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Abstract

In this paper, we study the existence of infinitely many nontrivial solutions of the
semilinear ∆γ differential equations in RN

−∆γu+b(x)u = f (x,u) in RN , u ∈ S2
γ (RN),

where ∆γ is the subelliptic operator of the type

∆γ :=
N

∑
j=1

∂x j

(
γ

2
j∂x j

)
, ∂x j :=

∂

∂x j
, γ = (γ1,γ2, ...,γN),

and the potential b is allowed to be sign-changing, and the primitive of the nonlinearity
f is of superquadratic growth near infinity in u and allowed to be sign-changing.
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1 Introduction

In the last years, the semilinear Schrödinger equation

−∆u+b(x)u = f (x,u), x ∈ RN , u ∈ H1(RN), (1.1)

has been studied by many authors. The Schrödinger equation has found a great deal of
interest last years because not only it is important in applications but it provides a good
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model for developing mathematical methods.With the aid of variational methods, the exis-
tence and multiplicity of nontrivial solutions for the problem (1.1) have been extensively
investigated in the literature over the past several decades. See, e.g., [1–6,10,11,19–22,28]
and references quoted in them.

In this paper, we study the existence and multiplicity of nontrivial weak solutions to the
following the problem

−∆γu+b(x)u = f (x,u) in RN , u ∈ S2
γ (RN), (1.2)

where ∆γ is a subelliptic operator of the form

∆γ :=
N

∑
j=1

∂x j

(
γ

2
j∂x j

)
, γ = (γ1,γ2, . . . ,γN) : RN −→ RN .

The ∆γ−operator was considered by A. E. Kogoj and E. Lanconelli in [9]. This operator
has the same form as in [7], however the functions γ(x) in [9] are more generalized than
those considered in [7]. The ∆γ−operator contains many degenerate elliptic operators such
as the Grushin–type operator

Gα := ∆x + |x|2α
∆y, α ≥ 0,

where (x,y) denotes the point of RN1 ×RN2 (see [8]), and the operator of the form

Pα,β := ∆x +∆y + |x|2α|y|2β
∆z, (x,y,z) ∈ RN1 ×RN2 ×RN3 ,

where α,β are nonnegative real numbers (see [23, 27]). Many aspects of the theory of
degenerate elliptic differential operators are presented in monographs [26, 27] (see also
some recent results in [9, 12–17, 23–25]).

To study the problem (1.2), we make the following assumptions:

(B1) b ∈C(RN ,R) is bounded from below.

(B2) There exists a constant d0 > 0 such that

lim
|y|→+∞

meas{x ∈ RN : |x− y| ≤ d0,b(x)≤ M}= 0, ∀M > 0,

where meas{·} denotes the Lebesgue measure of a set in RN .

While the nonlinearities f : RN ×R −→ R and its primitive F(x,ξ) =
ξR
0

f (x,τ)dτ are such

that

(B3) f ∈C(RN ×R,R), and there exist c1 > 0 and 2 < p < 2∗γ such that

| f (x,ξ)| ≤ c1
(
|ξ|+ |ξ|p−1) , for all (x,ξ) ∈ RN ×R,

where 2∗γ := 2Ñ
Ñ−2

(where Ñ is defined by formula (2.1)).
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(B4) F(x,ξ)≥ 0 for all (x,ξ) ∈ RN ×R and

lim
|ξ|→∞

F(x,ξ)
|ξ|2

= +∞, uniformly in x ∈ RN .

(B5) There exists θ ≥ 1 such that

θF (x,ξ)≥ F (x,τξ), for all (x,ξ) ∈ RN ×R and τ ∈ [0,1]

where F (x,ξ) = ξ f (x,ξ)−2F(x,ξ).

(B6) f (x,−ξ) =− f (x,ξ), for all (x,ξ) ∈ RN ×R.

(B7) f (x,ξ) = o(|ξ|), as |ξ| → 0, uniformly in x ∈ RN .

