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Abstract. The states of a quantum mechanical system of hard core particles are charac-
terized as a convex weak * compact subset of the states over a C* algebra associated with the
canonical (anti-) commutation relations. It is shown that the mean conditional entropy, i.e.
entropy minus energy, can be defined as an affme upper semi-continuous function over the
G-invariant hard core states where G is an invariance group containing space translations.
An abstract definition of the pressure and equilibrium states is given in terms of the maximum
of the conditional entropy and it is shown that the pressure Ps obtained in this way satisfies
P^PS^PX where P and P^ are the thermodynamic pressures obtained from the usual
Gibbs formalism with elastic wall, and repulsive wall, boundary conditions respectively.
A number of additional results concerning the equilibrium states are also given.

1. Introduction

This paper is a continuation of [11] which we will refer to as I. The
purpose of these papers is to attempt to extend results obtained in [1-7]]

to the more general setting of quantum hard core systems. In this second
paper we consider the properties of the equilibrium states and show
that most of the results of [1-7] can indeed be generalized. The one
feature we have not been able to establish is true if the two pressures P
and P^ introduced in I are equal; thus in effect we reduce the whole
problem to this one point, the equality of P and P^.

2. Observables and Hard Core States

We will consider particles satisfying Bose-Einstein statistics and
leave the easier discussion of Fermi particles to the reader.

1 We number the references of this paper consecutively with those of I, i.e. Refs. [1—10]
should be sought in I.
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The states of a system of Bose point particles can be described by the
states over various C* algebras associated with the canonical commuta-
tion relations. We will consider two such algebras which we introduce as
follows. Let A be an open bounded subset of Rv and let L2

+ (An) denote
the Hilbert space of totally symmetric square integrable functions of n
points in A. Define the Fock space jtf(A) by

i.e. an element of Jjf(A) is a sequence ^ = (^"On^o where *F(0) is a
complex scalar, ¥(n) e L\ (An) for w ^ l , and the scalar product is
defined by:

A

where we use the set theoretic notation

V(X)=V(Xl,...,xa) if A-=
and

For each real f,geL2(A) we can introduce by a standard definition
unitary operators U(f\ V(g) on J^(A) satisfying the Weyl form of the
canonical commutation relations:

[/(/) V(g) = V(g) U(f)ei(f'9} etc.

Finally we introduce two local algebras of observables 9I(/L) and &(A)
associated with this structure. 9l(/l) is defined to be he smallest C*
algebra, acting on $f(A\ which contains {U (f\ V(g)if,g£L2(A)} and
£(A) is defined to be the C* algebra of all bounded operators on
J^(A). The algebras 91 and £ of quasi-local observables are then defined
in a standard manner to be the norm closures of the families {91 (/I); A C Rv}
and {Q(A);ACRV} respectively.

Next we describe the states of a system of bosons with hard cores
of diameter a contained in A. The set F/ of physical configurations is
defined by

F^ = [X\XcA, I*; — Xj\ ^ a for x^XjGX and i=£j}.

Note that the number of points in the set X takes values 0,1, ...,Na(A).
We introduce Qa by the definition

,. W)
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and the limit is taken over the net of increasing parallepipeds where V(A)
denotes the volume, i.e. Lebesgue measure, of A. The Hilbert space
J^fl (A) of the finite system of hard core particles is defined by

= Q if X<tF*}

with the scalar product the same as that of J^(A). The space 3?a(A) is a
closed subspace of ffi (A) and we denote by PA the associated orthogonal
projection operator. Note that PA e £ (A).

We next give a definition of hard core states as states over the quasi-
local algebra 91. Recall that a state Q over 91 is said to be locally normal
if the restriction of Q to each $l(A) is normal, i.e. if Q restricted to each
9l(/L) is determined by a density matrix QA on 3tf(A\

Definition 1. The set i^ of hard core states over the algebra 91 is
defined to be the subset of locally normal states Q whose corresponding
density matrices QA satisfy

for all open bounded A C Rv.

The following properties of the i^ are of use.

Theorem 1. The set i^ of hard core states is convex and compact in the
weak* topology induced by 91.

