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Abstract

In our previous work we have shown that if for any initial point there exists a trajectory
of a nonexpansive set-valued mapping attracted by a given set, then this property is
stable under small perturbations of the mapping. In the present paper we obtain several
extensions of this result.
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1 Introduction and preliminaries

During more than fifty-five years now, there has been a lot of activity regarding the fixed
point theory of nonexpansive (that is, 1-Lipschitz) mappings. See, for example, [2, 4, 6,
7, 8, 9, 10, 12, 13, 15, 18, 19] and the references cited therein. This activity stems from
Banach’s classical theorem [1] concerning the existence of a unique fixed point for a strict
contraction. It also covers the convergence of (inexact) iterates of a nonexpansive mapping
to one of its fixed points. Since that seminal result, many developments have taken place in
this field including, in particular, studies of feasibility and common fixed point problems,
which find important applications in engineering and medical sciences [3, 5, 16, 17, 18, 19].
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In our previous work [14] we have shown that if for any initial point there exists a
trajectory of a nonexpansive set-valued mapping attracted by a given set, then this property
is stable under small perturbations of the mapping. More precisely, we have proved in [14]
two assertions. In the first assertion we have shown that for a given positive number δ, if the
perturbations are small enough, then for any initial state there exists a trajectory which is
attracted by a δ-neighborhood of the attractor. In the second assertion we have shown that
under the same assumptions, for any initial state there exists a trajectory with a subsequence
which is attracted by the attractor. In the present paper we obtain several extensions of these
assertions.

Let (X,ρ) be a metric space. For each x ∈ X and each nonempty set A ⊂ X, define

ρ(x,A) := inf{ρ(x,y) : y ∈ A}.

For each pair of nonempty sets A,B ⊂ X, define

H(A,B) :=max{sup
x∈A
ρ(x,B), sup

y∈B
ρ(y,A)}.

Let a set-valued mapping T : X→ 2X \ {∅} satisfy

H(T (x),T (y)) ≤ ρ(x,y) for all x,y ∈ X. (1.1)

Assume that a sequence {εi}∞i=0 ⊂ (0,∞) satisfies
∞∑

i=0

εi <∞ (1.2)

and that for each integer i ≥ 0, a set-valued mapping Ti : X→ 2X \ {∅} satisfies

H(Ti(x),T (x)) ≤ εi, x ∈ X. (1.3)

Let F be a nonempty subset of X.
The following theorem is the main result of [14].

Theorem 1.1. Assume that for each x ∈ X, there is a sequence {xi}
∞
i=0 ⊂ X such that x0 = x,

xi+1 ∈ T (xi) for all integers i ≥ 0, and

lim
i→∞
ρ(xi,F) = 0.

Then the following two assertions hold.
1. Let δ > 0. For each x ∈ X, there exists a sequence {xi}

∞
i=0 ⊂ X such that x0 = x, for

each integer i ≥ 0,
xi+1 ∈ Ti(xi),

and
ρ(xi,F) ≤ δ for all sufficiently large integers i ≥ 0.

2. For each x ∈ X, there exists a sequence {xi}
∞
i=0 ⊂ X such that x0 = x, for each integer

i ≥ 0,
xi+1 ∈ Ti(xi),

and
liminf

i→∞
ρ(xi,F) = 0.
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2 First result

The following result was obtained in [11]. Here we present an alternative proof.

Theorem 2.1. Assume that
T (x)∩F , ∅ for all x ∈ F. (2.1)

The following two properties are equivalent:
(a) for each x ∈ X, there exists a sequence {xi}

∞
i=0 ⊂ X such that x0 = x, xi+1 ∈ T (xi) for

all integers i ≥ 0, and
liminf

i→∞
ρ(xi,F) = 0;

(b) for each δ > 0 and each x ∈ X, there exists a sequence {xi}
∞
i=0 ⊂ X such that x0 = x,

for each integer i ≥ 0,
xi+1 ∈ T (xi),

and
ρ(xi,F) ≤ δ for all sufficiently large integers i ≥ 0.

Proof. Assume first that (a) is true. To show that (b) holds, let δ > 0 and x ∈ X be given. In
view of (a), there exist a natural number t0 and a finite sequence {xi}

t0
i=0 ⊂ X such that

x0 = x, (2.2)

xi+1 ∈ T (xi), i = 0,1, . . . , t0−1, (2.3)

and
ρ(xt0 ,F) < δ/2. (2.4)

Using induction, we now define xt ∈ X for all integers t > t0 such that for each integer t ≥ t0,

xt+1 ∈ T (xt) (2.5)

and
ρ(xt,F) < δ/2. (2.6)

Assume that τ ≥ t0 is an integer, xt ∈ X, t = 0, . . . , τ, are defined such that (2.5) is true for
each t = 0, . . . , τ−1 and that (2.6) is true for each t = t0, . . . , τ. In particular, we have

ρ(xτ,F) < δ/2. (2.7)

In view of (2.7), there exists
z1 ∈ F (2.8)

such that
ρ(xF ,z1) < δ/2. (2.9)

By (1.4) and (2.8), there exists
z2 ∈ T (z1)∩F. (2.10)

In view of (1.1),
H(T (xτ),T (z1)) ≤ ρ(xτ,z1). (2.11)
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By (2.9)–(2.11),
ρ(z2,T (xτ)) ≤ H(T (xτ),T (z1)) < δ/2.

