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Abstract

We prove the existence and uniqueness of the solutions for the following impulsive
semilinear evolution equations with delays and nonlocal conditions:

ź = −Az+F(t,zt), z ∈ Z, t ∈ (0, τ], t , tk,
z(s)+ (g(zτ1 ,zτ2 , . . . ,zτq ))(s) = φ(s), s ∈ [−r,0],
z(t+k ) = z(t−k )+ Jk(z(tk)), k = 1,2,3, . . . , p.

where 0 < t1 < t2 < t3 < · · · < tp < τ, 0 < τ1 < τ2 < · · · < τq < r < τ, Z is a Banach
space Z, zt defined as a function from [−r,0] to Zα by zt(s) = z(t + s),−r ≤ s ≤ 0,
g : C([−r,0];Zαq )→ C([−r,0];Zα) and Jk : Zα → Zα, F : [0, τ]×C(−r,0;Zα)→ Z. In
the above problem, A : D(A) ⊂ Z → Z is a sectorial operator in Z with −A being the
generator of a strongly continuous compact semigroup {T (t)}t≥0, and Zα = D(Aα). The
novelty of this work lies in the fact that the evolution equation studied here can con-
tain non-linear terms that involve spatial derivatives and the system is subjected to the
influence of impulses, delays and nonlocal conditions, which generalizes many works
on the existence of solutions for semilinear evolution equations in Banch spaces. Our
framework includes several important partial differential equations such as the Burgers
equation and the Benjamin-Bona-Mohany equation with impulses, delays and nonlo-
cal conditions..
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1 Introduction

In the context of semilinear evolution equations in functions spaces, difficulties arise when
the nonlinear term consists of a composition operator, normally called Nemytskii’s operator,
which almost never maps a functions space into itself unless the generator function is affine.
This work was motivated primarily by the Burgers Equation and the Benjamin-Bona-Mahony
(BBM) equation with impulses, delays and nonlocal conditions, which involve a nonlinear
term with spatial derivatives, this greatly complicates the problem when one tries to study
the approximate controllability of this equation on a fixed interval [0, τ] because for each
control we need to have a corresponding solution defined on the same fixed interval of
time. To address this problem we must use the fact that the Laplacian Operator gener-
ates an analytic semigroup, which is compact; and the use of fractional powered spaces to
formulate the problem as an abstract evolution equations in a suitable Hilbert space. The
fundamental problem is that the composition operator associated to the nonlinear term is
well defined only from an adequate fractional power spaces to the L2(Ω) space. We have
spent a lot of time looking for good results that can be applied to the Burgers Equations and
the Benjamin-Bona-Equation with impulses, delays and nonlocal conditions, but we did not
find any. In fact, the examples others authors present do not involve nonlinear terms with
spatial derivatives. Therefore, the novelty of this work lies in the fact that we allow nonlin-
ear terms involving spatial derivative, the use of fractional power space and the Karakostas
Fixed Point Theorem [7]. Moreover, our technique can be applied to others equations like
the Navier Stokes Equation.
In this regards we study the existence and uniqueness of the solutions for the following
semilinear evolution equation with impulses, delay and nonlocal conditions

ź = −Az+F(t,zt), z ∈ Z, t ∈ (0, τ], t , tk,
z(s)+ (g(zτ1 ,zτ2 , . . . ,zτq))(s) = φ(s), s ∈ [−r,0],
z(t+k ) = z(t−k )+ Jk(z(tk)), k = 1,2,3, . . . , p.

(1.1)

where 0 < t1 < t2 < t3 < · · · < tp < τ, 0 < τ1 < τ2 < · · · < τq < r < τ and Z is a Banach
space. Given the delay r > 0, we denote by zt the function from [−r,0] to Zα defined by
zt(s)= z(t+ s),−r ≤ s≤ 0. Using the notation Zα :=D(Aα), Jk : Zα→ Zα, g : C([−r,0];Zαq )→
C([−r,0];Zα) and F : [0, τ]×C(−r,0;Zα)→ Z are smooth functions, and A : D(A) ⊂ Z→ Z
is a sectorial operator in Z, and −A generates a strongly continuous compact semigroup
{T (t)}t≥0 ⊂ Z. This work is an extension of the previous result obtained in [9] for the exis-
tence of solutions of system (2.8) without nonlocal conditions.

There are many practical examples of impulsive systems with delays, e.g., chemical
reactor systems, financial systems with two state variables; namely, the amount of money
in a market and the savings rate of a central bank, and the growth of population diffusing
in its habitat modeled by a reaction-diffusion equation. One may easily visualize situations
in these examples where abrupt changes such as disasters, meltdowns and instantaneous
shocks may occur. Real life problems are modeled by impulsive differential equations, cf.
e.g., Lakshmikantham [8] and Samoilenko and Perestyuk [12].
The existence and the asymptotic behavior of a functional differential equations without
impulses have been studied by S. M. Rankin III in [11] using fractional power spaces.
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The existence of solutions for impulsive abstract partial differential equations with state
dependent delay has been studied by E. Hernandez, M. Pierri and G. Goncalves [6] without
using fractional power spaces since the nonlinear term does not involve spatial derivative.
Likewise, the existence of solutions for semilinear differential evolution equations with
impulses and delay has been studied by N. Abada, M. Benchohra and H. Hammouche in
[1] and by N. Abada and M. Benchohra in [1] without using fractional power spaces. The
existence and stability for partial functional differential equations has been studied by C.C.
Travis and G.F. Webb in [14] . On the other hand, the existence and the asymptotic behavior
of a functional differential equations without impulses have been studied by S. M. Rankin
III in [11] using fractional power spaces. Approximate controllability of semilinear partial
neutral functional differential systems has been studied by Xianlong Fu and Kaidong Mei in
[3] using also fractional power spaces. In the latter work, since the nonlinear terms involve
spatial derivative and hence, spaces of fractional exponents are used. More recently, in [9],
the fractional power spaces and the Karakosta’s fixed point Theorem is used to prove the
existence of solutions for semilinear evolution equations, but without nonlocal conditions.
Here, we have it all, impulses, delays and nonlocal conditions.

Our results will be applied to the following impulsive semilinear Burgers equation with
delays and nonlocal conditions.


