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Abstract

In the present paper, the general conformable fractional derivative (GCFD) is consid-
ered and a corresponding Laplace transform is defined. Gronwall inequality is proved
to show the exponential boundedness of a solution and using the Laplace transform
the solution is found for certain classes of delay differential equations with GCFD.
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1 Introduction

The recently introduced conformable fractional derivative (CFD) [6] is defined as

Dα f (t) = lim
ε→0

f (t+εt1−α)− f (t)
ε

for α ∈ (0,1] and t > 0. One can see that unlike the usual fractional derivatives such as
Riemann-Liouville or Caputo derivative (see e.g. [12]), that are defined using an integral,
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Delay differential equations with GCFD 15

CFD has a local nature. It was shown in [6] and later in [1] that it has many properties
analogous to those of classic integer-order derivative. For instance, Dα( f g)= gDα f + f Dαg.

Also in [1], the Laplace transform was defined and Gronwall inequality was proved
to provide a tool for studying stability and find solutions of equations involving CFD. In
[17], the authors defined so-called general conformable fractional derivative (GCFD) as a
Gâteaux derivative in the direction of a fractional conformable function. They also gave
physical and geometrical interpretation of GCFD. In this paper, we find explicit formulas
for solutions of certain classes of delay differential equations with GCFD. To reach our aim
we need to define a general conformable Laplace transform and prove some of its properties.
A Gronwall-type inequality is proved to show that the Laplace transform can be applied.
In the delayed equations we suppose the commutativity of the matrix coefficients. Similar
problems were studied for differential [8, 9] as well as for difference equations [7, 10], or
with variable delays [13].

The present paper is organized as follows. In Section 2, we recall basic definitions of
general conformable fractional calculus and define the general conformable Laplace trans-
form. Properties of this Laplace transform are proved in Section 3. Here we also present
important examples. Section 4 is devoted to Gronwall inequality and its corollary. In final
section, we consider certain classes of Cauchy problems for delay differential equations
with GCFD, multiple delays and linear parts given by pairwise permutable matrices, and
we derive the closed-form formulas for solutions.

Throughout the paper, we denote N the set of all positive integers, and N0 = N∪{0}.

2 Preliminary results

First we recall the definition of general conformable fractional derivative using the notion
of fractional conformable function as it was established in [17].

Definition 2.1. Let t0 ∈ R. Continuous real function ψ : [t0,∞) × (0,1] → R satisfying
ψ(·,1) ≡ 1 and

ψ(·, p) , ψ(·,q) whenever p,q ∈ (0,1], p , q,

and the constant function ψ(·, ·) ≡ 1 are called fractional conformable functions.

Definition 2.2. Let ψ be a fractional conformable function and p ∈ (0,1]. The general
conformable fractional derivative (GCFD) is defined as

Dp
ψ f (u) := lim

ε→0

f (u+εψ(u, p))− f (u)
ε

.

If f is differentiable at u > 0 and p ∈ (0,1], then

Dp
ψ f (u) = f ′(u)ψ(u, p). (2.1)

Next we define the corresponding integral operator (see [17]).

Definition 2.3. Let u ≥ a ≥ t0, f : (a,u] → R be a given function and ψ be a fractional
conformable function. The p-fractional integral of f is defined as

Ip,ψ
a f (u) =

∫ u

a
f (t)dp,ψt :=

∫ u

a

f (t)
ψ(t, p)

dt
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if the right-hand side exists.

Definition 2.4. Let f : (t0,∞]→ R be a given function and ψ be a fractional conformable
function positive on [t0,∞)× (0,1] and satisfying∫ ∞

t0
dp,ψt =∞, ∀p ∈ (0,1]. (2.2)

The general conformable Laplace transform of f is defined as

L
t0
p,ψ{ f (t)}(s) :=

∫ ∞

t0
e−sη(t) f (t)dp,ψt

for such s ∈ R that the right-hand side exists, where

η(t) :=
∫ t

t0
dp,ψ t̃.

Sometimes we will shortly denote Ft0
p,ψ(s) =Lt0

p,ψ{ f (t)}(s).

Remark 2.5. Since η is increasing on [t0,∞), denoting ω : [0,∞)→ [t0,∞) the inverse func-
tion to η, we get

L
t0
p,ψ{ f (t)}(s) =L{ f (ω(t))}(s)

where there is the usual Laplace transform [15] on the right-hand side. Note that it is
defined if f ◦ω is exponentially bounded, i.e., there exist positive constants c1, c2 such that
| f (ω(t))| ≤ c1 ec2t for all t ≥ 0, or in other words

| f (t)| ≤ c1 ec2η(t), ∀t ≥ t0. (2.3)

Clearly, then Lt0
p,ψ{ f (t)} is defined on (c2,∞). This can be also seen from

∣∣∣∣Lt0
p,ψ{ f (t)}(s)

∣∣∣∣ ≤ c1

∫ ∞

t0
e(c2−s)η(t) η′(t)dt = c1

∫ ∞

0
e(c2−s)t̃ dt̃. (2.4)

Remark 2.6. In the paper, we often work with the general conformable Laplace transform
of a vector or matrix function of the form f (t)w or f (t)B, where f is a scalar function,
w = (wi)i is a constant vector with coordinates wi (i.e., the outer index i means that the i-th
coordinate of the left-hand side is inside the bracket) and B = (Bi j)i j is a constant matrix
with elements Bi j. These are understood in the following sense:

L
t0
p,ψ{ f (t)w}(s) =Lt0

p,ψ{( f (t)wi)i}(s) =
(
L

t0
p,ψ{ f (t)wi}(s)

)
i

=
(
L

t0
p,ψ{ f (t)}(s)wi

)
i
=L

t0
p,ψ{ f (t)}(s) (wi)i =

(
L

t0
p,ψ{ f (t)}(s)

)
w

and

L
t0
p,ψ{ f (t)B}(s) =Lt0

p,ψ{( f (t)Bi j)i j}(s) =
(
L

t0
p,ψ{ f (t)Bi j}(s)

)
i j

=
(
L

t0
p,ψ{ f (t)}(s)Bi j

)
i j
=L

t0
p,ψ{ f (t)}(s)

(
Bi j

)
i j
=L

t0
p,ψ{ f (t)}(s)B.
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3 Properties of the general conformable Laplace transform

In this section, we collect and prove some properties of the general conformable Laplace
transform. One can compare them to the ones of the conformable Laplace transform proved
in [11] (see also [1]) or of the classic Laplace transform [15].

