing wave operator Ω_. Similarly
the incoming components cannot have interacted in the past. This is used to
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show that the incoming components become orthogonal to the whole state,
consequently the latter cannot be orthogonal to the range of Ω_ .

We do not assume any symmetry for the potential nor shall we need information
about the point spectrum of H.

We investigate the following system: The free time evolution of a particle
of mass 1 is generated by the selfadjoint operator on Jtif = L2(IRV),

The potential V is a bounded perturbation of H0 with H0 — bound smaller than
1[3] (it may be velocity dependent):

|| VΨ || ^ a || H0Ψ || + b || Ψ I I V Ψe2t(HQ\ a<l. (2)

H = H0 + V is a selfadjoint operator with ®(H) = &(H0) c &(V). Let F( ) denote
the projection onto L2 of that subset of x-space which is specified inside the round
brackets. The falloff of the potential at infinity is fast enough such that

|| V(H0 + IΓ^dxl £ R) I = :h(R)εL\[0, co)9dR). (3)

Wave operators are defined as usual [3] :

Ω+ = s - lim exp(ιΉί)exp(- iH0t). (4)
ί->±00

Condition (3) avoids long range potentials for which only modified wave operators
exist.

Theorem. The range of Ω± is the subspace of 2tf corresponding to the continuous
spectrum of H.

As the range of Ω± must be contained in the absolutely continuous spectral
subspace for H, the singular continuous spectrum of H must be empty.

More singular potentials can be treated but we wish to avoid technicalities
which might hide the simple ideas of proof.

Asymptotic Properties of States with Continuous Energy Spectrum

Ruelle [6], Amrein and Georgescu [2] showed that for a particle in a potential
the bound states and the scattering states can be characterized "geometrically",
namely by their behavior in space and time. Whenever the dynamics is such that
F(|x| < R)(H + il)"1 is a compact operator for all R < oo it was shown in [6]
that any state Ψ from the continuous spectral subspace of the Hamiltonian will
leave any finite region of space in the time mean :

1 τ

lim --$dτ\\F(\x\<R)exp(-iHτ)Ψ\\ = 0 V J R < o o . (5)
Γ-+OG 1 Q

We will show for our more restricted class of interactions that this state is a
scattering state in the traditional sense namely that it belongs to the range of the
wave operators. (F(|x| < R)(H + i f l )" 1 is compact because F(\x\ < R)(H0 + il])"1

is compact and (H0 + i1)(H + i f l)" 1 is bounded by (2).)
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Let Ψ be a vector from the domain of H which belongs to the continuous
spectral subspace of H. Setting R = n it follows from (5) that for any n

n

J dt\F(\* <n)QXp(-iH(t + τ))(H + n)Ψ\\
— n

goes to 0 in the mean as a function of τ. Therefore we can find a sequence τn such
that as n -> oo

||F(|x <13n)exp(-iHτn)Ψ\\ -» 0, (6)

f Λ| |F(|x <n)exp(-iH(t + τn))(H + iϊ)Ψ\\-+Q. (7)
— n

Ψn: = exp(-ίHτn)Ψ (8)

represents a sequence of states localized farther and farther away from the scatterer.
Their kinetic energy distributions approximate their total energy distribution:

Lemma 1. Let φ be the Fourier transform of an L^^dtJ-function, then

\im\\ (φ(H)-φ(H0))Ψn\\=0. (9)
M-> 00

Remark. The lemma is true for potentials vanishing arbitrarily slowly at infinity.

Proof. The expression (9) equals

00

J dtφ(t) (exp ( - iff ί) - exp ( - iff Ot ) } Ψn

— oo

^ f dί|<p(ί)| |(exp(iff0ί)exp(-iffί)-1l)ϊ /

B | |+2 J dt\φ(t)\.
-n \t\>n

The first term is bounded by the L^norm of φ times

sup || (exp(i#0i) exp( - iHt) - ϊ)Ψn \\
\ t \ Z n

^ J dt\\Vexp(-iHt)Ψn\\
— n

n

^ J Λίl^ff + ill)-1! | |F( |x |<n)exp(-iffi)(ff + i

The first summand vanishes for n -^ oo due to (7), the other one because
|| V(H + ilΓ^dxl >n)\\< 2h(n) (see (3)) for large enough n and n h(n) -> 0.

