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Abstract. By application of the Girsanov formula for measures induced by
diffusion processes with constant diffusion coefficients it is possible to define
the Onsager-Machlup function as the Lagrangian for the most probable tube
around a differentiable function. The absolute continuity of a measure induced
by a process with process depending diffusion w.r.t. a quasi translation
invariant measure is investigated. The orthogonality of these measures w.r.t.
quasi translation invariant measures is shown. It is concluded that the
Onsager-Machlup function cannot be defined as a Lagrangian for processes
with process depending diffusion coefficients.

1. Introduction

In the preceeding years a lot of work has been done concerning the Onsager-
Machlup (OM) function [1-6]. Onsager and Machlup were the first to consider
the probability of paths of a diffusion process as the starting point of a theory of
fluctuations [7]. Their work was restricted to processes with linear drift and
constant diffusion coefficients, the generalization to nonlinear equations was
undertaken by Tisza and Manning [8]. The central point was to express the
transition probability of a diffusion process by means of a functional integral over
paths of the process. A certain part of the integrand was then called the OM
function.

Recent works are concerned with finding the correct integrand. It has often
been overlooked however, that dealing with paths of a diffusion process requires
an almost sure calculus. Otherwise ambiguous results may occur [3, 4, 9, 10], as
was pointed out in [2, 6].

Here the OM function can only be understood as a shortened form in the
functional integral mentioned above. Therefore all forms of the OM function,
containing the derivative of a path, are formal expressions. This is because of the
fact that almost all paths of a diffusion process are nowhere differentiable.

Still another, more physical, meaning can be given to the term OM function.
Some workers have taken up the idea of Tisza and Manning to interprete the OM

0010-3616/78/0060/0153/S03.60



154 D. Durr and A. Bach

function as a Lagrangian for determining the most probable path of the diffusion
process by a variational principle. This cannot hold for a path of a diffusion
process, because a solution of the variational principle should be twice dif-
ferentiable. Besides, the probability of a single path is zero anyhow. Instead one
can ask for the probability that a path lies within a certain region, which may be a
tube along a differentiable function. So the OM function may be defined as the
Lagrangian giving the most probable tube. Comparing the probabilities of
different tubes of the same "thickness" requires a measure in function space, from
which the probabilities can be derived. This is achieved by the induced measure.
While in the problem of the OM function the theory of induced measures was
referred to only twice [6, 11], there are other fields of physics where this theory is
the basis for the connection between quantum mechanics and stochastic processes
[12-14].

So hereafter we shall give an introduction to the theory of induced measures
and try to motivate the mathematical concept. In Section 3 a definition of the OM
function as a Lagrangian in the sense stated above will be given, and subsequently
in Section 4 the OM function for processes with constant diffusion coefficients is
calculated. We shall see that it is of the same form as was supposed in [2, 5, 6].

In Sections 5 and 6 we will consider processes with process depending
diffusion. It is shown that the induced measure of any such process cannot be
absolutely continuous w.r.t. a quasi translation invariant measure. The subsequent
Section 7 consists in proving the orthogonality of measures induced by processes
with process depending diffusion w.r.t. quasi translation invariant measures. In the
conclusion the equation for the most probable tube of processes with constant
diffusion is stated. As our results in the case of process depending diffusion differ
considerably from others we finally give a critical comparison with these works.

2. Mathematical Introduction [15—18]

Let Xt denote a nonexploding diffusion process on τ = [s, u] defined by the
stochastic differential equation w.r.t. the probability space (Ω, σ, P)

d X = f ( X t ) g ( t ) t

(2.1)
g(x)>09 X s = x0eIR.

The space of paths of such a diffusion process is the space C*° of continuous
functions

C*° = {x(ή\x:τ->1R, x(t) continuous, x(s) = x0}. (2.2)

With the uniform norm II II

11x11= max |x(ί)|, x(ί)eCJ0

5 (2.3)
ί e τ

C*° is a Banach space. Using this norm to induce the uniform topology on Cx

τ° we
get the Borel field Wτ° of C*°.

