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Abstract. Let 51 be a C*-algebra and 21° be an opposite algebra. Notions of exact
and -positive states of 2Γ(χ)5ϊ are introduced. It is shown, that any factor state ω of $1
can be extended to a pure exact y-positive state ώ of 2ϊ°(χ)5I. The correspondence ω-+ώ
generalizes the notion of the purifications map introduced by Powers and St0rmer. The
factor states ωί and ω2 are quasi-equivalent if and only if their purifications ώ1 and α>2 are
equivalent.

0. Introduction

In the recent paper [4] Powers and St0rmer investigated the represen-
tations of the CAR algebra 91 (K) induced by generalized free states. Let us
recall, that 9I(K) is a C*-algebra generated by elements a(f) depending
linearly on / running over a Hubert space K and satisfying the canonical
anticommutation relations.

Powers and St0rmer found that any generalized free state ω of
9I(X) can be extended to a pure state ώ of $l(K®K). ώ is given by an
explicit formula. They proved that generalized free states ωί and ω2 give
rise to quasiequivalent factorrepresentation if and only if the representa-
tions of *H(K(&K) induced by ώ± and ώ2 are equivalent. The proof of the
last assertion given by Powers and St0rmer uses finite dimensional
approximations and depends essentially on the particular structure
of 2I(£).

In our paper the problem is considered in a more general setting.
We prove, that any factor state ω of a C*-algebra 91 admits extension
to a pure state ώ of 2Γ® 91 (where 9Γ denotes the opposite C*-algebra)
and that correspondence ω h-> ώ obeys all the properties mentioned above.

Now ώ is given by no explicit formula, but is characterized by two
requirements: ώ should bej-positive and exact (for details see Section 1).

The exactness of a state ώ is expressed in terms of the representation
induced by ώ. The condition is not easy to check, but there are some
results, like Araki's duality theorem [1], which make it possible in the
case of generalized free states.

Let us note, that the existence of pure non exact states is not clear.
It is related to the existence of factorisation F1,F2cB(H) such that
Fl Φ F'2 (an example of such a factorisation is given in [3]).
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It seems that the state ώ is determined uniquely by ω. The problem
is under investigation and results will be presented in a separate paper.

Carrier Hubert spaces of representations considered in the paper are
assumed to be separable, so our results are valid only for such states,
which induce (by G.N.S.-construction) representations in separable
Hubert spaces.

1. Basic Definitions and Results

Let 91 be a C*-algebra with the unity 1. Replacing the original
multiplication rule in 91 by a new one defined by a ° b = ba (α, b e 91) we
obtain a new C*-algebra denoted by 91°. The C*-algebra 91° is said to be
opposite to 91.

For any a e 9ί, α* considered as an element of 91° will be denoted by α.
It is seen, that

is an antilinear multiplicative and ^-invariant (i.e. α* = a*) 1 — 1 mapping.
In what follows, we shall consider 91 = 91° (x) 91 where the tensor

product ® includes a suitable completion such that 91 becomes a
C*-algebra. One can check that the formula

defines an antilinear, multiplicative, * -in variant involutive (i.e. j2 = id)
mapping

We adopt the following notation: for any state ω of a C*-algebra 91,
πω will denote a representation of 91 induced by ω (GNS-construction).
The carrier Hubert space of a representation π will be denoted by H(π).

Let ώ be a state of 9ί. The v. Neumann algebras generated by
{πώ(ϊ® α) : a e 91} and {πώ(a® 1) : a e 91} will be denoted_by 9Iώ and 9ί?
respectively. We have [9Iώ, 91?] = {0} for the elements T®α and α(χ)l
commute in 91. We say that ώ is an exact state if and only if 91̂  = 9I#
where s$' denotes the commutant of a v. Neumann algebra j/.

We say, that a state ώ of 91 is j-positive if and only if

ώ(α(g)α)^0 (1.1)

for any a e 91. It can be easily proved that any j-positive state is -invariant
(i.e. ώ(j(a)) = ώ(a) for any αe9ϊ).

The main results of the paper are contained in the following two
theorems :
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Theorem 1.1. Let ω be a factor state of 21. Then there exists an exact
j-posίtive pure state ώ of 91 such that

(1.2)

for any a e 21.