Asymptotic Decomposition of States

From now on we will assume that Ψ is taken from the dense subset of the conti-
nuous spectral subspace for H, which contains those states whose energy is
finite and bounded away from 0. For suitably chosen numbers 0 < a < b < oo the
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energy support of Ψ and Ψn is contained in the interval [Ί3a2,(b — α)2/4]. Choose
a function φe^([R) such that φ(ω) = 1 for 73α2 ^ ω ̂  (fe - α)2/4 and φ(ω) = 0
if ω < 72α2 or ω > (6 - α)2/2, then φ(H)Ψn = Ψn.

Φn: = φ(H0)Ψn (10)

is an approximation of Ψn : \\ Φn — Ψn \\ -> 0 by Lemma 1, which has momentum
support in 12α ̂  p| ̂  b — a. It is crucial for the estimates below that α and b
can be chosen independently of n.

Let {Bn, Cni} be a disjoint decomposition of [Rv into the ball Bn = {xe R v 1 1 x | ̂
n} and finitely many truncated cones Cni c (xelR v | |x| > n,x e. ̂  |x|/2} for a
suitable set of unit vectors e. which are independent of n. In addition to the pro-
jectors F(') we shall need smooth multiplication operators in x-space, F0(C),
which are obtained by convoluting the characteristic function of C <= 1RV with a
fixed function ζe^(Uv). Thereby supp f(p) c (pe Rv 1 1 p | ̂  α}, Γ(0) = 1, and {F0(5J3

F0(Cni) } is a resolution of the identity. The estimate (6) implies both || F0(B12n)Φn \\ ->
0, and

ll^-Σ^o(c12M,^||-o. (ii)
/

Each F0(Cί2ni)Φn which is essentially localized far away from the scatterer
for large n, will be decomposed further into its "outgoing" and "incoming" compo-
nents by splitting it in momentum space such that p x S: 0 or ̂  0 for xeCn ί. Let
χ.(p)e^([Rv) be such that χf(p) = 0 for p e. <-α, and χ.(p) + χf( - p) = 1 for
p I < b. Then

V i , n . (12)

Φπ(i, out/in) = F0(C12njχi( ± p)Φπ (13)

are the outgoing/incoming components of Φπ . Before we show that Φn(i, out/in)
evolves almost freely in the future/past we have to prove a technical estimate
on the space-time behavior of exp(— ίH0t)Φn(ί, out/in).

Localization of exp( — iH0 t)Φn(i, out/in)

We have constructed Φn(i, out) such that it is mainly localized far away from the
scatterer and p points away from the origin. One expects that for later times the
distance from the scatterer increases linearly in time, in fact the tail decreases
faster than any inverse power of | x | and t. The following estimate will be used
later.

Lemma 2.

lim ]dt\\F(\x\^n + at)GXp(-ίH0t)(H0 + ^)Φn(i9out)\\ -0, (14)
n—>• oo

lim J Λ|f(|x|^n-Ωί)exp(-i//0ί)(ίί0 + 1)Φn(Un)||=0 (15)
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for all Φn(i, out/in) as constructed above.

Proof. The ball |x | ̂  n + at is contained in all half spaces x f g (n + at). Let us
decompose Φn(i, out) further and show that for each term the estimate analogous
to (14) is true for a suitable half space. This reduces the problem to one dimension.

Split χί into finitely many summands; e.g. ξ; e^([Rv), χ.(p) = £< .̂(ρ). Simple
trigonometry shows that the ζ . can be chosen such that

p f,£2fl} (16)

for a suitably chosen set of unit vectors ίj which make with ef an angle of 20°
(sin 10° > 1/6). Furthermore χ f j > 2 n VxeC 1 2 π i V/'. The lemma follows if we
show that for all ij:

lim ]dt || F(x f , < n + at) exp( - iH0ί)(H0 + ϊ)F0(C12n Jξjίp)Φn \\ = 0. (17)
H - O O O

To simplify notation pick a coordinate system such that the xx-axis is parallel
to the f. under consideration. With Fm = (HQ + H)F0(C12Wjίn{2w + m^x 1 ̂
2n + m + 1}) we have a further decomposition which obeys

(H0 + WW = ΣX (18)
0

For any set ,4 :F0(^4)ΦM has momentum support in |p| ^ b, therefore (H0 + H)
can be implemented by multiplication in p-space with a fixed function from
^((Rv), consequently the localization is not seriously extended. A shift to the
left by 2n + m along the xraxis transforms Fmξj(p)Φn into a state well localized
near xχ = 0, the momentum support is contained in a rg p1 ^ ft. Denote by <p(x)
the wave function of any such state. Then exp [ — i(p2

2 + . . . + p^ )/2] commutes
with F(xi <n + at), and so drops out of (17).