∂z(t, x)
∂t

= νzxx(t, x)− z(t− r, x)zx(t− r, x)+ f (t,z(t− r)),

z(t,0) = z(t,1) = 0, t ∈ [0, τ]
z(s, x) +h(z(τ1+ s, x), . . . ,z(τq+ s, x)) = φ(s, x), x ∈ [0,1],
z(t+k , x) = z(t−k , x)+ Jk(z(tk, x)), x ∈Ω, k = 1,2,3, . . . , p,

(1.2)

where φ ∈ C([−r,0]; H1
0) = C([−r,0];Z1/2), with Z = L2[0,1], Z1/2 = D((−∆)1/2) and the

functions f , Jk,h are globally Lipschitz.
The following Burgers Equations with delay


∂z(t, x)
∂t

= νzxx(t, x)− z(t, x)zx(t− r, x),

z(t,0) = z(t,1) = 0, t ∈ [0, τ]
z(s, x) = φ(s, x), s ∈ [−r,0], x ∈ [0,1],

(1.3)

has been studied by Weijiu Liu [10], Yanbin Tang and Ming Wang [14] and Yanbin Tang
[13] where the existence and uniqueness of global solutions has been proved.
The Benjamin-Bona-Mahony (BBM) equation with impulses, delay and nonlocal condi-
tions 

zt −azxxt = bzxx− z(t− r, x)zx(t− r, x)+ f (t,z(t− r, x)),
z(t,0) = z(t,1) = 0, t ∈ [0, τ]
z(s, x) +h(z(τ1+ s, x), . . . ,z(τq+ s, x)) = φ(s, x), x ∈ [0,1],
z(t+k , x) = z(t−k , x)+ Jk(tk,z(tk, x)), x ∈Ω,

(1.4)

where a ≥ 0 and b > 0 are constants, φ ∈ C([−r,0]; H1
0), is also analyzed as an applycation

of our results
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2 Preliminaries

Throughout this paper, the operator A : D(A) ⊂ Z → Z is sectorial and −A is the infinites-
imal generator of a compact analytic semigroup of uniformly bounded linear operators
{T (t)}t≥0 ⊂ Z, with 0 ∈ ρ(A). Therefore, fractional power operators Aα, 0 < α ≤ 1, are
well defined. And since Aα is a closed operator, its domain D(Aα) is a Banach space en-
dowed with the graph norm

‖z‖α = ‖Aαz‖, z ∈ D(Aα).

This Banach space is denoted by Zα = D(Aα) and is dense in Z. Moreover, for 0 < β < α ≤ 1
the embedding Zα ↪→ Zβ is compact whenever the resolvent operator of A is compact.
For this semigroup the following properties will be used:
There are constants, η > 0, M ≥ 1, Mα ≥ 0 and C1−α such that

‖T (t)‖ ≤ M , t ≥ 0, (2.1)

‖AαT (t)‖ ≤
Mα

tα
e−ηt, t > 0, (2.2)

AαT (t)z = T (t)Aαz, ∀z ∈ Zα, (2.3)

‖(T (t)− I)z‖ ≤
C1−α

α
tα‖Aαz‖, t > 0, ∀z ∈ Zα. (2.4)

For more properties of sectorial operators and strongly continuous semi-group is good see
the book by D. Henry [5] and the book by Jerome A. Goldstein [4].
The functions Jk ∈ C(Zα;Zα) and the function F : [0,∞)×Dα → Z is a smooth function
where the set Dα denotes the space

Dα = {φ : [−r,0]→ Zα : φ is continuous}

endowed with the norm
‖φ‖d = sup

−r≤s≤0
‖φ(s)‖α.

One natural space to work evolution equations with delay and impulses is the following
Banach space: With the notation J := [−r, τ], and J′ = [−r, τ]\{t1, t2, . . . , tp}, define PCα =

PC(J;Zα) := {z : J→ Zα : z ∈C(J′;Zα) : ∀ k,z(t+k ),z(t−k ) exist, and z(tk) = z(t−k )}

endowed with the norm
‖z‖ = sup

t∈[−r,τ]
‖z(t)‖α.

Also, we shall consider the following Banch spaces:

Zαq = Zα×Zα× · · ·Zα =
q∏

k=1

Zα,

endowed with the norm

‖y‖αq =
q∑

i=1

‖yi‖α, y = (y1,y2, . . . ,yq)T ∈ Zαq ,
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and the norm in the space C([−r,0];Zαq ) is given by

‖y‖q = sup
t∈[−r,τ]

‖y(t)‖αq = sup
t∈[−r,τ]

 q∑
i=1

‖yi(t)‖α

 , ∀y ∈C([−r,0];Zαq ).

For a function y ∈ PC([−r, τ];Zα) and i= 1,2, . . . , p, we define the function ỹi ∈C([ti, ti+1];Zα)
such that

ỹi(t) =
{

y(t), for t ∈ (ti, ti+1],
y(t+i ), for t = ti.

(2.5)

For W ⊂ PC([−r, τ];Zα) and i = 1,2, . . . , p, we define W̃i = {ỹi : y ∈ W}, and following the
Arzela-Ascoli classical Theorem one gets a characterization of compactness in PC([−r, τ];Zα).

L 2.1. A set W ⊂ PC([−r, τ];Zα) is relatively compact in PC([−r, τ];Zα) if, and only if,
each set W̃i, i= 1,2, . . . , p, with t0 = 0 and tp+1 = τ, is relatively compact in C([ti, ti+1];Zα).

T 2.1. ( G. L. Karakostas [7]) Let Z and Y be Banach spaces and D be a closed
convex subset of Z, and letB : D→ Y be a continuous operator such thatB(D) is a relatively
compact subset of Y , and

T : D×B(D)→ D (2.6)

a continuous operator such that the family {T (·,y) : y ∈ B(D)} is equicontractive. Then the
operator equation

T (z,B(z)) = z, (2.7)

admits a solution on D.

L 2.2. ([8],[12] generalized Gronwall-Bellman inequality) Let a nonnegative function
z ∈ PC([−r,∞);R) satisfy, for t ≥ t0, the inequality

z(t) ≤C+
∫ t

t0
v(s)z(s)ds+

∑
t0<tk<t

βku(tk),

where C ≥ 0, βk ≥ 0, v(s) > 0, and tk’s are the discontinuity points of first type for the
function z. Then we have,

z(t) ≤C
∏

t0<tk<t

(1+βk)e
∫ t

t0
v(s)ds

.

In the context of semilinear evolution equations in functions spaces, difficulties arise
when the nonlinear term consists of a composition operator, normally called Nemytskii’s
operator, which almost never maps a functions space into itself unless the generator func-
tion is affine.
This work was motivated primarily by the Burgers Equation and the Benjamin-Bona-Mahony
(BBM) equation with impulses, delays and nonlocal conditions, which involve a nonlinear
term with spatial derivatives, this greatly complicates the problem when one tries to study
the approximate controllability of this equation on a fixed interval [0, τ] because for each
control we need to have a corresponding solution defined on the same fixed interval of
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time. To address this problem we must use the fact that the Laplacian Operator gener-
ates an analytic semigroup, which is compact; and the use of fractional powered spaces to
formulate the problem as an abstract evolution equations in a suitable Hilbert space. The
fundamental problem is that the composition operator associated to the nonlinear term is
well defined only from an adequate fractional power spaces to the L2(Ω) space. We have
spent a lot of time looking for good results that can be applied to the Burgers Equations and
the Benjamin-Bona-Equation with impulses, delays and nonlocal conditions, but we did not
find any. In fact, the examples others authors present do not involve nonlinear terms with
spatial derivatives. Therefore, the novelty of this work lies in the fact that we allow nonlin-
ear terms involving spatial derivative, the use of fractional power space and the Karakostas
Fixed Point Theorem [7]. Moreover, our technique can be applied to others equations like
the Navier Stokes Equation.
In this regards we study the existence and uniqueness of the solutions for the following
semilinear evolution equation with impulses, delay and nonlocal conditions

ź = −Az+F(t,zt), z ∈ Z, t ∈ (0, τ], t , tk,
z(s)+ (g(zτ1 ,zτ2 , . . . ,zτq))(s) = φ(s), s ∈ [−r,0],
z(t+k ) = z(t−k )+ Jk(z(tk)), k = 1,2,3, . . . , p.