Lemma 3.1. If Lt0
p,ψ{ f1(t)} and Lt0

p,ψ{ f2(t)} exist on (s1,∞) and (s2,∞), respectively, then
for any α1,α2 ∈ R,

L
t0
p,ψ{α1 f1(t)+α2 f2(t)} = α1L

t0
p,ψ{ f1(t)}+α2L

t0
p,ψ{ f2(t)}

on (max{s1, s2},∞).

Proof. The statement follows from the linearity of the Riemann integral. �

Lemma 3.2. Let f : [t0,∞)→ R fulfill (2.3) for some c1,c2 > 0 and Lt0
p,ψ{ f (t)} exist. Then

the following holds true:

(i) function Ft0
p,ψ is analytic on (c2,∞);

(ii) Lt0
p,ψ{η(t) f (t)}(s) = − d

ds Ft0
p,ψ(s) for all s > c2;

(iii) if f is differentiable, then Lt0
p,ψ{D

p
ψ f (t)} exists on (c2,∞) and it holds

L
t0
p,ψ{D

p
ψ f (t)}(s) = sFt0

p,ψ(s)− f (t+0 ), s > c2

where f (t+0 ) = limt→t+0
f (t);

(iv) lims→∞Ft0
p,ψ(s) = 0;

(v) for s > c+ c2,
L

t0
p,ψ{e

cη(t) f (t)}(s) = Ft0
p,ψ(s− c);

(vi) if limt→t+0
f (t)
η(t) exists, then

L
t0
p,ψ

{
f (t)
η(t)

}
(s) =

∫ ∞

s
Ft0

p,ψ(u)du

for all s > c2;

Proof. One can prove statements (ii) and (v) directly from the definition of the general
conformable Laplace transform.

Statement (i) follows by Remark 2.5 from the analyticity of the classic Laplace trans-
form [15, Theorem 3.1].

Statement (iii) follows from Definition 2.4, equation (2.1) and integration per partes.
From estimation (2.4) we have∣∣∣∣Lt0

p,ψ{ f (t)}(s)
∣∣∣∣ ≤ c1

s− c2
→ 0

as s→∞, and statement (iv) follows.
To prove statement (vi), it is enough to use Remark 2.5 and an analogous result for the

classic Laplace transform [15, Theorem 1.37]. �
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Lemma 3.3. Let a > 0, f : [0,∞)→ R satisfy | f (t)| ≤ c1 ec2t for some c1,c2 > 0 and all t ≥ 0,
and Lt0

p,ψ{ f (aη(t))} exist. Then

L
t0
p,ψ{ f (aη(t))}(s) =

1
a
L

t0
p,ψ{ f (η(t))}

( s
a

)
for all s > c2a.

Proof. The result follows by taking substitution aη(t) = η(u). �

Next, we calculate the general conformable Laplace transform of certain functions.

Example 3.4. Suppose that ψ is a positive fractional conformable function satisfying (2.2).

(i) Lt0
p,ψ{1}(s) =L{1}(s) = 1

s for any s > 0.

(ii) Lt0
p,ψ{t}(s) = L{ω(t)}(s) for any s > c2 for some c2 > 0 such that there exists c1 > 0

such that t ≤ c1 ec2η(t) for all t ≥ t0. In particular, if ψ(t, p) = (t − t0)1−p (known as
conformable derivative [1, 6]), then

L
t0
p,ψ{t}(s) =L

{
t0+ (pt)

1
p

}
(s) =

t0
s
+

p
1
pΓ

(
1+ 1

p

)
s1+ 1

p

for all s > 0, since now η(t) = (t−t0)p

p . For any c2 > 0 and any fixed p ∈ (0,1], the
condition

t ≤ c1 ec2
(t−t0)p

p , ∀t ≥ t0

holds with c1 =maxt≥t0 t e−c2
(t−t0)p

p .

(iii) Lt0
p,ψ{e

cη(t)}(s) =Lt0
p,ψ{1}(s− c) = 1

s−c for any s > c.

(iv) Lt0
p,ψ{sin(cη(t))}(s) =L{sin(ct)}(s) = c

c2+s2 for any s > 0.

The next lemma is a generalization of a result from [4, Theorem 3] on the conformable
Laplace transform of a convolution.

Lemma 3.5. Let f ,g : [0,∞)→ R satisfy (2.3) with some c f
1 ,c

f
2 > 0 and cg

1,c
g
2 > 0, respec-

tively. Suppose that Lt0
p,ψ{ f (η(t))} and Lt0

p,ψ{g(η(t))} exist. Then

L
t0
p,ψ{( f ∗g)(η(t))}(s) =Lt0

p,ψ{ f (η(t))}(s)Lt0
p,ψ{g(η(t))}(s)

for all s > max{c f
2 ,c

g
2}.

