Commun. math. Phys. 55, 125-131 (1977)

Correlation Inequalities and Equilibrium States

M. Fannes* and A. Verbeure

Instituut voor Theoretische Fysica, Universiteit Leuven, B-3030 Heverlee, Belgium

Abstract. For an infinite dynamical system, idealized as a von Neumann algebra acted upon by a time translation implemented by a Hamiltonian H, we characterize equilibrium states (KMS) by stationarity, a Bogoliubov-type inequality and continuous spectrum of H, except at zero.

§1. Introduction

The equilibrium states of a finite volume system in statistical mechanics is usually given by the Gibbs-ensembles.

To describe bona fide physical phenomena it is well known that one has to take the so-called thermodynamic limit i.e. the volume tending to infinity, of any of the Gibbs ensembles. These "limit Gibbs' states" have an interesting property, they satisfy the so-called KMS-condition [1, 2].

In [3] Roepstorff derived a stronger version of the Bogoliubov inequality [4] for Gibbs states (for KMS-states see [5]).

Let $\langle . \rangle_{\beta H}$ denote the thermal average with respect to the Hamiltonian H and the inverse temperature $\beta = 1/kT$. For any pair of observables x, y the scalar product $(.,.)_{\sim}$ is defined by:

$$(x, y)_{\sim} = \frac{1}{\beta} \int_{0}^{\beta} d\lambda \langle \exp(\lambda H) x^* \exp(-\lambda H) y \rangle_{\beta H}$$

(see also [6]). In [3] the following inequality is derived

$$(x, x)_{\sim} \leq \left[\langle xx^* \rangle_{\beta H} - \langle x^*x \rangle_{\beta H} \right] / \ln \langle xx^* \rangle_{\beta H} / \langle x^*x \rangle_{\beta H}.$$

$$(1)$$

Of course we have not to insist on the importance of the Bogoliubov inequality and its stronger version in statistical mechanics (see e.g. [7]).

^{*} Aangesteld Navorser NFWO, Belgium

In this note we want to add an other argument in favor of the importance of the inequality (1). We prove that a basic concept like that of an equilibrium state is determined by the following three properties:

(i) Stationarity,

(ii) inequality (1),

(iii) spectral condition.

For the benefit of the reader we sketch here the argument for states on $\mathscr{B}(\mathbb{C}^n)$. We prove that (i) and (ii) imply the KMS-condition.

Let H be the Hamiltonian, as operator on \mathbb{C}^n with spectral resolution

$$H = \sum_{i} \varepsilon_i E_i$$

 $\varepsilon_i \neq \varepsilon_i$, (E_i) spectral family of *H*.

We suppose that ω is a state on $\mathscr{B}(\mathbb{C}^n)$ satisfying conditions (i) and (ii). From (i)

 $\omega(x) = \operatorname{Tr} \varrho x \qquad x \in \mathscr{B}(\mathbb{C}^n),$

where ρ is a density matrix of the form

$$\varrho = \sum_i R_i,$$

where

 $0 \leq R_i \leq E_i$ for all *i*.

Let \mathscr{C} be the set partial isometries V of rank one such that

$$V^*V \leq E_i$$
$$VV^* \leq E_j$$

then from (ii) with x = V one gets

$$\frac{\exp(\varepsilon_i - \varepsilon_j) - 1}{\varepsilon_i - \varepsilon_i} \leq \frac{\omega(VV^*) / \omega(V^*V) - 1}{\ln \omega(VV^*) / \omega(V^*V)}.$$

From the strict monotonicity of the function $f(x) = \frac{x-1}{\ln x}$ one gets

$$\exp(\varepsilon_i - \varepsilon_j) \leq \omega(VV^*) / \omega(V^*V)$$

substituting V by V^* yields

$$\exp(\varepsilon_j - \varepsilon_i) \leq \omega(V^*V) / \omega(VV^*).$$

Hence

$$\omega(V^*V)/\omega(VV^*) = \exp(\varepsilon_i - \varepsilon_i).$$

Hence

$$\frac{\operatorname{Tr} R_i V^* V}{\operatorname{Tr} R_j V V^*} = \frac{\exp - \varepsilon_i}{\exp - \varepsilon_j}.$$

Correlation Inequalities and Equilibrium States

As this is true for any V in \mathscr{C} : there exists a constant α such that:

$$\operatorname{Tr} R_i V^* V = \alpha \exp(-\varepsilon_i)$$

and so

 $R_i = \alpha \exp(+\varepsilon_i)E_i$.

From normalization: $\rho = \exp(-H)/\operatorname{Tr} \exp(-H)$.