A subset In of C*° of the following form

I n = {xeCx

τ°\(x{t,),..., x{tn))eE}, (2.4)
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where s<tί< ...tn^u and £ is a Borel set of IR" will be called /^-dimensional
cylinder set. The collection of all n-dimensional cylinder sets is a σ-field and the
class of all finite-dimensional cylinder sets is a field, which we denote by /. In [17]
it is shown that the σ-field σ(I) generated by / is the Borel field Wτ° i.e.

σ(I)=Wτ°. (2.5)

Now let us define the measure μx on IB*0 induced by the diffusion process (2.1) by

μx{B) = P({ωeΩ\Xt(ω)eB}), BeWτ°. (2.6)

If B = /„ we have

Ϊ...,x(tn))eE})9 (2.7)

where E is the Borel set of IR" considered and Pξ is the n-dimensional probability
of the diffusion process X r

To introduce the following theorems in a heuristic way we call the attention to
the problem of finding the most probable path of Xt. As just mentioned it only
makes sense to ask for the probability that a path lies within the open tube K(z9 ε)
which is defined as

K(z,ε) = {xeC?\zeC*°, Wx-zW <ε, ε>0}. (2.8)

Once an ε > 0 is given one can compare the probabilities of tubes for all zεC*°
using

μx{K{z, ε)) = P({ωeΩ\Xt(ω)eK(z, ε)}), (2.9)

as K(z,ε)eIB*0.
Principly the same is done in IR", if one asks for the most probable value xm of

the stochastic variable X. Instead of the induced measure μx we have the
distribution P(x), possessing a density p(x) w.r.t. the Lebesgue-measure μL, such
that P(A) = J p{x)μL(dx) and A = [x, y]. In the limit A = [x, x + dx~] we get P{xe A)

A

= p(x)μL(A) = p(x)dx, where dx is independent of x. This property is the wellknown
translation invariance of the Lebesgue-measure. Hence calculating the most
probable value xm means to maximize p(x).

The concept of a translation invariant measure cannot be transferred to
function space. Instead the role of the small interval dx may be taken over by the
tube K(z9 ε) and that of the Lebesgue-measure by a quasi translation invariant
measure. μx(K(z9 ε)) can be represented as a functional integral with the range of
integration X(z,ε). If μx is absolutely continuous w.r.t. a quasi translation
invariant measure μ, it is possible to shift the range of integration to K(x0, ε), which
no longer depends on z [19].

Our aim is to approximate the integrand of the new functional integral for ε
small, such that we get μx(K(z, ε))ocM(z)μ(K(x0, ε)). This defines M{z) as a certain
functional. For that some theorems are needed.

We will call measures μx, μγ equivalent (μx~μγ) if μ x is absolutely continuous
w.r.t. μγ (μx<μγ) and if μγ<μx [17]. Our main theorem, as in [6], is the Girsanov
formula [15, 20] which states a sufficient condition for the absolute continuity (or
equivalence) of an induced measure w.r.t. another. Here we need
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Theorem 2.1 [15,20]. Let Xt and Yt be two diffusion processes defined by the
stochastic differential equations

(2.10)

(2.11)

c > 0 , Xs=Ys = xoe^, teτ; KfGeC2.

Then we have μx^μγ (as the diffusions are equal) and the Radon-Nikodym
derivative (RND) of μx w.r.t. μγ is given by

1 u )

| - ^(a(Yt(ω))2 dή, (2.12)

where

We transform the stochastic integral in (2.12) using the Ito formula [15]. Firstly we
consider G(x) = c.

