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Abstract. A shock wave in a self-gravitating fluid obeying the equation of state:
pressure equal to energy density is shown to travel with the velocity of light in a space-time
determined by the Einstein field equations. The jump conditions that must be satisfied
by the hydrodynamic variables are derived and discussed as are those that must be satisfied
by the metric tensor and its derivatives. The latter conditions are obtained by using a
variational principle.

1. Introduction

The preceding paper [1] discussed some solutions of the Einstein
field equations for the case where the source of the gravitational field
was a perfect fluid described by the stress energy tensor

uv-pqμv (1.1)

with uμ the normalized four-velocity vector, that is, with

tι μ t t μ =l, (1.2)

w the rest energy density and p the pressure. It was also assumed that
the fluid obeyed the "extreme" equation of state

w = p. (1.3)

It is the purpose of this paper to discuss the jump conditions that
must be satisfied across a singular hypersurface, such as a shock wave,
in the space-time determined by the Einstein field equations when
the source of the gravitational field is the extreme fluid described by
Eqs. (1.1) through (1.3). These jump conditions are of two sorts: (1) con-
ditions that must be satisfied by the hydrodynamic variables, to so-called
Rankine-Hugoniot equations and (2) conditions that must be satisfied
by the metric tensor and its derivatives.
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The former conditions may be obtained from a reformulation
of the conservation equations satisfied by the hydrodynamic variables.
The next section will start the discussion of the Rankine-Hugoniot
equations. The treatment of the conditions on the metric tensor will
begin in Section 4 and will make use of the variational method described
in [2]. This method may be summarized as follows: Suppose the Einstein
field equations in a region of space-time removed from the singular
hypersurface may be derived from the variational principle characterized
by the integral

/ = f (R - 2kJS?) ]/^gd*x (1.4)
v

where R is the scalar curvature of space-time, 5£ is the Lagrangian
characterizing the source of the gravitational field and V is an arbitrary
four-volume in space-time containing the singular hypersurface. We
then assume that when the singular hypersurface Σ divides the four
volume V into two subregions V^ and V2 the integral may be written as

/ = /!+/2 (1.5)
where .

IA= J (R - 2k^) ]/^gd4x (A = 1, 2). (1.6)
VΛ

It is required that / be an extremal for arbitrary variations of the metric
tensor, the source variables and constrained variations of the hyper-
surface Σ. We shall only treat the case of shock waves; that is, we shall
assume that when <£ is integrated over the volume V it does not produce
a term involving an integral over the hypersurface Σ. The latter would be
the situation if an infinitely thin shell were present.

2. Thermodynamic Properties of the Extreme Fluid

These properties are often described in terms of the pressure p
and the rest particle density of the fluid, ρ. The latter quantity is required
to satisfy the conservation of particle number equation,

(ρuμ).μ = 0 (2.1)

and serves to define the internal energy ε through the equation

w = ρ(l+ε) (2.2)

where we have chosen our units so that the special relativity velocity
of light

c= 1.

Eqs. (1.3) and (1.2) then imply that

ε = p/ρ-ί. (2.3)
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The conservation equations

T^ v;v = 0 (2.4)

together with Eqs. (1.0) and (2.2) then imply that

where the temperature T and the entropy S are defined by the equation

(2.5)
v ρ

In case Eq. (2.3) holds we find that

T = p/ρ (2.6)
and

kS = log —y-. (2.7)
Q

That is, the extreme fluid behaves as a fluid with a ratio of specific heats

7 = 2. (2.8)

3. The Rankine-Hugoniot Equations

These equations are derived from the generalization of Eqs. (2.1)
and (2.4) which are

and
ΓT WV,- ~1 A /O Λ\\T wμ] = 0 (3.2)

where nμ is a vector normal to the hypersurface and we have used the
notation

[/] = lim (/(*" + εnμ) - f(xμ - εnμ)) = /+-/_.

Thus Eqs. (3.1) and (3.2) may be written as

(3.3)
and

p+ (2uμ

+ u\ nv - nμ) = p_(2uμ_ uv_ nv - nμ) (3.4)
when

gμ

+

v = gμ-v (3.5)
Our subsequent discussion will show that a coordinate system exists
in which the latter equations hold.