(2.8)

where 0 < t1 < t2 < t3 < · · · < tp < τ, 0 < τ1 < τ2 < · · · < τq < r < τ and Z is a Banach
space. Given the delay r > 0, we denote by zt the function from [−r,0] to Zα defined by
zt(s)= z(t+ s),−r ≤ s≤ 0. Using the notation Zα :=D(Aα), Jk : Zα→ Zα, g : C([−r,0];Zαq )→
C([−r,0];Zα) and F : [0, τ]×C(−r,0;Zα)→ Z are smooth functions, and A : D(A) ⊂ Z→ Z
is a sectorial operator in Z, and −A generates a strongly continuous compact semigroup
{T (t)}t≥0 ⊂ Z. This work is an extension of the previous result obtained in [9] for the exis-
tence of solutions of system (2.8) without nonlocal conditions.

There are many practical examples of impulsive systems with delays, e.g., chemical
reactor systems, financial systems with two state variables; namely, the amount of money
in a market and the savings rate of a central bank, and the growth of population diffusing
in its habitat modeled by a reaction-diffusion equation. One may easily visualize situations
in these examples where abrupt changes such as disasters, meltdowns and instantaneous
shocks may occur. Real life problems are modeled by impulsive differential equations, cf.
e.g., Lakshmikantham [8] and Samoilenko and Perestyuk [12].
The existence and the asymptotic behavior of a functional differential equations without
impulses have been studied by S. M. Rankin III in [11] using fractional power spaces.
The existence of solutions for impulsive abstract partial differential equations with state
dependent delay has been studied by E. Hernandez, M. Pierri and G. Goncalves [6] without
using fractional power spaces since the nonlinear term does not involve spatial derivative.
Likewise, the existence of solutions for semilinear differential evolution equations with
impulses and delay has been studied by N. Abada, M. Benchohra and H. Hammouche in
[1] and by N. Abada and M. Benchohra in [1] without using fractional power spaces. The
existence and stability for partial functional differential equations has been studied by C.C.
Travis and G.F. Webb in [14] . On the other hand, the existence and the asymptotic behavior
of a functional differential equations without impulses have been studied by S. M. Rankin
III in [11] using fractional power spaces. Approximate controllability of semilinear partial
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neutral functional differential systems has been studied by Xianlong Fu and Kaidong Mei in
[3] using also fractional power spaces. In the latter work, since the nonlinear terms involve
spatial derivative and hence, spaces of fractional exponents are used. More recently, in [9],
the fractional power spaces and the Karakosta’s fixed point Theorem is used to prove the
existence of solutions for semilinear evolution equations, but without nonlocal conditions.
Here, we have it all, impulses, delays and nonlocal conditions.

Our results will be applied to the following impulsive semilinear Burgers equation with
delays and nonlocal conditions.

∂z(t, x)
∂t

= νzxx(t, x)− z(t− r, x)zx(t− r, x)+ f (t,z(t− r)),

z(t,0) = z(t,1) = 0, t ∈ [0, τ]
z(s, x) +h(z(τ1+ s, x), . . . ,z(τq+ s, x)) = φ(s, x), x ∈ [0,1],
z(t+k , x) = z(t−k , x)+ Jk(z(tk, x)), x ∈Ω, k = 1,2,3, . . . , p,

(2.9)

where φ ∈ C([−r,0]; H1
0) = C([−r,0];Z1/2), with Z = L2[0,1], Z1/2 = D((−∆)1/2) and the

functions f , Jk,h are globally Lipschitz.
The following Burgers Equations with delay

∂z(t, x)
∂t

= νzxx(t, x)− z(t, x)zx(t− r, x),

z(t,0) = z(t,1) = 0, t ∈ [0, τ]
z(s, x) = φ(s, x), s ∈ [−r,0], x ∈ [0,1],

(2.10)

has been studied by Weijiu Liu [10], Yanbin Tang and Ming Wang [14] and Yanbin Tang
[13] where the existence and uniqueness of global solutions has been proved.
The Benjamin-Bona-Mahony (BBM) equation with impulses, delay and nonlocal condi-
tions 

zt −azxxt = bzxx− z(t− r, x)zx(t− r, x)+ f (t,z(t− r, x)),
z(t,0) = z(t,1) = 0, t ∈ [0, τ]
z(s, x) +h(z(τ1+ s, x), . . . ,z(τq+ s, x)) = φ(s, x), x ∈ [0,1],
z(t+k , x) = z(t−k , x)+ Jk(tk,z(tk, x)), x ∈Ω,

(2.11)

where a ≥ 0 and b > 0 are constants, φ ∈ C([−r,0]; H1
0), is also analyzed as an applycation

of our results

3 Preliminaries

Throughout this paper, the operator A : D(A) ⊂ Z → Z is sectorial and −A is the infinites-
imal generator of a compact analytic semigroup of uniformly bounded linear operators
{T (t)}t≥0 ⊂ Z, with 0 ∈ ρ(A). Therefore, fractional power operators Aα, 0 < α ≤ 1, are
well defined. And since Aα is a closed operator, its domain D(Aα) is a Banach space en-
dowed with the graph norm

‖z‖α = ‖Aαz‖, z ∈ D(Aα).

This Banach space is denoted by Zα = D(Aα) and is dense in Z. Moreover, for 0 < β < α ≤ 1
the embedding Zα ↪→ Zβ is compact whenever the resolvent operator of A is compact.
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For this semigroup the following properties will be used:
There are constants, η > 0, M ≥ 1, Mα ≥ 0 and C1−α such that

‖T (t)‖ ≤ M , t ≥ 0, (3.1)

‖AαT (t)‖ ≤
Mα

tα
e−ηt, t > 0, (3.2)

AαT (t)z = T (t)Aαz, ∀z ∈ Zα, (3.3)

‖(T (t)− I)z‖ ≤
C1−α

α
tα‖Aαz‖, t > 0, ∀z ∈ Zα. (3.4)

For more properties of sectorial operators and strongly continuous semi-group is good see
the book by D. Henry [5] and the book by Jerome A. Goldstein [4].
The functions Jk ∈ C(Zα;Zα) and the function F : [0,∞)×Dα → Z is a smooth function
where the set Dα denotes the space

Dα = {φ : [−r,0]→ Zα : φ is continuous}

endowed with the norm
‖φ‖d = sup

−r≤s≤0
‖φ(s)‖α.

One natural space to work evolution equations with delay and impulses is the following
Banach space: With the notation J := [−r, τ], and J′ = [−r, τ]\{t1, t2, . . . , tp}, define PCα =

PC(J;Zα) := {z : J→ Zα : z ∈C(J′;Zα) : ∀ k,z(t+k ),z(t−k ) exist, and z(tk) = z(t−k )}

endowed with the norm
‖z‖ = sup

t∈[−r,τ]
‖z(t)‖α.