Setting

V(x)=-Jdya(y) (2.14)

we get

dV(Ύ^=^Y^k{TO+^^{Tθ\dt + a(lOdWt (2.15)

or

]a(Yt)dWt=V(Yu)-V(x0)

d^^t. (2.16)]
Replacing the Ito integral in (2.12) by the above relation we get an expression
F[y(ί)] for (2.12), which clarifies the functional property of the RND on C*°

= exp W M ) ) - V{x0)- \ ] dtb{y{t))\, (2.17)

where

b(y(t)) = {a(y(t))}2 + c ̂  (y(ί)) + \ a{y{t))k{y{t)). (2.18)
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It is well known that the uniqueness of the Lebesgue measure μL on 1R" is given by
its translation invariance. That means, if T is a translation on IR", then for each
EeW

TEeBn and μL(TE) = μL(E) (2.19)

holds. In C*° such a one to one mapping is a translation by any function zo(t)eC®
= {x(φc:τ->IR, x(t) continuous, x(s) = 0} and it is easy to see that a translation
invariant measure μx on C*° does not exist [16].

The adequate measure here is the quasi translation invariant (q.t.i.) measure
defined as follows:

Definition 2.1. Let T be a transformation T\C*°-+C*° such that

Tx-+x-{-z0, (2.20)

where zoeC®, z0 twice differentiable and bounded. Consider the diffusion pro-
cesses Xt and

TXt=Xt + z0(t). (2.21)

If the induced measures μx and μτx are equivalent, μx and μτx will be called q.t.i..
Next we show

Theorem 2.2. Each diffusion processXt with constant diffusion c>0 induces a q.t.i.
measure μx.

Proof Let us take (2.10) and the translation (2.20). Then we get in combination
with (2.21)

= {f(TXt - zo(ή) + zo(t)}dt + cdWt. (2.22)

As the diffusion has not changed under T we have by Theorem 2.1 μτx~ μx and
the RND of μτx w.r.t. μx is given by (2.12), where a(x) is replaced by

a^z.)-**-^-™. D (2.23)

The index X [cf. (2.23)] indicates that the term belongs to the RND of a measure
μτx w.r.t. μx; if we replace z0 by — z0 in these functionals they refer to the RND of
μτ-ίχw.rX.μx.

If we want to eliminate the stochastic integral now, we have to take into
account that Vx, given by (2.14), is a function, explicitely depending on time. Now
the Ito formula yields

1 ,

dx
(Xt,zo(t))dWt. (2.24)
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We will denote the RND of μτx w.r.t. μx by Jx[_Xt, zo(ί)] Setting

, UVx(x,z0(ή)

dt X - X(t)

Λ
(2.25)

x = x(t)

we get the following expression for Jx[x(t\ zo(t)3

J x[x(ί), zo(ί)] = exp I Vx(x(u), zo(u)) - Vx(x0, zo{s))

(2.26)

The q.t.ί. measures are important because of the following theorem.

Theorem 2.31 [19]. // we take the translation (2.20) then for Be IB*0 we have
T~ 1BeWτ°. If Φ[x] is a measurable functional on Cx

τ° and μx is a q.t.i. measure the
following equation holds

x\x,-z0-\dμx(x). (2.27)

This is easily seen: Based on the definition of Jx[x, z 0] as RND of μT-ιx w.r.t. μx

we have

. (2.28)

B}) = μx(B) (2.29)

Now for any BeWτ°

μT-ίχ(T~ 'B) = P({ω| Γ" ^ ( ω j e T~ ̂ }) =

holds, which yields (2.27). •

3. The Definition of the Onsager-Machlup Function

In the preceeding section we have considered the tube K(z, ε) as was given by (2.8).
We are now interested in the most probable tube. As this tube depends on a
function z(ί) we have to look for that function z(ί) which maximizes (2.9). If we
restrict ourselves on bounded functions z(ί), twice differentiable with bounded
derivatives, the following definition makes sense.

