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Abstract. Let T be a one-to-one mapping of rc-dimensional space-time M onto itself.
If T maps light cones onto light cones and dim M ^ 3, it is shown that T is, up to a scale
factor, an inhomogeneous Lorentz transformation. Thus constancy of light velocity alone
implies the Lorentz group (up to dilatations). The same holds if T and T'1 preserve
(x — y)2 > 0. This generalizes Zeeman's Theorem. It is then shown that if T maps lightlike
lines onto (arbitrary) straight lines and if dimM ̂  3, then T is linear. The last result can be
applied to transformations connecting different reference frames in a relativistic or non-
relativistic theory.

1. Introduction

Let M denote rc-dimensional space-time (Minkowski space). It is an
affine space of rc-tuples χ = (χθ9 ...,xn_1), where x0 = ct. We denote by
x2 the quadratic form1

Zeeman [1] has shown for dimM ̂  3 that a mapping T of M onto M
is an orthochronous Lorentz transformation2 times a dilatation plus
a translation if T and T"1 preserve the relation

{(y-x)2>0 and x0<^o} (1-2)
or the relation

{(y-x)2 = 0 and x0<y0}. (1.3)

Since the direction of time plays no particular role in quantum field
theory and since moreover time reversal is an important symmetry one
should drop time order preservation, which, in fact, is quite a strong
continuity condition3. Thus, instead of Eqs. (1.2) or (1.3) we take as

1 As usual we call two points x and y timelike if (y — x)2 > 0, spacelike if (y — x)2 < 0,
and lightlike if (y — x)2 = 0. The light cone in x consists of all y with (y — x)2 = 0.

2 I.e., linear maps of M which preserve the form (1.1) and preserve time orientation.
3 It follows immediately from the preservation of Eq. (1.2) that T is continuous.

Indeed, preservation of (1.2) means that T is continuous with respect to the associated
order topology which, however, coincides for finite-dimensional spaces with Euclidean
topology as already noted in [5].
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preserved relations only

(x~y)2>0 (1.4)
or

(x-y)2 = Q. (1.5)

The latter just expresses constancy of light velocity. In Section 2 we will
prove

Theorem 1. Let dimM ̂  3 and T be a 1 — 1 map of M onto M. Then
T and T'1 preserve the relation (x — y)2 >0 if and only if they preserve
the relation (x — y)2 = 0. The group of all such maps is generated by

(i) the full Lorentz group (including time reversal),
(ii) translations of M,
(iii) dilations (multiplication by a scalar).

Preservation of (x — y)2 = Q by T and Γ"1 simply means that light
cones are mapped onto light cones. Thus constancy of light velocity c
alone implies the Poincare group4 (up to dilatations)!

The main statement of Theorem 1 is that T is affine ("linear"), and
one wonders whether linearity also holds in the nonrelativistic case. Of
course, c is no longer constant in all reference frames. If light cones are
mapped onto light cones then lightlike lines5 are mapped onto lightlike
lines since any such line is the intersection of two light cones.

In the relativistic as well as nonrelativistic case the worldlines of
light rays (photons) should be mapped onto straight lines. It suffices to
consider light sources at rest6 to be able to apply the next result.

Theorem 2. Let dimM ̂  3, and let T be a 1 — 1 map of M onto M
which maps lightlike lines onto (arbitrary) straight lines. Then T is linear.

Remarks, (i) Theorem 1 can be derived from Theorem 2 in a straight-
forward way. Our proofs of both theorems are, however, more or less
independent (Sections 2 and 3). For dimM = 2 the theorems do not hold,

(ii) For linearity, the rotational symmetry of the light cone ("isotropy
of light velocity") is not crucial. It suffices that its boundary is sufficiently
smooth, i.e., sufficiently smooth directional dependence of light velocity.

(iii) Our results severely limit the form of any physical theory which
retains straight lines for light rays and which has no distinguished
reference frames. For then the laws of Physics have to be form-invariant
under transformations connecting different reference frames.

