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Abstract

In this paper, we prove the existence of (ω,c)-periodic solutions for a nonhomoge-
neous linear impulsive system by constructing Green functions and adjoint systems,
respectively. In addition, we study the existence and uniqueness of (ω,c)-periodic so-
lutions for a semilinear impulsive system via fixed point approach. Two examples are
provided to illustrate our results.
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1 Introduction

Periodic motion is a very important and special phenomenon not only in natural science, but
also in social science. Impulsive periodic systems serve as the models to study the dynamics
of periodic evolution processes that are subject to sudden changes in their states. There are
many interesting existence results for periodic solutions for impulsive periodic system on
finite and infinite dimensional spaces in the past decades (see for example [3, 4, 5, 6, 7]).

Alvarez et al. [2] introduced the concept of (ω,c)-periodic functions by observing the
property x(·+ω) = cx(·), c ∈ C of any solution x(t) of the well-known Mathieu’s equations
x′′+ax = 2qcos(2t)x, which is a Hill’s equation with only one harmonic mode. Obviously,
(ω,c)-periodic functions reduce to the standard ω-periodic and ω-antiperiodic functions
when c = 1 and c = −1, respectively.

Very recently, Agaoglou et al. [1] adopted the concept of (ω,c)-periodic functions to
study the existence and uniqueness of (ω,c)-periodic solutions of semilinear evolution equa-
tions of the type x′ = Ax+ f (t, x) in complex Banach spaces, where A is not necessary be a
bounded linear operator and f is a (ω,c)-periodic function. Motivated by [1, 2], we study
(ω,c)-periodic solutions of the following impulsive differential systems{

ẋ = Ax+ f (t, x), t , τi, i ∈ N = {1,2, · · · },
4x |t=τi= x(τ+i )− x(τ−i ) = Bx(τ−i )+ ci,

(1.1)

where A,B are n×n matrices, f ∈C(R×Rn,Rn) and τi < τi+1, i ∈N. The symbols x(τ+i ) and
x(τ−i ) represent the right and left limits of x(t) at t = τi. In addition, we set x(τ−i ) = x(τi) and
i(t, s) denotes the number of impulsive points τi ∈ (s, t). Concerning on (1.1), we impose the
following assumptions:

(H1) A,B are n×n commutative matrices, i.e., AB = BA.

(H2) Constant vectors ci and the time sequence {τi}i∈N are such that ci+m = ci, τi+m = τi+ω

for some fixed m, i ∈ N.

(H3) c < σ(eAω(I +B)m), where σ(D) denotes the spectrum of a matrix D and I is the unit
matrix.

(H4) c ∈ σ(eAω(I+B)m).

(H5) For all t ∈ R and x ∈ Rn, it holds f (t+ω,cx) = c f (t, x).

(H6) There is a constant L > 0 such that ‖ f (t, x1)− f (t, x2)‖ ≤ L‖x1 − x2‖ for all t ∈ R and
x1, x2 ∈ R

n.

(H7) There are constants µ,ν ≥ 0 such that ‖ f (t, x)‖ ≤ µ+ ν‖x‖ for any t ∈ R and x ∈ Rn.

(H8) There are constants K ≥ 1 and η ∈ R such that ‖eAt‖ ≤ Keηt for any t ≥ 0.

We first find a sufficient and necessity condition to guarantee the homogeneous linear
problem of (1.1) may have a (ω,c)-periodic solution. Secondly, we study the existence of
(ω,c)-periodic solutions of nonhomogeneous linear problems of (1.1) by assuming a non-
resonance condition via constructing a Green function of the corresponding boundary value
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problem. We also study the existence of (ω,c)-periodic solutions by assuming a resonance
condition via constructing adjoint impulsive systems. Further, we transfer the existence
of (ω,c)-periodic solutions into seeking a fixed point of a Fredholm integral equation with
impulsive sources via Banach and Schauder fixed point theorems.