Definition 3.1. Let ε > 0 be given. Let zm(t) be a function that maximizes μx(K(z, ε)).
u

If for β—>0 zm(ί) can be found by variation of a functional j OM(z, z)dί, the
s

integrand OM(z, z) will be called Onsager-Machlup function.
The question of uniqueness of the OM function depends on the formulation of

the variational principle and will be discussed later (cf. Section 8).

In [16] this theorem is proven for the Wiener measure
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4. The Onsager-Machlup Function for a Diffusion Process
with Constant Diffusion

Let Xt be given by the stochastic differential equation

dXt=fQCt)dt + cdWt, c > 0 , X s = xoeIR, feC2. (4.1)

For any bounded function z(ί)eC*°, twice differentiable and both derivatives
bounded, we can find a function zo{t)eC°τ as in (2.20) such that

z(t) = xo + zo(t), z(ί) = zo(0- ( 4 2 )

Following Definition 3.1 we have to consider

μx{K(z,ε)) = ί dμx(x). (4.3)
K(z,ε)

Now we have

T-1K(z,ε) = K(x0,ε), (4.4)

where T is given by (2.20).
We know that each diffusion process Yt with diffusion c and initial value Ys = x0

induces a q.t.i. measure μγ with μx~ μγ. Hence combining (2.15) and (2.27) we get

μx(K(z,ε)) = J F[x + Z o ]J y [x ,-z o ] r fμ y (x) . (4.5)
K(xo,ε)

As μx is already q.t.i. we may take μx instead of μγ in (4.5). Then F= 1 and instead
of (4.5) we get

μx(K(z,ε))= J J x [x ,-z 0 ] r fμ x (x) . (4.6)
X(xo,fi)

As we want to get K(0, ε) as integration area we define

and denote by μγ0 the measure induced on C°.
Applying Equation (2.27) again with translation parameter x0 yields

(4.7)

μx(K(z,ε))= j Fly + zVYly + x0, -zo]dμϊθ(y). (4.8)
K(0,ε)

Combining (2.17) and (2.26) we can write for the integrand of (4.8)

(w) + z{u))

(4.9)

Vγ(y(u) + x0, ~zo{u))- Vγ{x0, ~zo{s))
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We remark that the integrals in (4.9) are Riemann integrals. They can easily be
estimated by well known methods. We expand the exponent of (4.9) into a Taylor
series around y(t) = O and split off the terms of zero order. The remaining terms can
be made arbitrarily small if we choose ε small enough, as for y(t)eK{0,ε)

\\y(t)\\^ε (4.10)

holds.

Denoting the remaining terms by A [y, z] we have

exp\V(z(u))-V(xo)-^dtb(z(ή)

(4.11)

expi Fy(x0, -zo(u))- Vγ(x0, -zo(s))

Inserting this into (4.8) we get

μx{K{z,ε)) = F[_z]Jγ\_xφ - z 0 ] J exp(J|>, z])dμγ0(y). (4.12)
K(0,ε)

We recall that for a functional Ψ[y] on Cτ° with II Ψ[y~]\\ ^δ the following relation
holds

, BeB°τ . (4.13)

Now we choose an ε > 0 such that A[y, z~\<δ for 5->0. Expanding the exponential
in (4.12) we can approximate (4.12) neglecting terms smaller than

)). (4.14)

Using μγo{K(0, ε)) = μγ(K(x0, ε)) we finally get

μx(K(z,ε)) = Flzyγtxo,-zo-]μγ(K(xo,ε)). (4.15)

To find a z(ί) which maximizes (4.15) we have to maximize the functional

M[z]=F[z]J y [x 0 ,-*<>]• ( 4 1 6 )

Xt is given by (4.1) and let Yt be given by (2.11). To get (4.16) in terms of f(x) and
k(x) we need the following equations for which we used (2.13), (2.14), (2.18), (2.23),
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(2.25), (4.2) and the differentiability of z(ί)

V(z(u))-V(xo)=\]dtlz
C ς.

