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Abstract. We study the asymptotic behavior of the solution of the initial and
initial-boundary value problem of hyperbolic conservation laws when the initial
and boundary data have bounded total variation. It is shown that the solution
converges to the linear superposition of traveling waves, shock waves and
rarefaction waves. The strength and speed of these waves depend only on the
values of the data at infinity.

§1. Introduction

We consider a system of conservation laws

= 0, (1.1)

whereF(U)and Uaren-vectors,F = (F1, ...,Fn), L/ = (L/1,..., l/ n ),xe^andί^0. We
assume that the system is strictly hyperbolic and each characteristic field is either
genuinely-non-linear or linearly degenerate in the sense of Lax [10]. We study the
Cauchy problem (1.1) with initial data

U(x,0)=Uo(x) (1.2)

which is assumed to have bounded total variation so that the limiting values of Uo at
x = ± oo exist:

I/ z =ϊ/ o (-oo), c/ r =t/ o (+oo).

Our main purpose is to compare the solution (7(x, t) of (1.1), (1.2) with the solution
U^x, t) of the corresponding Riemann problem (1.1) with
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We show that U(x, t) converges to UJ^x, t) as t tends to infinity in the following
sense: In the primary i-th region, (5.1), all j-th waves, i+j, decay, (Theorem 5.2). If
the f-th wave in U^x, t) is a shock wave, then an i-th shock wave will appear in
U(x, t) as t becomes large, and will approach the corresponding i-th shock in UJ(x, t)
and dominates U(x, t) in the primary i-th region, [Theorem 5.7, (iii)]. If the i-th wave
in U^(x, t) is a rarefraction wave, then all i-th shocks in U(x, t) decay to zero and
U(x, t) approaches U^(x, t) in the primary i-th region, [Theorem 5.7, (ii)]. When the
i-th wave in U^x, t) is a contact discontinuity, i.e. when the i-th characteristic field is
linearly degenerate, then all i-th waves have speed approaching that of the contact
discontinuity of U^(x, ί), in other words, the i-th waves become increasingly linear.

In particular if Uι = Ur, then all i-th waves decay except those associated with
linear degenerate characteristic fields and thus if η is a Riemann invariant for all
linear degenerate fields, then η tends to a constant. If, moreover, the system is
genuinely nonlinear in all characteristic fields, then the solution decays to the
constant Uι = Ur.

Our main assumption is that the total amount of interactions is finite (cf.
Section 3). We carry out our analysis with Glimm's difference scheme, [5]. The
scheme has a stochastic feature. By a compactness argument based on Helly's
theorem [5], it is shown that the approximate solution Uh converge to an exact
solution U if

total varx Uh{x, t)Sconst total varx Uh{x,0) (1.4)

for some constant independent of t. When the initial data have small total variation,
the estimate (1.4) was established in Glimm [5] by introducing a nonlinear
functional defined on the approximate solutions. The functional consists of a linear
and a quadratic term. The quadratic term measures the potential amount of
interactions. It follows from the boundedness of the functional that the total
amount of interactions is bounded. Thus our results apply for the Glimm solutions.
Estimate (1.4) has also been established for certain systems where initial data need
not be of small total variation, [1, 3,14,15,17,18,19]. In particular, Nishida [17]
solves the Cauchy problem for the model equations of gas dynamics

ut-p(v)x = 0,

vt — ux = 0, p(v) = const v'1 (1.5)

when the initial data have arbitrary finite total variation. For isentropic equations
of a polytropic gas, p(v) = constv~γ, y > l , Nishida and Smoller [18] obtain the
uniform bound (1.4) under the assumption that (γ — 1) total var^ U(x, 0) is less than a
constant independent of γ. Solutions for general equations of a polytropic gas have
been constructed by Liu [14] under similar hypothesis. The functionals used in
[14,18] contain quadratic terms. Other aforementioned works do not use
functionals containing quadratic terms, nevertheless we will show that for those
solutions the total amount of interactions are finite and our results apply.

Our methods also apply to solutions of initial-boundary value problems in the
quadrant x^O, ίg:0. It is shown that the asymptotic behavior of the solution is
determined by the initial data at x == + oo and the boundary data at t = + oo. We will
illustrate this for general gas equations, Theorem 6.1. The initial-boundary value
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problems for general gas equations with pressures or velocity given at x = 0 have
been studied by Liu [15].