(B8) There are constants µ > 2 and r1 > 0 such that

µF(x,ξ)≤ ξ f (x,ξ), for all (x,ξ) ∈ RN ×R, |ξ| ≥ r1.

Now, we are ready to state the main results of this paper.

Theorem 1.1. Assume that b and f satisfy (B1)–(B5) and (B6). Then the problem (1.2)
possesses infinitely many nontrivial solutions.

Theorem 1.2. Assume that b and f satisfy (B1)–(B4) and (B6)–(B8). Then the problem
(1.2) has a ground state solution u0, that is Φ(u0) = inf

u∈M
Φ(u), where

M = {u ∈ S2
γ,b(x)(R

N) : u 6= 0,Φ′(u)(u) = 0}.

Remark 1.3. Our result is not covered by those in [17]. For example, when

b(x) =

{
2n|x|−2n(n−1)+ c0 if n−1 ≤ |x| ≤ (2n−1)/2,

−2n|x|+2n2 + c0 if (2n−1)/2 ≤ |x| ≤ n,

for n ∈ N and c0 ∈ R and

f (x,ξ) = a(x)ξ ln(1+ |ξ|), ∀ (x,ξ) ∈ RN ×R,

where a(x) is a continuous bounded function with positive lower bound, it is easy to check
that f (x,ξ),b(x) satisfy (B1)–(B6) but do not satisfy the conditions (A3) in [17] where
(A3): there are constants µ > 2 and r1 > 0 such that

µF(x,ξ)≤ ξ f (x,ξ), for all (x,ξ) ∈ RN ×R, |ξ| ≥ r1,

and not satisfy the conditions (B1) in [17] where (B1): b ∈ L1
loc(RN) and

µ0 = essinf
x∈RN

b(x) := sup
{

µ ∈ R : meas{x ∈ RN ,b(x) < µ}= 0
}

> 0.

Remark 1.4. By using (B1) we know that there exists c0 > 0 such that b1(x) = b(x)+c0 ≥ 1
for any x ∈RN . Let f1(x,ξ) = f (x,ξ)+c0ξ for all (x,ξ)∈RN ×R. Then it is easy to verify
that the study of (1.2) is equivalent to investigate the problem

−∆γu+b(x)u = f1(x,u) in RN , u ∈ S2
γ (RN). (1.3)

Hence, from now on, we assume that b(x)≥ 1 for any x ∈ RN in (B1).
The paper is organized as follows. In Section 2 for convenience of the readers, we recall

some function spaces, embedding theorems and associated functional settings. Section 3 is
devoted to the proofs of Theorems 1.1 and 1.2.
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2 Preliminary results

We recall the functional setting in [9, 14]. We consider the operator of the form

∆γ :=
N

∑
j=1

∂x j

(
γ

2
j∂x j

)
, ∂x j :=

∂

∂x j
, j = 1,2, . . . ,N.

Here, the functions γ j : RN → R are assumed to be continuous, different from zero and of
class C1 in RN\Π, where

Π :=

{
x = (x1,x2, . . . ,xN) ∈ RN :

N

∏
j=1

x j = 0

}
.

Moreover, we assume the following properties:
i) There exists a semigroup of dilations {δt}t>0 such that

δt : RN −→ RN

(x1, . . . ,xN) 7−→ δt (x1, . . . ,xN) = (tε1x1, . . . , tεN xN) ,

where 1 = ε1 ≤ ε2 ≤ ·· · ≤ εN , such that γ j is δt−homogeneous of degree ε j −1, i. e.,

γ j (δt (x)) = tε j−1
γ j (x) , ∀ x ∈ RN , ∀ t > 0, j = 1, . . . ,N.