4 I.e., the inhomogeneous Lorentz group, generated by (i) and (ii).
5 A (straight) line is called timelike, spacelike, or lightlike if any two points on it are

timelike, spacelike, or lightlike, respectively.
6 For these the light velocity is also c in the nonrelativistic case. But in another

reference frame the light velocity becomes direction dependent.
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Notation. Cft denotes the light cone in a, Cα = {x e M; (x - α)2 = 0}.
The interior7 Cα of a light cone consists of all points timelike to a,
Cα = {x; (x - a)2 > 0}. Cfl

+ denotes the positive cone Cα

+ = {x; (x - a)2 > 0,
x0>β0}, and C~ the negative cone. The image under a map will be
denoted by a dash, e.g., x' = T(x).

2. Constancy of Light Velocity Implies the Poincare Group

The results of this section are based on the following observation.

Lemma 2.1. Let W be a lίghtlίke line in M, W={x = λw + a;
— oo<A<oo} say, where w2=0, and consider the hyper plane Hw

= {x; w (x - a) = 0}, which contains W. Then Hw is tangent to every light
cone with vertex in W, and the union of all these cones is M\(HW\W) 8.

Proof. Let Cτ = {x; (x — τw — a)2 = 0}, the cone with vertex in τw + a.
Let yφHw. Then yeC t with τ = (y-a)2/2w- (y-a). Now let yeHw

n (J Cτ. Then

0-(3;-τ0w-α)2 = (3;-α)2-2τ0w.(y-α) = ();-α)2 (2.1)

implies y e f) Cτ = W. Q.E.D.
τ

The next corollary reduces Theorem 1 to the result of Zeeman [1].
Further below, however, we will give a direct derivation based on
Lemma 2.1.

Corollary 2.2. Let dimM > 2, and let T be a 1 — 1-mapping of M onto
itself. Then the following statements are equivalent.

(i) T maps light cones onto light cones, i.e., T and T"1 preserve
(x-y)2 = 0.

(ii) T maps the interior of light cones onto the interior of light cones,
i.e., T and T"1 preserve (x — y)2>0.

(iii) T and T"1 preserve the relation {(x — y)2>0, ^o<yo} or carry
it over in {(x' — y')2 >0, x'0

>3;o}j ^e-> T fulfills (ii) and preserves or
reverses time order.

(iv) T fulfills (i) and preserves or reverses time order.

Proof. If T fulfills (i), it maps a lightlike line W onto a lightlike line
W and hence, by Lemma 2.1, M\(HW\W) onto M\(Hw\Wf). Hence
Hw is mapped onto Hw>. If Ca is a given light cone and Cα its interior,
then u{Hw;WcCa} = M\Ca since wφO, w2 = 0 and w (x-α) = 0

7 This is an abuse of language. Ca is the boundary of Ca.
8 I.e., every point in this set can be reached by a lightlike line from some point of W.

Note that, for dimM = 2, the hyperplane coincides with W and hence M\(HW\W) = M.
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immediately implies (x — a)2 ^ 0; conversely, for given x with (x — a)2 = Q
there is always a lightlike w φ 0 with w (x — a) = 0 if dimM ̂  3. Hence
M\Ca is mapped onto M\Ca, and thus Ca onto Ca,. Hence (i)=>(ϋ).

To show (ii)=>(iii)9, we first assume that there is an aeM and
b e Cfl

+ such that bf e Cαt. Then Cb~ D C~ and CbT 3 C~. Now let y e Cα

+.
If yφCb^thQn yφCb,^C~, and thus yf e C£. If yeCb, there is a
z e Cα

+ \Q such that yφCz. Then^Cz 3 C2~ 3 C~ and / e Cαt implies
/ <£ Cz, D Cfl~. Thus y e Cj. Hence Cfl

+ is mapped into Cαt. Hence there
is a c e C ~ with cΈC~> and the same argument gives T(C~)cC^.
Hence C* is mapped onto C^, and C~ onto C^. Since two light cones
always intersect, one gets the same for all C*. If there is no a and b with
the above property, then T(C^) = C~' for all α, since otherwise there
would be an a e M and b e C~ with b' e Cα~, and by the same argument
T(C~) C C-., contradicting T(Cβ)= Cαί.

(iii)^>(iv) is very simple and follows directly from Lemma 1 of [1]
since, if τ denotes time reversal, either T and T"1 or τT and (τT)"1

preserve {(x — y)2, .x0<y0}. (iv)^>(i) is trivial. Q.E.D.
We will now give a fairly simple proof of Theorem 1 without using

Zeeman's result. We first note some simple properties of the tangential
hyperplane Hw.