The theory of decay for genuinely nonlinear systems of conservation laws has
been developed by Glimm and Lax [6]. The Glimm-Lax theory is developed for
systems of two conservation laws when initial data have small oscillation. In the
case when the initial data are constant outside a finite interval, the solution decay to
zero at the rate t~1/2. With periodic initial data, the total variation of the solution
per period decays uniformly at the rate ί"1. When the initial data equal Uι for
x<—N and Ur forx>N for some AT > 0, and the solution contains only weak shock
waves, it was shown by Liu [16] that the solution of (1.1), (1.2) converges to the
solution of (1.1), (1.3) at algebraic rates.

Our results on the asymptotic behavior of solutions of general systems of n-
conservation laws, n ̂  2, reduces to results on the decay of solutions when the initial
data are constant outside a finite interval. Such decay results have been obtained by
DiPerna [4] under an additional assumption that system (1.1) possesses a convex
extension in the sense of Lax [11]. Since we do not assume the initial data to be
constant for |x| large, we do not expect the solution to converge at algebraic rates.
When U0(x) equals Uι for x<-N, and Ur for x>N, JV>0, we believe that the
solution converges to that of the corresponding Riemann problem at algebraic
rates. However, new techniques are required for the proof; we leave this for the
future. For the asymptotic behavior of special solutions see [2, 7] and [8].

The primary reasons for the simple large-time behavior of the solution are the
spreading of rarefaction waves which forces the cancellation of shock and
rarefaction waves of the same genuinely nonlinear characteristic field. Waves of the
same linearly degenerate family do not cancel and behave like linear waves. For
general systems, the interaction of waves may change the speeds and magnitudes of
waves and may produce new waves. Since we assume the total amount of
interaction to be finite, the amount of interaction after large time is small. It follows
that the solution is almost uncoupled, (Lemma 5.1). We then use the asymptotic
results for scalar equations, Liu [16], to show that the solution approaches that of
the corresponding Riemann problem. Our main tool is the theory of generalized
characteristics developed by Glimm and Lax [6].

It is essential for our methods that the Riemann problem has a unique solution.
For general systems of conservation laws, Lax [11] uses the implicit function
theorem to show that the Riemann problem has a unique self-similar solution in a
small neighborhood of a constant. For a wide class of two-conservation laws,
Smoller [21,22] solved the Riemann problem when the initial states may not be
close. The Riemann problem for general gas equations has been solved by Liu [13]
and Smith [20] for arbitrary initial states. In proving that the system is increasingly
uncoupled, we assume that the characteristic speeds are strictly separated for any
approximate solutions under consideration, [(5.1)]. This assumption is satisfied for
nearconstant solutions of general systems and also solutions of general gas
equations in the Lagrangian coordinates which are bounded away from the
vacuum. This assumption can be relaxed, however.

The space of functions of bounded variation is a natural space for the solution
operator of a system of conservation laws. Even if the initial data are analytic, in
general the solution is not smooth due to the nonlinearity of the system. On the
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other hand, results on decay and asymptotic behavior of solutions show that the
nonlinearity of the system has certain smoothing effects, and these results may be
viewed as results on the regularity of the solutions.

In the next section we will describe briefly the Riemann problem, the Glimm
difference scheme, Glimm and Lax's notions of approximate conservation laws. In
Section 3 we investigate the assumption on the boundedness of total amount of
interactions for existing existence theorems. Section 4 studies the spreading of
rarefaction waves. The main results on the asymptotic behavior of solutions of
initial value problems are proved in Section 5. The initial-boundary value problems
for gas equations are studied in Section 6.

§2. Preliminary

We assume that system (1.1) is strictly hyperbolic, i.e. dF(U)/dU has real and distinct
eigenvalues λ1(U)<λ2(U)<... <λn(U). Assume that each characteristic field is
either genuinely nonlinear or linearly degenerate, i.e. for any U under consideration,

ra{U) rυKίU)*O> i = l , 2 , . . . , p , (2.1)

rβi(V)'Vυλβμj)^9 j=l,X...,n-p9 (2.2)

where r^U), i= 1,2,..., n9 is an i-th right eigenvector oϊdF(U)/dU and {α1? α 2,. . ., ccp,
β l 9 β 2 9 ..., β n _ p } = {ί929...9n}. T h e rarejaction curve RtiJJ0)9 i=l929...9n i s t h e
integral curve ofri through the point Uo and the shock curve Si(U0)9 i = 1,2,..., n9 is
a curve tangent to Ri(U0) at Uo and for all Ue Uθ9 (Uθ9 U) satisfies the following
Rankίne-Hugonίot condition

