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Abstract. It is shown that if ρ is an invariant state of an asymptotically abelian C*
algebra 21, then the spectrum of modular operator for ρ is contained in the spectrum of
any other modular operator for the von Neumann algebra πρ(5I)".

It is also shown that a modular operator can not have an isolated spectrum with
a finite multiplicity at 1 unless the associated Hubert space is of finite dimension. It is
further shown that if a modular operator has an isolated spectrum with a finite multi-
plicity at x 4= 1, then the von Neumann algebra 91 is a direct sum of 9^ and 9ί2 where 9?j
is represented on a finite dimensional Hubert space and the modular operator for 9?2 does
not have its spectrum at x.

Applications to Connes invariant are given.

§ 1. Preliminaries

A net of operators Qa in a von Neumann algebra 91 is called weakly
(or strongly) central if there exists weakly total self adjoint subset 9ΐ0 of
9ϊ such that [β α , β]-»0 weakly (or strongly) for every Q e 9t0. If β α is
uniformly bounded and weakly central, then w-lim[βα, Q] = 0 for all

A subset 91 of 91 is called weakly (or strongly) τα central relative to
a net of * automorphisms τα of 9ΐ if ταQ is weakly (or strongly) central
in 9ΐ for each Q e 91.

For any state ρ of % we denote by Hρ, πρ and Ωρ a Hubert space,
a representation of 9ΐ on Hρ and a cyclic vector in HQ associated with ρ
through the relation

ρ(Q) = (Ωρ,πQ(Q)Ωρ), Q e M .

J ρ and zlρ denote modular conjugation operator and modular operator
for Ωρ when ρ is faithful. τρ(t) Q = AQ

l QΔ~U.
If ρ is τα invariant, then there exists a unitary Ua such that £/απρ(β) β ρ

= πρ(τOiQ)Ωρ for all β e 9 ϊ . We denote UaQU* = τΆQ for Q E J ^ ) .
The following result has been obtained in [1]. (See also appendix.)

* On leave from Research Institute for Mathematical Sciences, Kyoto University,
Kyoto, Japan.
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Lemma 1. Let a weakly dense * subalgebra 21 of 9ΐ be strongly τα

central, ρ be a faithful normal state on 9ΐ, invariant under all τα and 91 be
the C* algebra generated by πβ{W)jβ{πQ{W)} where jρ(Q) = JρQJρ. Let ρ
denote the vector state on &(Hρ) by the vector Ωρ and ρ' be any normal
state on @{Hρ\ such that its restriction to the center 3 = π ρ (^) Π πf? W
of 91 is the same as that of ρ : ρ(z) = ρ'(z) for all ze^. Then

To achieve the situation ρ'\3 = ρ\3, we use the following com-
mutative Radon-Nikodym Theorem. Here, s(ρ) denotes the support
projection of ρ.

Lemma 2. Let ^ and ρ2 be normal states of a commutative von Neu-
mann algebra 3 and s(ρ1)^s(ρ2). (The last condition is automatically
fulfilled if ρj is faithful.) Then there exists a non-negative self adjoint
operator A3(ρ2/ρ1) affiliated with 3 such that Ωρι is in the domain of
πρM

3(ρ2/Qί)){= Jλdπρ ί(E λ) if A3(Ql/Ql)= J λάEλ) and the vector state
on 3 by the vector Ω' = nρi(A^{ρ2/ρλ)) Ωρι is ρ2.

A(ρ2lρx) is the positive square root of Radon-Nikodym derivate in
measure theoretical sense.

Lemma 3. Let 9ί be a von Neumann algebra on H and Ω and Ω' be
two cyclic and separating vectors related by Ω' = AΩ where A is a positive
self adjoint operator affiliated with center ^ = ςϋrλςί{'. Then ΔΩ = ΔΩ,.

Proof Let ze 3, z = z* and SΩ = JQΛψ.

Then

zQ*Ω = Q*zΩ, Q e 9Ϊ .