Proof. Using Remark 2.5 and the convolution theorem for classic Laplace transform [15,
Theorem 2.39] we get

L
t0
p,ψ{ f (η(t))}(s)Lt0

p,ψ{g(η(t))}(s) =L{ f (t)}(s)L{g(t)}(s)

=L{( f ∗g)(t)}(s) =Lt0
p,ψ{( f ∗g)(η(t))}(s). �
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Note that to get the statement as in [4, Theorem 3], one needs to denote

( f ∗p,ψ g)(t) =
∫ t

t0
f (η(t)−η(t̃))g(η(t̃))dp,ψ t̃

for t ≥ t0. Then one obtains

L
t0
p,ψ{( f ∗p,ψ g)(t)}(s) =Lt0

p,ψ{( f ∗g)(η(t))}(s),

since

( f ∗g)(η(t)) =
∫ η(t)

0
f (η(t)− t̃)g(t̃)dt̃ =

∫ t

t0
f (η(t)−η(t̃))g(η(t̃))dp,ψ t̃

for t ≥ t0.
Immediately, we obtain a simple generalization:

Corollary 3.6. Let 2≤ n ∈N, fi : [0,∞)→R satisfy (2.3) with some ci
1,c

i
2 > 0 for i= 1, . . . ,n.

If Lt0
p,ψ{ fi(η(t))} exists for each i = 1, . . . ,n, then

L
t0
p,ψ{( f1 ∗ · · · ∗ fn)(η(t))}(s) =

n∏
i=1

L
t0
p,ψ{ fi(η(t))}(s)

for all s > maxi=1,...,n ci
2.

Proof. The proof is done by a mathematical induction with respect to n. The case n = 2
follows by Lemma 3.5. If the statement holds for n = k, then by the same lemma,

L
t0
p,ψ{( f1 ∗ · · · ∗ fk+1)(η(t))}(s) =Lt0

p,ψ{(( f1 ∗ · · · ∗ fk)∗ fk+1)(η(t))}(s)

=L
t0
p,ψ{( f1 ∗ · · · ∗ fk)(η(t))}(s)Lt0

p,ψ{ fk+1(η(t))}(s) =
k+1∏
i=1

L
t0
p,ψ{ fi(η(t))}(s)

what was to be proved. �

We proceed with analogues to the initial-value theorem [15, Theorem 2.34] and the
final-value theorem [15, Theorem 2.36].

Lemma 3.7. Let a differentiable function f : [t0,∞)→ R and its derivative f ′ fulfill (2.3)
for some c1,c2 > 0, c′1,c

′
2 > 0, respectively, and Lt0

p,ψ{ f (t)} exist. Then

f (t+0 ) = lim
t→t+0

f (t) = lim
s→∞

sFt0
p,ψ(s).

Proof. Combining Lemma 3.2.iii with Lemma 3.2.iv for Lt0
p,ψ{D

p
ψ f (t)} instead of Ft0

p,ψ, we
get

sFt0
p,ψ(s)− f (t+0 ) =Lt0

p,ψ{D
p
ψ f (t)}(s)→ 0

as s→∞. Hence the statement follows. �
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Lemma 3.8. Let a differentiable function f : [t0,∞)→R fulfill (2.3) for some c1,c2 > 0 and
L

t0
p,ψ{ f (t)} exist. If limt→∞ f (t) exists, then

lim
t→∞

f (t) = lim
s→0+

sFt0
p,ψ(s).

Proof. First note that f is bounded, due to the existence of the limit. So, it fulfills (2.3) with
c2 = 0. Consequently, Lt0

p,ψ{ f (t)} exists on (0,∞). Similarly to the proof of Lemma 3.7, we
get

lim
s→0+

sFt0
p,ψ(s)− f (t+0 ) = lim

s→0+
L

t0
p,ψ{D

p
ψ f (t)}(s) = lim

s→0+

∫ ∞

t0
e−sη(t) f ′(t)dt

where the last identity follows from (2.1). Now since η is increasing, the integral on the
right-hand side is uniformly convergent on [0,c) for some c > 0 due to the well-known
Abel’s criterion [5, Problem 1.5.36]. Consequently, the order of the limit and the integral
can be changed to obtain

lim
s→0+

∫ ∞

t0
e−sη(t) f ′(t)dt =

∫ ∞

t0
f ′(t)dt = lim

t→∞
f (t)− f (t+0 ).

That completes the proof. �

Now we investigate the general conformable Laplace transform of a function with a
retarded argument. This will be useful in Section 5.

Lemma 3.9. Let τ > 0, f : [−τ,∞)→ R satisfy | f (t)| ≤ c1 ec2(t+τ) for some c1,c2 > 0 and all
t ≥ −τ, and Lt0

p,ψ{ f (η(t))} exist. Then

L
t0
p,ψ{ f (η(t)−τ)}(s) = e−sτ

(∫ 0

−τ
e−st f (t)dt+Lt0

p,ψ{ f (η(t))}(s)
)

for all s > c2.

Proof. By Remark 2.5 we obtain

L
t0
p,ψ{ f (η(t)−τ)}(s) =L{ f (t−τ)}(s) = e−sτ

(∫ 0

−τ
e−st f (t)dt+L{ f (t)}(s)

)
and the proof is finished by the same remark. �

From now on, we shall denote σ : R→ R the Heaviside step function defined as

σ(t) =

0, t < 0,
1, t ≥ 0.

We apply the latter lemma in the following examples.

Example 3.10. Suppose that ψ is a positive fractional conformable function satisfying (2.2).

(i) Lt0
p,ψ{σ(η(t)−τ)}(s)= e−sτ

s for any s> 0 and τ > 0, sinceLt0
p,ψ{σ(η(t))}(s)=Lt0

p,ψ{1}(s)=
1
s by Example 3.4.i.
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(ii) For any n ∈ N, τ > 0, it holds

L
t0
p,ψ

{
(η(t)−nτ)n−1

(n−1)!
σ(η(t)−nτ)

}
(s) =

(
e−sτ

s

)n

for any s > 0. This can be proved directly using Lemma 3.9 with nτ instead of τ, and

L
t0
p,ψ

{
(η(t))n−1

(n−1)!
σ(η(t))

}
(s) =L

{
tn−1

(n−1)!

}
(s) =

1
sn .