- fc(z(ί))}] ,

= z(ί)

dfc(x)

dx : = z(ί)

161

(4.17)

(4.18)

(u))-Vγ{xo,-zo{s)) = -2r
) - z(ί)x0} (4.19)

dγ(x0, - z o ( ί ) ) = -
/c2(x0)

_|
k2(z(ί)) 2f(t)x0 dfc(x)

= z(ί)

(4.20)

With (2.17) and (2.26) we get for M[z\ combining the last four formulas

(4.21)

In accordance with Definition 3.1 we define the following OM function

(4.22)

The function zm(t) that maximizes (4.15) must be independent of the choice of the
q.t.i. measure μγ i.e. independent of fe(z). As we see this is fulfilled. The term

+ k'(x0) (4.23)

is a constant and depends on the measure chosen. As it is a constant it cannot
influence zm(ή. So we can take as OM function the expression

(4.24)
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With (4.24) we give some versions of (4.15):

μx(K(z, ε)) = exp {1 (k-^- + k'{x0)) {u - 1
I L \ C I

•μγ(K(x0,ε))exp\--\dtOM(z,z)\, (4.25)

μx(K(z, £)) = exp j - U-^τ~ + f'(xo)\ (u ~ s) \

«0,e))exp{-MdiOM(z,z)[, (4.26)

μx(K(z, β)) = μwc(K(x09 ε)) exp j - i J ώOM(z, z)J. (4.27)

In the last expression we used the modified Wiener process

0 . (4.28)

Until now our considerations were restricted to processes with constant diffusion.
In the next section we treat the case of process depending diffusion. Our aim is to
show that the way described above is not possible in this case, i.e. that the induced
measure of a process with process depending diffusion (p.d.d.), is not absolutely
continuous w.r.t. a quasi translation invariant measure. This purpose is achieved
in two steps:

Firstly we prove, that, if two measures are absolutely continuous w.r.t. another,
the diffusion coefficients of the underlying processes are the same. This is the
conversion of the Girsanov theorem (Theorem 2.1).

Secondly we show, using the first step, that only processes with constant
diffusion induce quasi translation invariant measures. The first step is rather
mathematical in nature, but there seems to be no reference concerning this point.

5. The Converse of the Girsanov Theorem

LetX, and Yt be given by (2.10) and (2.11). Theorem 2.1 then states

μx~μγ. (5-1)

Let us define the measure P by the absolutely continuous transformation of the
measure P:

P(4)=Jρ(ω)dP(ω), (5.2)
A

where Aeσ and

^ ( ) ) (5.3)
dμx

Then Theorem 2.1 is equivalent to the following statement:
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Theorem 5.1 [15]. The process

Wt = Wt + ]a(Xt,)df (5.4)
s

is a Wiener process w.r.t. P, and a is given by (2.13).

Proof of the Equivalence. Combining (2.10) and (5.4), we get

dXt = k(Xt)dt + G{Xt)dWt. (5.5)

Now if Theorem 5.1 holds, then (5.5) is the SDE of Xt w.r.t. P and we have the
equality of μγ and μx, induced by (Xp P), on IB*0.

For any BeB*° we have:

= ί % (ω)dP(ω) = j % (ω)dμx(Xt(ω)), (5-6)
{ω\Xt(ω)eB} a Γ B a r

because P is by definition absolutely continuous w.r.t. P. So

If Theorem 2.1 holds we have for any

p ί % J dP(ω)
B a^X {ω\Xt(ω)eB} a r {ω\Xt(ω)eB}

= P({ω\Xt(ω)eB}) = βx(B). (5.7)

ThusX, induces the same measure w.r.t. P as Yt w.r.t. P, so that (Xv P) is equivalent
to {YPP). Therefore the SDE of Xt w.r.t. P is (5.5). Then (WVP) is the Wiener
process. Π

Note 5.ί. Let H™ = σ(x0, Wv t ̂ u) denote the σ-algebra of all events Wt(ω\ t^u. As
each diffusion process is a non anticipating functional of the Wiener process we
can choose [18]: H™=B*°. In [20] it is shown, that Theorem 5.1 also holds if we
replace a(Xu) by any H^-measurable function αM(ω).