Also, we shall consider the following Banch spaces:

Zαq = Zα×Zα× · · ·Zα =
q∏

k=1

Zα,

endowed with the norm

‖y‖αq =
q∑

i=1

‖yi‖α, y = (y1,y2, . . . ,yq)T ∈ Zαq ,

and the norm in the space C([−r,0];Zαq ) is given by

‖y‖q = sup
t∈[−r,τ]

‖y(t)‖αq = sup
t∈[−r,τ]

 q∑
i=1

‖yi(t)‖α

 , ∀y ∈C([−r,0];Zαq ).

For a function y ∈ PC([−r, τ];Zα) and i= 1,2, . . . , p, we define the function ỹi ∈C([ti, ti+1];Zα)
such that

ỹi(t) =
{

y(t), for t ∈ (ti, ti+1],
y(t+i ), for t = ti.

(3.5)

For W ⊂ PC([−r, τ];Zα) and i = 1,2, . . . , p, we define W̃i = {ỹi : y ∈ W}, and following the
Arzela-Ascoli classical Theorem one gets a characterization of compactness in PC([−r, τ];Zα).
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L 3.1. A set W ⊂ PC([−r, τ];Zα) is relatively compact in PC([−r, τ];Zα) if, and only if,
each set W̃i, i= 1,2, . . . , p, with t0 = 0 and tp+1 = τ, is relatively compact in C([ti, ti+1];Zα).

T 3.1. ( G. L. Karakostas [7]) Let Z and Y be Banach spaces and D be a closed
convex subset of Z, and letB : D→ Y be a continuous operator such thatB(D) is a relatively
compact subset of Y , and

T : D×B(D)→ D (3.6)

a continuous operator such that the family {T (·,y) : y ∈ B(D)} is equicontractive. Then the
operator equation

T (z,B(z)) = z, (3.7)

admits a solution on D.

L 3.2. ([8],[12] generalized Gronwall-Bellman inequality) Let a nonnegative function
z ∈ PC([−r,∞);R) satisfy, for t ≥ t0, the inequality

z(t) ≤C+
∫ t

t0
v(s)z(s)ds+

∑
t0<tk<t

βku(tk),

where C ≥ 0, βk ≥ 0, v(s) > 0, and tk’s are the discontinuity points of first type for the
function z. Then we have,

z(t) ≤C
∏

t0<tk<t

(1+βk)e
∫ t

t0
v(s)ds

.

4 Mean Theorems

In this section devoted to prove the main results of this paper, which concerns with the
existence and uniqueness of mild solutions for problem (2.8).

D 4.1. A function z ∈ PCα is said to be a mild solution of problem (2.8) if it satisfies
the integral equation

z(t) = T (t){φ(0)− (g(zτ1 ,zτ2 , . . . ,zτq))(0)}+
∫ t

0
T (t− s)F(s,zs)ds (4.1)

+
∑

0<tk<t

T (t− tk)Jk(z(tk)), t ∈ [0, τ],

z(t) = φ(t)− (g(zτ1 ,zτ2 , . . . ,zτq))(t), t ∈ [−r,0].

Let us consider the following hypotheses:
(H1) There exist constants dk,Lg > 0, k = 1,2, . . . , p such that

i

LgqM < M
p∑

k=1

dk <
1
2
, ‖Jk(y)− Jk(z)‖α ≤ dk‖y− z‖α, y,z ∈ Zα,

for all t ∈ [−r,0]. And M is as in (3.2)
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ii We have g(0) = 0,

‖g(y)(t)−g(v)(t)‖α ≤ Lg

q∑
i=1

‖yi(t)− vi(t)‖α, ∀y,v ∈C([−r,0];Zαq ),

and for s1, s2 ∈ (0, τ] with s1 < s2 the following inequality

‖g(y)(s2)−g(y)(s2)‖α ≤ θ(|s2− s1|), ∀y ∈C([−r,0];Zαq ),

where θ : [0, τ]→ R+ is a continuous function such that θ(0) = 0.

iii For all t ∈ [−r,0], the mapping y ∈ C([−r,0];Zαq )→ (g(y))(t) ∈ Zα is completely con-
tinuous.

(H2) The function F : [0, τ]×Dα→ Z satisfies the following conditions.

‖F(t,φ1)−F(t,φ2)‖ ≤ K(‖φ1‖d,‖φ2‖d)‖φ1−φ2‖d, φ1,φ2 ∈ Dα.

‖F(t,φ)‖ ≤ Ψ(‖φ‖), φ ∈ Dα,

where K : R+×R+→ R+ and Ψ : R+→ R+ are continuous and nondecreasing functions of
their arguments.
(H3) Assume the following relation holds for ρ,τ:MLgq+M

p∑
k=1

dk

 (‖φ̃‖d +ρ)+
τ1−α

1−α
MαΨ(‖φ̃‖d +ρ) ≤ ρ,

where the function φ̃ is define as follows

φ̃(t) =
{

T (t)φ(0), t ∈ [0, τ]
φ(t), t ∈ [−r,0]

(4.2)

(H4) Assume the following relation holds for ρ,τ:

τ1−α

1−α
MαK(‖φ̃‖d +ρ,‖φ̃‖d +ρ)+M

p∑
k=1

dk < 1.

T 4.1. Suppose that (H1)-(H3) hold. Then problem (2.8) has a least one mild solu-
tion on [−r, τ].

Proof We shall transform problem (2.8) into a fixed point problem. Define the following
two operators:

T : PC([−r, τ];Zα)×PC([−r, τ];Zα)→ PC([−r, τ];Zα) and

B : PC([−r, τ];Zα)→ PC([−r, τ];Zα),
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defined by

T (z,y)(t) =
{

y(t)+
∑

0<tk<t T (t− tk)Jk(z(tk)), t ∈ [0, τ]
φ(t)− (g(zτ1 ,zτ2 , . . . ,zτq))(t), t ∈ [−r,0]

B(y)(t) =
{

T (t){φ(0)− (g(yτ1 ,yτ2 , . . . ,yτq))(0)}+
∫ t

0 T (t− s)F(s,ys)ds, t ∈ [0, τ]
φ(t), t ∈ [−r,0]

The problem of finding the solution of problem (2.8) is reduced to the problem of finding
solutions of the operator equation T (z,B(z)) = z. First we shall prove that the operator B is
compact. After that, we shall prove that family {T (·,y) : y ∈ B(D)} is equicontractive, where
D is the closed convex set given by (4.4). So, by applying Theorem 3.1 we get the result.
The proof of this Theorem will be given by steps:
Step 1: B is continuous.
In fact, using the hypothesis H1), if we consider z,y ∈ PC([−r, τ];Zα), we have following
estimate

‖B(z)(t)−B(y)(t)‖α ≤ LgqM‖z− y‖+
∫ t

0
‖AαT (t− s)(F(s,zs)−F(s,ys))‖ds

≤ LgqM‖z− y‖+
∫ t

0

Mα

(t− s)α
K(‖zs‖d,‖ys‖d)‖zs− ys‖dds

≤ LgqM‖z− y‖+Mα
τ1−α

1−α
K(‖z‖,‖y‖)‖z− y‖.