(iii) For any n ∈ N, τ1, . . . , τn > 0, k1, . . . ,kn ∈ N0 such that k1+ · · ·+ kn > 0 it holds

L
t0
p,ψ


(
η(t)−

∑n
m=1 kmτm

)∑n
m=1 km−1(∑n

m=1 km−1
)
!

σ

η(t)−
n∑

m=1

kmτm


 (s) =

n∏
m=1

(
e−sτm

s

)km

for any s > 0. Indeed, it can be shown as in the preceding example. Nevertheless,
since

L
t0
p,ψ


(
η(t)−

∑n
m=1 kmτm

)∑n
m=1 km−1(∑n

m=1 km−1
)
!

σ

η(t)−
n∑

m=1

kmτm


 (s)

=L


(
t−

∑n
m=1 kmτm

)∑n
m=1 km−1(∑n

m=1 km−1
)
!

σ

t− n∑
m=1

kmτm


 (s)

by Remark 2.5, the statement follows also from [14, Lemma 2.3].

(iv) For any n ∈ N, τ1, . . . , τn > 0, k1, . . . ,kn ∈ N0 such that k1+ · · ·+ kn > 0 it holds

L
t0
p,ψ


(
η(t)−

∑n
m=1 kmτm

)∑n
m=1 km(∑n

m=1 km
)
!

σ

η(t)−
n∑

m=1

kmτm


 (s) =

1
s

n∏
m=1

(
e−sτm

s

)km

for any s > 0. Indeed, from the right-hand side using Examples 3.10.i, 3.10.iii and
Lemma 3.5, we have

1
s

n∏
m=1

(
e−sτm

s

)km

=L
t0
p,ψ{σ(η(t))}(s)

×L
t0
p,ψ


(
η(t)−

∑n
m=1 kmτm

)∑n
m=1 km−1(∑n

m=1 km−1
)
!

σ

η(t)−
n∑

m=1

kmτm


 (s)

=L
t0
p,ψ



(
· −

∑n
m=1 kmτm

)∑n
m=1 km−1(∑n

m=1 km−1
)
!

σ

· − n∑
m=1

kmτm

∗σ
 (η(t))

 (s)
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for any s > 0. Then the statement follows from

∫ η(t)

0

(
η(t)−

∑n
m=1 kmτm−q

)∑n
m=1 km−1(∑n

m=1 km−1
)
!

σ

η(t)−
n∑

m=1

kmτm−q

 σ(q)dq

=

∫ η(t)−
∑n

m=1 kmτm

0

(
η(t)−

∑n
m=1 kmτm−q

)∑n
m=1 km−1(∑n

m=1 km−1
)
!

dqσ

η(t)−
n∑

m=1

kmτm


=

(
η(t)−

∑n
m=1 kmτm

)∑n
m=1 km(∑n

m=1 km
)
!

σ

η(t)−
n∑

m=1

kmτm

 .
Another kind of a delay is considered in the following statement.

Lemma 3.11. Let τ > 0, f : [t0 − τ,∞)→ R satisfy (2.3) for some c1,c2 > 0 and all t ≥ t0,
and Lt0

p,ψ{ f (t)} exist. Let us assume that

g(t+τ)
g(t)

=C(s, τ), ∀t ≥ t0 (3.1)

where g(t) = (ψ(t, p)esη(t))−1, i.e., assume that the ratio g(t+τ)
g(t) is independent of t. Then

L
t0
p,ψ{ f (t−τ)}(s) =

∫ t0

t0−τ

e−sη(t+τ) f (t)
ψ(t+τ, p)

dt+C(s, τ)Ft0
p,ψ(s)

for all s > c2.

Proof. First notice that denoting c̃1 =max{c1,maxt∈[t0−τ,t0] | f (t)|} and using the fact that η is
increasing we have

| f (t−τ)| ≤

c̃1 ≤ c̃1 ec2η(t), t ∈ [t0, t0+τ),
c1 ec2η(t−τ) ≤ c̃1 ec2η(t), t ∈ [t0+τ,∞).

So Lt0
p,ψ{ f (t−τ)} exists on (c2,∞). Then we compute

L
t0
p,ψ{ f (t−τ)}(s) =

∫ t0

t0−τ

e−sη(t+τ) f (t)
ψ(t+τ, p)

dt+
∫ ∞

t0

e−sη(t) f (t)
ψ(t, p)

C(s, τ)dt

=

∫ t0

t0−τ

e−sη(t+τ) f (t)
ψ(t+τ, p)

dt+C(s, τ)Ft0
p,ψ(s)

for all s > c2. �

Example 3.12. Here we verify condition (3.1) for several types of ψ:

(i) if ψ(t, p) ≡ 1 (GCFD coincides with the classic derivative), then η(t) = t− t0, g(t) =
e−s(t−t0) and

g(t+τ)
g(t)

= e−sτ =C(s, τ);
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(ii) if ψ(t, p) = p, then η(t) = t−t0
p , g(t) = 1

p e−
s
p (t−t0) and

g(t+τ)
g(t)

= e−
sτ
p =C(s, τ);

(iii) if ψ(t, p)= (t−t0)1−p (conformable derivative), then η(t)= (t−t0)p

p , g(t)= (t−t0)p−1 e−
s
p (t−t0)p

and
g(t+τ)

g(t)
=

(
t− t0

t+τ− t0

)1−p

e
s
p ((t−t0)p−(t+τ−t0)p),

i.e., condition (3.1) is not satisfied in the case of the conformable derivative as the
left-hand side varies with t;

(iv) if ψ(t+τ, p) = ψ(t, p) for all t ≥ t0, p ∈ (0,1] (ψ is τ–periodic in t), then

η(t+τ)−η(t) =
∫ t+τ

t
dp,ψ t̃ =

∫ t0+nτ

t
dp,ψ t̃+

∫ t+τ

t0+nτ
dp,ψ t̃

=

∫ t0+(n+1)τ

t+τ
dp,ψ t̃+

∫ t+τ

t0+nτ
dp,ψ t̃ =

∫ t0+(n+1)τ

t0+nτ
dp,ψ t̃ =

∫ t0+τ

t0
dp,ψ t̃ = η(t0+τ), t ≥ t0

for some n ∈ N0 such that t ≤ t0+nτ < t+τ. Therefore,

g(t+τ)
g(t)

= e−s(η(t+τ)−η(t)) = e−sη(t0+τ) =C(s, τ), ∀t ≥ t0.