σ(U9U0)(U-U0) = F(U)-F(U0) (R-H)

for some scalar σ = σ(U0, U\ the shock speed for (Uθ9 U). When ie{βl9 ...,jβn_p},
Ri(U0) = Si(U0)9 (Lax [11]), and for any UeRJtU0)9 σ(C/0, U) = λί(U0) = λi(U\ Uo is
connected to U by an i-th contact discontinuity. For ie{α l 5 ...,αp} and
UeR^(U0) = {UeRi(U0)\λi{U)>λi{U0)}9 then Uo can be connected to U on the
right by an i-th rarefaction wave ;iϊUGSr(U0) = {Ue S^UΌ) W ^ ) < ̂ (C/o)}» t h e n ^o
can be connected to U on the right by an i-th shock wave satisfying the shock
inequality of Lax [11] :

. (L)

We set

for ie{βl9...9βn_p}9

Ϊ7(JJO)UR+(UO), for ie{α 1 ? . . .,α p},

so that Uo can be connected to any U on 7](t/0) on the right by an i-th wave.
The Riemann problem (1.1), (1.3) is solved by finding Ui9 i = 0,1,2,..., n, Uo = Ul9

Un = Ur, UiE 7](l/f_ ±) so that Ui_ίis connected to U{ on the right by a centered i-th
wave, denoted as (Ui_ 1? [/;). Solutions of Riemann problems are the building blocks
for the Glimm's difference scheme, [5]. Let r9s be mesh lengths so chosen that

λj. The Glimm's approximate solution Us(x91) is exact in the strip ns^t
• 1)5 and consists of elementary waves generated at t = ns, x = mr, m + n = even.
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At time (n + l)s, the value of Us(x, t) in the interval (m — l)r < x < (m + l)r is set to be
the value of the exact solution constructed in the strip t = (n + l)s and
x = (m + an+ί)r. Here {an} is a randomly chosen sequence, equidistributed in (— 1,1).
An I-curve is a space-like curve consisting of a segment joining neighboring mesh
points ((m + αjr, ns), m + n = even. The upper half plane ί Ξ> 0 is covered by diamonds
Δnm with vertices ((m + α ^ J r , (w-l)s), ((m + αn + 1)r, (n+ί)s)9 φn-l-ocn)r,ns),
((m+l + αM)r,ns).

The strength of the i-th wave ([/;_ 1? L̂ ) in the solution of the Riemann problem
(17Z, l/r) is defined as

(U^U^w^U^^-w^), i = l,2,...,n, (2.4)

where w,— ̂  if i = α1 ? . . . ,α p and wf is any increasing function along Tt for
i = j51? . . . , β n _ r The first step in establishing estimates such as (1.4) is to investigate
the interaction of waves of solutions of two Riemann problems. Suppose that the
Riemann problems (Ul9 Um)9 {Um, Ur) and (Ul9 Ur) can be solved. Then in rather
general circumstances, there exists a quantity β(t/ f, t/m, Ur), the potential amount of
interactions, so that for some constant 0(1) depending only on the system (1.1),

(!/„ l/r)(=(t/«, UJi + {Um, [7^ + 0(1)6(1/,, l/m, Ur). (2.5),

Given any diamond A in the Glimm scheme, if the waves entering A from the right
and left as solutions of the Riemann problems (Um9 Ur) and (Ul9 Um) respectively,
then we set Q(A)~Q(Uι, Um9 Ur). We also set the amount of cancellation in A as

Ci(J) = i[|(l7I, UJt + Wn, Ur)lί-\(Ul9 UJtHUn,, Ur)Ji]. (2.6),

Let A be a collection of diamonds. We denote by £t+(Λ) and E^(Λ) the total amount
of i-th rarefaction and shock waves, respectively, entering A. The amount of waves
leaving A is denoted by L* (yl). Summing up (2.5) for all diamonds in A we obtain the
following approximate conservation laws

(27),

where Ct(A) = £ Cf(J), Q ( ^ ) = Σ β(^) In thenext section we will investigate the
ΛeΛ ΔeΛ

amount of interactions Q.