Proof, i^ is clearly convex. We will prove the compactness property
by using a set if/" of states over £ which we define to be the set of states
Q with the property that Q(PA} = 1 for all AcRv. It is clear that if is
weak* compact (with respect to the dual topology of £) because the
conditions Q(PA) = 1 define weak* closed sets of states. Further we have
that if I 91 is weak* compact (with respect to the dual topology of 91)
because the restriction procedure is a continuous mapping and the
image of a compact set under a continuous mapping is compact. Further
if Q E i^ then the ultraweakly continuous extensions of Q over the 91(yl)
to states over £,(A) determines a state in if. Thus if \ 912 ̂ - We com-
plete the proof by demonstrating that "f 2 if \ 91.

Note that if Q e if then the Schwartz inequality yields

Q(B) = Q(PAB} = Q(BPa
A) = Q(PABPA\ B G 2(A).

Using this equality we deduce from Proposition 4.1.6 of [12]2 that Q is a
regular state over 9I(/L) and then from Theorem 4 of [12] it follows that

2 It should be noted that the algebra (£(/!) associated with the canonical commu-
tation relations in [12] differs from both the algebras we consider. However, one has
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Q 9l(yl) is normal (with the notation of [12] we can use the equality

to deduce that this latter expression is a finite polynomial in elt and hence
the uniformity of the convergence required by criterion (d) of the above
cited Theorem 4 is immediate). Finally it is straightforward to argue that
the density matrix which determines the restriction of Q to 9I(/1) must
satisfy the condition QA = QA P/ on Fock space. Hence 'W \<^ — ir and
the proof is complete.

Next we wish to consider hard core states invariant under a group G
of automorphisms of 91. There are a number of groups of interest; the
group Rv of space translations, the group Ev of Euclidean transformations,
or the product of either of these groups with the compact group of gauge
transformations. The main property that all these groups have in common
which allows us to proceed without a particular specification is that they
are all represented as groups of automorphisms of the algebras 91 and
£ and both these algebras have an asymptotically abelian property
with respect to each of the groups. In the following we assume that G is
identified with one of the above groups. We denote by EG the convex
weak*-9I compact set of all G-invariant states over 91 and by $(K) the
extremal points of a set K.

Theorem 2. Let @ e E G n ^ be a G-invariant hard core state over 91.
There exists a unique probability measure //e, with barycentre Q, con-
centred on ^(EG}r\i^ i.e. EGc\'1^ is a Choquet simplex and there is a unique
decomposition

of Q into extremal G-invariant hard core states.

Proof. Firstly Q can be extended in a unique manner to be a locally
normal G-invariant state over £ and it follows from [13] that Q has a
unique barycentric decomposition into extremal G-invariant locally
normal states Q' over £. Secondly note that Q(! — P/) = 0 for all AcRv

and hence @'(l — P?) = 0 up to a set of /^-measure zero. These conditions
for a denumerable set of A ensure that iiQ is concentrated on extremal
G-invariant locally normal states Q' over £ whose density matrices
satisfy Q'A = Q'AP* for all A C Rv. Finally the result follows by restriction
to 91; note that the restriction, to 91, of an extremal G-invariant state
over £ is an extremal G-invariant state over 91 (cf. for example the
characterizations of extremal G-invariant states by cluster properties
given in [13—15]).
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3. Mean Energy and Conditional Entropy

We first introduce a class of local Harmltonians which are related
to those studied in I but we will characterize the interactions in terms of
elements of the algebra fi.

The hermitian elements of the algebra £ form a Banach space; we
introduce a second Banach space $ which is the restriction of the first
space by the hard core conditions. First introduce the set {P^BP^;
B = B*E 2(A\ A C Rv} and define J*0 to be the closure of this set through
multiplications by a real scalar and addition. The space ̂  is then defined
as the closure of ̂ 0 with respect to the norm |||.|||, defined by

) BE 2

where the supremum is taken only over the hard core states and we use
the extension :

Q(B) = Tr^a(A)(QAB) QEi^\B

Note that \\\B\\\ ^ ||5||. If the invariance groups G contains the group of
spatial rotations or the group of gauge transformation we further restrict
B to contain only elements invariant under the action of these compact
group of automorphisms. If B E J*0 we can assume that there is a AB such
that B is an hermitian element ofP*B£,(AB)PaB. Now for A^AB introduce
UA(B)by

UA(B) = $ dxixB
AB

+ xC A

where X-»TX denotes the action of the group of space translations as
automorphisms of fi. It is easily established that UA satisfies the conditions
of an interaction Hamiltonian assumed in I and in particular for