Following in Powers' and Stormer's footsteps we say that the state ώ
in the Theorem 1.1 is a purification of ω. The usefulness of this notion
is clarified by the following

Theorem 1.2. Let ωx and ω2 be factor states of 21. Then the states ωί

and ω2 are quasiequivalent if and only if their purifications ώί and ώ2 are
equivalent.

Let us recall, that states ω1 and ω2 are called equivalent (quasi-
equivalent) iff representations πωι and πω2 are equivalent (quasi-
equivalent).

2. Exchange Involutions

Let s/cB(H) be a von Neumann algebra acting on a separable
Hubert space H. Antiunitary operator J will be called an exchange
involution for («$/, J/') if and only if J2 = / and

J^J = ̂ f (2.1)

where jtff denotes the commutant of j/.
Let J be an exchange involution for (j/, j '̂). A vector x 6 H is called

(<£/, J)-positive iff

Jx = x (2.2)
and

(x\AJAx)^Q (2.3)

for any A e stf. Assuming that «*/ is a factor, one can prove that (2.2) is
implied by (2.3).

Definition 2.1. An exchange involution J is called positive iff there
exists at least one (j/, J)-positive vector x such that its central support is
equal /.

In the last two section we shall prove the following theorems :

Theorem 2.1. Let <$/ be a v. Neumann algebra Any two positive
exchange involutions Jl and J2 for (£#,£#') are related by the formula:

where V is an unitary operator belonging to
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Theorem 2.2. Let ω be a normal state of a standard v. Neumann
algebra $0 C B(H). Then there exist a positive exchange involution J and a
(<$/, J)-positίve vector x e H such that

= ( x \ A x )

for any A e s$.

Throughout the paper a v. Neumann algebra stf C B(H) is said to be
standard if and only if it admits a cyclic and separating vector. This
terminology differs from that used by Dixmier.

Latter we shall prove (see Lemma 4.1) that any v. Neumann algebra
admiting a positive involution is standard.

We shall need a few facts about the so called standard representation
of C*-algebras.

Let π be a factor representation of a C*-algebra 91. Then there exists a
representation π of 91 quasiequivalent to π such that the v. Neumann
algebra π(9I)" is standard. It is known, that π is the maximal cyclic
representation quasiequivalent to π, i.e. any cyclic representation quasi-
equivalent to π is contained in π. It follows immediately that π is
determined uniquely (up to an unitary equivalence). Moreover represen-
tations πx and π2 are quasiequivalent iff 7^ and π2 are equivalent.

Proof of the Theorem 1.1. Let ω be a factor state of 91. Since πω is the
maximal cyclic representation quasiequivalent to πω, we can choose a
vector x' e H(πω) such that

= (x'\πω(a)x').

Let ,β/ = πω(2l)". According to Theorem 2.2 there exist an exchange
involution J for (j/, «$/') and a (j/, J)-positive vector x e H(πω) such that

(x'\Ax') = (x\Ax)

for any A e j t f . In particular setting A = πω(a) we get

ω(a) = (x\πω(a)x) (2.4)

for any a e 91.
Let us consider the mapping

9Ϊ9b(x)αH>Jπω(fc)Jπ». (2.5)

It is seen, that (2.5) defines a representation of 91. This representation is
irreducible. Indeed any operator S commuting with Jπω(b)Jπω(a) (for
all a, b e 9Ϊ) commutes with J jtf J and j^. Remembering that j£/J = £/'
we get that S belongs to the center of j/ and is of the form λl since j/
is a factor. Therefore the functional ώ introduced by

= (x\Jπω(b)Jπω(a)x) (2.6)
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is a pure state of 91. ώ is aj-positive state for the vector x is (j/, J)-ρositive.
Taking into account formulae (2.5) and (2.1) we can conclude, that ώ
is an exact state. Moreover setting b = 1 in (2.6) and comparing with
(2.4) we get (1.2). This remark ends the proof.

Let πώ be an irreducible representation of 91 defined by an exact
j-positive pure state ώ. It means that there exists a vector xeH(πώ)
such that

x) (2.7)

for any a, b e 91. As in Section 1 we introduce v. Neumann algebras

9Iώ = {πώ(T(χ)α):αe9I}"

We mentioned, that any ^-positive state is j-invariant. It follows
immediately that there exists an antiunitary operator J acting in H(πώ)
such that J2 = /, Jx = x and

Jπώ(b®a)J = πώ(a®b). (2.8)

Let us note, that J is an exchange involution for (9Iώ, 91&). Indeed,
taking into account (2.8) and remembering that ώ is an exact state, we
have: J8rώJ = Sl£ = %.