§ 3. The Amount of Interactions

For a general system of ^-conservation laws, Glimm [5] obtains the following
estimate for any nearby states Ul9 Um, Ur:

{Ul9 t/Λ = (£/,, UJt + iUn* Ur)t + 0{l)D{Uι, Vm Ur) (3.1)

where D{Ub Um, Ur) is the sum of products of the strength of approaching waves. An
i-th wave α approaches a j-th wave β if either ί>j and α lies toward the left of β, or
ί =j and at least one of α and β is a shock wave. Given any /-curve J, we define D(J)
as the sum of products of strength of approaching waves which cross J. If J2 is an
immediate successor of Jί9 i.e. J1 and J 2 sandwich a diamond J and J 2 lies toward
larger time than Jί9 then it follows directly that

-DiJJ^ -D(A) + 0(l)L(J1)D(A)



168 T.-P. Liu

where L{J^) is the total amount of waves crossing Jv Thus for L(Jγ) small enough
D(J2) — D(J1)^ —jD(A). If we sum up this inequality over all diamonds in a region
A, one gets

D(Λ)S2D(J) (3.2)

for any /-curve J containing the domain of dependence of A. This shows in
particular if L(J) is small, then D(Λ) is bounded for all A. Thus the total mount of
interaction D(A) is finite if the initial data have small total variation.

For isentropic gas equations (1.5) with p(v) = constυ~Ύ

9 y>ί, Nishida and
Smoller [8] show that global solution exists if (y — 1) times the total variation of the
initial data is sufficiently small. Under this assumption it is not hard to see from
their estimates that

l)-\ (3.3)

where F(J) = L(J) + (y— 1)D(J) and L(J) is the total mount of shock waves crossing J,
D(J) is a quadratic term measuring the potential amount of interaction. The
inequality (3.3) is obtained from

Estimate (3.3) is crude when y is close to 1. Suppose that the strength of waves is
measured by a linear combination of Riemann invariants (cf. Liu [15]) and we set

L(J) = total mount of waves crossing J,

) = KΣ{\oiβ\\a and β are strengths of approaching shock waves}
j

+ H £ {\aβ\ |α and β are strengths of approaching waves and not both are
j

shock waves},

where K and H are constants independent of γ. Then if we choose K and H
sufficiently small, H small compared to K, it follows that

HJJ-FiJ^-^DiA) (3.4)

whence we obtain an estimate stronger than (3.3):

Q(A)^ const F(0). (3.5)

The inequality (3.4) is proved by detailed analysis of wave interactions, [8].
Analogous estimate also holds for general gas equation, [15]. We omit the details.

The result of Nishida was generalized by Bakharov [1] where the existence
theorem was proved under the assumption that shock strength does not increase
after interaction. If one measures the strength of the wave not by Riemann
invariants but instead by linear combination of Riemann invariants, [15], then after
detailed analysis of wave interactions, one sees that

) ^ -D*{A)/L(0) (3.6)
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where D*(Δ) is given as in (3.1), F * = L * + D*/£(ff) and L*(J) measures only the
amount of shock wave crossing J. Thus one concludes by summing up (3.6) that

Q(Λ)^F(0)L(0)^2(L(0))2 (3.7)

where L(0) is the total amount of shock waves for /-curve connecting points on t = 0
and t = s in Glimm's scheme. We thus obtain the estimate (3.7) which is as strong as
(3.2) which holds only for solutions near the constant.

§ 4. Expansion of Rarefaction Waves

Generalized characteristics are Lipschitz continuous curves in the xί-space which
propagate with either shock or characteristic speeds. Such curves can be con-
structed by the recipe of Glimm-Lax's [6]. The two-sided limits of the solution exist
along a generalized characteristic except for a countable value of ί. Given any k-
characteristics χ{ andχ2. issued from time t0, /ce{l, 2, ...,w}, χl lies to the left of χ2.,
we set

Dk(t) = distance between χ{ and χl at time ί, t^t0,

X±(t) = amount of fe-rarefaction and fe-shock waves, respectively, between (but
not on) χl and χl at time t,

Xk(t) = total amount of j-th waves, jφ/c, between χl and χl at time £,

1/^(0 = the one-sided limit from right and left, respectively, of U(x,t) at the
point (x,t) on χli = 1,2. (4.1)

We now assume that the fc-characteristic family is genuinely nonlinear so that we
have

λϊXt) = λk(UΪ\tMσk(UϊXt)^

It follows easily from the Rankine-Hugoniot condition and the mean-value
theorem that for some 0(ί), 0 < θ(ή < 1,

Dk(t) = σk(UΪ \t\ [/-\t))- σk{UΪ \t\ Uς 2{t))

= θ(t) [4Γ \t)- λϊ Hi)] + (1 - θ(ή) iλt 2(t) - λ~k \i)\. (4.2)