When Eqs. (3.4) are multiplied by nμ and summed we obtain

Q+ Q-
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If Eqs. (3.4) are multiplied successively by uμ

+ and uμ_ and uμ+u_μ is
eliminated from the resulting equations we obtain

3 = (p+-p_)nχ. (3.6)
Q- Q+

A singular hypersurface for which

M = 0

is said to be a slip hypersurface if ρ+ and ρ_ do not vanish. In this case
uμ

+ and uμ_ are orthogonal to the normal to the hypersurface. The
situation M = 0 also arises when the singular hypersurface bounds a
region where ρ+ — 0. In this case it follows from the second of Eqs. (3.6)
that

P+=P-,
where nμnμ Φ 0.

A singular hypersurface for which

M Φ O
and

P + Φ P -

is said to be a shock wave. In this case we have

P- P+ Π7,

^ = "A (3'7)

and
nχ = 0. (3.8)

That is for a shock wave the singular hypersurface is a null hypersurface
and across this hypersurface the entropy is conserved. Thus shock waves
in the material described by the caloric equation of state given by Eq. (2.3)
behave quite differently from those obeying more realistic caloric
equations of state. For the latter materials the specific entropy of the
material increases it passes through a shock wave.

In case Eqs. (3.7) and (3.8) obtain it follows that

Thus the change in particle density and the change in velocity normal
to the hypersurface are determined, once the ratio in pressures p+/p-
is known. It is a consequence of Eqs. (3.4) that if Yμ is a vector orthogonal
to nu9 that is if

when MΦO.
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In the above discussion we have assumed that the equation of state
w — p holds on both sides of the singular hypersurface and have shown
that if this hypersurface is a shock wave then it is a null hypersurface.
If we assume that the singular hypersurface is a null hypersurface it
follows from Eqs. (3.2) that

( w + + p + ) α 2

+ = ( w _ + p _ ) α 2 _ , (3.9)
where

α+ =uμ+nμ.

uμ

+uv_(nμYv-nvYμ) = Q, (3.10)
when

rμn" = 0 (3.11)
and that

w + - w _ = j p + - p _ . (3.12)

The last equation is the Hugoniot curve which relates the thermo-
dynamic state of the material on both sides of a shock wave travelling
with the velocity of light.

If Eqs. (3.11) hold in addition to Eqs. (3.2) with nμ a null vector then
Eq. (3.9) may be written as

τ + = τ _ (3.13)
where

τ=^ (3-14)

and is the thermodynamic variable used by Lichnerowicz [3] in his
discussion of compressibility assumptions.

It is an immediate consequence of Eqs. (3.2) that a singular null
hypersurface cannot separate a region of space time (say the + region)
where the stress energy tensor is non-vanishing and is given by Eqs. (1.1),
and (1.2) from a vacuum region one (the — region). For in such a case
Eqs. (3.2) become

It follows from this equation and the assumptions made above that

( w + + p + ) α i = 0
and

P + = 0 .

Hence since uμ+ is a time-like vector, α + φ O and we must have
w+ =p+ =0. If the assumption that uμ+ is a time-like vector is relaxed,
we see that Eqs. (3.2) imply that it must be proportional to the null-
vector nμ.

4. The Special Coordinate System

We now turn to a discussion of the conditions that must be satisfied
by the metric tensor and its derivatives across a singular null hyper-
surface Σ. The derivation of these conditions will be carried out in a
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coordinate system adapted to Σ. This coordinate system is such that the
hypersurface Σ is given by the equation

x4 = 0 (4.1)
and on Σ

/ V, x2, x3, 0) = g^ = δ$δ\ + δίδl + γABδAδ
v

B

0o,v = δffi + δlδl + yABδ
A

μδ
B

v (A, B = 1, 2) (4.2)

and
to44, 4)0 = (03v, 4)o = 0 (4.3)

where

and the subscript zero denotes the fact that a quantity is evaluated
on the hypersurface Σ9 that is for x4 = 0.