Let A - j λdEλ, AL = AEL. Then AL e 3, A£ = AL. Further,

lim QALΩ = QΩ', lim Q*ALΩ = Q*Ω'
L-+ + oo L-> + oo

for Q e M. Since SΩ is closed, we have

Hence SΩ D SΩ>. Since Ω = A~X Ω\ we have SΩ> 3 SΩ. Therefore SΩ = SΩ>,

which implies ΔΩ = SΩ* SΩ = SΩf SΩ> = AΩ,. Q.E.D.

The following Lemma has been given by Connes [2] .

Lemma 4. t e [0, oo) is in the spectrum of AΩ if and only if there exist
operators x e 9 ί and yeW for each given ε > 0 such that \\xΩ\\ = 1,
\\t1/2xΩ-yΩ\\<ε and | | x * Ω - tll2y*Ω\\ <ε .
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§ 2. Invariant State of Asymptotically Abelian System

Theorem 1. Let τα be a net of * automorphisms of 9ΐ such that a weakly
dense sub * algebra 91 of 9Ϊ is strongly τα central and ρ be a faithful normal
state of 9ί, invariant under all τα. Then the spectrum of ΔQ is contained
in the spectrum of ΔQ, for any faithful normal state ρ' on 8R.

Remark. This theorem with an assumption of strong clustering has
been given by Stφrmer [4].

Proof. Let t e [0, oo) be in the spectrum of Λρ and ε > 0 be given.
By Lemma 4, there exists x e 5R and y e W satisfying

ll*βj = i.

\\ϊ'2xΩβ-yΩβ\\<6/4,

\\x*Ωβ-tll2y*Ωβ\\<ε/4.

Since 91 is a self adjoint linear weakly dense subset of 91, it is * strongly
dense in 9ΐ. Hence there exist x1 επ ρ(9ί) and yt εJ ρ π β (9I) Jβ such that

WχiΩA = 1>

\\tiι2(x-x1)Ωβ-(y-y1)Ωβ\\<ε/4,

\\(x*-xi*)Ωβ-ti<2(y*-y?)Ωβ\\<ε/4.

Since Ωβ is cyclic and separating for πρ(5R)~9J, there exists a vector
Ωβ. eHe such that the vector state by Ωe, on 91 is ρ'. By Lemma 2, there
exists a positive self adjoint operator z affiliated with 3 = πe(5R)nπρ(9i)'
such that zΩg. = Ω' gives the same vector state on 3 as Ωr Let ρ" be the
vector state on &(Hβ) by the vector Ω.

By Lemma 1, there exists α such that

f ί t 1 ' 2 ^ -Λ)}) |<β 2 /4,

)* (xi* - t1/2)Ί*)})l < ε2/4.

We define λ = ρ"(τ<x(x1*x1)f12. Then A2 > 1 - 1/2 = 1/2, due to
ρ(τιx(x1*xί)) = ρ(x1*xι)— 1. We define

By previous estimates and τΛ invariance of ρ, we have

ρ " ( x 2 * x 2 ) = l ,

ρ"((x2* - til2y2*)* (x2* - t 1 / 2 y 2 *))< ε2 .
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Since x2 e πρ(5R), y2 e 7^(91)', ί is in the spectrum of AQ, by Lemma 4.
By Lemma 3, zlΩ, = zlβ ,. Hence t is in the spectrum of A ,. Q.E.D.

§ 3. Isolated Spectrum with a Finite Multiplicity at 1

Theorem 2. 7/ 1 is an isolated spectrum of ΔQ with a multiplicity n,
then 2

We need a few preparations for the proof of this Theorem. Let 91 be
any weakly dense τρ(ί) invariant norm closed linear subset of πρ(JR). Let

00

Δe= J eλάEλ. For any bounded open interval I = (a,b), define 9I7 as
— oo

the set of all operators Q in 91 such that

From the definition

«/,«/, CΛ/ 1 + J 2, ίft = πρ(K). (2.1)

Let ICC J denotes JcJ where I is the closure of I.