We note that θ(ή = θiλ^ 1{t\ λς 2(ί)) and λ£ \t), λf 2{t) range over a compact set in U-
space. Thus there exists a constant θ, O<0<1, independent of t such that

Dk(t) ̂  θ[λk~ \t) - λk

+ \m + (1 - θ) [4+ 2(t) - 4- Hi)] (4.3)

Since Afc"
 2(0 - K HO =^fc+ (0 +^*~ (0 + 0 ( 1 ^ ( 0 as is easily seen, it follows from (4.2)

that

+ (1 - θ(ή) [strait) + strχ2(ί)] . (4.4)

Since the characteristic speeds are assumed to be strictly separated, there exists a
finite ίx > t0 such that all ι-th generalized characteristics χ\ and χf, i φ fe, meet χl or
χ2 before time tv Similarly, for any ί > ί l 5 there exists s < ί such that the (fc— l)-th
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[(fcH-l)-th] generalized characteristics through a point on χl(χl) at time s meets
XkiXk) before time ί, and for some 0(1) independent of ί,

t-s = 0(l)Dk(t). (4.5)

We denote by hk(t0, t) the amount ofi-th waves, i =(= fc, crossingX^ ovXl between time
t0 and t. Let β(ί 0, ί) be the amount of interactions in the region between χl and χl
between t0 and t. We have from (2.7),

Xfe(ί) = 0(1) J d(β(ί0, τ) + Λfc(ί0, τ)). (4.6)
s

Integrating (4.4) from t± to £, t>tv and using (4.5), (4.6) we obtain

+ 0(1)} Dk(τ)d(Q(t0, τ) + hk(t0, τ)). (4.7)
ί l

Since fc-th waves may cross χl or χl only due to interactions, we have from (2.7)

and thus we may solve the linear integral inequality (4.6) to obtain

^T- +0(l)[β(ίo,ί) + V ί o ? ί ) - ^ " ( ί )

where maxstr is the maximum strength of χl and χl between t0 and t. We may apply
this inequality to subregions which contain predominantly fc-th rarefraction waves
and the boundary of these subregions may be so chosen that it consists of k-
characteristics with small strengths ([6], pp. 88—92). Thus the above inequality
holds without the last two terms on the right. We list this as a theorem.

Theorem 4.1. Let χl and χl, k = 1,2,..., n, be generalized k-characteristics issued jrom
two points ont = t0, χl lying to the lejt oj χl. Let t1,tί> t0, be any time after which χl
and χf do not intersect χj and χj jor i +j. We denote by Dk(t) the distance between χl
and χl at time t,X^(t) the amount oj k-rarejaction and k-shock waves respectively
between χl and χl at time t. Then

Xϊm ~ +0(1) [βk(ί0, t) + hk(t0, ί)] (4.8)

where Qk(t0, t) is the amount oj interaction between t0 and t and hk(t0, t) is the amount
oj i-th waves crossing χl(χl) jor all i>k(i<k) between t0 and t.

§ 5. Initial Value Problems

The main purpose of this section is to investigate the asymptotic behavior of the
solution U(x,t) of the initial value problem (1.1), (1.2). We assume that the
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characteristic speeds /^([/(x, ί)) are strictly separated, i.e. there exist
i = 0,1,2,..., w, and a positive constant δ such that

μo<minλ1(U(x9ή)-δ,
(x,t)

max λji U(x, t)) + δ< μt < min λi+1( U(x, t)) — δ,
(χ,t) (χ,t)

n n (5Λ\
(χ,t)

We will investigate the asymptotic shape of U(x9t) in each i-th primary region Ωt

defined as

ί x }
Ω0=Ux,t)\γ<μΛ,

ί x )
Ωi=Ux,t)\μi-ί<j<μλ, i=l ,2, ...,n,

We set

p^+(ί) = total amount of i-rarefaction waves contained in Ωj at time ί,

Wf~.(ί) = total amount of ΐ-shock waves contained in Ωj at time ί, i= 1,2,...,n,
l

Since the total amount of interactions is finite and £/( ,ί) has uniformly
bounded total variation for each ί, for any given ε > 0, there exist t0 = ίo(ε) > 0 and
M = M(ε)>0 such that for any ί^ί 0,

total varx {C7(x, ίo)| |x| ^ M} < s. (5.2)

We denote by χl and χ£, fe=l,2, ...,n, the fe-th generalized characteristics issued
from ( —M, ί0) and (M, ί0) respectively. The quantities Dk(t\X^(i) and ί, are defined
as in Section 4 for each given χl and χ^ and t0. In what follows, 0(1) are bounded
functions independent of t and ε.