Therefore,

‖B(z)−B(y)‖ ≤
(
LgqM+Mα

τ1−α

1−α
K(‖z‖,‖y‖)

)
‖z− y‖.

So, B is continuous. Moreover, B is locally Lipschitz.
Step 2: B maps bounded sets into bounded sets in PC([−r, τ];Zα).
B maps bounded sets of PCα into bounded set of PCα. It is enough to show that for any
R > 0 there exists l > 0 such that for each y ∈ BR = {z ∈ PCα : ‖z‖ ≤ R} we have that ‖By‖ ≤ l.
In fact, choose y ∈ BR, then the following estimate holds.

‖B(y)(t)‖α ≤ ‖AαT (t){φ(0)− (g(yτ1 ,yτ2 , . . . ,yτq))(0)}‖+
∫ t

0
‖AαF(s,ys))‖ds

≤ M{‖φ(0)‖α+Lgq‖y‖}+Mα
τ1−α

1−α
Ψ(‖y||)

≤ M{‖φ(0)‖α+LgqR}+Mα
τ1−α

1−α
Ψ(R) = l.

Step 3: B maps bounded sets into equicontinuous sets of PC([−r, τ];Zα).
In fact, consider BR as in the foregoing Claim. Then we shall prove that the family of
functions B(BR) is equicontinuous on the interval [−r, τ]. Clearly, it is sufficient to prove
this on (0, τ]. Let 0 < s1 < s2 < τ and consider the following estimate for y ∈ Bq

‖Aα[T (s2)φ(0)−T (s1)φ(0)]‖ ≤ ‖T (s2)−T (s1)‖‖φ(0)‖α,
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and the following bound:

‖T (s2)(g(yτ1 ,yτ2 , . . . ,yτq))(s2)−T (s1)(g(yτ1 ,yτ2 , . . . ,yτq))(s1)‖α
≤ ‖T (s2)−T (s1)‖‖(g(yτ1 ,yτ2 , . . . ,yτq))(s2)‖α
+ ‖T (s1)‖‖(g(yτ1 ,yτ2 , . . . ,yτq))(s2)− (g(yτ1 ,yτ2 , . . . ,yτq))(s1)‖α
≤ ‖T (s2)−T (s1)‖LgqR+Mθ(s2− s1).

Now, using these two estimates we get the following bound:
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‖B(y)(s2)−B(y)(s1)‖α ≤ ‖T (s2)−T (s1)‖[LgqR+ ‖φ(0)‖α]+Mθ(s2− s1)

+

∫ s1−ε

0
‖(AαT (s2− s)−AαT (s1− s))F(s,ys)‖ds

+

∫ s1

s1−ε
‖(AαT (s2− s)−AαT (s1− s))F(s,ys)‖ds

+

∫ s2

s1

‖AαT (s2− s)F(s,ys)‖ds

≤ ‖T (s2)−T (s1)‖[LgqR+ ‖φ(0)‖α]+Mθ(s2− s1)

+ ‖T (s2− s1+ ε)−T (ε)‖
∫ s1−ε

0
‖AαT (s1− s− ε)F(s,ys)‖ds

+
MαΨ(‖y||)

1−α
{(s2− s1+ ε)1−α− (s2− s1)1−α+ (ε)1−α}

+
MαΨ(‖y||)

1−α
(s2− s1)1−α

≤ ‖T (s2)−T (s1)‖[LgqR+ ‖φ(0)‖α]+Mθ(s2− s1)

+ ‖T (s2− s1+ ε)−T (ε)‖
MαΨ(R)

1−α
(s1− ε)1−α

+
MαΨ(R)

1−α
{(s2− s1+ ε)1−α− (s2− s1)1−α+ ε1−α}

+
MαΨ(R)

1−α
(s2− s1)1−α.

Since T (t) is a compact operator for t > 0, then {T (t)}t≥0 is a uniformly continuous semi-
group, which implies that ‖B(y)(s2)−B(y)(s1)‖α goes to zero uniformly on y as s2− s1→ 0,
and therefore B(Bq) is equicontinuous.

Step4: The set W = {B(y) : y ∈ BR} is relatively compact in PC([−r, τ];Zα). To prove
that, it is enough to prove that the corresponding set W̃i is relatively compact in C([ti, ti+1];Zα)
for i = 0,1,2, . . . , p with t0 = 0 and tp+1 = τ. According with Arzela-Ascoli Theorem in in-
finite dimensional Banach spaces it is sufficient to prove that W̃i(t) = { ˜B(y)i(t) : y ∈ Bq} is
relatively compact in Zα for each t ∈ [ti, ti+1].
In fact, for the case t ∈ [−r,0] we have that

W(t) = {φ(t)− (g(yτ1 ,yτ2 , . . . ,yτq))(t) : y ∈ BR},

which is relatively compact from the hypothesis H1-iii).

Now, suppose t ∈ [ti, ti+1], with t > 0, then

W̃i(t) = T (t)φ(0)+ Ṽi(t),

where

Ṽi(t) = {vi(t) = −T (t)(g(yτ1 ,yτ2 , . . . ,yτq))(0)+
∫ t

0
T (t− s)F(s, ỹi,s)ds : y ∈ BR}.
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It is sufficient to prove that Ṽi(t) is relatively compact in Zα. In fact, consider ε, with
0 < ε < t, and the set

Ṽi,ε(t) = {vi,ε(t) = −T (t)(g(yτ1 ,yτ2 , . . . ,yτq))(0)+
∫ t−ε

0
T (t− s)F(s, ỹi,s)ds : y ∈ BR}

= {vi,ε(t) = −T (t)(g(yτ1 ,yτ2 , . . . ,yτq))(0)+T (ε)
∫ t−ε

0
T (t− ε − s)F(s, ỹi,s)ds : y ∈ BR}.

From H1-iii) and the compactness of T (ε) for ε > 0, we get that Ṽi,ε(t) is relatively compact
in Zα for any ε, with 0 < ε < t.
Since

‖vi(t)− vi,ε(t)‖α ≤

∫ t

t−ε
‖AαT (t− s)F(s, ỹis))‖ds

≤

∫ t

t−ε

Mα

(t− s)α
‖F(s, ỹis)‖ds

≤
MαΨ(R)

1−α
ε1−α.

Hence, we have a sequence of relatively compact sets arbitrarily close to vi(t), which im-
plies that vi(t) is relatively compact in Zα.

Step 5: The family {T (·,y) : y ∈ B(D)} is equicontractive and the conditions of Theorem
3.1 are satisfied for the following closed and convex set

D = D(ρ,τ,φ) = {y ∈ PC([−r, τ];Zα) : ‖y− φ̃‖ ≤ ρ}, (4.3)

where function φ̃ is define as follows

φ̃(t) =
{

T (t)φ(0), t ∈ [0, τ]
φ(t), t ∈ [−r,0]

In fact, for z, x ∈ PC([−r, τ];Zα) and t ∈ [0, τ] we have the following estimate

‖T (z,B(y))(t)−T (x,B(y))(t)‖α ≤
∑

0<tk<t

‖AαT (t− tk)(Jk(z(tk))− Jk(x(tk)))‖

≤ M
p∑

k=1

‖Aα(Jk(z(tk))− Jk(x(tk)))‖

≤ M
p∑

k=1

dk‖z(tk))− x(tk)))‖α

≤ M
p∑

k=1

dk‖(z− x‖.

