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Abstract. Stationary solutions of the Einstein-Maxwell equations have recently been
given corresponding to charged, spinning magnetic matter. In this paper a solution for
two particles of such matter is given. In general it contains a singularity between the
particles.

§ 1. Introduction

Perjes [1] and Israel and Wilson [2] have recently given independ-
ently a new class of stationary solutions of the Einstein-Maxwell equa-
tions. These solutions describe the exterior field of massive, charged,
magnetised, spinning particles. The electric charges and masses of the
particles are such that the electric and gravitational forces between any
two of them balance, and in this respect the solutions resemble those of
Papapetrou [3] and Majumdar [4]. However, the particles also possess
magnetism and spin, and in relativistic units the magnetic moment is
equal to the angular momentum. In fact, every particle satisfies, in
relativistic units (c = 1, G = 1)

m = \e\, h=±μ, (1.1)

m, β, μ and h being the mass, charge, three dimensional magnetic moment
and angular momentum.

In units of customary dimensions (1.1) become

]/G = \e\ (a), C-
1]/Gh=±μ (b) (1.2)

and objects with these parameters are physically quite plausible. For
instance (a) is satisfied by a sphere of neutral hydrogen in which one
atom in about 101 8 has lost its electron; \h\/\μ\ given by (b) is only about
three orders of magnitude greater than the corresponding ratio for the
Earth. Though objects satisfying both (a) and (b) together, even approxi-
mately, must be somewhat rare, it is clear that the matter described by
the solutions is physically possible. It is therefore worth investigating
them to see what insight they give into general relativity.

The solution for the simplest particle satisfying (1.1) was given by
Perjes [1], and we propose to call it a Perjeon. If h = μ = 0 the particle



324 W. B. Bonnor and J. P. Ward:

will be called a Papapetron. (In fact, a Papapetron is a Nordstrδm-
Jefferies particle with \e\ = m.)

The field equations used in this work are

, (1.3)

4π£?= - F ^ F ^ + i δ C F - ^ , (1.4)

fμv σ + ̂ vσ μ + f ^ O , (1.5)

pi»;v = j» = o9 (1.6)

where £J is the electromagnetic energy tensor, Fμv the electromagnetic
field tensor, and Jμ the four-current which vanishes because we consider
only the exterior field. A semi colon denotes covariant differentiation
with respect to the metric of space-time.

In this paper we obtain (§2) the explicit exact solution for two
Perjeons with spins (and magnetic moments) aligned parallel or anti-
parallel to their vector separation. Somewhat surprisingly, they cannot
in general coexist in equilibrium, and there is in the solution a singularity
between the particles. In this respect they are unlike Papapetrons. In
§ 3 we attempt to give some physical meaning to the singularity, but are
only partially successful. The paper ends with a Conclusion (§4), and
there is an Appendix.

§ 2. The Solution for Two Perjeons

We give first the general class of solutions already referred to [1, 2],
in a somewhat modified notation. Latin indices run from 1 to 3, and
Greek from 1 to 4. All functions are independent of x4. A comma means
partial differentiation and a stroke | means covariant differentiation with
respect to the metric ymn to be defined now. The metric is

ds2=-f-1γmndxmdxn + f(ωmdxm + dx*)\ (2.1)

the three dimensional positive definite metric ymn having zero Ricci
Tensor the electromagnetic field is given in terms of two scalar potentials:

F4n = φ,n, Fab = η"bmfψ,m (2.2)

ηabm b e jng the Levi Civita symbol formed from the metric γmn. The

entire solution is generated by two functions L, M, harmonic with

respect to Ymn: f"L]mm = 0, 7 m "M | m n = 0, (2.3)

through the equations f = i(L2 + Mi^-1 ^ 4 )

<»,,» ~ ω M = + 8(ML , - LMJ ηabm γm', (2.5)

whereε=±l.
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Perjes gave the solution for a single Perjeon at the origin, namely

* " " ( 2 . 7 ,
where R = + (x2 + y2 + z 2) 2, and L, M are given by

The asymptotic values for the potentials of gravity, rotation, electricity
and magnetism are respectively

. 2m

- 1 1 - 1

0 1 4 = " I * 024 R3

A εm (2-9)
φ ~ —— + const

R

εμz
Ύ R3

showing that the Perjeon has mass m, angular momentum — μ, charge
εm and magnetic moment εμ. Without fitting an interior solution to (2.9)
one cannot say whether the magnetism can come from rotating charge
or whether a permanent magnet is also necessary. However, if one
considers the non-relativistic magnetostatic field of a rigidly rotating
uniform and uniformly charged sphere one finds (in Gaussian units) [5]

-Γ - = 4 - < 2 1 ( ) )
h e 2c v '

which is of the same order as in (1.2). Hence a configuration somewhat
similar to this might produce the exterior field of a Perjeon without the
need of permanent magnets.