The rest of this paper is organized as follows. In Section 2, we present some necessary
notations, definition and lemmas. In Section 3, we give two conditions for the existence
of (ω,c)-periodic solutions of nonhomogeneous linear impulsive problem (3.1) and give
two necessary estimations on G(·, ·) defined in (3.3). In Section 4, we prove the existence
and uniqueness of (ω,c)-periodic solutions for semilinear impulsive problem via fixed point
theorems. Two examples are given in Section 5 to demonstrate the application of our main
results.

2 Preliminaries

Denote by ‖x‖ a norm on Rn. We introduce a Banach space PC(R,Rn) = {x : R→ Rn : x ∈
C((ti, ti+1],Rn), and x(t−i ) = x(ti), x(t+i ) exist for any i ∈ N} endowed with the norm ‖x‖ =
supt∈R ‖x(t)‖.

The following definitions and lemmas will be used in this paper.

Definition 2.1. ([2]) Let c ∈R\{0} andω> 0. A function f :R→Rn is called (ω,c)-periodic
if f (t+ω) = c f (t) for all t ∈ R.

Set Φω,c := {x : x ∈ PC(R,Rn) and cx(·) = x(·+ω)}, i.e. Φω,c denotes the set of all piece-
wise continuous and (ω,c)-periodic functions.

Lemma 2.2. (see [1, Lemma 2.2]) x ∈ Φω,c if and only if it holds

x(ω) = cx(0). (2.1)

Lemma 2.3. Assuming that (H1) and (H2) hold. The following homogeneous linear impul-
sive differential equation {

ẋ = Ax, t , τi, i ∈ N,
4x |t=τi= Bx,

(2.2)

has a solution x ∈ Φω,c if and only if

(cI− eAω(I+B)m)x0 = 0,

where x(0) = x0.

Proof. For any t0 ∈ [0,∞)\ξ, ξ = {τi}i∈N, the solution x ∈ PC(R,Rn) of (2.2) with x(t0) = x0
can be formulated by [7, (2.27)]

x(t) = eA(t−t0)(I+B)i(t0,t)x0, t ≥ t0.

Then for t0 = 0 and t ∈ [0,∞) \ ξ, we have

x(t+ω) = cx(t) ⇐⇒ eA(t+ω)(I+B)i(0,t+ω)x0 = ceAt(I+B)i(0,t)x0

⇐⇒ eAω(I+B)i(t,t+ω)x0 = cx0

⇐⇒ (cI− eAω(I+B)m)x0 = 0.

Since x(τi) = x(τ−i ), we get x(τi+ω) = cx(τi). The proof is finished. �
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3 Nonhomogeneous linear impulsive problems

In the section, we consider (ω,c)-periodic solutions of nonhomogeneous linear problems

{
ẋ = Ax+g(t), t , τi, i ∈ N,
4x |t=τi= Bx+ ci,

(3.1)

where g ∈C(R,Rn) and g is (ω,c)-periodic. In order to study the existence of (ω,c)-periodic
solutions of (3.1), we consider the following two cases:

3.1 Case 1: c < σ(eAω(I+B)m).

Lemma 3.1. Assuming that (H1)− (H3) hold, the solution x ∈ Ω := PC([0,ω],Rn) of (3.1)
satisfying (2.1) is given by

x(t) =
∫ ω

0
G(t, τ)g(τ)dτ+

m∑
i=1

G(t, τi)ci, (3.2)

where G(·, ·) is a Green function defined by

G(t, τ) =
{

ceA(t−τ)(I+B)i(τ,t)(cI− eAω(I+B)m)−1, 0 < τ < t,
eA(t+ω−τ)(I+B)i(0,t)+i(τ,ω)(cI− eAω(I+B)m)−1, t ≤ τ < ω.