= 0 one finds that

-S^^

where S(A) denotes the surface area of A and d(B) is the diameter of AB.
Now for each such interaction and each real ju we define a total Hamil-
tonian HA(n, B) on JPa(A) by

where TA is the self-adjoint kinetic energy operator corresponding to
elastic boundary conditions and NA is the bounded number operator;
these latter operators are defined in I where the definition of HA (JLI, B)
is discussed at length. In particular it is established in I that HA(^ B) is
self-adjoint with compact resolvent and in fact Gxp{ — (}HA(n,B)} is of
trace-class for all ft > 0. Let the spectral resolution ofHA(n, B) be given by
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then we can define a functional over the hard core states i^ by

H^fe ;/*,£)= sup Tr^a(

where Q e i^ and QA is the associated density matrix. It is straight-
forwardly checked that

HA (^; M, B) = Tr^(yl)(tf j (/*, JB) QAH\(& B))

whenever the operator occurring is of trace class and HA(QIH,B) = +00
in the other case.

Using the methods of I and [18, 17] one finds the following result.

Lemma 1. For B e ̂ 0 and JJL e R the function Q e y -*HA(Q\ //, B) is
affine and lower semi-continuous in the \veak*-tyt topology. It satisfies the
continuity relation

for QEl^ and J51? B2 e 3HQ.
For fixed Q e i^9 B e ̂ 0 and n E R one has:

where [iM = max(0, u) and if Al n/t2 = 0 one has:

+ S(A2) - S(Ai uA2)) \\B\\ d(B) .

Proof. The function is affine by definition and is lower semi-continuous
in the weak*-$l topology by Theorem 3 of [17]. The continuity relation
follows from the identity

H A ( Q ' 9 l j L 9 B 1 ) - H A ( Q ' 9 ^ B 2 ) = j dxTrjea(A)(QA'cx(B1-B2))
AB

+ \CA

The lower bound is straight forwardly derived using the facts that
TA ^ 0 and Na(A) ^NA^0. The sub-additivity property follows from
the argument used to prove Theorem 2 of I and is a direct consequence
of the inequalities derived for the forms determined by the Hamiltonian
operators.

Next introduce the parallelepiped Aa by the definition

Aa - {X- X C R\ 0 < xi g flf, / = 1, . . . , v}

and recall that G is assumed to contain jRv.

Theorem 3. For each Q e EGr\ 1^, \JL e R and B e&0 the following limit

m m r HAa(Qin9B)
H(Q \n,B)= hm \7 . - -

a i , . . . , a v - » o o V(Aa)
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exists and has the property that

\H(q\fr B,} - H(Q- ^ B2)\ ^ \\\B, - B2\\\ B^ B2e^Q.

Thus H(Q', /i, •) can be extended by continuity to 2%. For fixed \i E R and
Be 3$ the function Q e EGr\i/^-^H(Q', jU, B) is affine and lower semi-
continuous in the weak*-tyi topology.

Proof. From the last inequality of Lemma 1 and the invariance of Q
under Rv one finds that the function

al9...9av^HAa(Q-9ii,B)-S(Aa)\\B\\d(B)

is super-additive in each of the variables at. Further if at ^ 1, i = 1, . . . , v
then there is a constant C, independent of at, such that

HAa(QitJL, B) - S(Aa) \\B\\ d(B) ^ CV(Aa] .

It then follows from a standard argument concerning super-additive
functions that

HAf(Q;^B)-S(Aa)\\B\\d(B)
"..SU?"v V(Aa)

lim H A a ( Q ; l j L , B ) - S ( A a ) \ \ B \ \ d ( B )
" • • • • ™ - = o V(Aa)

"-••-- V(Aa)

The existence of the limit is thus established. The continuity for B e ̂ 0,
then follows from Lemma 1. For BE^O the function Q-+H(Q\n,B) is
affine because it is the limit of a family of affine functions and is lower
semi-continuous in the weak*-$l topology because we have established
that it is defined as the supremum of a family of lower semi-continuous
functions. The continuous extension of H to & does not destroy these
properties.