Lemma 5.1. Let Γί5 i = 1,2,..., n, be the region between χ\ and χf and Ao the region left
oj χ J, Λi9 ί = 1,2,..., n — 1, ίfte region between χf and χ\+1? and Λπ ίΛe region right ojχl.
Then jor any t*ztl9j=l, 2, ...,n, ί = 0,1,2, ...,n.

(i) T/ze amount oj j-waves outside Γj at time t is 0(l)ε.
(ii) 77ιe ίoί^/ variation oj U in regions A{ at time t is 0(l)ε.

(iii) For any (x l5 ίx) and (x2, ί2)
 ϊ>n Λ U
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Proof. We apply the conservation law (3.1) to the region right of χl to obtain that the
amount of /-waves, ί < k, which cross χl is less than the total variation of U(x, t0) for
%>M, plus the amount of interactions in the region. Similar estimates hold for the
amount of i-waves, i> fc, which cross χ\. Thus (i) follows from (5.2) and as a direct
consequence of (i), we have (ii) and (iii). Finally, (iv) follows from (i) and estimate
(4.7) Q.E.D.

Theorem 5.2. The amount oj ί-waυes, i = 1,2,..., n, in the region Ωpj = 0,1,2,..., n + 1 ,
iΦj, at time t approaches zero as t-> + oo.

Proof. According to Lemma 5.1, since ε is arbitrary, we need only to show that Γj is
contained in Ωj for large £, but this is obvious from the definitions of Ωj and
Γj. Q.E.D.

Lemma 5.3. Suppose that i = βl9 ...,/?M_p, i.e. r^Vλ^O. Then jor any (xk,ίk) in Λk,

(i) λo(υ(xi9 φ = λlU^i-v U-1
(ii)

Proof. Since λt changes value only across;-waves J Φ z, (i) is a consequence of Lemma
5.1, (i). We note that Tt are integral waves of the vector field rf P, thus (ii) follows also
from Lemma 5.1, (i). Q.E.D.

Lemma 5.4. Suppose that ί = α l 5 ...,αp, i.e. η Γ^ΦO, and λJiU(xi9t^)
Sλi(U(xi_vtί_1))-kε jor some {xi,t^}eAi and (Xj_1? ti_ί)eΛi_1 and k>0. Then
there exists a constant k0 independent of t and ε such that for t sufficiently large and
/c>fc0,

+

(ii) χl and χf coalesce to form an i-shock with strength λi(U(xi, ti)) — λi

Proof. We will use the notation in Section 4 [cf. (4.1), (4.2)]. SinceZj(ί) = 0(l)ε from
Lemma 5.1, (i) and Ai

+2(t) = Aί(t7(xί, ίf)) + 0(l)ε, λr1(t) = λi{U(xi_v i ^ J + OilJe from
Lemma 5.1, (iii), we have from (4.2) that for some θe(0,1),

) S θ[X+(t) +XΓ(t)l + (1 - θ) lλJU{xi9 tt)

-^( l/ ίXi .^ ί^ jα+OίlJβ, t^tx.

Thus it follows from Lemma 5.1, (iv) that

x^t^))]+ 0(1)8, t^tl. (5.3)

If we set

Hi(ή=Di(ή-lλi(U(xii tj)-uu(Xi_l9 tt_,))] (t-tj,

then (5.3) yields
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This is a differential inequality which can be easily solved to yield

DJt) = const(ί - ttf + [^(l/fo, tτ)) - λjtUixt-19 ί,_,))]

(5.4)

Since 0e(O,1), it follows from (5.4) that if fe0 is so chosen that /co>0(l) on RHS of
(5.4), then D (t) = 0 for t large. Thus the lemma follows from Lemma 5.1. Q.E.D.

Lemma 5.5. Suppose that ί = α l 5 . . . ,α p , i.e. η F^ΦO, and λi(U(xb ti))>λi(U(xί_u

ί i_ 1))-0(l)ε for some 0(1)>0. Then for t sufficiently large,

(i) |XΓ(ί)| = 0(l)e,
(ii)

Proof. It follows from Lemma 5.1, (iv) and estimate (5.4) that

and so for t large,

Since

as is easily seen from Lemma 5.1, it follows from (5.5) that

+ t_l9 tt_ j) + 0(1)8,

(5.6)

The lemma follows from Lemma 5.1. and (5.6). Q.E.D.