The number

Ñ :=
N

∑
j=1

ε j (2.1)

is called the homogeneous dimension of RN with respect to {δt}t>0.
ii)

γ1 = 1, γ j (x) = γ j (x1,x2, . . . ,x j−1) , j = 2, . . . ,N.

iii) There exist a constant ρ ≥ 0 such that

0 ≤ xk∂xk γ j (x)≤ ργ j (x) , ∀ k ∈ {1,2, . . . , j−1} , ∀ j = 2, . . . ,N,

and for every x ∈ RN
+ :=

{
(x1, . . . ,xN) ∈ RN : x j ≥ 0, ∀ j = 1,2, . . . ,N

}
.

iv) Equalities γ j (x) = γ j (x∗) ( j = 1,2, . . . ,N) are satisfied for every x ∈ RN , where

x∗ = (|x1| , . . . , |xN |) if x = (x1,x2, . . . ,xN).

Definition 2.1. By Sp
γ (RN) (1≤ p < +∞) we will denote the set of all functions u∈ Lp(RN)

such that γ j∂x j u ∈ Lp(RN) for all j = 1, . . . ,N. We define the norm in this space as follows

‖u‖Sp
γ (RN) =

Z
RN

(
|u|p +

∣∣∇γu
∣∣p)dx

 1
p

,

where ∇γu = (γ1∂x1u,γ2∂x2u, . . . ,γN∂xN u).
If p = 2 we can also define the scalar product in S2

γ (RN) as follows

(u,v)S2
γ (RN) = (u,v)L2(RN) +(∇γu,∇γv)L2(RN).
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Define

S2
γ,b(x)(R

N) =

u ∈ S2
γ (RN) :

Z
RN

(∣∣∇γu
∣∣2 +b(x)u2

)
dx < +∞


with b(x) satisfying conditions (B1),(B2) then S2

γ,b(x)(R
N) is a Hilbert space with the norm

‖u‖S2
γ,b(x)(RN) =

Z
RN

(∣∣∇γu
∣∣2 +b(x)u2

)
dx

 1
2

.

Proposition 2.2. Assume that b satisfy (B1) and (B2). Then the embedding map from
S2

γ,b(x)(R
N) into Lq(RN) is compact for 2 ≤ q < 2∗γ .

Proof. The proof of this proposition is similar to the one of Lemma 2.2 in [17]. We omit
the details.

Definition 2.3. Let (X,‖ · ‖X) be a real Banach space with its dual space X∗ and Φ ∈
C1(X,R). For c∈R we say that Φ satises the (C)c condition if for any sequence {xm}∞

n=1 ⊂
X with

Φ(xm)→ c and (1+‖xm‖X)
∥∥Φ

′(xm)
∥∥

X∗ → 0,

then there exists a subsequence {xnk}∞
k=1 that converges strongly in X. If Φ satisfies the

(C)c condition for all c > 0 then we say that Φ satisfies the Cerami condition.

Define the Euler–Lagrange functional associated with the problem (1.2) as follows

Φ(u) =
1
2

Z
RN

(∣∣∇γu
∣∣2 +b(x)u2

)
dx−

Z
RN

F(x,u)dx. (2.2)

From Lemma 2.3 in [17] and f satisfies (B3), b(x) satisfies (B1), we have Φ is well defined
on S2

γ,b(x)(R
N) and Φ ∈C1(S2

γ,b(x)(R
N),R) with

Φ
′(u)(v) =

Z
RN

(
∇γu ·∇γv+b(x)uv

)
dx−

Z
RN

f (x,u)vdx

for all v ∈ S2
γ,b(x)(R

N). One can also check that the critical points of Φ are weak solutions
of problem (1.2).

The following variant fountain theorem was established in [29].

Lemma 2.4 (see [29]). Let (X,‖ · ‖X) be a Banach space, X = ⊕ j∈NX j, with dimX j < ∞

for any j ∈ N. Set Yk = ⊕k
j=1X j and Zk = ⊕∞

j=kX j. Let Φλ : X → R a family of C1(X,R)
functionals defined by

Φλ(u) = A(u)−λB(u), λ ∈ [1,2].