4 General conformable fractional Gronwall inequality

Here we state and prove Gronwall inequality for general conformable fractional calculus
and its corollary.

Lemma 4.1. Let x,α,β ∈ C([t0,∞),R), β(t) ≥ 0 for all t ∈ [t0,∞), and ψ be a positive frac-
tional conformable function. If

x(t) ≤ α(t)+
∫ t

t0
β(s)x(s)dp,ψs, ∀t ≥ t0, (4.1)

then

x(t) ≤ α(t)+
∫ t

t0
α(s)β(s)e

∫ t
s β(q)dp,ψq dp,ψs, ∀t ≥ t0. (4.2)

Proof. Using the classic Gronwall inequality [3, Lemma 1.6] we get

x(t) ≤ α(t)+
∫ t

t0
α(s)

β(s)
ψ(s, p)

e
∫ t

s
β(q)
ψ(q,p) dp,ψq dp,ψs,

which is (4.2). �

Clearly, Lemma 4.1 remains valid if one takes [t0,b] for some b > t0 instead of [t0,∞).
Immediately, we obtain the following corollary for particular functions α, β.
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Corollary 4.2. Under the assumptions of Lemma 4.1, if α is nondecreasing and β is con-
stant, then inequality (4.1) implies

x(t) ≤ α(t)eβη(t), ∀t ≥ t0.

In particular, if α is constant, then

x(t) ≤ αeβη(t), ∀t ≥ t0.

Proof. From (4.2) we have

x(t) ≤ α(t)
(
1+β

∫ t

t0
eβ(η(t)−η(s)) dp,ψs

)
= α(t)

(
1+βeβη(t)

∫ t

t0
e−βη(s) dp,ψs

)
= α(t)

(
1+βeβη(t)

∫ η(t)

0
e−βs ds

)
= α(t)eβη(t)

for all t ≥ t0. �

5 Application to delay equations

In this section, we consider Cauchy problems for linear delay differential equations with
general conformable fractional derivative, multiple delays and linear parts given by pairwise
permutable matrices. We always consider n ∈ N constant delays 0 < τ1, . . . , τn, and denote
τ := max{τ1, . . . , τn}. Next, we denote | · | the norm of a vector without any respect to its
dimension, and ‖ · ‖ the corresponding induced matrix norm.

First we consider the initial-function problem

Dp
ψx(η(t)) = Ax(η(t))+B1x(η(t)−τ1)+ · · ·+Bnx(η(t)−τn)+ f (η(t)), t ≥ t0 (5.1)

x(t) = ϕ(t), t ∈ [−τ,0] (5.2)

for a given function ϕ ∈ C([−τ,0],RN). For brevity we set Cϕ :=maxt∈[−τ,0] |ϕ(t)|. We shall
look for a differentiable function x : [−τ,∞)→ RN satisfying the above problem assum-
ing that A, B1, . . . , Bn are pairwise permutable N ×N matrices. First we show that x is
exponentially bounded.

Lemma 5.1. If f : [0,∞)→ RN is such that | f (t)| ≤ c1 ec2t for some c1,c2 > 0 and all t ≥ 0,
then the solution x of (5.1), (5.2) satisfies |x(t)| ≤ d1 ed2t for some d1,d2 > 0 and all t ≥ 0.

Proof. Applying the operator Ip,ψ
t0 to equation (5.1) and using the identity (see [17, Theorem

11])
Ip,ψ
a Dp

ψ f (u) = f (u)− f (a)

for any u ≥ a ≥ t0, we get

x(η(t)) = x(η(t0))+A
∫ t

t0
x(η(t̃))dp,ψ t̃

+

n∑
i=1

Bi

∫ t

t0
x(η(t̃)−τi)dp,ψ t̃+

∫ t

t0
f (η(t̃))dp,ψ t̃, t ≥ t0,
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or equivalently

x(t) = ϕ(0)+A
∫ t

0
x(t̃)dt̃+

n∑
i=1

Bi

∫ t

0
x(t̃−τi)dt̃+

∫ t

0
f (t̃)dt̃, t ≥ 0.

For the norm we have

|x(t)| ≤Cϕ+ ‖A‖
∫ t

0
|x(t̃)|dt̃+

n∑
i=1

‖Bi‖

∫ t

0
|x(t̃−τi)|dt̃+

c1

c2
ec2t =: z(t), t ≥ 0.

Note that z is increasing. One can see that for 0 ≤ t̃ ≤ t,

|x(t̃−τi)| ≤ max
ζ∈[0,τi]

|x(ζ −τi)|+ max
ζ∈[τi,t̃+τi]

|x(ζ −τi)| ≤Cϕ+ z(t̃) ≤ 2z(t̃)

for each i = 1, . . . ,n. Hence

z(t) ≤Cϕ+
c1

c2
ec2t+

‖A‖+2
n∑

i=1

‖Bi‖

∫ t

0
z(t̃)dt̃, t ≥ 0.

Consequently, by the Gronwall lemma,

|x(t)| ≤ z(t) ≤
(
Cϕ+

c1

c2
ec2t

)
e(‖A‖+2

∑n
i=1 ‖Bi‖)t, t ≥ 0 (5.3)

and the statement is obvious. �

Clearly, if |x(t)| ≤ c1 ec2t for some c1,c2 > 0 and all t ≥ 0, then

|x(t)| ≤

c̃1 ≤ c̃1 ec2(t+τi), t ∈ [−τi,0),
c1 ec2t ≤ c̃1 ec2t, t ∈ [0,∞)

where c̃1 =max{c1,Cϕ}. Thus the general conformable Laplace transform can be applied to
(5.1) to obtain the following result.