Lemma 5.6. Suppose that the Riemann problem (1.1), (1.3) is solved by centered ί-waves
(Ui_ί9 Ui), i = l , ...,n. Then jor any (xbt^}eAb we have

Proof. It follows from Lemma 5.3, (ii), Lemma 5.4, (ii) and Lemma 5.5, (ii) that there
exist ϋi9 i = 0, 1, ...,rc, such that

Thus Φi-n t/f), i = l,2, ...,n, solves the Riemann problem with data (ϋ0, ϋn). But
the above inequality and Lemma 5.1, (iii) imply that \U0 — U(— oo)| +1Un — U( + oo)|
= 0(l)ε. Because the solution of the Riemann problem depends differentiably on its
data, we have proved the lemma. Q.E.D.

Theorem 5.7. Suppose that the Riemann problem (1.1), (1.3) is solved by i-th centered
waves (C/f-u Ut\ z = l, 2, ...,n. Then

(i) U(x, t)-+ Ui as t-> + oo /or - = μt.
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(ii) // rf Vλt + 0, i.e. i = oc1,oc2, ...,ocp, and (C/£_ l 9 C7f) is a centered rarejaction wave,
i.e. λiiUi-J^λiiUi), then the amount oj i-shock waves in Ωt approaches zero as £-•
+ oo and U(x, t) approaches the centered rarejaction wave (£/,._ l91/£) pointwise in Ω{

as £-> + oo.
(iii) // rt- VλtΦ0, i.e. i = α 1,α 2, ...,ocp and (C7£_ 1 ? l/j) is centered shock wave, i.e.
h-i)>^i(Ui% then there exists an i-shock wave in Ωt which approchaes (C/f_ 1 ? Ut)

in strength and speed and, moreover, the total variation oj the solution in Ωt

outside oj this shock wave approaches zero as £-• + oo.

(iv) // r Γ Vλi = O9 i.e. i = βl9β2, ...9βn-p9 then in Ωt, ^(C7(x, ί))->Ί/(tfj- 1) = A£(C/ί) as
£-• + 00 arcd the distance between U(x, £), (x, t)eΩi9 and T(C/f_ x) = 7X17̂ ) approaches
zero uniformly as t^> + oo.

Proo/ It is easy to see that given any ε > 0 and associated Γb i = 0,1,2,..., n, the point

(x, t) with — = μ. belongs to Γf if £ is sufficiently large. Thus (i) of the theorem follows

from Lemma 5.6 and the arbitrariness of ε. Similarly, the first half of (ii) follows
from Lemma 5.5, (i) and Lemma 5.6. We now prove that U(x, t) approaches the
centered rarefaction wave (C/£_ -,_, C/£) in Ωv

Given any ε >0, we construct χ\ and χf as above. By Lemma 5.5, (i) there exists
2̂ = ̂ 1 s u c n t n a t l̂ i~ (̂ )l = 0(l)e for £^£ 2. Thus it follows from Lemma 5.6 that the

speeds of χ{ and χl for £ ̂  £2 are A£(C7£_ γ) + 0(l)ε and λ^U^ + 0(l)ε, respectively. Thus
forί^^+D^),

distance {χf, l}} + distance {χf, lf}=O(l)ε(t-12), (5.7)

x
where //={(x,£)} — =λi(Ui_2+j)9 7 = 1,2, are the edges of the centered wave

(C/£_ l 9 Ui). For (x, £)evlI _ 1, it follows from (5.7), Lemma 5.6, and the structure of
centered rarefaction waves that

= O(l)ε (5.8)

where (7*(x, t) denotes the centered wave (L/"£_1? I7f). Similarly, for (x,t)eΛi,

\U*(x,t)-U(x,t)\=O(l)ε. (5.9)

For any (x,t)eΓi, t7>t2 + Dί(t2), we can choose (x*,t) between If and If such that
|t/*(x*, £)— U(x, t)\ = 0(l)ε as is easily seen from Lemmas 5.1 and 5.6. Through (x, t)
we draw an i-th generalized characteristic χ backward in time. If χ meets χ\ and χf
we continue χ with χ\ or χ?. Since χ may change speed only due to shock waves
entering χ orj-waves, iΦj, crossing χ, one sees that for t^t2,χ has speed λi{U{x, t))
+ 0(l)ε. As a result we see that

| x * - x | = 0(l)ε(t-ί 2 ). (5.10)

Similarly we may draw an i-th generalized characteristic χ* through (x*, t) and
apply estimate (4.7) for χ and χ* [cf. Lemma 5.1, (iv)] together with (5.10) to yield
that the total amount of i-rarefaction waves between χ and χ* is 0(l)ε. This along
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with Lemma 5.5, (i), yields that for (x9t)eΓi, t large

totvar{[/( ,ί) between x and x*}=0(l)ε

and so

|£7*(x,ί)-t7(x,ί)|=O(l)e. (5.11)

Thus it follows from (5.8), (5.9), (5.11) and the arbitrariness of ε that U{x, *)-* U*(x91)
is uniformly in Ωt as £-> + oo.