Assume that Φλ satisfies the following assumptions:

(i) Φλ maps bounded sets to bounded sets uniformly for λ ∈ [1,2], Φλ(−u) = Φλ(u) for
all (λ,u) ∈ [1,2]×X;
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(ii) B(u)≥ 0 for all u ∈ X, and A(u)→ ∞ or B(u)→ ∞ as ‖u‖X → ∞;

(iii) There exist rk > ρk such that

βk(λ) = max
u∈Yk,‖u‖X=rk

Φλ(u) < αk(λ) = inf
u∈Zk,‖u‖X=ρk

Φλ(u), ∀λ ∈ [1,2].

Then
αk(λ)≤ ξk(λ) = inf

γ∈Γk
max
u∈Bk

Φλ(γ(u)) ∀λ ∈ [1,2],

where Bk = {u ∈ Yk : ‖u‖X ≤ rk} and

Γk = {γ ∈C(Bk,X) : γ is odd, γ = Id on ∂Bk}.

Moreover, for a.e. λ ∈ [1,2], there exists a sequence {uk
m(λ)}m∈N ⊂ X such that

sup
m∈N

‖uk
m(λ)‖< ∞, Φ

′
λ
(uk

m(λ))→ 0, Φλ(uk
m(λ))→ ξk(λ) as m → ∞.

3 Proof of Theorems

In order to apply Lemma 2.4 to prove our main result, we define the functionals A,B and
Φλ on our working space S2

γ,b(x)(R
N) by

A(u) =
1
2

Z
RN

(∣∣∇γu
∣∣2 +b(x)u2

)
dx, B(u) =

Z
RN

F(x,u)dx,

and
Φλ(u) = A(u)−λB(u) =

1
2

Z
RN

(∣∣∇γu
∣∣2 +b(x)u2

)
dx−λ

Z
RN

F(x,u)dx

for all λ∈ [1,2] and u∈ S2
γ,b(x)(R

N). Then we have Φλ ∈C1(S2
γ,b(x)(R

N),R) for all λ∈ [1,2].
Let {e j}∞

j=1 be a total orthonormal basis of S2
γ,b(x)(R

N) and define X j = Re j. Note that
Φ1 = Φ, where Φ is the functional defined in (2.2).

We further need the following lemmas.

Lemma 3.1. Assume that (B1)–(B3) are satisfied. Then there exist k1 ∈ N and a sequence
{ρk}∞

k=1 such that ρk → ∞ as k → ∞ and

αk(λ) = inf
u∈Zk,‖u‖S2

γ,b(x)(R
N )=ρk

Φλ(u), ∀k ≥ k1,

where Zk =⊕∞
j=kX j for all k ∈ N.

Proof. Let us define

b2(k) = sup
u∈Zk,‖u‖S2

γ,b(x)(R
N )=1

‖u‖L2(RN), bp(k) = sup
u∈Zk,‖u‖S2

γ,b(x)(R
N )=1

‖u‖Lp(RN).
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We aim to prove that
b2(k)→ 0, bp(k)→ 0 as k → ∞. (3.1)

It is clear that b2(k) and bp(k) are decreasing with respect to k so there exist b2,bp ≥ 0 such
that b2(k) → b2 and bp(k) → bp as k → ∞. For any k ≥ 0, there exists uk ∈ Zk such that
‖uk‖S2

γ,b(x)(RN) = 1 and ‖uk‖L2(RN) ≥
b2(k)

2 , hence we can assume that uk ⇀ u in S2
γ,b(x)(R

N).