Lemma 2.3. Hw contains only spacelίke and lightlike lines, and the
latter are all parallel to W.

Proof. We use the notation of the proof of Lemma 2.1. Let W± C Hw,
Wί = {x = λwί+b; — oo < A < oo}. After a parallel displacement, we can
assume b = a. If W± is lightlike, w (λw± + a - a) = 0 implies by Eq. (2.1),
with λ = λw1+a, that W^ C f) Cτ = W. If W1 were timelike, then w - wα = 0,

τ

but Wi >0 and w2 = 0; this is impossible (alternatively, H^ does not
contain points of Cτ). Q.E.D.

Lemma 2.4. Euery spacelike line W is the intersection of suitable
hyperplanes HWi, i ~ 1,..., n — 1 = dimM — 1.

Proof. We can assume W= {x = λw; — oo <λ< oo}, w2<0. Then
there are n — 1 linearly independent lightlike vectors wf with w wf = 0.
Hence, with W^ = {AwJ, one has that (°) H .̂ is a straight line which
contains P .̂ Q.E.D.

By the implication (ii) => (i) of Corollary 2.2, which can very easily
also be shown directly, it suffices to show that, if T maps light cones
onto light cones, then T is linear and hence, up to a translation and
dilatation, a Lorentz transformation. Then T and T"1 automatically
preserve (x — y)2 > 0.

9 For dim M = 2 this is most easily seen by a diagram of which the following is an
abstraction.



The Structure of Space-Time Transformations 263

Proof of Theorem 1. As remarked before, it follows from Lemma 2.1
that Hw is mapped onto Hw> for each lightlike line W. Hence, by
Lemma 2.4, spacelike lines are mapped onto spacelike lines10. Therefore,
since each plane contains 3 spacelike directions, planes are mapped onto
planes. Since every straight line is the intersection of two planes, it follows
that every straight line is mapped onto a straight line. Hence, by the
main theorem of projective geometry, the map T is affine, T(x) = Ax + α,
where A is a linear operator (matrix).

Since x2 = 0 implies (Ax)2 = 0, A leaves the light cone C0 invariant
and hence, from linearity (Ax)2 = κx2 for all x e M. For dimM > 2, the
exterior of C0 is connected while the interior is not. Since T is affine and
hence continuous, it can not map the interior onto the exterior. Hence
K > 0. Thus A = κί/2A where A satisfies (Ax)2 = x2 and is thus a general
Lorentz transformation. Q.E.D.

Remark. Let M denote the space obtained by adjoining to M the
hyper plane at infinity, and let T be a 1 — 1-map of M onto M such that
both T and T"1 map lightlike lines onto lightlike lines. Then it follows
in a similar way as before that all straight lines are mapped onto straight
lines. Hence T is a projective transformation. Since it leaves the
(extended) light cone invariant, T is an element of the conformal group.

3. Linearity for the General Case

The proof of Theorem 2 is based on the next lemma.

Lemma 3.1. Let dimM ̂  3 and let T be a 1 — l-mappίng ofM onto M
which maps lightlike lines onto straight lines. Then planes which contain
two different lightlike directions are mapped onto planes.

For dimM ̂  4 a proof of this lemma will be given at the end of this
section. The remaining case will be treated elsewhere [4]. Lemma 3.1
allows a reduction of Theorem 2 to the main theorem of projective
geometry.

Proof of Theorem 2. Every line in M is the intersection of two planes
containing two different lightlike directions. Its image is the intersection
of the two image planes, which is a straight line. Hence T maps straight
lines onto straight lines. Q.E.D.

10 At this point one could invoke a result of [2]: If a 1 — 1 map T maps all straight
lines in a given cone and all their translates onto straight lines, then T is linear. Here one
can take a cone of spacelike lines.
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It remains to show Lemma 3.1. We first prove

Lemma 3.2. Under the assumptions of Lemma 3.1, let w1? w2, and w3

be 3 linearly independent lightlike vectors, and let S3 be the 3'-dimensional
subspace of M spanned by them and a point P. Then the image of S3 is
again contained in a 3-dimensional subspace of M.

Proof. Let Wί and W3 be the lines through P parallel to wt and w3.
Let P! e Wi9 P! ΦP, and let W2 be the line through P1 parallel to w2.
These lines and their points will be called to be of class 0. If lines and
points of class m — 1 have been defined, we will call of class m those
additional lines and points obtained by drawing a lightlike line through
two different points of class m— 1.