The function Q e EGn^^>H(Qi ^ B) corresponds to the energy per
unit volume of hard core particles with chemical potential \i and inter-
action density B in a G-invariant state. We have defined this function
by using the local Hamiltonian corresponding to perfectly elastic walls.
Alternatively we could have used Hamiltonians corresponding to different
degrees of elasticity. Thus in the above definitions we could have sub-
stituted the kinetic energy operator TJ of I for T® and thus defined a
family of local energy functionals HA(q\^B\ However it would then
follow from the estimate of Lemma 1 of I that
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and hence for Q e EG n Y/~

«- lim ^

Thus the energy per unit volume is to a large extent independent of the
boundary conditions used in its definition. An exception is given if one
repeats the above definitions with the Hamiltonian defined in I, which
corresponds to infinitely repulsive walls for the finite system. This form
of boundary condition is essentially incompatible with the Rv-invariance
and the only ^-invariant state for which the corresponding local energy
is not infinite is the Fock vacuum.

We next examine the entropy and conditional entropy of hard core
states. Given a locally normal state Q over 51 we define a family of local
entropies in the manner of [18] by

SA(Q)=+CO

if QA logQA is not of trace-class on 3? (A)

otherwise, where {QA} is the family of density matrices determining Q.
In particular, we can assign local entropies to each Q e ir. Theorem 1 of
[18] establishes that the function A-+SA(o) is positive, sub-additive and
for 0 < ;„ < 1 :

0 = SA(AQl + (1 - A)02) ~ lSA(Ql) - (1 - /) SA(Q2) ^ Iog2 .

Further it is established in [16] and [17] that for Q e i^, IJL e R and

We introduce the local conditional entropy as a function over ff" by the
definition

if HA(Q ; /i, B) < + c^ and by

S>; 0,^,3) =-OG

otherwise. In these definitions and in the following, we always take j8 > 0,
\JL E R and B e ̂ 0. A slight modification of the proof of Theorem 5 of [17]
establishes that the function Q e i^-^SA(Q\ j8, ̂  B) is upper semi-contin-
uous in the weak*-5l topology.

Theorem 4. For each Q E EG n i^, ft > 0, \JL e R and B E ̂ 0 the following
limit:

Ste!/U«_ Urn i ^
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exists and has the property that

thus S(Q;fi,n,B) can be extended by continuity to $. For fixed ft, ju, B
the function Q e EGr\^-^S(Q\ /?, /i, B) is affine and upper semi-continuous
in the weak*-tyi topology.

Proof. The theorem follows directly from the information collected
above. The upper-additive property of HA established in Lemma 1, the
sub-additive of SA, and the definition of the conditional entropy, show
that the function

a l 9 . . . , a v - + S A a ( Q ' , P , i J i , B ) - p S ( A a ) \ \ B \ \ d ( B ) .

is sub-additive in each variable a{ whenever the hard core state Q is
jRv-invariant. However the bound on SA given above and the estimate
given in Theorem 1 of I show that there is a C, independent of a^ ..., av,
such that

a) \\B\\

and thus the theorem concerning sub-additive functions establishes that

\\B\\ d(B). A f , ,
mi — -

l , . . . , a v yAJ

lim S A a ( Q ' , f r & B ) - S ( A a ) \\B\\ d(B)
a i , . . . , a v - > o o

« i , . . . , a v - > o o V(Aa)

The existence of the limit is thus established for $ > 0, ju e R and B e ̂ 0.
The continuity for B e J*0 follows from the similar property for H.

The affinity of Q e EGni^->S(£; /?, /j, 5) follows from the convexity
property of S^ and the affinity ofHA and the upper semi-continuity follows
because we have established that S(.;/J, ju, B) is expressed as the lower
envelope of a family of upper semi-continuous functions. Both the fore-
going properties are thus valid for B e &0 but they are unchanged by
continuous extension from ^0 to 3§.

Corollary 1. For each ft>0, UER and Be& the function

respects the barycentric decomposition of Theorem 2, i.e.

This last property is an immediate consequence of the affinity and semi-
continuity of the conditional entropy given above.
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4. The Pressure and Equilibrium States

Using the material of the foregoing sections we can introduce the
thermodynamic pressure and the set of equilibrium states for an infinite
hard core system in the following abstract manner.

Definition 2. The thermodynamic pressure Ps is defined as a function
over R+ x R x $ by

Ps(p,^B)= sup Sfe; j8, / / ,B)
QeEGnV

The corresponding set A (/?, u, B) of G-invariant equilibrium states is defined
to be the set of states for which the above supremum is attained, i.e.