From definition of Zk, we have u = 0. Since S2
γ,b(x)(R

N) is compactly embedded in Lq(RN)
by Proposition 2.2, we have uk → 0 in L2(RN), which implies that b2 = 0. Similarly we can
prove bp = 0. Then, for any u ∈ Zk and λ ∈ [1,2], we can see that

Φλ(u)≥
‖u‖2

S2
γ,b(x)(RN)

2
−2

Z
RN

F(x,u)dx

≥
‖u‖2

S2
γ,b(x)(RN)

2
−2c1

(
‖u‖2

L2(RN) +‖u‖p
Lp(RN)

)
≥
‖u‖2

S2
γ,b(x)(RN)

2
−2c1

(
b2

2(k)‖u‖2
S2

γ,b(x)(RN) +bp
p(k)‖u‖p

S2
γ,b(x)(RN)

)
.

By using (3.1), we can find k1 ∈ N such that

2c1b2
2(k)≤

1
4
, ∀k ≥ k1.

For each k ≥ k1, we choose
ρk := (16c1bp

p(k))
1

2−p .

Let us note that
ρk → ∞ as k → ∞, (3.2)

since p > 2. Then we deduce that

αk(λ) := inf
u∈Zk,‖u‖S2

γ,b(x)(R
N )=ρk

Φλ(u)≥ 1
8

ρ
2
k > 0

for any k ≥ k1.

Lemma 3.2. Assume that (B1)–(B4) hold. Then for the positive integer k1 and the sequence
ρk obtained in Lemma 3.1, there exists rk > ρk for any k ≥ k1 such that

βk(λ) = max
u∈Yk,‖u‖S2

γ,b(x)(R
N )=rk

Φλ(u) < 0,

where Yk =⊕k
j=1X j for all k ∈ N.

Proof. Firstly we prove that for any finite dimensional subspace F ⊂ S2
γ,b(x)(R

N) there exists
a constant δ > 0 such that

meas
{

x ∈ RN : |u(x)| ≥ δ‖u‖S2
γ,b(x)(RN)

}
≥ δ, ∀u ∈ F \{0}. (3.3)
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We argue by contradiction and we suppose that for any n ∈ N there exists 0 6= un ∈ F such
that

meas
{

x ∈ RN : |un(x)| ≥
1
n
‖u‖S2

γ,b(x)(RN)

}
<

1
n
, ∀n ∈ N.

Let vn := un
‖un‖S2

γ,b(x)(R
N )
∈ F for all n ∈ N. Then ‖vn‖S2

γ,b(x)(RN) = 1 for all n ∈ N and

meas
{

x ∈ RN : |vn(x)| ≥
1
n

}
<

1
n
, ∀n ∈ N. (3.4)

Up to a subsequence, we may assume that vn → v in S2
γ,b(x)(R

N) for some v ∈ F since F is
a finite dimensional space. Clearly ‖v‖S2

γ,b(x)(RN) = 1. By using Proposition 2.2 and the fact
that all norms are equivalent on F , we deduce that

‖vn− v‖L2(RN) → 0 as n → ∞. (3.5)

Since v 6= 0, there exists δ0 > 0 such that

meas
{

x ∈ RN : |v(x)| ≥ δ0
}
≥ δ0. (3.6)

Set
Λ0 :=

{
x ∈ RN : |v(x)| ≥ δ0

}
and for all n ∈ N,

Λn :=
{

x ∈ RN : |vn(x)| ≥
1
n

}
, Λ

c
n := RN \Λn.

Taking into account (3.4) and (3.6), we obtain

meas(Λn∩Λ0)≥ measΛ0−measΛ
c
n ≥ δ0−

1
n
≥ δ0

2
.

for n large enough. Therefore,Z
RN

|vn− v|2dx ≥
Z

Λn∩Λ0

|vn− v|2dx

≥
Z

Λn∩Λ0

(|v|− |vn|)2dx

≥
(

δ0−
1
n

)2
|Λn∩Λ0|

≥
δ3

0
8

> 0

which contradicts (3.5).
Now, by using that Yk is finite dimensional and (3.3), we can find δk > 0 such that

meas
{

x ∈ RN : |u(x)| ≥ δk‖u‖S2
γ,b(x)(RN)

}
≥ δk, ∀u ∈ Yk \{0}. (3.7)
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By (B4), for any k ∈ N there exists a constant Rk > 0 such that

F(x,u)≥ |u|2

δ3
k

, ∀ x ∈ RN and |u| ≥ Rk.