Theorem 5.2. Let n ∈ N, 0 < τ1, . . . , τn ∈ R, A, B1, . . . , Bn be pairwise permutable N ×N
matrices, i.e., ABi = BiA and BiB j = B jBi for each i, j ∈ {1, . . . ,n}, ϕ ∈ C([−τ,0],RN), and
f : [0,∞)→ RN be a given function such that | f (t)| ≤ c1 ec2t for some c1,c2 > 0 and all t ≥ 0.
If p ∈ (0,1] and ψ is a positive fractional conformable function satisfying (2.2), then the
solution of the Cauchy problem (5.1), (5.2) has the form

x(t) =


ϕ(t), −τ ≤ t < 0,
B(t)ϕ(0)+

∑n
j=1 B j

∫ τ j

0 B(t− s)ϕ(s−τ j)ds

+
∫ t

0 B(t− s) f (s)ds, 0 ≤ t

(5.4)

where

B(t) = eAt
∑

∑n
m=1 kmτm≤t
k1,...,kn≥0

(t−
∑n

m=1 kmτm)
∑n

m=1 km

k1! . . .kn!

n∏
m=1

B̃km
m

for any t ∈ R, and B̃m = Bm e−Aτm for each m = 1, . . . ,n.
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Proof. By Lemma 5.1 and the preceding discussion, the assumptions of Lemma 3.2.iii and
Lemma 3.9 are satisfied, and after applying the general conformable Laplace transform to
equation (5.1), we get

sLt0
p,ψ{x(η(t))}(s)− x(η(t0)) = ALt0

p,ψ{x(η(t))}(s)

+

n∑
i=1

Bi e−sτi

(∫ 0

−τi

e−st x(t)dt+Lt0
p,ψ{x(η(t))}(s)

)
+L

t0
p,ψ{ f (η(t))}(s)

for s > d2 = ‖A‖+2
∑n

i=1 ‖Bi‖+ c2 (see (5.3)) or, using the classic Laplace transform,

sL{x(t)}(s)−ϕ(0) = AL{x(t)}(s)

+

n∑
i=1

Bi

(∫ τi

0
e−stϕ(t−τi)dt+ e−sτiL{x(t)}(s)

)
+L{ f (t)}(s).

This is precisely the Laplace transform of the equation

x′(t) = Ax(t)+B1x(t−τ1)+ · · ·+Bnx(t−τn)+ f (t), t ≥ 0 (5.5)

along with (5.2), which is known (cf. [14, Theorem 3.3]) to have the solution (5.4). �

Remark 5.3. Equation (5.1) can be directly converted to (5.5). Indeed, since x is differen-
tiable, from (2.1) we have

Dp
ψx(η(t)) = ψ(t, p)

d
dt

x(η(t)) = x′(η(t)).

Therefore, from (5.1),

x′(η(t)) = Ax(η(t))+B1x(η(t)−τ1)+ · · ·+Bnx(η(t)−τn)+ f (η(t)), t ≥ t0

which is precisely (5.5). However, the proof of Theorem 5.2 uses the properties of the
newly defined general conformable Laplace transform.

Now consider the problem

Dp
ψx(t) = B1x(t−τ1)+ · · ·+Bnx(t−τn)+ f (t), t ≥ t0 (5.6)

x(t) = ϕ(t), t ∈ [t0−τ, t0]. (5.7)

First we have to show that the Laplace transform can be applied.

Lemma 5.4. If f : [t0,∞)→ RN fulfills (2.3) with c1,c2 > 0, then there are d1,d2 > 0 such
that the solution x of (5.6), (5.7) satisfies

|x(t)| ≤ d1 ed2η(t), ∀t ≥ t0.

Proof. Applying the operator Ip,ψ
t0 to equation (5.6), we get

x(t) = ϕ(t0)+
n∑

i=1

Bi

∫ t

t0
x(t̃−τi)dp,ψ t̃+

∫ t

t0
f (t̃)dp,ψ t̃, t ≥ t0.
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Hence, for the norm we have

|x(t)| ≤ |ϕ(t0)|+
n∑

i=1

‖Bi‖

∫ t

t0
|x(t̃−τi)|dp,ψ t̃+ c1

∫ t

t0
ec2η(t̃) dp,ψ t̃

≤Cϕ+

n∑
i=1

‖Bi‖

∫ t

t0
|x(t̃−τi)|dp,ψ t̃+

c1

c2
ec2η(t) =: z(t), t ≥ t0,

since ∫ t

t0
ec2η(t̃) dp,ψ t̃ =

∫ η(t)

0
ec2 t̃ dt̃ =

ec2η(t)−1
c2

.

As in the proof of Lemma 5.1, function z is increasing and

|x(t̃−τi)| ≤ 2z(t̃), ∀t̃ ∈ [t0, t]

for each i = 1, . . . ,n. Therefore,

z(t) ≤Cϕ+
c1

c2
ec2η(t)+2

n∑
i=1

‖Bi‖

∫ t

t0
z(t̃)dp,ψ t̃, t ≥ t0.

Applying Corollary 4.2 we obtain

|x(t)| ≤ z(t) ≤
(
Cϕ+

c1

c2
ec2η(t)

)
e2

∑n
i=1 ‖Bi‖η(t), t ≥ t0.

So, the statement holds with d1 =Cϕ+
c1
c2

and d2 = c2+2
∑n

i=1 ‖Bi‖. �

Now we know that the general conformable Laplace transform of x(t) and Dp
ψx(t) exists

if f fulfills (2.3). In the next result, we assume the empty sum property, i.e.,
∑

i∈∅ z(i) = 0
for any function z.