Lemma 5. H(I) is the closure of (J 5ί/£2ρ.
Jcci

Proof Since ί2ρ e H{Γ) for any 7/r containing 0, we have 9Ijί2ρ C H(I)
iΐJCCL

Since | J ^4jΩρ is a linear set, it is enough to show that for any unit
JCCI

vector ΦeH(I\ there exists Jcci and QeSΆj such that (Q£2ρ, Φ) + 0.
Let / = (α, fo). By definition, there exist a<af <b' <b such that

| | ( £ b ί _ o - ί ; β ' + o ) Φ | | + 0 . (||Φ|| = 1 by assumption.) Let J = {a\b). Since
Ωρ is cyclic, there exists Qj e9ί such that ( 6 i Ω ρ , ( £ b , _ 0 - £ f l + 0 ) Φ) + 0.

Let

dμ(A) = d(Q 1 f l β ,£ A Φ).

It is a finite complex measure and its restriction to J is not identically 0.
The set C0(J) of all continuous functions vanishing outside of J is
separating for finite measures on J. Since C00 functions vanishing outside
of J is norm dense in C0(J), there exists a C00 function /(A) whose
support is in J and J /(λ) dμ(λ) φ 0.

Let f(t) = (2π)-J j /(A)* e " i α d λ / is in ST. Define

6 = ϊ ̂ (ή
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Then
QΩQ=\f(λ)*άEλQ,Ωρ

(QΩρ,Φ)=$f(λ)dμ(λ) + O.

Lemma 5 is proved if we show Q e %. This follows from the next
Lemma. Q.E.D.

Lemma 6. Let f{λ) be a C00 function with its support in a compact
interval J and

Then, for any Qx in a τ^invariant norm closed linear set %

β(/)= J τQ(t)

Proof Let / be a bounded open interval and Ix be another open
interval such that /j CC /. Since the union of if (fj for all such Ix is dense
in H(I\ it is enough to prove that for Φ e H(Iλ) and any ψ such that the
measure d(Ψ, Eλ Ψ) has a compact support with empty intersection with
I + J(=I + J), Q(f) satisfies

Let
F(t,s) = (Ψ,Ai

ρ

tQ1A-isΦ).

F is a uniformly bounded continuous function of (ί, s), analytic in t
and s. Its Fourier transform

F(p, q) = J ei(-pt+(ls) F(t, s) at άs/(2π)2

is a tempered distribution with support in the direct product of the
support of d(Ψ, Eλ Ψ) and ϊγ C I. This support has an empty intersection
with the support of f(p — q), which is a C00 function. Hence

O=$F(p,q)f(p-q)dpdq

= jF(t9s)f(t)δ(t-s)dtds

= J F(t, t) f{t) dt = (ψ, Q(f) Φ). Q.E.D.

Lemma 7. Sl

Proo/. Let /j and I2 be open bounded intervals such that I^+J and
/2 has an empty intersection. Then tyjHilJl-Hfa). Hence 2ί//f(/2)
1H(ii). Given an open bounded interval /. Let ί2 CC L Then I2-JCCI-J
and 9Ij*if (72)_L/ί(/1) whenever 72 — J has an empty intersection with an
open bounded interval Iv Since I2-Jcd-J, this implies SΪ/#(J2)
CH{I-J). Since the union of iT(f2) is dense in H(I% we have %*H{Γ)
C f ί ( i - J) and hence 91/ c l j . Q.E.D.
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Proof of Theorem 2 when n = 1. Assume that

άimH((-δ,δ)) = l

for some <5>0. Since the spectrum of logzlρ is symmetric due to
Jρ(logAρ)Jρ=-logAρ, there exists t^δ^ in the spectrum of Δρ if
ά\mHρ > 1. By Lemma 5, there exist Q e %, ICC (t - δ/4, t + δ/4), such
that llQΩj = 1, because H((t - 6/4, ί + δ/4)) Φ 0. Let

By Lemma 7 and (2.1), we have Q*Qe9l((-δ/2,δ/2)) and hence

Q*QΩρ = cΩρ

for some complex number c, which is determined by

c=\\QΩβ\\2 = ί.