Set
Ak

u =
{

x ∈ RN : |u(x)| ≥ δk‖u‖S2
γ,b(x)(RN)

}
and let us observe that, by (3.7), meas(Ak

u)≥ δk for any u ∈ Yk \{0}. Then for any u ∈ Yk
such that ‖u‖S2

γ,b(x)(RN) ≥
Rk
δk

, we have

Φλ(u)≤ 1
2
‖u‖2

S2
γ,b(x)(RN)−

Z
RN

F(x,u)dx

≤ 1
2
‖u‖2

S2
γ,b(x)(RN)−

Z
Ak

u

|u|2

δ3
k

dx

≤ 1
2
‖u‖2

S2
γ,b(x)(RN)−‖u‖2

S2
γ,b(x)(RN) =−1

2
‖u‖2

S2
γ,b(x)(RN).

Choosing rk > max{ρk,
Rk
δk
} for all k ≥ k1, we have

βk(λ) = max
u∈Yk,‖u‖S2

γ,b(x)(R
N )=rk

Φλ(u)≤−1
2

rp
k < 0, ∀ k ≥ k1.

From (B3) and Proposition 2.2 we can see that Φλ maps bounded sets to bounded sets
uniformly for λ ∈ [1,2]. Moreover, by (B6), Φλ is even. Then condition (i) in Lemma 2.4
is satisfied. Condition (ii) is clearly true, while (iii) follows by Lemma 3.1 and Lemma 3.2.
Then, by Lemma 2.4, for any k ≥ k1 and λ ∈ [1,2] there exists a sequence {uk

m(λ)}n∈N ⊂
S2

γ,b(x)(R
N) such that

sup
m∈N

‖uk
m(λ)‖S2

γ,b(x)(RN) < ∞, Φ
′
λ
(uk

m(λ))→ 0, Φλ(uk
m(λ))→ ξk(λ) as m → ∞

where
ξk(λ) = inf

γ∈Γk
max
u∈Bk

Φλ(γ(u))

with
Γk =

{
γ ∈C(Bk,S2

γ,b(x)(R
N)) : γ is odd, γ = Id on ∂Bk

}
,

Bk =
{

u ∈ Yk : ‖u‖S2
γ,b(x)(RN) ≤ rk

}
.

In particular, from the proof of Lemma 3.1, we deduce that for any k ≥ k1 and λ ∈ [1,2]

1
8

ρ
2
k =: ck ≤ ξk(λ)≤ dk := max

u∈Bk
Φ1(u), (3.8)
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and ck → ∞ as k → ∞ by (3.2). As a consequence, for any k ≥ k1, we can choose λn → 1
(depending on k) and get the corresponding sequences satisfying

sup
m∈N

‖uk
m(λn)‖S2

γ,b(x)(RN) < ∞, Φ
′
λn

(uk
m(λn))→ 0 as m → ∞. (3.9)

Now, we prove that for any k ≥ k1, {uk
m(λn)}m∈N admits a strongly convergent subsequence

{uk
n}n∈N, and that such subsequence is bounded.

Lemma 3.3. For each λn given above, the sequence {uk
m(λn)}m∈N has a strong convergent

subsequence.