Remark that the original Bogoliubov inequality

 $(x, x)_{\sim} \leq 1/2 \{\omega(xx^*) + \omega(x^*x)\}$

is not sufficient for determining the KMS-property.

This can be checked on M_2 . Take

$$H = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad \varrho = \begin{pmatrix} \alpha & 0 \\ 0 & 1 - \alpha \end{pmatrix} \qquad 0 \leq \alpha \leq 1.$$

For α between

 $(e-3/2)/(e-1) \le \alpha \le e/2(e-1)$

the inequality is always satisfied, and the state need not to be KMS.

Therefore using the results of [3] and [5] we proved the equivalence of on the one hand the KMS-condition and on the other hand conditions (i) and (ii) i.e. stationarity and the inequality, which is an upper bound for the Duhamel two-point function.

We thank Professor E. Lieb for pointing out to us Ref. [8], where a different upper bound for the Duhamel two point function can be found. However it is unclear if this upper bound implies also the KMS-condition.

§2. The Main Theorem

Let \mathfrak{M} be a von Neumann-algebra on a Hilbert space \mathscr{H} and $(\alpha_t)_{t\in \mathbb{R}}$ such that $\alpha_t(x)$ $=\exp(itH)\times\exp(-itH)$ where H is a self-adjoint operator on \mathcal{H} . Let Ω be a cyclic vector of \mathscr{H} for \mathfrak{M} and let ω be the corresponding vector state i.e. $\omega(x) = (\Omega, x\Omega)$; $x \in \mathfrak{M}$. Furthermore suppose that $\mathfrak{M}\Omega$ belongs to the domain $\mathscr{D}(\exp(-tH/2))$ of $\exp(-tH/2)$ for all $t \in [0, 1]$. Then the following scalar product $(., .)_{\sim}$:

$$(x, y)_{\sim} = \int_{0}^{1} dt (\exp(-tH/2)x\Omega, \exp(-tH/2)y\Omega)$$

is well defined on \mathfrak{M} .

Lemma 2.1. Suppose Ω cyclic and for all $x \in \mathfrak{M}$:

/

$$(x,x)_{\sim} \leq \frac{\omega(x^*x) - \omega(xx^*)}{\ln \omega(x^*x) - \ln \omega(xx^*)}.$$

Then Ω is separating.

(2)

(+)

Proof. Suppose $x^*\Omega = 0$ then $\omega(xx^*) = 0$. Suppose $x\Omega \neq 0$ then $\omega(x^*x) \neq 0$ and the right hand side of (+) vanishes; hence $(x, x)_{\sim} = 0$.

As the integrand $\left(\exp\left(\frac{-tH}{2}\right)x\Omega, \exp\left(\frac{-tH}{2}\right)x\Omega\right)$ is continuous and positive $\exp\left(\frac{-tH}{2}\right)x\Omega = 0$

for all $t \in [0, 1]$. For t = 0 this yields $x\Omega = 0$. Hence $x^*\Omega = 0$ implies $x\Omega = 0$. Therefore for all $y \in \mathfrak{M}$

 $yx^*\Omega = 0$,

or $(xy^*)^*\Omega = 0$ implies $xy^*\Omega = 0$. As Ω is cyclic for \mathfrak{M} , this implies that x = 0. O.E.D.

Lemma 2.2. Let (i) Ω cyclic and separating for \mathfrak{M} .

(ii) $\mathfrak{M}\Omega \subset \mathscr{D}\left(\exp\left(\frac{-H}{2}\right)\right).$

(iii) \Re linear, self-adjoint subspace of \mathfrak{M} such that $\Re \Omega$ is dense in \mathscr{H} .

(iv) There exists a constant $C \ge 1$ such that for all $x \in \Re$

 $C^{-1}(\exp(-H/2)\alpha^*\Omega, \exp(-H/2)x^*\Omega) \leq (x\Omega, x\Omega)$

 $\leq C(\exp(-H/2)x^*\Omega, \exp(-H/2)x^*\Omega)$

then (*) extends to all $y \in \mathfrak{M}$.

Proof. Define the operator T on $\exp(-H/2)\Re\Omega$ by

 $T(\exp(-H/2)x^*\Omega) = x\Omega$ $x \in \Re$.

By (*) T is bounded by $1/\overline{C}$.

Now we prove the result by proving that there exists a closable extension \tilde{T} of T. Define \tilde{T} on $\exp(-H/2)\mathfrak{M}\Omega$ by

 $\tilde{T}(\exp(-H/2)x^*\Omega) = x\Omega, \quad x \in \mathfrak{M}.$

 \tilde{T} is well defined $[\exp(-H/2)x^*\Omega=0$ implies $x^*\Omega=0$ and by (i) $x\Omega=0$] on a dense set $\exp(-H/2)\mathfrak{M}\Omega$, as $\exp(-H/2)$ is invertible.