This implies that there exists a point

xτ+1 ∈ T (xτ)

such that
ρ(z2, xτ+1) < δ/2.

When combined with (2.10), this implies that

ρ(xτ+1,F) < δ/2.

Thus the assumption made for τ also holds for τ+1. This means that we have constructed
by induction a sequence {xt}

∞
t=0 which satisfies (2.5) for all integers t ≥ 0 and satisfies (2.6)

for all integers t ≥ τ0. In other words, property (b) holds.
Assume now that (b) is true. In order to show that property (a) holds, let x ∈ X be given.

By property (b), there exists a finite sequence {xi}
S 1
i=0 ⊂ X such that

x0 = x, (2.12)

xi+1 ∈ T (xi) (2.13)

for all i = 0, . . . ,S 1−1, and
ρ(xS 1 ,F) < 2−1. (2.14)

Assume that q ≥ 1 is an integer and that we defined natural numbers

S 1 < · · · < S q

and a finite sequence {xt}
S q

t=0 ⊂ X such that (2.12) holds and for each i = 0, . . . ,S q−1, (2.13)
holds, and

ρ(xS k ,F) < 2−k (2.15)

for all k = 1, . . . ,q. (Note that for q = 1 our assumption holds in view of (2.12)–(2.14)).
Property (b) implies that there exist an integer S q+1 > S q and points xt, t = S q+1, . . . ,S q+1,
such that (2.13) holds for t = S q, . . . ,S q+1−1, and

ρ(xS q+1 ,F) < 2−q−1.

Thus the assumption made for q also holds for q+1. This means that we have constructed
by induction a strictly increasing sequence of natural numbers {S i}

∞
i=1 and a sequence of

points {xt}
∞
t=0 ⊂ X such that (2.12) holds, (2.13) holds for all i = 1,2, . . . , and (2.15) holds for

k = 1,2, . . . . By (2.15),
liminf

t→∞
ρ(xt,F) = 0.

In other words, property (a) holds. This completes the proof of Theorem 2.1. �
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3 Second result

Theorem 3.1. Assume that
z ∈ T (z) for all z ∈ F (3.1)

and that the following property holds:
(a) for each x ∈ X. there exists a sequence {xi}

∞
i=0 ⊂ X such that x0 = x, xi+1 ∈ T (xi) for

all integers i ≥ 0, and
liminf

i→∞
ρ(xi,F) = 0.

Then for each δ > 0 and each x ∈ X, there exist a point z ∈ F and a sequence {xi}
∞
i=0 ⊂ X

such that x0 = x, for each integer i ≥ 0,

xi+1 ∈ T (xi),

and
ρ(xi,z) < δ for all sufficiently large integers i ≥ 0.

Proof. Let δ > 0 and x ∈ X be given. In view of (a), there exist a natural number t0 and a
finite sequence {xi}

t0
i=0 ⊂ X such that

x0 = x, (3.2)

xi+1 ∈ T (xi), i = 0,1, . . . , t0−1, (3.3)

and
ρ(xt0 ,F) < δ/2. (3.4)

In view of (3.4), there exists a point
z ∈ F (3.5)

such that
ρ(xt0 ,z) < δ/2. (3.6)

We are now going to define by induction points xt ∈ X for all integers t > t0 such that for
each integer t ≥ t0,

xt+1 ∈ T (xt) (3.7)

and
ρ(xt,z) < δ/2. (3.8)

To this end, assume that τ ≥ t0 is an integer, xt ∈ X, t = 0, . . . , τ, are defined such that (3.2) is
true, (3.7) holds for each t = 0, . . . , τ− 1, and (3.8) is true for each integer t ∈ [t0, τ]. (Note
that in view of (3.3) and (3.6), our assumption does hold for τ = t0.) In particular, we have

ρ(xτ,z) < δ/2. (3.9)

In view of (3.1) and (3.5),
z ∈ T (z). (3.10)

It follows from (1.1) and (3.9) that

H(T (xτ),T (z)) ≤ ρ(xτ,z) < δ/2. (3.11)
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By (3.10) and (3.11),
ρ(z,T (xτ)) < δ/2.

Therefore there exists a point
xτ+1 ∈ T (xτ)

such that
ρ(z, xτ+1) < δ/2.

Thus our assumption concerning τ also holds for τ+1. This means that we have constructed
by induction a sequence {xt}

∞
t=0 ⊂ X which satisfies (3.2), (3.7) for all integers t ≥ 0, and (3.8)

for all integers t ≥ t0. Theorem 3.1 is proved. �

4 Auxiliary result

In the sequel we use the following result which was obtained in [14].