Proof. By (3.9) we may assume, without loss of generality, that as m → ∞,

uk
m(λn) ⇀ uk

n in S2
γ,b(x)(R

N)

for some uk
n ∈ S2

γ,b(x)(R
N). By Proposition 2.2 we have

uk
m(λn)→ uk

n in L2(RN)∩Lp(RN). (3.10)

By (B3) and Hölder inequality it follows that∣∣∣Z
RN

f (x,uk
m(λn))(uk

m(λn)−uk
n)dx

∣∣∣
≤ c1‖uk

m(λn)‖L2(RN)‖uk
m(λn)−uk

n‖L2(RN) + c1‖uk
m(λn)‖p−1

Lp(RN)‖uk
m(λn)−uk

n‖Lp(RN)

so, by using (3.10), we obtain

lim
m→∞

Z
RN

f (x,uk
m(λn))(uk

m(λn)−uk
n)dx = 0.

Since Φ′
λn

(uk
m(λn))→ 0 as m → ∞ , and

〈Φ′
λ
(u),v〉= 〈A′(u),v〉−λ〈B′(u),v〉,

we deduce that
〈A′(uk

m(λn)),uk
m(λn)−uk

n〉 → 0 as m → ∞.

Then we have
uk

m(λn)→ uk
n in S2

γ,b(x)(R
N) as m → ∞.

Therefore, without loss of generality, we may assume that

lim
m→∞

uk
m(λn) = uk

n, ∀n ∈ N, k ≥ k1.

As a consequence, we obtain

Φ
′
λn

(uk
n) = 0, Φλn(u

k
n) ∈ [ck,dk], ∀n ∈ N, k ≥ k1. (3.11)
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Lemma 3.4. For any k ≥ k1, the sequence {uk
n}n∈N is bounded.

Proof. For simplicity we set un = uk
n. We suppose by contradiction that, up to a subse-

quence,
‖un‖S2

γ,b(x)(RN) → ∞ as n → ∞. (3.12)

Let wn = un/‖un‖S2
γ,b(x)(RN) for any n ∈ N. Then, up to subsequence, we may assume that

wn ⇀ w in S2
γ,b(x)(R

N),

wn → w in L2(RN)∩Lp(RN), (3.13)

wn → w a.e. in RN .

Now we distinguish two cases.

Case w = 0. We can say that for any n ∈ N there exists tn ∈ [0,1] such that

Φλn(tnun) = max
t∈[0,1]

Φλn(tun). (3.14)

Since (3.12) holds, for any j ∈ N, we can choose r j = (4 j)1/2wn such that

r j‖un‖−1
S2

γ,b(x)(RN) ∈ (0,1) (3.15)

provided n is large enough. By (3.13), F(·,0) = 0 and the continuity of F , we can see that

F(x,r jwn)→ F(x,r jw) = 0 a.e. x ∈ RN (3.16)

as n → ∞ for any j ∈ N. Then, taking into account (3.13), (3.16), (B3), (B4) and by using
the Dominated Convergence Theorem we deduce that

F(x,r jwn)→ 0 in L1(RN) (3.17)

as n → ∞ for any j ∈ N. Then (3.14), (3.15) and (3.17) yield

Φλn(tnun)≥ Φλn(r jwn)≥ 2 j−λn

Z
RN

F(x,r jwn)dx ≥ j

provided n is large enough and for any j ∈ N. As a consequence

Φλn(tnun)→ ∞ as n → ∞. (3.18)

Since Φλn(0) = 0 and Φλn(un)∈ [ck,dk], we deduce that tn ∈ (0,1) for n large enough. Thus,
by (3.14) we have

〈Φ′
λn

(tnun), tnun〉= tn
d
dt

∣∣∣
t=tn

Φλn(tun) = 0. (3.19)
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Taking into account (B5) and (3.19), we obtain

1
θ

Φλn(tnun) =
1
θ

(
Φλn(tnun)−

1
2
〈Φ′

λn
(tnun), tnun〉

)
=

λn

2θ

Z
RN

F (x, tnun)dx

≤ λn

2

Z
RN

F (x,un)dx

= Φλn(un)−
1
2
〈Φ′

λn
(un),un〉= Φλn(un)

which contradicts (3.11) and (3.18).