We prove that the adjoint \tilde{T}^* of \tilde{T} is densily defined. First we prove that $\mathfrak{M}'\Omega \subseteq \mathscr{D}(\exp(H/2))$, where \mathfrak{M}' is the commutant of \mathfrak{M} .

As $\exp(-H/2)$ is a self-adjoint invertible operator, $\exp(-H/2)\Re\Omega$ is dense in \mathscr{H} and for all $y' \in \mathfrak{M}'$ and $x \in \Re$ using (*):

 $|(y'\Omega, \exp(H/2)\exp(-H/2)x\Omega)|^2$ = $|(x^*\Omega, y'^*\Omega)|^2 \leq ||x^*\Omega||^2 ||y'^*\Omega||^2$ $\leq C ||\exp(-H/2)x\Omega||^2 ||y'^*\Omega||^2.$

Hence

 $y'\Omega \in \mathscr{D}(\exp(H/2))$.

(*)

Correlation Inequalities and Equilibrium States

Define the operator \tilde{T}^+ on $\mathfrak{M}'\Omega$ [dense in \mathscr{H} , because of (i) by]:

 $\tilde{T}^+(y'\Omega) = \exp(H/2)y'^*\Omega, \quad y' \in \mathfrak{M}'.$

 \tilde{T}^+ is well defined because Ω is cyclic for \mathfrak{M} . Now \tilde{T}^* is an extension of \tilde{T}^+ , because for all $x \in \mathfrak{M}$ and $y' \in \mathfrak{M}'$:

$$\begin{split} &(\tilde{T}^+ y'\Omega, \exp(-H/2)x\Omega) \\ &= (\exp(H/2)y'^*\Omega, \ \exp(-H/2)x\Omega) \\ &= (y'^*\Omega, x\Omega) = (x^*\Omega, y'\Omega) = (\tilde{T}\exp(-H/2)x\Omega, y'\Omega). \end{split}$$

Therefore the second inequality (*) extends to all $x \in \mathfrak{M}$. Analogously for the other inequality. Q.E.D.

Theorem 2.3. Let ω and α_t be as above, if ω satisfies:

(i) ω is α_t-invariant (stationnary state).
(ii) for all x∈M:

 $(x, x)_{\sim} \leq \left[\omega(xx^*) - \omega(x^*x)\right] / \ln \omega(xx^*) / \omega(x^*x).$

(iii) the spectrum of H is continuous except for the point zero.

Then ω satisfies the KMS-condition for the evolution α_t at $\beta = 1$, i.e. $\forall x, y \in \mathfrak{M}$: $(\exp(-H/2)y\Omega, \exp(-H/2)x\Omega) = (x^*\Omega, y^*\Omega).$

Proof. Suppose $E \in \operatorname{sp}(H) \subseteq R$ and $\delta > 0$,

 $\Delta = [E - \delta, E + \delta], \quad \Delta^{-} = [-E - \delta, -E + \delta]$

such that zero is not an endpoint of Δ .

Let $H = \int \lambda dF(\lambda)$ be the spectral resolution of H with spectral family $\{F(\lambda)/\lambda \in \mathbb{R}\}; F_{\Delta} = \int dF(\lambda).$

Take any element $y \in \mathfrak{M}$ such that

 $y\Omega \in F_{\mathcal{A}}\mathscr{H}$,

ysser de

then

$$\int_{0}^{1} d\lambda (\exp(-tH/2)y\Omega, \exp(-tH/2)y\Omega)$$

$$\geq \int_{0}^{1} d\lambda \exp(-t(E+\delta))(y\Omega, y\Omega)$$

$$= [(\exp(-(E+\delta))-1)/-(E+\delta)]\omega(y^*y)$$

By (ii):

$$(\exp(-(E+\delta))-1)/-(E+\delta) \leq \frac{\omega(yy^*)/\omega(y^*y)-1}{\ln \omega(yy^*)/\omega(y^*y)}.$$

By the monotonicity of the function

$$\lambda \to \frac{\lambda - 1}{\ln \lambda}, \quad \lambda \in \mathbb{R}^+$$

this yields

 $\exp(-(E+\delta)) \leq \omega(yy^*)/\omega(y^*y).$

Also:

$$(\exp(-H/2)y\Omega, \exp(-H/2)y\Omega) \leq \exp(\delta - E)\omega(y^*y).$$

Hence

$$\exp(-2\delta)(\exp(-H/2)y\Omega,\exp(-H/2)y\Omega) \le \omega(y^x).$$
(1)