Moreover the vector x is (9Iώ, J)-positive because for any a e 91

It means that the involution J is positive (note that 9Iώ is a factor and the
central support of any non-vanishing vector is equal J).

Let us consider the following representation

91 3 a H> πώ(T ® α) e B(H(π&)) . (2.9)

Taking into account the irreducibility of πώ one can show that (2.9) is a
factor representation.

Setting in (2.7) 1 instead of b we get for all a e 91:

ω(0) = (x|πώ(ϊ®α)x)

where ω denotes a state of 91 introduced by (1.2). It means that πω is
equivalent to a subrepresentation of (2.9). It is known that factor
representation is quasiequivalent to any subrepresentation. Therefore
(2.9) is equivalent to πω (note that πώ(T(χ)9I)//Ξ9Iώ is standard for it
admits a positive involution). All representations are considered up to
unitary equivalence. Thus we can identify Hubert spaces H(π&) and
H(πω) in such a way that πώ(T® α) become equal to πω(α) for all a e 91.
16 Commun. math Phys., Vol 28
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After this identification 9lώ = πω(2l)". Moreover making use of (2.8)
we have

= Jπω(b)Jπω(ά)

We compile the results obtained so far

Lemma 2.1. Let ώ be a purification of a factor state ω. Then the
representation πώ is equivalent to a representation given by

where J is a positive exchange involution for (πω(9I)", πω(9I)').

Proof of the Theorem 1.2. Let ω and ωl be quasiequivalent factor
states of 91. Then representations πω and πωι are equivalent and we may
assume that πω = πωι.

Let J and J1 be positive exchange involutions for (πω(9l)", πω(9I)').
Then the following representations :

πω(b)J πω(a)

are equivalent. Indeed, by using Theorems 2.1 we have Jί =
(where V is an unitary element of πω(9ϊ)') and one can check, that

J,πω(b)J1πω(a)=VJπω(b)Jπω(a)V -1

for all a, b e 91. Now, the assertion of the Theorems 1.2 follows imme-
diately from Lemma 2.1.

3. A Generalized Polar Decomposition

Results derived in this section together with the Tomita's theory [5]
provide the main tools for the proofs of the theorems formulated before.
In our opinion the results are very interesting in themselves independently
of applications presented in the next section.

We shall use the following notation :
D(A) and R(A) will denote the domain and the range of an operator

A, respectively. If A and B are operators acting in a Hubert space H,
then AB will denote their product defined on the domain D(AB)
= {xeD(B):BxeD(A)}.

The closure of a preclosed operator A will be denoted by A. We say
that a selfadjoint operator is invertible if and only if 0 is not its eigenvalue.

Let A be an invertible selfadjoint positive operator acting in a Hubert
space H and let A e B(H\ We assume, that domain of A1/2A* is dense
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It can be easily checked, that (AA1/2)* = A1/2A*. Therefore, AA1/2

is a preclosed operator and AA1/2 = (A1/2A*)*. According to the well
known theorem of von Neumann Γ = A1/2 A*AA1/2 is a positive self-
adjoint operator. _

Let xeD(A1/2). Then xεD(AA1/2) = D(Γί/2) and

HΓ1'2*!! = \\AA^2x\\ = \\AA^2x\\ ^ \\A\\ \\A^2x\\ . (3.1)

Therefore there exists an operator A± e B(H) such that

(3.2)

for any xeD(A1/2). Note that \\A{\\ ^ \\A\\. We know, that D ( A ί / 2 ) is a
core of AA1/2. Therefore it is a core of Γ1/2, and Eq. (3.2) shows that

(3.3)

Selfadjointness of Γ1/2 implies immediately that

. (3.4)

Among other things it means that A% D(A1/2)CD(A1/2).
Let x G D(zl1/2). The Schwarz inequality for the positive sesquilinear

form ( z!1/2 ) and (3.4) lead to the following relation:

= (x\Aί/2x)ί/2(x\A2nA1/2x)ί/2.