A solution for two Perjeons at ,4(0,0,a) and B(0,0, —a) (a>0) is
obtained by taking

2 L = l + - ^ + ^ , 2M= μ Λ z a ) + "2{Zta) (2.11)

where suffices 1 and 2 refer to the two particles, and

Vί

2 = χ2 + y2 + (z - a)2 , r2

2 = x2 + y2 + (z + a)2 (2.12)

(x, y, z, t) being a general point in space-time. L and M satisfy (2.3) except
at 71=0 and r2 = 0, / is given by (2.4) and the electric and magnetic
potentials by (2.6). An interaction term, absent in the case of two Papa-
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petrons, is given by ω in (2.5). The solution of this equation requires
some calculation, and is undetermined up to the gradient of a scalar. The
solution we wish to study, given in a common three dimensional vector
notation is

m2μ1

2a2r2

2a2
cιr2rί

3 *
K

where K is an arbitrary constant and ρ2 = x2 + y2. Whatever the choice
of X, this is singular somewhere on the rotation axis unless

m1μ2 + m2μί=0. (2.14)

If this condition is not fulfilled, then by a suitable choice of K, ω can
be made non-singular on the axis either for \z\ > a or for \z\<a, but not
both. We shall choose

K=-(m1μ2 + m2 μγ)βa2 (2.15)

which makes ω non-singular for \z\ > a, but singular for \z\ < a unless
(2.14) is satisfied.

For convenient reference we collect together the formulae which
make up the complete solution for two Perjeons on the z-axis with spins
and magnetic moments also parallel to the z-axisx

as2 = - 4(L2 + M2) (dx2 + dy2 + dz) + \(U + M 2 ) " 1 (ω.dx + dt)2

"I

, h , (z + fl)(g2 + z 2 - a 2 )
2a2 2a

+
(z-a)(ρ2

2α2

(2.16)

1 The precise connection between directions of spin and magnetic moment is governed
by ε in (2.6). For example, if the spins are both parallel to k (the positive z-direction), both
magnetic moments must be parallel to k, or both parallel to — k.
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Where dx = (dx, dy, dz). The electromagnetic field is given by (2.2). This
solution is valid in — oo < x, y, z, t < oo except for the line (in 3-space).

| z | g α , x = y = 0, (2.17)

unless (2.14) is satisfied in which case it is valid everywhere except at the
two spatial points (0,0, + a).

§ 3. Physical Interpretation

If one retains only terms linear in the four parameters mί9 m2, μ1? μ2,
and examines the asymptotic forms of metric and potentials, one sees by
reference to (2.9) that one has at large distance the field of two Perjeons.
The main interest of our solution (2.16) centres on the singularity (2.17),
and we freely admit that we do not fully understand its physical meaning.

If μx = μ2 = 0 the singularity disappears: indeed in this case we have
two Papapetrons which, as is known, can coexist in equilibrium. The
thought therefore arises that if μ1 Φ 0, μ2 Φ 0 the Perjeons are not in
equilibrium unless (2.14) is satisfied, and the singularity represents a
stress holding them in position. A somewhat similar situation arises with
two mass points, for which the vacuum Einstein equations admit a static
solution containing a stress singularity [6].

To pursue this hypothesis we could examine the behaviour of a Per-
jeon test particle at ^4(0,0, a) in the field of a Perjeon at JB(O, 0, — a).
A fully-fledged Perjeon test particle is hard to treat because it is a charged,
spinning, magnetised test particle, and thus has three interactions
(electricity, spin and magnetism) which make it depart from geodesic
motion. We can simplify the situation without losing its most interesting
characteristic (the singularity (2.17)) by taking a test Papapetron instead
of a test Perjeon, i.e. by putting μ1 = 0, and regarding m1 as so small
that its effect on B is negligible. Note that from (2.14), if μx = 0 the singu-
larity will be present provided m1 Φ 0, μ2 Φ 0.