Now, W[, W2, and W3 lie in a 3-dimensional subspace, U say, since
four points always do. If the images of all points of class m — 1 lie in U,
so do their lightlike connecting lines and hence the images of all points
of class m. We will show that every point in S3 is of class m ̂  6. This
then will prove the lemma.

We denote by W^Q) the parallel to Wί through a point Q and put
H^HW. n53 where Hw. is the tangent hyperplane of Lemma 2.1 con-
taining Wt. Note that Ht is a plane and that a lightlike line in S3 which
is not parallel to Wt meets it in a single point.

We first show that the points in the W2 — W^P^-plane are of class
m ̂  4. Since W3 meets H2 in a single point, there are points P2 e W2 and

Fig. 1. Proof of Lemma 3.2
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P3 e W3, P2 Φ PI and P3 φ P, which can be connected by a lightlike line,
W4 say. W4 is of class 1. Since W4 is not parallel to Wίy it meets H1 in
a single point.

Hence, except for a single point, every point on W4 can be connected
by a lightlike line with a point11 on Wί9 and vice versa. These lines meet
the W2 - WΓ

3(P1)-plane, each in a single point, with the exception of W2

and W3. From these points of class m ̂  2 we can choose two, P4 and P5

say, such that P4P^ is not parallel to W3. Then W3(P4) and W3(P5) do
not coincide, both meet W29 and hence are of class m^ 3. The parallels
to W2 through them are of class m ̂  4 and cover the W2 — W3 (P^-plane.

It follows that the points of the W3 — W3 (P2)-ρlane are of class m rg 5.
Finally, an arbitrary Q<=S3\W3(P2) lies on W±(Q) which meets the
W2 — W3(Pί)- and W3 — W3(P2)-plane in distinct points; hence Q is of
class m^2 1 2 . Q.E.D.

Proof of Lemma 3.1. Let E be a plane which contains two non-
parallel lightlike lines Wv and W2. Let Wt = {x = τw t + ai9 - oo < τ < oo},
and complete {w l5 w2} to a basis {w1?..., wj of lightlike vectors for M.
Let aeW1r^W2. For given (μ) = (μ3,..., μj, with not all μf vanishing, we
consider the 3-dimensional subspace S(μ) through a spanned by wί9w2,
and w(μ) = Σμiwi. Since S(μ) always contains a third linearly inde-
pendent lightlike direction, we have, by Lemma 3.2, T|S(μ)) C U(μ) where
17(μ) is a 3-dimensional subspace of M. Since \J S(μ) = M and since T

μ
is onto, there are (μ) and (μ) such that t/(μ)Φ U(μ) if dimM> 3. From
E = S(μ)nS(μ) we have T(£) C t/(μ)π l/(μ), and hence £' is contained in
a plane. Any parallel to W1 in E is therefore mapped onto a parallel to
Wϊ since they do not meet. Therefore there is, through each point of W2,
a parallel to W[ all of which lie in E'. Since they form a plane, this proves
Lemma 3.1.

Note added in proof: In a forthcoming paper [4], the authors will, by purely algebraic
methods, prove the following result which is much stronger than Theorem 2 and which also
covers the case of dim M = 3.

Theorem [4]: Let L be a set of directions in 1RB, n ̂  2, and let FL be the set of all 1-1
mappings T of 1R" into itself which map every straight line parallel to L onto a straight line.
Then every Γe^is linear if and only if

(i) L does not lie on a degenerate cone of second order (and, for n = 2, contains at
least 3 directions);

(ii) the subfield of 1R generated by all ratios of the form λjλj, where Σλ^ e L for some
fixed basis {/ι l5..., hn} in 1R", coincides with IR.

1J This point is unique since there are no triangles with lightlike lines. One can avoid
the use of Lemma 2.1 by a very simple direct calculation.

12 By a slightly different construction one can show that every point in S3 is of class
m<3.
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The second condition requires in particular that L contains uncountably many
directions. It is interesting that condition (i) is sufficient for linearity if T is continuous at
some point [4]. Hence in this case l/2n(n+ 1) — 1 suitably chosen directions will ensure
linearity for n ̂  3 while for n = 2 one needs 3.
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