Since Ωρ is separating for % we have β * β = 1. Hence | |β* | | = 1.
We now have

which is a contradiction. Q.E.D.

Proo/ o/ Theorem 2 for a general n. Let Ho be the set of all ΔQ in-
variant vectors in HQ and 5R0 be the set of all τρ(t) invariant elements of
5R = πρ(9ΐ). By assumption, there exists δ>0 such that H(I) = H0 for
I = (-δ,δ). dimH0 = n.

For any JCC/, Qe% satisfies QΩρeH{I) = H0 because ΩgSH^)
for small ^ containing 0 such that J + J3 C /. Hence {τρ(ί) β} Ωρ = zl1^QΩρ

= QΩρ. Since Ωρ is separating, τρ(ή Q = Q and hence $(/) C 5fto

 I f ° e ^
then 5R(J) D K o. Hence ^ ( J ) = # 0 for J C /. By Lemma 5, $ 0 Ω ρ is^dense
in H(I) = H0 and hence 9l0Ωρ = H0. Since Ωρ is separating for % it is
cyclic and separating for $ 0 in Ho. By KMS condition, Ωρ is a trace
vector for $ 0 .

There exists a set of mutually orthogonal minimal projections st e ^Ro

such that Σst= 1. Let Ωi = siΩρ. Since Jes^e = s^e because zlρ is 1 on
if0, we have 5t Ωρ =jQ(Si) ΩQ = s?Ωρ = sj^) Ωρ. Let sjβ(sj H = Hi. Then
Ωi = siΩρeHi. Since feW^Ω,)- =(s i «;(s j )Ω ρ )" = ( S J ( S J ) «Ω ρ ) " = H £ , Ω,
is cyclic for SRf = ^ Wsf. Since QO^ = ζ)ί2ρ for β e 9ϊj, Ω( is separating for
ίϊ^. For Qe%, we have

where 5 ρ = J ρ Aρ

/2. Hence the restriction of Jρ and zlρ are JΩ. and zlΩ. in Ht.
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Since s, is minimal in 9ΐ0 and Ωρ is cyclic separating trace vector,
jQ{Si) is minimal in the commutant of 5R0 in Ho and Ωt= sj^) Ωρ spans
SJ^S^HQ. Hence ΔΩ. has an isolated spectrum at 1 with multiplicity 1
and hence dimu t = 1. Hence st 9ls£ = 9^ ~ C. Therefore st is also a minimal
projection of 9ί. Since the number of st can not exceed dimH0 = n,
5R has at most n mutually orthogonal minimal projections with sum 1.
This implies dimHρ ^ n2. Q.E.D.

§ 4. Isolated Spectrum with a Finite Multiplicity at x + 1

Theorem 3. // x is an isolated spectrum of Δρ with a finite multiplicity,
then there exists a direct sum decomposition

πβ(9t) = 9tβθ9l*, Ωρ = Ωa®Ωb, Δρ = ΔΩa®ΔΩh

such that 9ϊα is of type I with a finite atomic center and ΔΩh does not have
its spectrum at x and x~\

Let Ht denote the set of all eigenvectors of Δρ belonging to an
eigenvalue et and st be the projection to the subspace spanned by $i'Ht

+ $l'H_t. As a preparation for our proof, we have the following:

Lemma 8. Assume that H((t — δ,t-\- δ)) = Ht.
Then
(a) [s f,Jβ]=0.
(b) 1 is an isolated spectrum of Δρ\stH.
(c) // dimHt < oo, then dimstH0 < oo.
(d) (1 — st) Δρ does not have its spectrum at e±t.