On the other hand, for t ∈ [−r,0] we have

‖T (z,B(y))(t)−T (x,B(y))(t)‖α ≤ ‖(g(zτ1 ,zτ2 , . . . ,zτq))(t)− (g(xτ1 , xτ2 , . . . , xτq))(t)‖α
≤ Lgq‖(z− x‖.
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Since LgqM ≤ M
∑p

k=1 dk <
1
2 , then

‖T (z,B(y))−T (x,B(y))‖ ≤ (M
p∑

k=1

dk)‖(z− x‖,

is a contraction independently of y ∈ B(D).
Finally, we shall prove that

T (·,B)D(ρ,τ,φ) ⊂ D(ρ,τ,φ).

In fact, let us consider z ∈ D(ρ,τ,φ) and t ∈ [0, τ]. Then T (z,B(z))(t) =
T (t)[φ(0)− (g(zτ1 ,zτ2 , . . . ,zτq))(0)]+

∫ t
0 T (t− s)F(s,zs)ds+

∑
0<tk<t T (t− tk)Jk(z(tk).

On the other hand, for t ∈ [−r,0], we have
T (z,B(z))(t) = φ(t)− (g(zτ1 ,zτ2 , . . . ,zτq))(t).
Therefore, for t ∈ [0, τ] we have

‖T (z,B(z))(t)− φ̃(t)‖α ≤ M‖(g(zτ1 ,zτ2 , . . . ,zτq))(0)‖α+

+

∫ t

0
‖AαT (t− s)F(s,zs)‖ds+

∑
0<tk<t

‖AαT (t− tk)Jk(z(tk))‖

≤ MLgq‖z‖+
∫ t

0

Mα

(t− s)α
‖F(s,zs)‖+M

p∑
k=1

‖Aα(Jk(z(tk))− Jk(0))‖ds

≤ MLgq(‖φ‖d +ρ)+
τ1−α

1−α
MαΨ(‖z||)+M

p∑
k=1

dk‖z(tk))‖α

≤ MLgq(‖φ‖d +ρ)+
τ1−α

1−α
MαΨ(‖φ‖d +ρ)+ (M

p∑
k=1

dk)(‖φ‖d +ρ)

=

MLgq+M
p∑

k=1

dk

 (‖φ̃‖d +ρ)+
τ1−α

1−α
MαΨ(‖φ̃‖d +ρ) ≤ ρ.

On the other hand, for t ∈ [−r,0] we have

‖T (z,B(z))(t)− φ̃(t)‖α = ‖(g(zτ1 ,zτ2 , . . . ,zτq))(t)‖α
≤ Lgq‖z‖ ≤ MLgq‖z‖ ≤ MLgq(‖φ‖d +ρ) < ρ.

From the hypothesis (H3) we get that T (·,B)D(ρ,τ,φ)⊂D(ρ,τ,φ). Hence, as a consequence
of Theorem 3.1 it follows that the equation T (z,B(z)) = z, has a solution, which is a mild
solution of problem (2.8).

T 4.2. In addition to the conditions of Theorem 4.1, suppose that (H4) holds. Then
problem (2.8) has only one mild solution on [−r, τ].
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Proof . Let z1 and z2 be two solutions of problem (2.8). Then consider the following
estimate:

‖z1(t)− z2(t)‖α ≤ ‖(g(z1,τ1 ,z1,τ2 , . . . ,z1,τq))(0)− (g(z2,τ1 ,z2,τ2 , . . . ,z2,τq))(0)‖α∫ t

0
‖AαT (t− s)(F(s,z1s)−F(s,z2s))‖ds

+
∑

0<tk<t

‖AαT (t− tk)(Jk(z1(tk))− Jk(z2(tk)))‖

≤

MLgq+
Mατ

1−α

1−α
K(‖φ̃‖d +ρ),‖φ̃‖d +ρ)+M

p∑
k=1

dk

‖(z1− z2‖.

From the hypotheses (H4) we know that

MLgq+
Mατ

1−α

1−α
K(‖φ‖d +ρ),‖φ‖d +ρ)+M

p∑
k=1

dk < 1,

which implies that z1 = z2.

Now, we shall consider the following subset D̃α of Zα:

D̃α = {y ∈ Zα : ‖y‖α ≤ R}, with R = ‖φ̃‖+ρ. (4.4)

Therefore, for all z ∈ D we have z(t) ∈ D̃α for −r ≤ t ≤ τ.

T 4.3. Suppose that the conditions of Theorem 4.2 hold. If z is a solution of problem
(2.8) on [−r, s1) and s1 is maximal, so there is no solution of (2.8) on [−r, s2) if s2 > s1, then
either s1 = +∞ or else there exists a sequence τn→ s1 as n→∞ such that z(τn)→ ∂D̃α.

Proof . Suppose that s1 <∞ and z(t) doesn’t enter in a neighborhood N of D̃α for 0 < s2 ≤

t < s1. Let us take N = D̃α\B where B is a closed subset of D̃α, and z(t) ∈ B for 0< s2 ≤ t < s1.
We shall prove the existence of z1 ∈ B such that z(t)→ z1 in Zα as t→ s−1 , which implies the
solution may be extended beyond time s1 using Theorem 4.2, contradicting the maximality
of s1.
In fact, if we consider 0 < tp < s2 ≤ l < t < s1, then for ε > 0 small enough we have that
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‖z(t)− z(l)‖α ≤ ‖T (t)−T (l)‖‖φ(0)‖α+ ‖T (t)−T (l)‖‖g(zτ1 ,zτ2 , . . . ,zτq)(0)‖α

+

∫ l−ε

0
‖(AαT (t− s)−AαT (l− s))F(s,zs)‖ds

+

∫ l

l−ε
‖(AαT (t− s)−AαT (l− s))F(s,zs)‖ds

+

∫ t

l
‖AαT (t− s)F(s,zs)‖ds

+ ‖T (t− l+ ε)−T (ε)‖
p∑

k=1

‖T (l− tk − ε)AαJk(z(tk)‖

≤ ‖T (t)−T (l)‖[‖φ(0)‖α+Lgq]R

+ ‖T (t− l+ ε)−T (ε)‖
∫ l−ε

0
‖AαT (l− s− ε)F(s,zs)‖ds

+
MαΨ(R)

1−α
{(t− l+ ε)1−α− (t− l)1−α+ (ε)1−α}

+
MαΨ(R)

1−α
(t− l)1−α+M‖T (t− l+ ε)−T (ε)‖

p∑
k=1

‖Jk(z(tk)‖α

Since T (t) is a compact operator for t > 0, then {T (t)}t≥0 is a uniformly continuous semi-
group, which implies that ‖z(t)−z(l)‖α goes to zero as l< t→ s1. Therefore, limt→s1 z(t)= z1
exists in Zα, and since B is closed, z1 belongs to B. This completes the proof.