We now prove the converse of the Girsanov theorem.

Theorem 5.2. Let μx and μγ denote the measures induced by the diffusion processes
Xt and Yt respectively. If μx~μγ then the diffusions of Xt and Yt are the same.

For the proof we need the lemma:

Lemma 5.1. If X/t and Y/t denote the restrictions of Xt and Yt on τ' = [s,ί], then
clearly μx/t~μγ/t if μx~μγ.

We consider the RND's

^t,(ω)) (5.8)
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defined on C*° and

ρt(ω)=p^(Xt,(ω)) (5.9)
aμXft

defined on C*°.
Then (QvΉζ?)t<u is a martingale.

Proof For any BeBx

τP

B afIX

= μγ/t(B) = j ρtdμxft = J ρt{ω)dμx{Xt{ω)). (5.10)

This yields E(ρu(ω)\lB*P) = ρf(ω) which shows (ρf5 IBJ°) is martingale. D

For the proof of Theorem 5.2 we consider the two diffusion processes

(5.11)

and

dYt = k(Yt)dt + G(Yt)dWt Ys = x0 ( 5 1 2 )

Let ρM(ω) be defined as in (5.8). With Note 5.1 and Lemma 5.1 we have (ρt5 Hy) is a
martingale. Now by a result of Kunita and Watanabe [21], there exists a im-
measurable function at(ω) such that a positive martingale can be written as

\ ( 5 . 1 3 )
s

Because of E{.Qu\Hζ) = E(ρu\x0) = E(ρu) = 1 we get

t

ρt(ω) — 1 = J αt/(ω)d^,(ω) or
s

dρt = atdWt. (5.14)

By the Ito formula dlnρ,= - ( l / 2 ) ί ^ dί+ ί ^ d ^ ί a n d (5 8) w e § e t

(X/ω)) = exp(i(^(ω)W(ω)-(l/2)}(^(ω)) dt\. (5.15)
Is \Qt / s \Qt / J

So

^ ( ω ) (5.16)
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defines a H^-measurable function. Now if we take (5.15) to define a new measure P
as was done in (5.4), we have by virtue of Note 5.1

Wt = Wt-]φt,df (5.17)
s

is the Wiener process w.r.t. P. Introducing this into (5.11) yields:

dXt = (f(Xt) + G(Xt)Φt)dt + G(Xt)dWt (5.18)

which is the SDE oϊXt w.r.t. P. The induced measure will be called μx. As μx~μγ,
we have the equality μx = μγ as was shown in (5.7). So (Xv P) is equivalent to (Yp P).
This gives the equality of the drifts of (5.18) and (5.12)

k(Yt(ω)) =f(Yt(ω)) + G(Yt(ω))Φt(ω) (5.19)

and the equality of the diffusions of (5.12) and (5.18), so that

G(x) = G{x). D (5.20)

Combining Theorems 2.1 and 5.2 gives the final result:

μχ~μγoG(x) = G(x). (5.21)

6. The Quasi Translation Invariance of Induced Measures

Now we are able to show that a measure induced by a diffusion process witlxp.d.d.
cannot be absolutely continuous w.r.t. a q.t.i. measure. With respect to (5.21) it is
sufficient to show:

Theorem 6.1. Only processes with constant diffusion induce q.t.i. measures.

For the proof we consider the process (2.10) and the transformation Γ, defined
by (2.20). Let us consider the new process Yt = TXV which is governed by the
stochastic differential equation

(6.1)

Now quasi translation invariance requires μγ~μx. With (5.21)

G(x) = G(x-z0) (6.2)

holds. This can only be fulfilled for any z0 if G(x) = constant. •

As a consequence we have that the proceeding in Section 4 is not possible in
the case of process depending diffusion.