Such a coordinate system can be constructed from an arbitrary one
with coordinates xμ in which the hypersurface Σ is a member of a family
of null hypersurfaces given by the equations

F(xμ) = constant

as follows. The null-vector field

satisfies

The equations _ _

admit as solutions two functions φA(A = 1, 2) which are independent
of each other and of the function F. Let/(xμ) be a solution of the equations

Then the transformation

is such that

If this transformation is followed by the transformation

we may choose the f\xj) so that
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Finally we make the transformation

"42

and choose the φμ so that Eqs. (4.2) and (4.3) are satisfied.
In the coordinate system in which Eqs. (4.1)-(4.3) hold the vector

field

satisfies the equations

w; v)o = M
Hence

(4.4)
(h3;A\ _±fl4A
VΛ )θ — 2 #0,4

(^ )θ = ~2"7,3

In this coordinate system the vector field whose components are
given by

satisfies

and

The tensor
? ?v
A°B

projects any vector into the two dimensional space orthogonal to
the two-plane spanned by the vectors m0μ and fe0μ. We may write

Hence it follows from Eqs. (4.4) that

A»v= (fc"%Λg,AS τ= -ϊytfδlδϊ . (4.5)

The rate of expansion, rotation tensor, and shear tensor of the vector
field kμ on the hypersurface Σ are then defined as
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Thus

0 = _ — AB = —
2 7'3 ΎAB ]/

ω u v =0
(4.6)

= det \\γAB\\ - -det \\g \\ = -g0 .

5. The Jump Conditions for the Metric Tensor

These conditions are obtained by studying the contributions to the
variation of / due to the divergence terms in the variation of the scalar
curvature produced when the metric tensor has the variation gμv.
These terms are given by

r _ Γ ]/ 7ι(n^vπQσ nQ^nvσ\πJ— J y ~y\Q 9 ~9 9 )9μv;ρσ
Fi+F 2

where we use the notation

J fd4x= J/Λc+ S fd*x.
Fι + F2 Fi K2

we may write
μvdgσ-gβΎ^gμvMd3x (5.1)

Σ

where
kad

3x = δ^dxίdx2dx3 (5.2)

and the coordinate system is such that Eqs. (4.1) through (4.3) hold.
Eq. (5.1) may also be written as

J=ί [{κ-0(<r 0" - <r <r) feσ <u>c] d3x
(5-3)

- ί [/^(/V* - 0β"3vσ) <U_] ̂ 3x
I

where the comma again represents the partial derivative with respect
to the variable indicated. We may assume that the variations gμv vanish
outside a compact region in the hypersurface Σ bounded by a two
surface S. In view of Eqs. (5.2), (4.2) and (2.6) we may write Eq. (5.3) as

- J =
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The hypersurface integral J will vanish for arbitrary gμv and gμvΛ

which vanish on S if and only if

o, (5.4)
0, (5.5)

0, (5.6)

0, (5.7)

0. (5.8)

These equations are obtained by setting the coefficients of £733,4, #44,
#33, g3A and gAB respectively equal to zero. The coefficients of the
remaining components if gμv vanish in the coordinate system used.

Eq. (5.8) may be written as

Since

where ε12 = ε21 = 1 and ε11 = ε22 = 0, and since Eq. (5.4) holds, we must
have

[yχj,,3]=0. (5.9)

Also in view of Eq. (5.4) we must have

[θ]=0. (5.10)

That is the shear and the rate of expansion of the vector kμ must be
continuous across Σ. Eq. (5.4) implies that the ]/y is continuous across Σ.

We may further specialize the coordinate system so that

for on the two surface in Σ determined by the equation x3 = x3

x3 = x* = constant, y+AB and J-AB are the induced metrics. We may
introduce coordinates such that

?xl) = Φ2

±(xlx?xl) δAB .

The requirement that

then implies that
Φ2 = Φ2_ .

Hence

Cy^] = o
on this two surface and since this quantity is independent of x3 it vanishes
everywhere on Σ. Thus we may introduce a coordinate system such
that gμv is continuous across Σ and satisfies Eqs. (4.2) and (4.3).
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In such a coordinate system Eqs. (5.6) and (5.7) are equivalent to the
equation

This is in turn equivalent to the equation

M^v-ifln8) = o (5.11)
where

βμv — C(0μv,4)θ]
and

The result given above, namely, that one may introduce a coordinate
system such that the gμv are continuous across a null-hyper surface and
Eqs. (5.11) obtain was derived by Papapetrou and Treder [4] and by
Lichnerowicz [5]. The variational derivation given above may be used in
any coordinate system. We may also express the conditions derived
above in the following geometric terms: The expansion and shear of the
vector field kμ must be continuous across Σ as must be the induced
"volume" element on Σ. In addition the vector field mμ must be such that

KJ=0 (5.12)
and

fcμ[ro"ίv]=0. (5.13)

Eq. (5.12) is equivalent to Eq. (5.6) and Eqs. (5.13) are equivalent to
Eqs. (5.7).
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