Analogously, remarking that $y^*\Omega \in F_A - \mathscr{H}$ yields

$$\omega(yy^*) \leq (\exp(-H/2)y\Omega, \exp(-H/2)y\Omega \exp(2\delta).$$
⁽²⁾

From (1) and (2):

$$\exp(-2\delta)(\exp(-H/2)y\Omega, \exp(-H/2)y\Omega) \le \omega(yy^*)$$
$$\le (\exp(-H/2)y\Omega, \exp(-H/2)y\Omega) \exp(2\delta).$$
(3)

Let $\{\Delta_k^n/k \in Z\}$ be a partition of the real line such that

$$\Delta_k^n = \left[\frac{2k-1}{2n}, \frac{2k+1}{2n}\right)$$

for $n \in N$.

Let

$$\mathfrak{R}_{k}^{n} = \{ y \in \mathfrak{M} / y \Omega \in F_{\mathcal{A}_{k}^{n}} \mathscr{H} \}$$

and \Re^n be the linear span of the \Re^n_k for all $k \in \mathbb{Z}$. We prove that $\Re^n \Omega$ is dense in \mathscr{H} .

Take any $\psi \in F_{\Delta \mathbb{R}} \mathcal{H}$, for any $\varepsilon > 0$, there exists an element $x \in \mathfrak{M}$ such that

 $\|\psi - x\Omega\| < \varepsilon.$

Take

 $x(f) = \int f(t) \alpha_t(x) dt$

with $f \in L^1(R)$ and support of the Fourier transform \hat{f} of f in Δ_k^n , then $x(f)\Omega \in F_{\Delta_k^n} \mathcal{H}$. Because of condition (iii), it is furthermore possible to choose f such that

$$\|x(f)\Omega - F_{\varDelta_k^n} x\Omega\| < \varepsilon.$$

Then

$$\|\psi - x_{(f)}\Omega\| \leq \|\psi - F_{\mathcal{A}_{k}^{n}} x\Omega\| + \|F_{\mathcal{A}_{k}^{n}} \alpha\Omega - x(f)\Omega\| < 2\varepsilon$$

proving that $\Re^n \Omega$ is dense in \mathscr{H} .

The inequalities (3) are easily extended to \Re^n . Take

$$x = \sum_{k=1}^{N} x_k, x_k \in \mathbf{\mathfrak{R}}_k^n$$

130

Correlation Inequalities and Equilibrium States

then

$$\exp(-1/n) \left(\exp(-H/2) x \Omega, \exp(-H/2) x \Omega \right)$$
$$= \exp(-1/n) \sum_{n} \left(\exp(-H/2) x_k \Omega, \exp(-H/2) x_k \Omega \right)$$
$$\leq \sum_{k} \left(x_k^* \Omega, x_k^* \Omega \right) = \left(x^* \Omega, x^* \Omega \right)$$

and analogously for the second inequality.

Now we are in a position to use Lemma 2.2 yielding (3) for all $x \in \mathfrak{M}$. As this is true for all n we get for all $x \in \mathfrak{M}$:

 $(\exp(-H/2)x\Omega, \exp(-H/2)x\Omega) = (x^*\Omega, x^*\Omega).$

By polarization, for all x and $y \in \mathfrak{M}$, we get

$$(\exp(-H/2)y\Omega, \exp(-H/2)x\Omega) = (x^*\Omega, y^*\Omega)$$

which is a particular form of the KMS-equation. Q.E.D.

References

- Kubo, R.: J. Phys. Soc. Japan 12, 570 (1957); Martin, P.C., J. Schwinger: Phys. Rev. 115, 1342 (1959)
- 2. Haag, R., Hugenholtz, N., Winnink, M.: Commun. math. Phys. 5, 215 (1967)
- 3. Roepstorff, G.: Commun. math. Phys. 46, 253 (1976); see also: Roepstorff, G.: A stronger version of Bogoliubov's inequality and the Heisenberg model. Preprint August 1976, TH Aachen, Germany
- 4. Bogoliubov, N.: Phys. Abh. S.U. 1, 229 (1962)
- 5. Naudts, J., Verbeure, A.: J. Math. Phys. 17, 419 (1976)
- 6. Naudts, J., Verbeure, A., Weder, R.: Commun. math. Phys. 44, 87 (1975)
- Mermin, N., Wagner, H.: Phys. Rev. Lett. 17, 1133 (1969); Dyson, F.J., Lieb, E.H., Simon, B.: Phys. Rev. Letters 37, 120 (1976); Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. (to appear)
- 8. Bruch, L. W., Fortune, P. J., Berman, D. H.: J. Chem. Phys. 61, 2626 (1974), Appendix B

Communicated by E. Lieb

Received February 6, 1977