7. Orthogonality of Measures

Before giving up the search for the OM function we investigate the last possibility
which could lead us to the solution of the problem, i.e. we investigate the
component of a measure which is absolutely continuous to a q.t.i. measure. This
will be specified as follows:
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Definition 7.1 [22]. Two measures μx and μγ are called orthogonal μxLμγ if there
exists an Ae Cx° such that μx(A) = 0 and μγ{Cx° - A) = 0. The RND of μx w.r.t. μγ is
zero μy-almost everywhere. For each μx and μγ exists a unique representation

(7.1)

where vxA.μγ and v y~/i y.
a + b=l and vx, vγ are probability measures. avx is called the orthogonal

component of μx w.r.t. μγ and bvγ is called the absolutely continuous component
of μx w.r.t. μγ. Hence

μxlμγ

if bvγ = 0. We are interested to know which values avx and bvγ can take. For
example the orthogonal component of μx might be much smaller than the
absolutely continuous one. To solve this problem, we cite the following theorem:

Theorem 7.1 [22]. Let μx and μγ be two measures on IB*0. Denote by 0βx

n° the σ-algebra
generated by the collection of the n-dimensional cylίndersets In and denote by μx/n

and μy/n the restrictions of μx and μγ on $x° respectively. It is clear that &x° is an
increasing sequence of σ-algebras, such that σ (J &x° =BX°. Assume that on

n

^n°βχin^βγ/n holds. Then (ρn, &
x°) is a martingale, where

/ 1 1 1 . . .

(7.2)

From the theorem on the limit of martingales follows that [22]

ρ(x)=\imρn(x) (7.3)

exists μγ-almost everywhere and

ρ(χ)=p-(x). (7.4)
dμγ

If μxl.μγ then ρ(x) = 0.

Let us call a process with diffusion G(x) a G(x)-process and its measure G(x)-
measure. As we consider only nonexploding processes, all G(x)-measures are
equivalent. We can use this equivalence if we want to investigate whether a G(x)-
measure has an absolutely continuous component w.r.t. a K(x)-measure. We can
choose a G(x)- or K(x)-measure, such that we can easily apply Theorem 7.1.

To apply Theorem 7.1 we need μXjn = Pl which is the ^-dimensional probability
distribution of the process Xt. If Xt is given by (2.10) we can take as equivalent
G(x)-process the process

t t (7.5)

the n-dimensional probability P% of which is known. u(x) is determined by

u' = G(u). (7.6)
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This is seen at once if we write down the SDE of Xt.

dXt = {l/2)u"{u-\Xt))dt + uf(u-ι(Xt)dWt. (7.7)

If the process (2.10) has an absolutely continuous component w.r.t. a q.t.i. measure,
then the measure μ% induced by (7.5) has one too. As q.t.i. measure we take the
modified Wiener measure μwc induced by

W? = c(Wt-Ws) + x0 (7.8)

the ^-dimensional probability of which is also wellknown. Pn- and Pn

wC are both
absolutely continuous w.r.t. n-dimensional Lebesgue measure. Hence μχjn~μwcjn.
The RND

^ (7.9)
uμwηn

is given by

= l C

ί W ' ~ Γ ' 1 Π (7.10)

where we set Λt= and wf = W£+ iΔt(ω\ i = 1,2,..., w.