Statements (iii) and (iv) of the theorem follow from Lemmas 5.3 and 5.4 by
analogous arguments. We omit the details. Q.E.D.

The following corollary is a direct consequence of the above theorem. We omit
the proof.

Corollary. Suppose that U(—co)=U(+ oo) and let ψ be any i-Riemann invariant,

i = βί,β2, . . . ,β M - p , ί.e. ψ is constant along all Tt curves for all ie{βί9β29 ...,βn-p}

totvar{tp(x, ί)| — oo<:x<oo}->0 as t-* + co.

If p = n9 i.e., all characteristic fields are genuinely nonlinear, then

0 as ί-» + oo.

§ 6. Initial-Boundary Value Problems

In this section we investigate the large-time behavior of solutions of (1.1) defined in
the quadrant xΞ>0, f^O. We will illustrate our basic ideas for gas equations:

(6.1)

pυ(s,v)<0, pvv(s,v)>0,

(u,v,E)(x,0)=(uo,vo,Eo)(x), x^O, (6.2)

u(0, ή = ub(t), ί^O, (6.3)j

or,

(6.3)2

It follows from the estimates in Liu [15] that there exists a finite amount of
interactions Qo in the interior ί^O, x > 0 and g x on the boundary x = 0 provided
that either the data (6.2), (6.3) have small total variation or the gas is polytropic, i.e.

p(s, v) = const exp \v y, 1 < γ ^ 5/3, and (γ — 1) times the total variation of the
\ R I

data (6.2), (6.3) is small, (see also Section 3). Given any region A in the quadrant
which intersects the boundary x ~ 0 from t = a to t = b, the following approximate
conservation laws hold [cf. (2.7)J when (63)ί is the boundary data

(6.4)3
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and when (6.3)2 is the boundary data then the first equation in (6.4) is replaced by

Here Rf(a9 b) denotes the amount of 1-waves hitting the line x = 0 between time a
and b, and B^(a, b) the amount of 3-waves issuing from x = 0 due to the boundary
data (6.3).

Given any ε>0, we choose t09 M so large that Q2(Λ) + Qί(t0,oo)Sε for
A = {(x, ί)l t^ί 0 }, and \B%(t09 oo)| <ε, tot var{U(x, ί), x ^ M} < ε. Through (M, ί0) we
construct a 1-characteristic χ which intersects x = 0 at time tv Applying (6.4), to the
region right of χ, we find that for any t^tί

(6.5)

and so, (6.4)3 becomes

for all A in the region {(x, t)\t ̂  ί j . That is, for t sufficiently large, the amount of 1-
waves is small and thus we may use the techniques used in the last section to prove
the following theorem whose proof is omitted:

Theorem 6.1. Suppose that either TV is sufficiently small or the gas is poly tropic with
exponent y9 l < y < 5 / 3 and (y—l)TV is sufficiently small Here TV is the total
variation oj the data (6.2), (6.3). Then the initial-boundary value problems have a global
solution (u, v9 E) (x, t) which approaches the solution (u*, υ*9 E*) (x, t) oj (6.1) such that

(u, v, E) (x, 0) = (u09 v0, Eo) ( + oo), x ^ 0, (6.2)*

n(0,t) = u fc(+oo), ί^O, (6.3)*

or,

(6.3)*

More precisely, if (w*, v*, E*) (x, t) is a rarefaction wave or a constant, then shock
waves decay and (p,u)(x,t) approaches (p*9u*)(x,t) pointwise as £-> + oo, and if
(w*, v*, E*) (x, t) is a shock wave, then a shock wave emerges from (u, v, E) (x, i) jor t
large such that the shock wave approaches the shock wave (w*, v*9 E*) (x, t) both in
speed and strength and outside the shock wave (u9p)(-9t) has total variation
approaching zero as £-> + oo.
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