(3.3)

Proof. The solution x ∈Ω of (3.1) with x(0) = x0 on the interval [0,ω] is formulated by (see
[7, (2.21)])

x(t) = eAt(I+B)i(0,t)x0+

∫ t

0
eA(t−τ)(I+B)i(τ,t)g(τ)dτ+

∑
0<τi<t

eA(t−τi)(I+B)i(τi,t)ci. (3.4)

Then

x(ω) = eAω(I+B)mx0+

∫ ω

0
eA(ω−τ)(I+B)i(τ,ω)g(τ)dτ+

m∑
i=1

eA(ω−τi)(I+B)i(τi,ω)ci = cx0,

which is equivalent to

x0 = (cI− eAω(I+B)m)−1
(∫ ω

0
eA(ω−τ)(I+B)i(τ,ω)g(τ)dτ

+

m∑
i=1

eA(ω−τi)(I+B)i(τi,ω)ci

)
,
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where (H3) is used here. Therefore we arrive at a formula

x(t) = eAt(I+B)i(0,t)(cI− eAω(I+B)m)−1
(∫ ω

0
eA(ω−τ)(I+B)i(τ,ω)g(τ)dτ

+

m∑
i=1

eA(ω−τi)(I+B)i(τi,ω)ci

)
+

∫ t

0
eA(t−τ)(I+B)i(τ,t)g(τ)dτ

+
∑

0<τi<t

eA(t−τi)(I+B)i(τi,t)ci

=

∫ t

0
eA(t−τ)(I+B)i(τ,t)

(
(I+B)m(cI− eAω(I+B)m)−1eAω+ I

)
g(τ)dτ

+

∫ ω

t
eAt(I+B)i(0,t)(cI− eAω(I+B)m)−1eA(ω−τ)(I+B)i(τ,ω)g(τ)dτ

+
∑

0<τi<t

eA(t−τi)(I+B)i(τi,t)
(
(I+B)m(cI− eAω(I+B)m)−1eAω+ I

)
ci

+
∑

t≤τi<ω

eAt(I+B)i(0,t)(cI− eAω(I+B)m)−1eA(ω−τi)(I+B)i(τi,ω)ci

=

∫ t

0
ceA(t−τ)(I+B)i(τ,t)(cI− eAω(I+B)m)−1g(τ)dτ

+

∫ ω

t
eA(t+ω−τ)(I+B)i(0,t)+i(τ,ω)(cI− eAω(I+B)m)−1g(τ)dτ

+
∑

0<τi<t

ceA(t−τi)(I+B)i(τi,t)(cI− eAω(I+B)m)−1ci

+
∑

t≤τi<ω

eA(t+ω−τi)(I+B)i(0,t)+i(τi,ω)(cI− eAω(I+B)m)−1ci

=

∫ ω

0
G(t, τ)g(τ)dτ+

m∑
i=1

G(t, τi)ci.

The proof is finished. �

Remark 3.2. By Lemma 2.2, (3.2) is the unique (ω,c)-periodic solution of (3.1).

3.2 Case 2: c ∈ σ(eAω(I+B)m).

If c ∈ σ(eAω(I + B)m) then the homogeneous system (2.2) has k linearly independent solu-
tions for 1 ≤ k ≤ n. This implies that rank (cI− eAω(I+B)m) = n− k. Assuming that I+B is
invertible, we consider the adjoint system of (2.2) given by (see [7, (2.79)]){

ẏ = −A>y, t , τi, i ∈ N,
4y |t=τi= −(I+B>)−1B>y.

(3.5)

By Lemma 8 of [7], we know that the solution of (3.5) with y(0) = y0 is given by

y(t) = ((I+B>)i(0,t)eA>t)−1y0 (3.6)
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for some y0 ∈ R
n. This solution is (ω, 1c )-periodic if and only if it holds

y0 ∈ N
(
cI− eAω(I+B)m

)>
. (3.7)

Since

dimN
(
cI− eAω(I+B)m

)>
= n− rank (cI− eAω(I+B)m)> = n− rank (cI− eAω(I+B)m) = k,

the adjoint system (3.5) has k linearly independent (ω, 1c )-periodic solutions.