The limit n->oo of (7.10) exists and gives the absolutely continuous component
vwc of μz w.r.t. μwc:

ρ(ω) = exp{lim t - l n ^ ^
I £ = 1 C

K 7 ; l ) 2 } (7.H)
Now we use the fact [21] that for a diffusion process Yt with diffusion B(y) and

^ ί (7-12)
ί = 1 s

or in a discretisized form

lim J (Vi-yi-i)2 ^ l i m ^ β 2 ( } ( 7 1 3 )

To apply (7.13) we must determine the diffusion of the process

Zt = u~\Wt

c). (7.14)
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The Ito formula yields for the diffusion term

r (Ύ\\ —r C7 1 0
c dx {x)l*=w!-cG(wtη' {]Λb)

where we used (7.6). Inserting this into (7.11) we get for the exponential of (7.11)

G(x0)

» - l ( r2 r2 1

(7.16)

To discuss the r.h.s. of (7.16) we have to consider the function

r = 1ny-y+l. (7.17)

It is easy to see that r ̂  0, where r = 0 holds for j ; = 1 only. For example let us take

G(x) = d>0, d + c (7.18)

then the limit in (7.16) is infinite and negative, so that (7.11) becomes zero.
Remembering (7.5) and (7.6) we see that the choice (7.18) gives another modified
Wiener process besides (7.8):

W* = d(Wt-Ws) + x0. (7.19)

Hence we have shown that

i.e./%<* has no absolutely continuous component w.r.t. μwc if cή=d

μwd±μWc. (7.21)

This is a special case of the wellknown dichotomy of Gaussian measures [17].
If we take instead of (7.18) a process depending diffusion G(x), we can use the

argument that a continuous function cannot vanish in a neighborhood of a point,
where it is unequal to zero. Now G(Wt(ω)) is a continuous function of t and if there
exists a ί0, such that G(WtQ{ω))ή=c then this holds for a neighborhood Uε(t0) of ί0.
For all ίfGC/ε(ί0) then (7.17) is negative. We can choose an ε, such that r̂ Ξ —δ,
<5>0, for all ί.eί/ε(ί0). So the limit in (7.16) becomes infinite and (7.20) becomes
zero, which states the orthogonality of measures induced by processes with process
depending diffusion w.r.t. quasi translation invariant measures.

8. The Most Probable Tube—Conclusion

Firstly we return to the case of constant diffusion, where an OM function has been
stated. It seems to be more suitable for gaining some information of the diffusion
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process, if we consider paths with fixed initial and variable final point. In both
cases the most probable tube zm(t) is given by a variational principle

(8.1)

s

where either

„ (rΛ — γ γ (i/) = γ X PJR. ί82)

or

= 0. (8.3)
dz z(u),z(u)

(8.1) and (8.2) correspond to the variational problem of classical mechanics;
according to the Lagrange function the OM function is not unique. It can be
changed by a gauge transformation. We get the Euler-Lagrange equations

d δOM(z,z) ^dOM&z)

at dz dz [ ]

as differential equation for zm(t). We obtain with (4.24)

(8.5)
zm(s) = x 0 , zju) = x 1 .

(8.1) and (8.3) give the equation of motion zm(ί) if only the initial point is fixed. The
condition (8.3) shows that the OM function cannot be changed by a total
differential of a function of z without changing zm(ί). We need the whole expression
(4.24) to get the evolution equation of zm(t)

Ύ

(8.6)
Zm(S) = X0 > Zm(U) =ΛZm(U)) '

Based on our Definition 3.1 we had to restrict ourselves to differentiable functions
z(t). As we have shown, we can determine a most probable tube K(zm, ε) by means
of a variation principle (8.1) where ε must be smaller than a given δ. The Equations
(8.5) and (8.6) then hold for each ε<δ.

As was stated in the introduction, some attempts exist, where an OM function
has been given and used as Lagrangian even in the case of process depending
diffusion [5]. A certain part of the integrand of a functional integral from which
the OM function has been derived is called measure. The term (4.12) in [5] is only
a part of the usual "element of integration" in approximating a functional integral
by a n-fold ordinary integral.

So it is worthwhile to state the fact that in the case of process depending
diffusion the induced measure is not absolutely continuous w.r.t. a quasi trans-
lation invariant measure, which seems to result in the failure of defining an
Onsager-Machlup function as a Lagrangian in this case.
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