By repeated use of this sort of inequality we see, that

Taking rc-»oo and remembering that \\A±\\ ^ \\A\\ we get

It means that

By repeating the argument leading to the formula (3.3) one can prove,
that there exists a bounded operator A2 e B(H) such that ||^2II ^ Mil

(3.5)

Now we can formulate our result:

Theorem 3.1. In the situation described above, operators A1

and A2 belong to the smallest von Neumann algebra generated by
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Remark. Note that according to our assumption 0 is not an eigen-
value of A and {^I5}seIRι is a well defined one-parameter group of unitary
operators.

At first we prove

Lemma. Let /(•) be an analytic function on the right half-plane
[z : Rez > 0}. Assume that

Rez (3.6)

and that f ( n ) = 0 for n = 1, 2, 3, . . . . Then f vanishes identically.

Proof. Let us consider the following function :

It is seen, that #(•) is an analytic function in the strip |Imfc| <π. On the
other hand estimation (3.6) combined with the analytic properties of the
integrated function shows, that g(k) = Q for Refc< — M. Therefore
g(k) = 0 and the lemma follows.

Proof of the Theorem. Let j/ be the smallest von Neumann algebra
generated by {zl'Mzl~ ί s : seIR1}. We have to prove, that Al9A2Ejtf

For any operator B e s4' and any integrable function / on 1R1 we put

+ 00

B(f)= J A i s B A ~ i s f ( s ) d s
— oo

where the integral is taken in the strong operator topology. It is seen,
that B(f) G stf'. We shall assume, that the function / is an entire function
such that

where K and M are numbers independent of r 6 1R1.
An example of such a function is given by

(3.7)

where / e CoOR1). In what follows, fr will denote the function
fr(s) = f(s-ir).

One can check, that

B(f)Δ'cA'B(fr) (3.8)
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for any r e C1. Remembering that [A, B(fJ] = 0 we have

and
B ( f ) A Δ ί / 2 C B ( f ) A Δ 1 / 2 =

Combining these relations we get

B ( f ) Γ c Γ B ( f 1 )
and

B(f)ΓcΓB(fr) (3.9)

for r = 0, 1, 2, . . . . We are going to prove that the last relation is satisfied
for any reC 1 such that Rer^O.

To this end, for any N εR we put EN = χ[0teN](Γ) (where χ[α &] is the
characteristic function of an interval [α, fe]) and consider the following
bounded operator

F(r) = ENB(f)ΓEN - ΓENB(fr}EN .

It is seen, that F(-) is an analytic operator valued function on the
right half-plane and that

\\F(r)\\^2\\B\\Ke(M+N)Rer

for Re r > 0. Moreover the relation (3.9) says, that F(r) = 0 for r = 1, 2, 3, . . . .
By using the lemma, one immediately get

for any r in the right half-plane. Let N->oo. Then s — limEN = /,
lim ΓrENx = Γrx for any x e D(Γr) and the above formula turns into (3.9).
Setting in (3.9) r = 1/2 and using formula (3.4) we obtain

By using formula (3.8) we get

Remembering that A{ is a bounded operator we have

B(f}A,=AlB(f}.

Let f(k) in (3.7) tends to 1 in a proper way. Then s — limB(f) = B and
BA! = A1B. We have proved that Al commutes with any element of <$#'
and therefore A1 e «$/. In the same way, setting in (3.9) r= 1/4 one can
prove that A2 e j/. This ends our proof.
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Let us note that

\\AlX\\ = \\Ax\\

for any x e H. Indeed Eqs. (3.1) and (3.2) show, that the above equation
is satisfied for any xeR(Aί/2).

Assume now that the ranges R(A1/2A*) and R(A) are dense in H.
Formula (3.3) shows that R(A1) is dense in R(Γ1/2) = R(A1/2A*). There-
fore there exists an unitary operator W such that

A=WAί. (3.10)

Theorem 3.1 says, that We stf.
We view (3.10) as a generalized polar decomposition.

4. The Proof of the Theorem 2.1

Lemma 4.1. Let J be a positive exchange involution for («$/, stf'). Then
there exists a (<$/, J)-positive separating and cyclic vector.

Proof. Assume that x is a (j/, /(-positive vector. Then

\\Ax\\2 ^\\x\\ \\AJAx\\ (4.1)

for any Aesf. Indeed the above inequality can be derived by setting
Aγ = A*A and A2 = I in the Schwarz inequality:

\(x\A1JA2x)\^(x\A1JA1x)ί/2(x\A2JA2x)1/2.