C 4.1. In the conditions of Theorem 4.2, if the second part of hypothesis (H2) is
changed to

‖F(t,φ)‖ ≤ h(t)(1+ ‖φ(0)‖α), φ ∈ Dα,

where h(·) is a continuous function on [−r,∞), then a unique solution of problem (2.8) exists
on [−r,∞).
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Proof

‖z(t)‖α ≤ M[‖φ(0)‖α+ ‖g(zτ1 ,zτ2 , . . . ,zτq)(0)‖α]+
∫ t

0
‖AαT (t− s)F(s,zs)‖ds

+
∑

0<tk<t

‖AαT (t− tk)Jk(z(tk))‖ ≤ M[‖φ(0)‖α+Lg‖z̃(0)‖αq ]

+

∫ t

0

Mα

(t− s)α
e−η(t−s)‖F(s,zs)‖+M

p∑
k=1

‖Aα(Jk(z(tk))− Jk(0))‖

≤ M[‖φ(0)‖α+Lg‖z̃(0)‖αq ]+
∫ t

0

Mα

(t− s)α
e−η(t−s)(1+ ‖z(s)‖α)

+ M
p∑

k=1

dk‖z(tk))‖α ≤ M[‖φ(0)‖α+Lg‖z̃(0)‖αq ]

+
Γ(1−α)
η1−α Mα+

∫ t

0

Mα

(t− s)α
e−η(t−s)‖z(s)‖αds

+ M
p∑

k=1

dk‖z(tk))‖α.

Then applying Lemma 3.2 we get the following estimate

‖z(t)‖α ≤
(
M[‖φ(0)‖α+Lg‖z̃(0)‖αq ]+

Γ(1−α)
η1−α Mα

) ∏
t0<tk<t

(1+Mdk)e
Γ(1−α)
η1−α Mα

,

z̃ = (zτ1 ,zτ2 , . . . ,zτq)T . This implies that ‖z(t)‖α remains bounded as t → s1 and applying
Theorem 4.3 we get the result.
T 4.4. Under the conditions of Theorem 4.1, if z is a solution of problem (2.8) on
[−r,∞) with ‖z(t)‖α bounded as t→∞, then {z(t,φ)}t>0 is a compact set in Zα

Proof . Observe that for 0 < α < β < 1, we have the following estimate for t > tp

‖Aβz(t)‖ ≤ ‖Aβ−αT (t)Aα[φ(0)+g(zτ1 ,zτ2 , . . . ,zτq)(0)]‖

+

∫ t

0
‖AβT (t− s)F(s,zs)‖ds+

∑
0<tk<t

‖Aβ−αT (t− tk)AαJk(z(tk))‖

≤
Mβ

tβ−α
[‖φ(0)‖α+Lg‖z̃(0)‖αq ]+

∫ t

0

Mβ

(t− s)β
‖F(s,zs)‖ds

+

p∑
k=1

Mβ

(t− tk)β−α
‖Aα(Jk(z(tk))− Jk(0))‖

≤
Mβ

tβ−α
[‖φ(0)‖α+Lg‖z̃(0)‖αq ]

+
t1−β

1−β
MβΨ(‖z||)+

Mβ

(t− tp)β−α

p∑
k=1

dk‖z(tk))‖α.

Which implies that {Aβz(t) : t ∈ [−r,∞)} is bounded in Z. On the other hand, we know that
A−β : Z → Zα is a compact operator since the imbedding Zβ ↪→ Zα is compact.Therefore,
{z(t) : t ∈ [−r,∞)} is compact in Zα
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5 Application to The Burgers Equation

In this section we shall apply our previous results to the Burgers equation with impulses,
delay and nonlocal conditions (2.9). To this end, we make the following hypotheses:
The nonlinear functions f , Jk : R → R are smooth enough and h : Rq → R is a globally
Lipschitz function, with h(0) = 0, and there exist constants L > 0, Lk such that.

| f (t,z)− f (t,w)| ≤ L|z−w|, t ∈ [0, τ],z,w ∈ R. (5.1)

|Jk(z)− Jk(w)| ≤ Lk|z−w|, t ∈ [0, τ],z,w ∈ R,k = 1,2, . . . , p. (5.2)

| f (t,z,u)| ≤ a(t)|z|+b(t), t ∈ [0, τ] and z,u ∈ R, a(·),b(·) ∈ L∞[0, τ]. (5.3)

We shall denote Ω = [0,1] and by C the space of continuous functions:

C = {φ : [−r,0]→ H1
0(Ω) = Z1/2 : φ is continuous},

endowed with the norm

‖φ‖ = sup
−r≤s≤0

‖φ(s)‖Z1/2 , and φ(s)(x) = φ(s, x), x ∈Ω = [0,1].

Now, we choose a Hilbert space where system (2.9) can be written as an abstract differential
equation(See [2]); to this end, we consider the following notations:
Let us consider the Hilbert space Z = L2(Ω) and 0 < λ1 < λ2 < ... < λ j −→∞ the eigenval-
ues of operator Aφ = −νφxx. Then we have the following well known properties (i) There
exists a complete orthonormal set {φ j} of eigenvectors of A. (ii) For all z ∈ D(A) we have

Az =
∞∑
j=1

λ j < ξ,φ j > φ j =

∞∑
j=1

λ jE jz, (5.4)

where < ·, · > is the inner product in Z and

Enz =< z,φ j > φ j. (5.5)

So, {E j} is a family of complete orthogonal projections in Z and z =
∑∞

j=1 E jz, z ∈ Z. (iii)
−A generates an analytic semigroup {T (t)} given by

T (t)z =
∞∑
j=1

e−λ jtE jz and ‖T (t)‖ ≤ e−λ1t, t ≥ 0. (5.6)

Consequently, systems (2.9) can be written as an abstract functional differential equa-
tions with memory in Z:

z′ = −Az+ f e(t,zt(−r)), z ∈ Z t ≥ 0,
z(s)+ (g(zτ1 ,zτ2 , . . . ,zτq))(s) = φ(s), s ∈ [−r,0],
z(t+k ) = z(t−k )+ Je

k(z(tk)), k = 1,2,3, . . . , p,
(5.7)

where zt ∈ C([−r,0];Z1/2) and is defined by zt(s) = z(t + s),−r ≤ s ≤ 0 and the functions
Je

k : Z → Z, f e : [0, τ]×C → Z and g : C([−r,0];Z1/2
q ) → C([−r,0];Z1/2) are defined for

k = 1,2, . . . , p by
Je

k(z)(x) = Jk(z(x)), ∀x ∈Ω,
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f e(t,φ)(x) = φ(−r, x)φx(−r, x)+ f (t,φ(−r, x)) ∀x ∈Ω,

and
g(z)(s)(x) = h(z1(s, x),z2(s, x), . . . ,zq(s, x)), ∀x ∈Ω,−r ≤ s ≤ 0.