Case w 6≡ 0. Thus the set Ω := {x ∈ RN : w(x) 6= 0} has positive Lebesgue measure. By
using (3.12) and that w 6≡ 0, we have

un(x)→ ∞ a.e. x ∈ Ω as n → ∞. (3.20)

Putting together (3.13), (3.20), and (B4), and by applying Fatou’s Lemma, we can easily
deduce that

1
2
−

Φλn(un)
‖un‖2

S2
γ,b(x)(RN)

= λn

Z
RN

F(x,un(x))
‖un‖2

S2
γ,b(x)(RN)

dx

≥ λn

Z
Ω

|wn|2
F(x,un(x))

|un|2
dx → ∞ as n → ∞

which gives a contradiction because of (3.11).
Then, we have proved that the sequence {un}n∈N is bounded in S2

γ,b(x)(R
N).

Lemma 3.5. Let (B1)–(B3) and (B8) be satisfied. Then Φ satisfies the (C)c condition for
all c > 0 on S2

γ,b(x)(R
N).

Proof. The proof of this lemma is similar to the one of Lemma 3.1 in [17]. We omit the
details.

Theorem 3.6. Assume that b and f satisfy (B1)–(B4), (B6) and (B7). Then the problem
(1.2) possesses infinitely many nontrivial solutions.

Proof. The proof of this theorem is similar to the one of Theorem 1.1 in [17]. We omit the
details.

Proof of Theorem 1.1. Taking into account Lemma 3.4 and (3.11), for each k ≥ k1, we
can use similar arguments to those in the proof of Lemma 3.3, to show that the sequence
{uk

n}n∈N admits a strong convergent subsequence with the limit uk being just a critical point
of Φ1 = Φ. Clearly, Φ(uk) ∈ [ck,dk] for all k ≥ k1. Since ck → ∞ as k → ∞ in (3.8), we
deduce the existence of infinitely many nontrivial critical points of Φ. As a consequence,
we have that (1.2) possesses infinitely many nontrivial weak solutions.
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Proof of Theorem 1.2. From (B5), we have

Φ(u) =
1
2
‖u‖2

S2
γ,b(x)(RN)−

Z
RN

F(x,u)dx

=
Z

RN

[
1
2

f (x,u)u−F(x,u)
]

dx ≥ 0,

and so m = inf
u∈M

Φ(u) ≥ 0. From Theorem 3.6 we choose a sequence {un}n∈N ⊂ M such

that Φ(un) → m, as n → ∞, and ‖Φ′(un)‖(S2
γ,b(x)(RN))∗(1 + ‖un‖S2

γ,b(x)(RN)) = 0 by Lemma

3.5, we have there exists u0 ∈ S2
γ,b(x)(R

N) such that un → u0 in S2
γ,b(x)(R

N). Since Φ ∈
C1(S2

γ,b(x)(R
N),R), one has

Φ(u0) = lim
n→∞

Φ(un) = m, Φ
′(u0) = lim

n→∞
Φ
′(un).

Hence, we obtain that u0 is also a critical point of Φ and Φ(u0) = inf
u∈M

Φ(u). Furthermore,

under assumptions (B7) and (B3), we have

| f (x,un)| ≤ ε|un|+Cε|un|p−1, ∀ε > 0 (3.21)

for 2 < p < 2∗γ . By (3.21) and Proposition 2.2, we have

‖un‖2
S2

γ,b(x)(RN) =
Z

RN

f (x,un)undx

≤ ε‖un‖2
L2(RN) +Cε‖un‖p

Lp(RN)

≤C1ε‖un‖2
S2

γ,b(x)(RN) +CεC2‖un‖p
S2

γ,b(x)(RN).

(3.22)

For sufficiently small ε > 0, (3.22) implies that there exists a constant ω > 0 such that

‖u0‖S2
γ,b(x)(RN) = lim

n→∞
‖un‖S2

γ,b(x)(RN) ≥ ω > 0.

Thus u0 6= 0.
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