Next we modify and extend a well known asymptotic expression for
(exp(— ιΉ0f)φ)(x), see e.g. Theorem IX.31 and its proof in [5].

• J(l + iy\βt + (iyl/2t)2/2) exp( - ixιyjt)φ(y). (19)

The support of φ(p) implies that (Wtφ)(x) = 0 if x1 < at. An analogous calculation
as in [5] and Taylor's formula yield

|| (1 + ί)( - x, + 2αί)2[(exp( -

-||(1 + t)t\ - id/dy, + 2α)2{ [e

^ II ̂ (bi |)Ek(y)| + |3/3yιφ(y)| + |52/δj;2φ(y)|] || , (20)

where P( ) is a polynomial of 6th order with coefficients depending on α only.
Due to the momentum restrictions of φ(p) and the good localization near x1 = 0
which is uniform for all normalized φ under consideration, a straightforward
estimate shows that (20) is bounded by a constant A depending only on a, b, ζ and
the function implementing (H0 + H). The remark following (19) and (20) imply
for z > 0
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\\F(x1<-z + at)e*p(-iH0t)φ\\ZA[(l + t)(z + at)2']-1. (21)

Replacing φ by Fmξj(P)Φn and z = n + mm (21):

1 F(x1 < n + at) exp( - i/f Oί)(ί/0 + WC^Jί/P)*,, ||

^ Σ [(l + t)(m + n + at)2~\-1£A[(l + t)(n-l + at)~\-1. (22)
m = 0

Thus (17) holds and (14) follows. The same proof with a few signs reversed gives (15).

•
Completeness of Ώ-

We first estimate the interaction on asymptotic states.

Lemma 3.

-l)Φn(i,out)||=0, (23)

lim||(Ω+-ΐ)Φπ(Mn)| |=0. (24)
»->oo

Proof.
00

I (β_ - DΦΛi, out) || £ f A || V exp( - ίΉ0ί)Φn(i, out) ||
0

+ HΓ1 1 f dt| |F(|x| ^n + αί)exp(- iH0t)(HQ + 1)Φn(i,out)\\

+ I (H0 + W, out) I J dt\\ V(H0 + ^-1F(\x\^n + at)\\ .
0

The first term vanishes by Lemma 2, the second by (3). For (24) analogously.
The existence of Ωτ on Jf is well known and easy to prove, e.g. [4]. Also it

follows immediately from our Lemma 3 and the fact that for tn large enough
eχp( + ίH0tn)Φ is of the type Φn(i, out/in) for a total set of states Φ.

Property (24) implies that Φn(i,in) and Ψn (see (8)) become orthogonal:

^ 1 (fl - β+)Φn(i, in) || + I (exp(ιΉ0τn)Φn(f, in), β* ψ) \ , (25)

The last summand is bounded by

I F( |x I ̂  n + aτ n) exp (iH0τn)Φn(ί, in) || + || F( \ x | ̂  n + ατn)ί2* Ψ \\ .

The second term obviously decreases, and similarly for the first from the estimates
leading to (15) in Lemma 2.

Now assume that Ψ (and every Ψn) is a state with continuous energy spectrum
orthogonal to the range of Ω_. Substracting ̂  Φn(i, in) from Ψn we obtain (by

(11, 12)) asymptotically ^Φπ(ι, out) which lies in the range of Ω_ by (23). As

n)|| is bounded uniformly in n this is a contradiction. Interchanging
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the roles of Φn(m) and Φn(out) one shows that Ψ must lie in the range of Ω+ as
well. This concludes the proof of our theorem.

Acknowledgements. I am indebted to Angus Hurst, Andrew Lenard, and Barry Simon for helpful
discussions.
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