In these definitions ft is to be physically interpreted as the inverse
temperature, JJL the chemical potential, and B the interaction energy
density. Note that the definitions are unchanged by the transformation
B-^txB, x G Rv. Thus we could consider the above concepts to be defined
on classes of elements of B formed by elements which are translates of
one another, or averages of such translates; this redundancy is however
unimportant in the sequel.

Although it is interesting to have a direct definition of the above
physical quantities for an infinite system it is nevertheless essential that
one should establish that these definitions agree with those usually given
by the limit of a finite system.

We have already noted that for each BE & the interaction UA(B)
satisfies the conditions of an interaction Hamiltonian assumed in I and
thus we can define P by

P(/J, //, B) =

Similarly we could define a pressure P^ by using the kinetic energy
operator TA, corresponding to "infinitely repulsive walls", in place of
T%. It is established in I that these functions are convex and continuous
in j8 and ju and using Proposition A3 of I one finds that:

IPOS, fji, B,) - P(j8, M, B2)\ ^ p\\\B, - B2\\\ ,

IP, (/?, //, B,) - P^tf, M, B2)\ ^ P\\\B, - B2\\\

for all B1,B2E^Q. Thus P and P^ can be extended by continuity to
functions over R+ xRx& and we have from I that these functions are
convex.

Theorem 5. Ps is convex, continuous in ft and ju, and satisfies
1. |Ps(j8, n, B,) - Ps(j8, 11, B2)\ g



214 S. Miracle-Sole and D. W. Robinson:

Proof. The convexity of Ps follows immediately from its definition as a
supremum and the continuity in /J and \i is a consequence. But

Ps(j3,M,Bi)= sup [S(e;j8,M,B2) + j8e(B2-B1)]
QtEcnif

^ sup S(0;j5,^,B2) + sup
Q e EG r^y Q£ EG n

This inequality and the similar one obtained by interchanging B1 and J52,
give Property 1.

The principal result of the theorem is Property 2. The right hand
equality follows from the inequality for SA given in the previous section;
one has:

/i-=o v(A)
1 , .

for all Q£EGC}i^ and £e J*0. The desired result follows immediately.
The left hand inequality can now be deduced by construction of an

invariant state QX for which

First note that if //^ denotes the Hamiltonian corresponding to the region
A chemical potential ju, interaction B E 3$0 and infinitely repulsive
boundary conditions than for £ > 0 we can choose a parallelepiped Al

such that

Further using Proposition A3 of I and the definition of JFf^ by a
quadratic form we can choose a finite orthonormal family of vectors
yl9...,Ynetfa (At) such that XeF^l-^Wt(X) is infinitely often differ-
entiable with compact support in F*1 and

Next define £( to be the projector with range f,- and introduce ^/ll to be
the density matrix on J^a(A,) given by
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where

Now if QJ denotes the normal state over 2K/1/) defined by the density
matrix QAi then one straightforwardly computes that

and hence

Finally we use the above choice of QAi to construct a G-invariant state
over $1 by the following standard procedure. Let n^ . . . , r c v be integers
and AnJ the parallelepiped centred at (n^ -f a), . . . , nv(lv -f a)) with edges
of length /! . . . /v. For each choice of n we can introduce a density matrix
QAn l on j#*a(AnJ) in the same manner that we introduced QAi above. Now
let / be a cubic subset of Zv and define

nel

Now on Jf^C/lj), which is given explicitly by

we define the density matrix

If W\ denote the vector states associated with QAi then QAi can be extended
to be a density matrix on the Hilbert space 3tfa(A^, where Al denotes the
convex closure of At, by extending the ¥} through the definition

!P;(X) = 0 if XeF*1 but X $ F?1 .

It is important to realize that the choice of the density matrices QAn i is
made such that this extension is continuous and in fact X E F/J-> *P\(X)
is infinitely often differentiable with compact support. The foregoing
specification for all 7 determines a hard core state QI over 51 which is
invariant under translations which are of the form (n^l^ +#), . . . , nv(lv -f a)).
Defining TXQI by
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we can introduce an Kv-invariant hard core state by

Qi= J7$' dX^xQiv

where the prime denotes that the integration is taken over the set

Now with this construction it can be checked that

If G contains the groups of space rotations and gauge transformations
we can average Qt over these groups and the last estimate remains valid
for the ensuring G-in variant state. Thus we conclude that Ps ^ P^.