Lemma 3.3. Let 〈·, ·〉 be the standard scalar product on Rn. Assuming (H1), (H2) and (H4)
hold, a solution x(t) of the system (3.1) is (ω,c)-periodic if and only if∫ ω

0
〈y(τ),g(τ)〉dτ+

m∑
i=1

〈y(τ+i ),ci〉 = 0, j = 1,2, · · ·k (3.8)

for any (ω, 1c )-periodic solution y(t) of the adjoint system (3.5).

Proof. We take a solution x(t) of (3.1) given by (3.4). Set Z =N
(
cI− eAω(I+B)m

)>
. Then

using

i(0, τ)+ i(τ,ω) = i(0,ω) = m τ ∈ [0,ω] \ ξ,

i(0, τ)+ i(τ,ω) = i(0,ω) = m−1 τ ∈ [0,ω]∩ ξ,

we obtain

x(t) is (ω,c)-periodic

⇔
(
cI− eAω(I+B)m

)
x0 =

∫ ω

0
eA(ω−τ)(I+B)i(τ,ω)g(τ)dτ+

m∑
i=1

eA(ω−τi)(I+B)i(τi,ω)ci

⇔

∫ ω

0
eA(ω−τ)(I+B)i(τ,ω)g(τ)dτ+

m∑
i=1

eA(ω−τi)(I+B)i(τi,ω)ci

∈ R
(
cI− eAω(I+B)m

)
=

[
N

(
cI− eAω(I+B)m

)>]⊥
⇔ 0 =

〈
y0,

∫ ω

0
eA(ω−τ)(I+B)i(τ,ω)g(τ)dτ+

m∑
i=1

eA(ω−τi)(I+B)i(τi,ω)ci

〉
∀y0 ∈ Z

⇔ 0 =
〈
(eAω(I+B)m)>y0,

∫ ω

0
(eAτ(I+B)i(0,τ))−1g(τ)dτ

+

m∑
i=1

(eAτi(I+B)i(0,τi)+1)−1ci

〉
∀y0 ∈ Z

⇔ 0 = c
∫ ω

0
〈((I+B>)i(0,τ)eA>τ)−1y0,g(τ)〉dτ

+c
m∑

i=1

〈((I+B>)−1(I+B>)i(0,τi)eA>τi)−1y0,ci〉 ∀y0 ∈ Z

= c
∫ ω

0
〈y(τ),g(τ)〉dτ+ c

m∑
i=1

〈y(τ+i ),ci〉,



(ω,c)-Periodic Solutions 41

for any y(t) given by (3.6) with y0 satisfying (3.7), which are all (ω, 1c )-periodic solutions of
(3.5). The proof is finished. �

Next, we give two useful lemmas.

Lemma 3.4. It holds

m∑
i=1

‖G(t, τi)ci‖ ≤ Kη :=



K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}

×‖max{|c|,eηω}
m∑

i=1
eη(ω−τi)‖ci‖, η > 0,

K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}

×max{|c|,1}
m∑

i=1
‖ci‖, η ≤ 0

for any t ∈ [0,ω].

Proof. By (H8) and according to (3.3), we obtain
m∑

i=1

‖G(t, τi)‖‖ci‖ =
∑

0<τi<t

‖G(t, τi)‖‖ci‖+
∑

t≤τi<ω

‖G(t, τi)‖‖ci‖

≤
∑

0<τi<t

|c|‖eA(t−τi)‖‖(I+B)i(τi,t)‖‖(cI− eAω(I+B)m)−1‖‖ci‖

+
∑

t≤τi<ω

‖eA(t+ω−τi)‖‖(I+B)i(0,t)+i(τi,ω)‖‖(cI− eAω(I+B)m)−1‖‖ci‖

≤ K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}

×

( ∑
0<τi<t

|c|eη(t−τi)‖ci‖+
∑

t≤τi<ω

eη(t+ω−τi)‖ci‖

)
for any t ∈ [0,ω]. Therefore, we consider the following two cases:

Case I: η > 0. Then we have
m∑

i=1

‖G(t, τi)‖‖ci‖ ≤ K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}

×

( ∑
0<τi<t

|c|eη(ω−τi)‖ci‖+
∑

t≤τi<ω

eη(2ω−τi)‖ci‖

)
≤ K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}max{|c|,eηω}

m∑
i=1

eη(ω−τi)‖ci‖.