Proof If t = 0, then st = 1 and all statements become trivial. Hence
we assume t φ 0.

(a) Since Ht and H_t are invariant under Δu

ρ and ${' is invariant under
τβ(ί), stHe is invariant under Δiι

ρ and hence [sf, ΔQ] = 0.
(b) For any Jcc(-δ, δ), there exists / 31 such that J + lc{t-δ,t

Then Ht C H(I) and WjH, C H((ί -δ9t + δ)) = Ht. For Q € % and !

Hence
{τβ(M)β-β}!P = 0 (4.1)

for all Ψe<h'Ht.
Since JρΔρJρ = Δ~\ logzlρ has a symmetric spectrum and hence

H((—t — δ, —t + δ)) = H_t. By the same argument as above, (4.1) holds
for Ψe9ifH_t and hence for ΨestHρ.We have

Hence KjSf C5RO

 f o r any. J CC ( - δ, 5). Clearly, ^o^C^jS,. Hence %st

= 9{0st. Taking adjoint, s ^ j ^ s ^ o .
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By Lemma 5, stH((—δ, δ)) is generated by

st$ljΩQ = st$ί0ΩQCstH09 JCC(-δ,δ).

Hence 1 is an isolated spectrum of Δβ\StH. Moreover, stH0Cst9ljΩρ

C st Ho and hence st 5R0 Ωρ = stH0.
(c) dim//, < oo implies dimH_t = dim JρHt < oo. Since QHt = 0,

QH_t = 0, Q E $ imply Qst = 0, we have

dimiί, + dimiί_ f ^ di

(d) This follows from (1) and the definition of st. Q.E.D.

Proof of Theorem 3. Let x = e\ If t = 0, then Theorem 3 holds with
9ίfc = 0 due to Theorem 2. Assume that t Φ 0. Let

K = sJβ(st)Hβ,

M = stKst\κ,

Ψ = sJQ{st)ΩQ.

By (a) of Lemma 8, we have stΩQ = Δ^J2stΩQ = JQstΩQ=jQ(st)ΩQ

= st

2 Ωρ = stjρ(st) Ωρ = Ψ. Hence 9W Ψ = st 9ijρ(st) Ωρ = stjρ(st) SR Ωρ is dense
in K and W Ψ =jρ(st) Wjρ(st)stΩρ =jρ(st) WstΩρ =jρ(st)st9ifΩρ is
also dense in K. Hence Ψ is cyclic and separating for SDΪ in K. For
QeWl and Sρ =

 i 2

and hence Sρ | κ = SΨ, Δρ \ κ = ΔΨ and Jρ \ κ = JΨ.
By (c) of Lemma 8, ΔΨ has an isolated spectrum with a finite multi-

plicity. Hence 90ΐ is a finite matrix algebra by Theorem 2.
Since stHt = Ht,jβ(st)Ht = JρstJρHt = JρstH_t = JρH_t = Hv

Similarly jρ(st) H_t = H_t. Hence Ht + H_t CK.
Let c(sf) be the central support of st. Since je(c{st)) = c(st) (for any

central projection), c(jQ(st)) = 0(5,). 9W is isomorphic to st9lst restricted to
9t' K = sf ^ ' Ωρ = sf H. Hence c(st) ^ must be of type / with a finite atomic
center.

9tβ = φ t ) 5R, « b = (1 - c

Ωfe = (1 — cίsj) ί2ρ satisfy required properties. Q.E.D.

§ 5. Applications

Connes has introduced the invariant

S(9t)= P| spectrum Δρ.
Q

Our result gives the following application for S(9l).
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Theorem 4. Let ρ be a faithful normal state of 5R invariant under a net
of * automorphisms τα of 9ί. Assume that 9ΐ has a weakly dense sub *
algebra 21 which is strongly τα central. Then

S(5R)= Spectrum Δe.

If ρ is ergodic with respect to modular automorphisms in addition, then
either 5(9ί) is [0, oo) or Hρ is of one dimension.