Lemma 4.1. Let q ≥ 0 be an integer and let a sequence {xi}
∞
i=q ⊂ X satisfy

xi+1 ∈ T (xi)

for each integer i ≥ q. Then there exists a sequence {yi}
∞
i=q ⊂ X such that

yq = xq,

yi+1 ∈ Ti(yi) for all integers i ≥ q

and for all integers j ≥ q+1, we have

ρ(y j, x j) ≤
j−1∑
i=q

2εi.

5 Third result

Theorem 5.1. Assume that for each x ∈ X, there exists a sequence {xi}
∞
i=0 ⊂ X such that

x0 = x, xi+1 ∈ T (xi) for all integers i ≥ 0 and

liminf
i→∞

ρ(xi,F) = 0.

Then for each x ∈ X, there exists a sequence {xi}
∞
i=0 ⊂ X such that x0 = x, for each integer

i ≥ 0,
xi+1 ∈ Ti(xi),

and
liminf

i→∞
ρ(xi,F) = 0.

Theorem 5.1 is the main result of [11].
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6 Fourth result

Theorem 6.1. Assume that for each δ > 0 and each x ∈ X, there exists a sequence {xi}
∞
i=0 ⊂ X

such that x0 = x, for each integer i ≥ 0,

xi+1 ∈ T (xi),

and
ρ(xi,F) < δ for all sufficiently large integers i ≥ 0.

Let δ > 0 and each x ∈ X. Then there exists a sequence {xi}
∞
i=0 ⊂ X such that x0 = x, for each

integer i ≥ 0,
xi+1 ∈ Ti(xi),

and
ρ(xi,F) < δ for all sufficiently large integers i ≥ 0.

Proof. There exists a natural number q such that

∞∑
i=q

εi < 4−1δ. (6.1)

There exists a finite sequence {xi}
q
i=0 ⊂ X such that

x0 = x (6.2)

and
xi+1 ∈ Ti(xi), i = 0,1, . . . ,q−1. (6.3)

By assumption, there exists a sequence {ui}
∞
i=q ⊂ X such that

uq = xq, (6.4)

ui+1 ∈ T (ui), i = q,q+1, . . . , (6.5)

and
ρ(ui,F) < δ/2 for all sufficiently large integers i. (6.6)

By (6.6), there exists an integer
p > q (6.7)

such that
ρ(ui,F) < δ/2 for all integers i ≥ p. (6.8)

Lemma 4, (6.4) and (6.5) imply that there exists a sequence of points {xi}
∞
i=q ⊂ X such that

xi+1 ∈ Ti(xi) for all integers i ≥ q,

and for all integers j > q,

ρ(u j, x j) ≤
j−1∑
i=q

2εi. (6.9)
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By (6.1), (6.8) and (6.9), for all integers j ≥ p,

ρ(x j,F) ≤ ρ(x j,u j)+ρ(u j,F)

≤

j−1∑
i=q

2εi+δ/2 < δ.

This completes the proof of Theorem 6.1. �

7 Fifth result

Theorem 7.1. Assume that for each δ > 0 and each x ∈ X, there exist a point z ∈ F and a
sequence {xi}

∞
i=0 ⊂ X such that x0 = x, for each integer i ≥ 0,

xi+1 ∈ T (xi)

and
ρ(xi,z) < δ for all sufficiently large integers i ≥ 0.

Let δ > 0 and x ∈ X. Then there exist a sequence {xi}
∞
i=0 ⊂ X and a point z ∈ F such that

x0 = x, for each integer i ≥ 0,
xi+1 ∈ Ti(xi),

and
ρ(xi,z) < δ for all sufficiently large integers i ≥ 0.

Proof. There exists a natural number q such that

∞∑
i=q

εi < 4−1δ. (7.1)

There also exists a finite sequence {xi}
q
i=0 ⊂ X such that

x0 = x (7.2)

and
xi+1 ∈ Ti(xi), i = 0,1, . . . ,q−1. (7.3)

By assumption, there exist a sequence {ui}
∞
i=q ⊂ X and a point z ∈ F such that

uq = xq, (7.4)

ui+1 ∈ T (ui), i = q,q+1, . . . , (7.5)

and
ρ(ui,z) < δ/2 for all sufficiently large integers i ≥ 0. (7.6)

By (7.6), there exists an integer
p > q (7.7)
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such that
ρ(ui,z) < δ/2 for all integers i ≥ p. (7.8)

Lemma 4, (7.4) and (7.5) imply that there exists a sequence {xi}
∞
i=q ⊂ X such that

xi+1 ∈ Ti(xi) for all integers i ≥ q, (7.9)

and for all integers j > q,

ρ(u j, x j) ≤
j−1∑
i=q

2εi. (7.10)

By (7.1), (7.7), (7.8) and (7.10), we have for all integers j ≥ p,

ρ(x j,z) ≤ ρ(x j,u j)+ρ(u j,z)

<

j−1∑
i=q

2εi+δ/2 < δ.

This completes the proof of Theorem 7.1. �
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