Case II: η ≤ 0. Then we have
m∑

i=1

‖G(t, τi)‖‖ci‖ ≤ K‖(cI− eAω(I+B)m)−1‖‖max{‖(I+B)‖m,1}

×

( ∑
0<τi<t

|c|‖ci‖+
∑

t≤τi<ω

‖ci‖

)
≤ K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}max{|c|,1}

m∑
i=1

‖ci‖.

The proof is finished. �
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Lemma 3.5. It holds

∫ ω

0
‖G(t, τ)‖dτ ≤ Mη :=


K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}
×max{|c|,1} e

ηω−1
η , η , 0,

K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}
×max{|c|,1}ω, η = 0

for any t ∈ [0,ω].

Proof. According to (H8) and the formula of (3.3), we obtain∫ ω

0
‖G(t, τ)‖dτ ≤ K|c|‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}

∫ t

0
eη(t−τ)dτ

+K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}
∫ ω

t
eη(t+ω−τ)‖dτ

= K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}
(
|c|

eηt −1
η
+

eηω− eηt

η

)
.

Therefore, we consider the following two cases:
Case I: η , 0. Then we have∫ ω

0
‖G(t, τ)‖dτ ≤ K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}

(
|c|

eηt −1
η
+

eηω− eηt

η

)
≤ K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}max{|c|,1}

eηω−1
η
.

Case II: η = 0. Then we have∫ ω

0
‖G(t, τ)‖dτ ≤ K‖(cI− eAω(I+B)m)−1‖max{‖(I+B)‖m,1}max{|c|,1}ω.

The proof is finished. �

4 Semilinear impulsive problems

In this section, we will apply the Banach and Schauder fixed point theorems to prove exis-
tence and uniqueness results for (1.1).

Theorem 4.1. Assume that (H1), (H2), (H3), (H5), (H6) and (H8) hold. If 0 < LMη < 1,
then (1.1) has a unique (ω,c)-periodic solution x ∈ Φω,c satisfying

‖x‖ ≤
‖ f̃ ‖Mη+Kη

1−LMη
,

where f̃ (·) = f (·,0).
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Proof. Note that the condition (H5) implies that if x ∈ Φω,c, then f (·, x(·)) ∈ Φω,c. By Lem-
mas 2.2 and 3.1, our task is equivalent with solving the fixed point problem

x(t) =
∫ ω

0
G(t, τ) f (τ, x(τ))dτ+

m∑
i=1

G(t, τi)ci, t ∈ [0,ω].

Hence we define an operator Λ on Ω as follows

(Λx)(t) =
∫ ω

0
G(t, τ) f (τ, x(τ))dτ+

m∑
i=1

G(t, τi)ci. (4.1)

It is easy to show that Λ : Ω→ Ω. Next, for any x1, x2 ∈ Ω we only check that Λ is a
contraction mapping. According to Lemma 3.5, we have

‖(Λx1)(t)− (Λx2)(t)‖ ≤
∫ ω

0
‖G(t, τ)‖‖ f (τ, x1(τ)− f (τ, x2(τ)‖dτ

≤ L
∫ ω

0
‖G(t, τ)‖‖x1(τ)− x2(τ)‖dτ ≤ L‖x1− x2‖

∫ ω

0
‖G(t, τ)‖dτ

≤ LMη‖x1− x2‖,

which implies that

‖Λx1−Λx2‖ ≤ LMη‖x1− x2‖.