Theorem 5.5. Let n ∈N, 0 < T ∈ R, 0 < τ1, . . . , τn ∈ R, τi = λiT for some λi ∈N, i = 1, . . . ,n,
B1, . . . , Bn be pairwise permutable N ×N matrices, ϕ ∈C([t0−τ, t0],RN), and f : [t0,∞)→
RN be a given function satisfying (2.3) for some c1,c2 > 0. If p ∈ (0,1] and ψ is a positive
fractional conformable function T–periodic in t, then the solution of the Cauchy problem
(5.6), (5.7) has the form

x(t) =


ϕ(t), t0−τ ≤ t < t0,
A(η(t))ϕ(t0)+

∑n
j=1 B j

∫ t0+τ j

t0
A(η(t)−η(s))ϕ(s−τ j)dp,ψs

+
∫ t

t0
A(η(t)−η(s)) f (s)dp,ψs, t0 ≤ t

where

A(t) =
∑

∑n
m=1 kmλmη(t0+T )≤t

k1,...,kn≥0

(
t−

∑n
m=1 kmλmη(t0+T )

)∑n
m=1 km

k1! . . .kn!

n∏
m=1

Bkm
m

for any t ∈ R.



28 M. Pospı́šil

Proof. Let us consider the T -periodic extension of ψ(·, p) on R and denote it again by ψ.
Then the function η is defined on the whole of R. As in Example 3.12.iv, it holds

η(t+τi)−η(t) = η(t0+τi)

=

∫ t0+T

t0
dp,ψt+

∫ t0+2T

t0+T
dp,ψt+ · · ·+

∫ t0+τi

t0+(λi−1)T
dp,ψt

=

∫ t0+T

t0
dp,ψt+

∫ t0+T

t0
dp,ψt+ · · ·+

∫ t0+T

t0
dp,ψt = λiη(t0+T )

(5.8)

for each i = 1, . . . ,n and any t ∈ R. In particular,

η(t)−η(t−τi) = λiη(t0+T ).

Consequently,
x(t−τi) = x(ω(η(t−τi))) = x(ω(η(t)−λiη(t0+T ))) (5.9)

for each i = 1, . . . ,n and any t ∈ [t0,∞). Note that for each i = 1, . . . ,n,

e−sλiη(t0+T )
∫ 0

−λiη(t0+T )
e−st x(ω(t))dt =

∫ t0

t0−τi

e−s(λiη(t0+T )+η(t)) x(t)
ψ(t+τi, p)

dt

=

∫ t0

t0−τi

e−sη(t+τi) x(t)
ψ(t+τi, p)

dt =
∫ t0+τi

t0
e−sη(t)ϕ(t−τi)dp,ψt

where the first identity follows from (5.8). By Lemma 5.4, the general conformable Laplace
transform can be applied to equation (5.6). Then by Lemma 3.2.iii, Lemma 3.9 (with f =
x◦ω and τ = λiη(t0+T ), see (5.9)) and Example 3.12.iv, we get

sXt0
p,ψ(s)− x(t0)

=

n∑
i=1

Bi

(∫ t0+τi

t0

e−sη(t)ϕ(t−τi)
ψ(t, p)

dt+ e−sλiη(t0+T ) Xt0
p,ψ(s)

)
+Ft0

p,ψ(s)

=

n∑
i=1

Bi
(
L

t0
p,ψ{Φ(t−τi)}(s)+ e−sλiη(t0+T ) Xt0

p,ψ(s)
)
+Ft0

p,ψ(s)

for s > c2+2
∑n

i=1 ‖Bi‖ (cf. Lemma 5.4 and its proof), where

Φ(t) =

ϕ(t), t ∈ [t0−τ, t0],
0, t ∈ (t0,∞).

Consequently,sI−
n∑

i=1

Bi e−sλiη(t0+T )

Xt0
p,ψ(s) = ϕ(t0)+

n∑
i=1

BiL
t0
p,ψ{Φ(t−τi)}(s)+Ft0

p,ψ(s)

with I being the N ×N identity matrix. It is known (see e.g. [16, Proposition 7.5]) that if s
is such that ∥∥∥∥∥∥∥

n∑
i=1

Bi e−sλiη(t0+T )

∥∥∥∥∥∥∥ < s,
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then the matrix I−
∑n

i=1
Bi e−sλiη(t0+T )

s is invertible and it holdsI− n∑
i=1

Bi e−sλiη(t0+T )

s

−1

=

∞∑
k=0

 n∑
i=1

Bi e−sλiη(t0+T )

s

k

.

So for s sufficiently large, we can write

Xt0
p,ψ(s) = A0+

n∑
j=1

A j+A f

where

A0 =
1
s

∞∑
k=0

 n∑
i=1

Bi e−sλiη(t0+T )

s

k

ϕ(t0),

A j =
1
s

∞∑
k=0

 n∑
i=1

Bi e−sλiη(t0+T )

s

k

B jL
t0
p,ψ{Φ(t−τ j)}(s), j = 1, . . . ,n,

A f =
1
s

∞∑
k=0

 n∑
i=1

Bi e−sλiη(t0+T )

s

k

Ft0
p,ψ(s).

By Example 3.4.i,

A0 =L
t0
p,ψ{1}(s)ϕ(t0)+

1
s

∞∑
k=1

 n∑
i=1

Bi e−sλiη(t0+T )

s

k

ϕ(t0).