Now let x be the vector appearing in Definition (2.1). By using Zorn's
lemma one can find a maximal subset {XQ = X, x1? x2> ...}CH of non-
vanishing vectors such that

1° s/'xkLs/'xm for fcφm.
2° Each xk is of the form AkJAkx, where Ak is an element of j/.
We shall prove that

(4.2)

To this end denote by P the orthogonal projection onto
It is seen that P e s$. For any A e stf and any k we have:

(I-P)Axk = Q. (4.3)

Indeed, otherwise {xθ9xi9...} could be enlarged by adding the vector
(I-P)AJ(I-P)Axk = (I-P)AAkJ(I-P)AAkx, which would be non-
vanishing in virtue of (4.1).

Relation (4.3) means that Axk e 0j/'xfc. It follows immediately, that
:fc is invariant under all operators from jtf. Therefore P e sf'.
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Moreover Px = x. Remembering that the central support of x is
equal / we get P = I and (4.2) follows.

Applying the involution J to the both sides of (4.2) we get

(4.4)

Let y = Σanxn, where ak are positive numbers such that the series
converges. The formula

where A is any element of jtf, shows that y is (jtf, J)-positive.
We shall prove that y is a separating and cyclic vector. Indeed

denoting by'Pk the orthogonal projection onto j t f ' x k we have
pky = akxk and (4.4) shows that Wy = H. Similarly denoting by Pk the
orthogonal projection onto j/xk we have PkG^\ Pky = akxk and (4.2)
shows that s/'y = H. This ends the proof of the lemma.

Lemma 4.2. Assume that a v. Neumann algebra s$ C B(H) admits a
separating and cyclic vector yeH. Then there exists one and only one
exchange involution J for (stf, «$/') such that y is («$/, J)-positive.

Proof. Let us consider antilinear operators

H=sAy^A*yeH Aes/, (4.5)

HzA'y\-»A'*yeH A' erf'. (4.6)

It is known (see [5]), that these operators are preclosed and that there
closures, denoted by S and F respectively, are related by S* = F.

Let J be an exchange involution for (#0, <$/') such that y is (s/ , J)-
positive. Then J y = y and J s$ y = &$' y. Moreover for any A e stf we have :

JF JAy = JF JAJy = J(JAJ}* y = A* y = SAy .

It follows immediately from the above relations, that JFJ = S and
FJ = JS.

Let
A1/2 = JS. (4.7)

It is seen, that A112 is a closed linear operator and that s/x is its core.
The above equation can be rewritten as follows :

S = JAίf2. (4.8)

We shall prove that (4.8) is the polar decomposition of S, i.e. that A 1/2

is a positive selfadjoint operator. Indeed, for any A E J / the matrix
element

(Ay\A1/2Ay) = (Ay\JSAy) = (y\A*JA*y) (4.9)
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is nonnegative, since y is (jtf, J)-positive. Moreover

Now, taking into account the uniqueness at the polar decomposition
(4.8) we can conclude, that there exists of most one exchange involution J
for (j/, j/') such that 3; is ($0, J)-positive.

On the other hand, according to the Tomita's theory [5] the anti-
unitary operator J introduced by the polar decomposition (4.8) is an
exchange involution for (j/, <£/'). Moreover Eq. (4.9) shows that the
vector y is (j/, /(-positive for the operator A 1/2 in (4.8) should be positive.
This ends the proof of the lemma.

Let y be separating and cyclic vector. The exchange involution J
such that y is (j/, J)-positive will be denoted by Jr Assume that W is an
unitary operator belonging to «$/. Then

JWy=WJyW~ί. (4.10)

Indeed WJyW'1 is an exchange involution for (jtf, j/') and Wy is
evidently (j/, W JyW~ ^-positive.

Let yeH and AGJ/. Assume that y and Ay are both cyclic and
separating vectors. Then R(A) contains si' Ay and is dense in H.

Lemma 4.3. In the situation described above, the exchange involutions
Jy and JAy are related by

-i (4.11)

where W is an unitary operator belonging to jtf.

Proof. Let A be the positive selfadjoint operator introduced by (4.7),
where J should be replaced by Jr For any B e jtf we have By e
and

A 1/2 A* By = JySA* By = JyB*Ay .

It shows that D(Δ1/2 A*)1 jtfy and R(Δi/2A*)3 JystfAy. Therefore the
domain and the range of A1/2A* are dense in H.