Then using 0< LMη < 1, the uniqueness result follows by the contraction mapping principle.
Furthermore, we obtain

‖x‖ = ‖Λx‖ ≤
∫ ω

0
‖G(t, τ) f (τ, x(τ))‖dτ+

m∑
i=1

‖G(t, τi)ci‖

≤ L
∫ ω

0
‖G(t, τ)‖‖x(τ)‖dτ+ ‖ f̃ ‖

∫ ω

0
‖G(t, τ)‖dτ+

m∑
i=1

‖G(t, τi)‖‖ci‖

≤ LMη‖x‖+ ‖ f̃ ‖Mη+
m∑

i=1

‖G(t, τi)‖‖ci‖.

By using Lemma 3.4, we have

‖x‖ ≤
‖ f̃ ‖Mη+Kη

1−LMη
.

The proof is finished. �

Theorem 4.2. Assume that (H1), (H2), (H3), (H5), (H7) and (H8) hold. If 0 < νMη < 1, then
(1.1) has a (ω,c)-periodic solution x ∈ Φω,c.
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Proof. Consider operator Λ defined in (4.1) on Br, where Br := {x ∈ Ω | ‖x‖ ≤ r} and r =
µMη+Kη
1−νMη

. First, for any x ∈ Br and t ∈ [0,ω], by Lemmas 3.4 and 3.5 we have

‖(Λx)(t)‖ ≤
∫ ω

0
‖G(t, τ) f (τ, x(τ))‖dτ+

m∑
i=1

‖G(t, τi)ci‖

≤ ν

∫ ω

0
‖G(t, τ)‖‖x(τ)‖dτ+µ

∫ ω

0
‖G(t, τ)‖dτ+

m∑
i=1

‖G(t, τi)‖‖ci‖

≤ νMη‖x‖+µMη+Kη = r,

which implies that ‖Λx‖ ≤ r. So Λ(Br) ⊂ Br for any x ∈ Br. Next, it is standard to prove
that Λ is continuous and that Λ(Br) is a relatively compact set. Thus Schauder fixed point
theorem gives the result. The proof is finished. �

5 Examples

Example 5.1. Consider the following semilinear impulsive system
ẋ1 = 2x2+ κ sin t cos(x1+ x2), t , τi, i = 1,2, · · · ,
ẋ2 = −3x1−5x2+ κ sin(x1− x2), t , τi, i = 1,2, · · · ,
4x1 |t=τi= 2x1+

π
6 ,

4x2 |t=τi= 2x2+
π
12 ,

(5.1)

where κ is a real parameter, τi =
(2i−1)π

4 and ω = π, c = −1. Since τi+2 = τi + π and
ci+2 = ci for i ∈ N, we get m = 2 and (H2) holds. System (5.1) has a form of the following
impulsive system {

ẋ = Ax+ f (t, x), t , τi, i = 1,2, · · · ,
4x |t=τi= Bx+ ci,

(5.2)

where

x(t) =
(

x1(t)
x2(t)

)
, A =

(
0 2
−3 −5

)
, B =

(
2 0
0 2

)
, ci =

(
π
6
π
12

)
,

f (t, x) = κ
(

sin t cos(x1+ x2)
sin(x1− x2)

)
.

Since c = −1 < σ(eπ·A(I+B)2) =
{
9e−2π,9e−3π

}
, (H3) is satisfied. Then by elementary calcu-

lation, we have

eAt =

(
−2e−3t +3e−2t −2e−3t +2e−2t

3e−3t −3e−2t 3e−3t −2e−2t

)
,

(−I− eA·π(I+B)2)−1 =

 − 18
9+e3π −1+ 27

9+e2π 18
(

1
9+e2π −

1
9+e3π

)
27

(
1

9+e3π −
1

9+e2π

)
27

9+e3π −1− 18
9+e2π

 .
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Clearly (H1) and (H5) hold. Since σ(A) = {−3,−2}, (H8) is verified for η = −2. Now we
consider on R2 the norm ‖x‖ = |x1|+ |x2|. Then

K = sup
t≥0

e2t‖eAt‖ = sup
t≥0

max{| −2e−t +3|+ |3e−t −3|, | −2e−t +2|+ |3e−t −2|} = 6,

which specifies (H8). Similarly, we obtain

Kη = 27
(
−

45
9+ e3π +1+

36
9+ e2π

)
π � 90.1234,

Mη = 27
(
−

5(9+ eπ)
9+ e3π +

40
9+ e2π +1

)
� 28.6336.