Next, by multinomial theorem [2],

A0 =L
t0
p,ψ{1}(s)ϕ(t0)+

∞∑
k=1

1
s

∑
k1+···+kn=k
k1,...,kn≥0

(
k

k1, . . . ,kn

) n∏
m=1

(
Bm e−sλmη(t0+T )

s

)km

ϕ(t0)

=L
t0
p,ψ{1}(s)ϕ(t0)+

∞∑
k=1

∑
k1+···+kn=k
k1,...,kn≥0

(
k

k1, . . . ,kn

)1
s

n∏
m=1

(
e−sλmη(t0+T )

s

)km
 n∏

m=1

Bkm
m ϕ(t0)


where (

k
k1, . . . ,kn

)
=

k!
k1! . . .kn!

is the multinomial coefficient. Using Example 3.10.iv and the linearity of the general con-
formable Laplace transform, we get

A0 =L
t0
p,ψ{1}(s)ϕ(t0)+

∞∑
k=1

∑
k1+···+kn=k
k1,...,kn≥0

(
k

k1, . . . ,kn

)

×L
t0
p,ψ


(
η(t)−

∑n
m=1 kmλmη(t0+T )

)∑n
m=1 km(∑n

m=1 km
)
!

σ

η(t)−
n∑

m=1

kmλmη(t0+T )


 (s)
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×

n∏
m=1

Bkm
m ϕ(t0) =Lt0

p,ψ{A(η(t))ϕ(t0)}(s).

Next, using the same arguments we obtain

A j = B jL
t0
p,ψ{A(η(t))}(s)Lt0

p,ψ{Φ(t−τ j)}(s)

for each j = 1, . . . ,n. Then by Lemma 3.5,

A j = B jL
t0
p,ψ{(A∗Φ(ω(·)−τ j))(η(t))}(s)

= B jL
t0
p,ψ

{∫ η(t)

0
A(η(t)−q)Φ(ω(q)−τ j)dq

}
(s)

= B jL
t0
p,ψ

{∫ t

t0
A(η(t)−η(u))Φ(u−τ j)dp,ψu

}
(s).

Analogously,

A f =L
t0
p,ψ{A(η(t))}(s)Lt0

p,ψ{ f (t)}(s) =Lt0
p,ψ

{∫ t

t0
A(η(t)−η(u)) f (u)dp,ψu

}
(s).

Summarizing,

Xt0
p,ψ(s) =Lp,ψ

A(η(t))ϕ(t0)+
n∑

j=1

B j

∫ t

t0
A(η(t)−η(u))Φ(u−τ j)dp,ψu

+

∫ t

t0
A(η(t)−η(u)) f (u)dp,ψu

}
(s)

for all s sufficiently large. Moreover, note that A(t) = 0 whenever t < 0 due to the empty
sum property. Therefore ∫ t

t0
A(η(t)−η(u))Φ(u−τ j)dp,ψu

=

∫ min{t,t0+τ j}

t0
A(η(t)−η(u))ϕ(u−τ j)dp,ψu

=

∫ t0+τ j

t0
A(η(t)−η(u))ϕ(u−τ j)dp,ψu,

and the statement is proved. �

Next, we present a result on the solution of initial-function problem consisting of the
equation (5.6) with a linear nondelayed term, i.e.,

Dp
ψx(t) = Ax(t)+B1x(t−τ1)+ · · ·+Bnx(t−τn)+ f (t), t ≥ t0, (5.10)

and initial condition (5.7).
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Corollary 5.6. Let n ∈ N, 0 < T ∈ R, 0 < τ1, . . . , τn ∈ R, τi = λiT for some λi ∈ N, i =
1, . . . ,n, A, B1, . . . , Bn be pairwise permutable N ×N matrices, ϕ ∈ C([t0 − τ, t0],RN), and
f : [t0,∞)→RN be a given function satisfying (2.3) for some c1,c2 > 0. If p ∈ (0,1] and ψ is
a positive fractional conformable function T–periodic in t, then the solution of the Cauchy
problem (5.10), (5.7) has the form

x(t) =


ϕ(t), t0−τ ≤ t < t0,
Ã(η(t))ϕ(t0)+

∑n
j=1 B j

∫ t0+τ j

t0
Ã(η(t)−η(s))ϕ(s−τ j)dp,ψs

+
∫ t

t0
Ã(η(t)−η(s)) f (s)dp,ψs, t0 ≤ t

with

Ã(t) = eAt
∑

∑n
m=1 kmλmη(t0+T )≤t

k1,...,kn≥0

(
t−

∑n
m=1 kmλmη(t0+T )

)∑n
m=1 km

k1! . . .kn!

n∏
m=1

B̃km
m

for any t ∈ R, where B̃m = e−Aλmη(t0+T ) Bm, m = 1, . . . ,n.

Proof. As in the proof of Theorem 5.5, we have identity (5.8). Let us denote y(t) =
e−Aη(t) x(t). Then by CFD of a product [17, Theorem 5] and (2.1), y satisfies

Dp
ψy(t) = Dp

ψ

(
e−Aη(t)

)
x(t)+ e−Aη(t) Dp

ψx(t) = −Ae−Aη(t) x(t)+ e−Aη(t) Dp
ψx(t)

= −Ay(t)+ e−Aη(t)

Ax(t)+
n∑

i=1

Bi eAη(t−τi) y(t−τi)+ f (t)


=

n∑
i=1

Bi e−A(η(t)−η(t−τi)) y(t−τi)+ e−Aη(t) f (t)

for any t ≥ t0. So, we get the initial-function problem for y:

Dp
ψy(t) = B̃1y(t−τ1)+ · · ·+ B̃ny(t−τn)+ f̃ (t), t ≥ t0

y(t) = ϕ̃(t), t ∈ [t0−τ, t0]

where f̃ (t) = e−Aη(t) f (t) and ϕ̃(t) = e−Aη(t)ϕ(t); which is of the form (5.6), (5.7). Note that
ϕ̃(t0) = ϕ(t0) and

B̃iϕ̃(s−τi) = Bi e−Aλiη(t0+T )−Aη(s−τi)ϕ(s−τi) = Bi e−Aη(s)ϕ(s−τi)

for each i = 1, . . . ,n. Application of Theorem 5.5 and returning back to x proves the state-
ment. �
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[13] M. Pospı́šil, Representation and stability of solutions of systems of functional dif-
ferential equations with multiple delays. Electron. J. Qual. Theory Differ. Equ. (54)
(2012), pp 1–30.
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