According to the previous sections we can introduce bounded
operators Aί9 A2 and an unitary operator W such that:

. (4.12)

One of the main results of Tomita theory says that Aιss/A~ιs = jtf
for any real s. Therefore in virtue of Theorem 3.1, we obtain A1, A2, WE jtf.
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Taking into account definitions (4.7) and (4.5) we have:

(4.13)

since A 1/2y = JySy = y. It follows that the vector A1 y is (j/, ./^-positive.
Indeed, by using (4.13) one can check, that JyA1 y = Aί y and

for any B e d . According to Lemma 4.2 JAίy = Jy and (4.11) is implied by
(4.12) and (4.10). So, the lemma is proven.

Now, we can prove the Theorem 2.1.
Let Jι and J2 be positive exchange involutions for («$/, «$/'). In virtue

of Lemmas 4.1 and 4.2 there exist vectors y^ and y2, both separating and
cyclic such that Jί=Jyι and J2 = Jy2.

It can be proved, that there exists a separating and cyclic vector y e H
such that

A'y2) (4.14)

for any A e stf'. To this end one can use the well known properties of
faithful normal states of standard von Neumann algebras. These prop-
erties are mentioned in the next section.

Setting A* A instead of A in (4.14) we get \\A'y±\\ ^ \\A'y\\. Re-
membering that stf' y is dense in H one can introduce an operator
A1eB(H) such that

A1A'y = A'yί

for any A' e sέ1 . There is no problem to check that A^e^. Moreover,

yί = Aίy.

In the same way one can prove, that

where A2 is an operator from j/.
Now, by using Lemma 4.3 we get

j = W J2 W
-i

where W is an unitary operator belonging to j/. Evidently the above
formula can be rewritten as follows :

where
V = J2W-

The last formula ends the proof.



234 S. L. Woronowicz:

5. The Proof of the Theorem 2.2

We start with the following

Lemma 5.1. Let J be an exchange involution for (j/, s$'} and y be a
(j/,J)-positive separating and cyclic vector. Assume that x = Py = P'y,
where P and P' are projection operators belonging to £/ and stf' respectively.
Then the vector x is (jtf, J)-positive.

Proof. We keep the notation introduced in Section 4. It is seen, that

It shows that A x = F Sx = x and A ~ 1/2 x — x. Therefore Jx = SA ~ 1/2 x = x.
Remembering that y is a separating vector and using the relation

we get P = JP'J. It follows that P'JP = PJP and for any A

(x\AJAx) = (P'Py\AJAP'Py) = (y\PAP'JPΆPy)

= (y\PAPJPAPy)^Q

since y is («$/, /(-positive. It means that x is (j/, J)-positive.
Let us recall, that a normal state ρ of a v. Neumann algebra jtf is

said to be faithful if and only if

for any A e s$. It is known, that any v. Neumann algebra (acting in a
separable Hubert space) admits a faithful state and that any faithful
normal state of a standard v. Neumann algebra $4 C B(H) can be
represented by a separating and cyclic vector y E H.

Let ω be a normal state of a v. Neumann algebra stf. The support
of ω (see [2], I. §4.6) will be denoted by P. P is a projection operator
belonging to si such that

(ω(A* A) = 0)=> (PA*AP = 0)

ω(PAP) = ω(A) (5.1)
for any A e <£/.

Now we are in position to prove the Theorem (2.2). Let ω be a normal
state of a standard v. Neumann algebra $ί. We introduce

where A E s/, P is the support of ω and σ is a faithful state of <$#. One
can check, that ρ is a faithful state. Therefore for any A e j/:

ω(A) + σ((I -P)A(I- P)) = (y \ Ay) (5.2)
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where y E H is a separating and cyclic vector. In virtue of Lemma 4.2
there exists an exchange involution J for (jtf, jtf') such that y is (j/, J)-
positive.

Setting (/ — P)AP instead of A in (5.2) and using (5.1) we get

for any A E J / . It means that

(I-P)yλ.sfPy. (5.3)

Let P' denote the orthogonal projection onto s/Py. Evidently P'
and (5.3) shows that P'y = Py. According to Lemma 5.1 x = Py is a
(j/, J)-positive vector. Moreover, setting PAP instead of A in (5.2) and
using (5.1) we get

This ends the proof of the Theorem 2.2.
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