Proof. The first half follows from Theorem 1. If ρ is τQ ergodic, then ρ
is primary and hence Spectrum ^lρ\{0} is a multiplicative group. If 1 is
not an isolated spectrum of AQ, then Spectrum Aρ = [0, oo). If 1 is an
isolated spectrum of Aρ, then Theorem 2 is applicable where n=ί due
to τ ρ ergodicity. Hence dimHρ = 1. Q.E.D.

Remark ί. Stφrmer [4] proved the first part under the assumption of
strong clustering. The second part is stated in [4] with the assumption
that τ ρ is asymptotically abelian.

Theorem 5. S(9Ϊ) = f] essential spectrum ΔQ.
Q

Proof. Obvious from Theorem 3. Q.E.D.

Remark 2. Connes invariant is additive under direct sum £(9^ Θ9ΐ 2)
= S(9t1)uS(9t2), whereas the asymptotic ratio set satisfies ^ ( ^ 0 ^ )
= roo(^i)n roo(^2) S(9t) is more closely related to the union of Sx over
non-zero portion of partial central decomposition of 9ί according to
asymptotic ratio set.

Remark 3. In the situation of Theorem 4, if 91 is ITPFI, then 9ί = SRX,
0 < x ^ o o . I f ρ i s τ ρ ergodic, then 91 = 9?^. 9ί appearing in Gibbs states
of a lattice system is hyperfinite but it is not known whether it is an
ITPFI in general.

Appendix

The following result is a part of Theorem 4 in [1] and is a basis for
Lemma 1 of § 1.

Lemma 9. // Qa is a uniformly bounded weakly central net in R and if ρ
and ρ' are normal states of 9Ϊ such that ρ(z) = ρ'(z) for all ze^^i^n9Γ),
then

lim{ρ(Qβ)-ρ'(eβ)} = 0. (A.I)

The following direct proof is due to Elliott.

Proof. Let Qa{β) be weakly converging subnet of Qα. Since Qa is
weakly central,

z = w - l i m β α ( / ϊ ) e 3 .
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Hence ρ(z) = ρ'(z\ i.e.

In view of weak compactness of the unit ball of % this implies (A.I).
Q.E.D.

Somewhat stronger conclusion can be drawn if βα = ταβ, and ρ is
a faithful invariant state. An example is seen in the following:

Lemma 10. Let S&be a weakly dense * subalgebra of % ρ be a faithful
normal state of % τα be a net of * automorphisms of 91 such that ρ is
invariant and 91 is weakly τα central, and ρ' be a normal state of 9Ϊ such
that ρ'{z) = ρ(z) for every z e SRnft'. Then

limρ'(ταβ) = ρ(β), Q e 9t. (A.2)

Proof By Theorem 4 of [1],

w-Iim{τ β β 1 -τ β Ff«(β 1 )}=0

for βa G ϊt, which implies

w-limE/ ( 1πβ(β 1-Ff«(ρ J))ββ = 0.

Since F^* is strongly continuous on the unit ball, there exists βi e 31
for given β e 9ί, ΦjeHe9j=ί ...n, and ε > 0 such that

IKMft -ff" (δi))-πe(e-Ff (e))}o,|| |

For this β1 ? there exists α0 such that for α>α 0 ,

These two equations imply

\(Φj,Uaπβ(Q-F**(Q))Ωβ)\<ε
and hence

w-limπ β (t.{β-F3«(β)})β ρ = 0.

Multiplying β/eπρ(9ϊ)/ and using the cyclicity of Ωρ for ^(91)', we
obtain

w - l i m π ρ ( τ . β - τ β F f ( β ) ) = 0,

which implies

w-lim(τ β β-τ β F3*(β)) = 0, QeX. (A3)

Since F%*(Q) e 3, we obtain
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Hence we obtain from (A. 3)

limρ'(τ«Q)=limρ'(τβί f*(β))

= ρ(Q). Q.E.D.
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