Let ex be the charge of the test Papapetron A (numerically equal to
m^. The equation of motion of A is

dxv ey dx*
F ( 3 1 )

and supposing it to be instantaneously at rest, we have

dx«

ds
•=(0,0,0,/-*) (3.2)

calculated at x = y = 0, z = a. The remaining quantities in (3.1) are also
to be calculated at x = y = 0, z = a, and assuming that the self-field of A
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must be ignored, we put mx = μx = 0 in making the calculations using
(2.16). We wish to find whether A remains in equilibrium, that is whether

The calculations are given in the Appendix. The important member
of (3.1) is α = 3, and here the result is complicated (see A.3) and (A.4)),
but essentially is that unless μ2 = 0 0 e unless B as well as A is a Papa-
petron) d2 z/ds2 Φ 0 and so the test particle A is not in equilibrium in
the field of B. In fact

d2z _ mγμ
2 19 m1m2μ2

2

mi ds2 " 16a5 ~ 128 ~~ΊT6 + ' " ( 3 J )

and if A is to remain at rest this must be balanced by a force which pre-
sumably is supplied in some way by the singularity.

However, it is not clear how the singularity in ω provides the force
necessary to hold the particles in position. Its coefficient mx μ2 is not of
the right order to balance even the lowest term of the expression (3.3).
Moreover, its appearance in g14 and g2A suggests a source of angular
momentum, though not a simple monopole source of this.

The singularity seems to fulfil another function, connected with the
asymptotic gravitational field. Expanding ω in (2.16) in powers of

(3.4)

the term R~4(mίμ2 + m2μ1) coming from the singular parts of ω, namely
those containing the square brackets in (2.16). (3.4) can be written,
ignoring terms of order a,

ί 2μ mμ]

where m = mx + m2, μ = μx + μ2, which from (2.7) is the correct form for
a single Perjeon of parameters m and μ. Thus the singular terms in (2.16)
are necessary for the system of two Perjeons to have the correct asymp-
totic form. The only circumstance in which the singularity can be dis-
pensed with is if

mμ = m1μ1+m2μ2,
which reduces to (2.14).

The singularity discussed here should be distinguished from those
considered by Hartle and Hawking [7]. The latter also use the solution
(2.1)-(2.6), but choose both L and M to be of order R~K They so obtain
a charged NUT solution, or superposition of them. Since the singularity
structure of a single, uncharged, NUT solution is known to be rather
abstruse [8,9] the work of Hartle and Hawking seems even harder to
interpret than our own.
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§ 4. Conclusion

Two Perjeons, unlike two Papapetrons, are not in equilibrium unless
(2.14) is satisfied, and this fact must be connected with the singularity in
ω on the line between them. However, it is not clear what physical object
this singularity represents. The singularity also serves to make the two-
Perjeon solution satisfy appropriate conditions at spatial infinity.

Appendix

The Force on a Test Papapetron A in the field of a Perjeon B

We use metric (2.16) with μx =mi=0, and (3.1) in the form

d2χ* - λ F « d χ β r« dχβ dχϊ (Aί)
ds2 μ ds μy ds ds

where λ is the charge to mass ratio of A (either + or — 1). There is of
course no contradiction in ignoring m1 in (2.16) (which amounts to
neglecting A's self field) and retaining it in (3.1) (where it is necessary,
in the form of inertial mass, to make A respond to B's field). Using (2.1),
(2.2) and (2.16) we obtain, when α = 3

= ~(L2 + M1)-512 {LZ[_L(L2 + M2γ + λε(M2-L2)] ( A ' 2 )

+ MMZ [(L2 + Mψ - 2λeL]}

positive square roots being taken everywhere. We now insert for L and
M the expressions in (2.16) with m = μι = 0 , namely

r2

 r2

and putting z = a, χ = y = O after differentiation we obtain for the
z-component of the acceleration of A

(d2z'
- 5/2{ - ^ r ίλε(P2 - Q2) - P(P2

(A.3)

where P = 1 + -r— , Q = -Ay-. If we put μ2 = 0 we obtain
2α 4a
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so that d2 z/ds2 = 0 if λε = 1. This is the case of Papapetrons with e/m of
the same sign for both B and the test particle A, so there is equilibrium.

If μ2 Φ 0 we expand (A. 3) in powers of the parameters m2, μ2, and put
λε = 1 corresponding to a test Papapetron; then

W;/^h (A.4)6ds2 16a5 128 a

giving the acceleration which must be balanced by a force if A is to
remain at rest.
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