P 5.1. The function f e is locally Lipschitz in the second variable. Moreover, the
following estimate holds:

‖ f e(t,φ1)− f e(t,φ2)‖ ≤ {‖φ1−φ2‖C+L}‖φ1−φ2‖C. (5.8)

‖ f e(t,φ)‖ ≤ ‖φ(−r)‖2+4‖a‖L∞‖φ(−r)‖+4‖b‖L∞
√
µ(Ω) (5.9)

≤ ‖φ‖2C+4‖a‖L∞‖φ‖C+4‖b‖L∞
√
µ(Ω)

Proof Clearly that the following estimate holds:

‖ f e(t,φ)− f e(t,ψ)‖Z ≤ (5.10)

‖φ(−r)φx(−r)−ψ(−r)ψx(−r)‖Z +L‖φ(−r)−ψ(−r)‖Z

On the other hand

‖φ(−r)φx(−r)−ψ(−r)ψx(−r)‖Z ≤

‖φ(−r)[φx(−r)−ψx(−r)]‖Z + ‖[φ(−r)−ψ(−r)]ψx(−r)‖Z ≤

‖φ(−r)‖L∞‖[φx(−r)−ψx(−r)]‖Z + ‖[φ(−r)−ψ(−r)]‖L∞‖ψx(−r)‖Z

Then, for all z ∈ Z1 = H1
0(Ω), by the Sobolev Theorem and Poincare Inequality we have

that:
‖z‖2L∞ ≤ 2‖z‖Z‖zx‖Z ≤ ‖z‖2Z + ‖zx‖

2
Z = ‖z‖

2
Z1/2

and

‖φ(−r)φx(−r)−ψ(−r)ψx(−r)‖Z ≤

‖φ(−r)‖Z1/2‖[φ(−r)−ψ(−r)]‖Z1/2 + ‖[φ(−r)−ψ(−r)]‖Z1‖ψ(−r)‖Z1/2 .

Using this estimate and (5.10) we get the result.

In this case the functions K : R+×R+→ R+ and Ψ : R+→ R+ are given by

K(v,w) = v+w+L and Ψ(v) = v2+4‖a‖∞v+4‖b‖∞,

since
√
µ(Ω) = 1. Therefore, we have the following result for the impulsive Burgers Equa-

tion with delay.

T 5.1. For dk small enough there exist τ > 0 such that the system (2.9) has only one
mild solution define on [−r, τ].
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6 Application to The Benjamin-Bona-Mahony (BBM) equation

In this section we shall apply our previous results to The Benjamin-Bona-Mahony (BBM)
equation with impulses, delay and nonlocal conditions (2.11). To this end, we shall consider
the hypotheses corresponding to the Burgers equation:

Consequently, systems (2.11) can be written as an abstract functional differential equa-
tions with impulses and nonlocal conditions in Z:

z′+aAz′+bAz = f e(t,zt(−r)), z ∈ Z t > 0, t , tk,
z(s)+ (g(zτ1 ,zτ2 , . . . ,zτq))(s) = φ(s), s ∈ [−r,0],
z(t+k ) = z(t−k )+ Je

k(tk,z(tk)), k = 1,2,3, . . . , p,
(6.1)

where the functions Je
k : [0, τ]×Z→Z, f e : [0, τ]×C→Z and g : C([−r,0];Z1/2

q )→C([−r,0];Z1/2)
are defined for k = 1,2, . . . , p by

Je
k(t,z)(x) = Jk(t,z(x)), ∀x ∈Ω,

f e(t,φ)(x) = φ(−r, x)φx(−r, x)+ f (t,φ(−r, x)) ∀x ∈Ω.

and
g(z)(s)(x) = h(z1(s, x),z2(s, x), . . . ,zq(s, x)), ∀x ∈Ω,−r ≤ s ≤ 0.

Since (I+aA)= a(A−(−1
a )I) and −1

a ∈ ρ(A)(ρ(A) is the resolvent set of A), then the operator:

I+aA : D(A)→ Z (6.2)

is invertible with bounded inverse

(I+aA)−1 : Z→ D(A). (6.3)

Therefore, the systems (6.1) can be written as follows, for z ∈ Z, t ∈ (0, τ]
z′+b(I+aA)−1Az = +(I+aA)−1 f e(t,z(t− r)), t > 0, t , tk
z(s)+ (g(zτ1 ,zτ2 , . . . ,zτq))(s) = φ(s), s ∈ [−r,0],
z(t+k ) = z(t−k )+ Ie

k(tk,z(tk)), k = 1,2,3, . . . , p.
(6.4)

(I+aA) and (I+aA)−1 can be written as follows:

(I+aA)z =
∞∑
j=1

(1+aλ j)E jz (6.5)

(I+aA)−1z =
∞∑
j=1

1
1+aλ j

E jz. (6.6)

B = (I+aA)−1 and F(t,φ,u) = (I+aA)−1 f e(t,φ), systems (6.4) can be written:
z′+bBAz = +F(t,zt(−r)), t > 0, t , tk
z(s)+ (g(zτ1 ,zτ2 , . . . ,zτq))(s) = φ(s), s ∈ [−r,0],
z(t+k ) = z(t−k )+ Ie

k(tk,z(tk)), k = 1,2,3, . . . , p.
(6.7)
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and the functions F defined above satisfy:

‖F(t,φ1)−F(t,φ2)‖ ≤ K{‖φ1−φ2‖C+L}‖φ1−φ2‖C,

‖F(t,φ)‖ ≤ K‖φ‖2C+4K‖a‖L∞‖φ‖C+4K‖b‖L∞
√
µ(Ω).

P 6.1. The operators bBA and T (t) = e−bBAt are given by the following expres-
sions

bBAz =
∞∑
j=1

bλ j

1+aλ j
E jz (6.8)

T (t)z = e−bBAtz =
∞∑
j=1

e
−bλ j
1+aλ j

t
E jz. (6.9)

‖ T (t) ‖≤ e−βt, t ≥ 0, (6.10)

β = inf
j≥1

{
bλ j

1+aλ j

}
=

bλ1

1+aλ1
. (6.11)

IfA = bBA, systems (6.7) can be written as
z′ = −Az+F(t,zt), t ≥ 0, t , tk
z(s)+ (g(zτ1 ,zτ2 , . . . ,zτq))(s) = φ(s), s ∈ [−r,0],
z(t+k ) = z(t−k )+ Ie

k(tk,z(tk)), k = 1,2,3, . . . , p.
(6.12)

T 6.1. For dk small enough there exist τ > 0 such that the system (6.12) has only
one mild solution define on [−r, τ].

7 Final Remark

We are planing to follow Dan Henry’s book on Geometric Theory of Semilinear Porabolic
Equatios ([5]) in order to investigate the following topics:
1. Existence of bounded solutions for impulsive evolution equations with delay and nonlo-
cal conditions.
2. Dynamical systems and Liapunov stability for impulsive evolution equations with delay
and nonlocal conditions.
3. Neighborhood of an equilibrium point for impulsive evolution equations with delay and
nonlocal conditions.
4. Stability and instability by linear approximation for impulsive evolution equations with
delay and nonlocal conditions.
5. Traveling waves for impulsive evolution equations with delay and nonlocal conditions.
6. Exponential dichotomy for impulsive evolution equations with delay and nonlocal con-
ditions.
7. Existence of attractors for impulsive evolution equations with delay and nonlocal condi-
tions.
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