Note that in the above construction of a G-invariant state it was
essential to use the Hamiltonian corresponding to infinitely repulsive
boundary conditions in the construction of the local density matrix QAl.
If one attempts the same construction using HA(JJI, B), i.e. elastic boundary
conditions, then the W\ would be discontinuous and one would find
H(Qli(},p,,B)=+cc and consequently 5(^; /?, n, B) = — oo. Thus this
construction does not seem useful to demonstrate that Ps attains its
upper bound P.

Our failure to demonstrate that Ps = P, or Ps = P^, does not allow
us to give such a complete discussion of the equilibrium states as has been
obtained for example for quantum spin systems in [4] and [6] but a
number of the advantageous properties are a consequence of the convexity
and continuity properties that we have derived.

Theorem 6. The sets A(/3, JJL, B) of G-invariant equilibrium states have
the following properties

1. A(fi,]d,B) is convex, compact in the w£a/c*-2I topology, and a
simplex in the sense of Choquet with the property that

2. The weak, weak*-$l, and the locally uniform topologies induced on
(A (ft, jU, B) coincide and the set is metrizable in this common topology*.

3 . I e A B ) then

and consequently H(Q\ ̂  B)< -hoc.
3 The locally uniform topology is defined by the set of neighbourhoods

sup \Q(A)-Q'(A)\<£\ for ACR\ e > 0 .
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4. The set A of all equilibrium states

A= [J

is dense in the weak*-$l topology, in the set EGr\^\

Proof. Property 1 follows from the properties of EGr\i^ derived in
Theorems 1 and 2 and the fact that Q e EGc\i^ is affine and upper semi-
continuous in the weak*-$l topology (cf. Theorem 4).

To deduce Property 3, we note that for each ge.EGnf we have

Thus taking Q e A (/?, ju, B) we find

and the desired inequality follows immediately. Taking jSj < /?, /^ = j
and J5X = 5 we then find:

and the boundedness off / is an immediate consequence of the bounded-
ness of Ps (cf. Theorem 5 and Theorem 3 of I).

Next we note that this last estimate and the proof of Theorem 3
imply that if Q e A (/?, ^, B) then for each parallelepiped At there is a
number CAl(fi,n,B) such that:

Property 2 is now a corollary of Theorems 3 and 6 of [17].
The proof of Property 4 is very similar to the proof given in [6] but

care has to be taken about two points. First let us note that the argument
of [16] can be repeated in the present context to show that for each ju
B e & the G-invariant hard core states with H(Q\H, B) < +oc are weak*-
dense in £Gn^. Thus it suffices to prove that each such state can be
approximated by an equilibrium state. But if Q e EGr\i^ and H(Q;^ B)
< +oc then the entropy S(g) of Q defined by

is such that 0 ̂  S(g) < -foo. Hence we have

16 Commun math. Phys., Vol 19
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Thus the linear function (/?,ju, £)-> -jSHfe; p~ln,fi~lB} is such that its
graph lies below the graph of the convex function

and the desired result appears to follow from Theorem 2 of [6]. However,
this latter result depends upon a separability assumption which is not
valid in the present case; $ is not separable. Nevertheless we can choose
^! C $ such that ̂  is separable and each invariant hard core state is
determined by its restriction to J\. Repeating the above definitions
with J* replaced by J\ we obtain a set A1 of equilibrium states and
A1QA. But now from [6] we deduce that A1, and consequently A, is
weak*-dense in EGr\i^ '.

We note that the arguments of [2] can also be applied to deduce
that the set T of (/?, ju, B) such that the graph of Ps has a unique tangent
plane, and consequently such that zi(j8, ju, J3) reduces to one state Qp>fitB

is a residual set in R+ x R x ̂ . Thus the one significant result of [4, 6]
which we have not obtained is the deduction that for (/?, ̂ B)eT the
unique equilibrium state Q^^B is given as an infinite volume limit of an
appropriate state of the finite system. This last result would follow,
however, from Theorem 5 if we could establish that P — Ps, or P^ = Ps,
or P = Px. This last form of equality is the one crucial remaining result
necessary to the completion of the discussion of equilibrium states.
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