By calculation, we have ‖ f (t, x)‖ ≤ 2|κ| = µ, ν = 0 and L = 2|κ|.
If |κ| < 0.034924, then LMη < 1 and by Theorem 4.1, (5.2) has a unique π-antiperiodic

solution x ∈ PC([0,∞),R2).
Since νMη = 0< 1 and by Theorem 4.2, (5.2) has a π-periodic solution x ∈ PC([0,∞),R2)

for any κ ∈ R.

Example 5.2. Consider the following more complicated semilinear impulsive system
ẋ1 = x1+2x2+ κx2 sin(e−t x1), t , τi, i = 1,2, · · · ,
ẋ2 = −3x1−5x2+ κx1 sin(e−t x2), t , τi, i = 1,2, · · · ,
4x1 |t=τi= 4x1+2x2+

π
6 ,

4x2 |t=τi= −3x1−2x2+
π
12 ,

(5.3)

where κ is a real parameter, τi = 2i−1
4 and ω = 1, c = e. Since τi+2 = τi +1 and ci+2 = ci

for i ∈ N, we get m = 2 and (H2) holds. Now we have

A =
(

1 2
−3 −5

)
, B =

(
4 2
−3 −2

)
, ci =

(
π
6
π
12

)
, f (t, x) = κ

(
x2 sin(e−t x1)
x1 sin(e−t x2)

)
.

Since AB = BA and c = e < σ(eA(I+B)2) � {10.6543,0.00171908}, (H1) and (H3) are satis-
fied. Clearly (H5) holds. Next, we have

eAt =

 e−2t
(
cosh

(√
3t

)
+ sinh

(√
3t

) √
3
) 2e−2t sinh

(√
3t

)
√

3
−
√

3e−2t sinh
(√

3t
)

e−2t
(
cosh

(√
3t

)
−
√

3sinh
(√

3t
))

 ,
and σ(A) = {−

√
3−2,

√
3−2}, so (H8) is verified for η =

√
3−2. Now we consider on R2

the norm ‖x‖ = |x1|+ |x2|. Then

K = sup
t≥0

e(2−
√

3)t‖eAt‖ = sup
t≥0

max
{∣∣∣∣e−√3t

(
cosh

(√
3t

)
+ sinh

(√
3t

) √
3
)∣∣∣∣

+
∣∣∣∣√3e−

√
3t sinh

(√
3t

)∣∣∣∣ ,
∣∣∣∣∣∣∣∣
2e−

√
3t sinh

(√
3t

)
√

3

∣∣∣∣∣∣∣∣+
∣∣∣∣e−√3t

(
cosh

(√
3t

)
−
√

3sinh
(√

3t
))∣∣∣∣}

=
√

3+
1
2
,
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which specifies (H8). Similarly, we obtain

Mη =
31

(
5
√

3+8
)
e
(
e
√

3− e2
) (
−3e3+47

√
3sinh

(√
3
)
+81cosh

(√
3
))

6
(
e6+1−2e3

(
4
√

3sinh
(√

3
)
+7cosh

(√
3
))) � 137.649.

By calculation, we have ‖ f (t, x)‖ ≤ |κ| = ν and µ = 0. Now the function f (·, x) is not globally
Lipschitz continuous. So we can just verify (H7). If κ < 0.00726488 then by Theorem 4.2,
(5.3) has a (1,e)-periodic solution x ∈ PC([0,∞),R2).

Remark 5.3. Motivated by the above arguments, we can consider in (H5) with f (t, x) =
E(eat x)x for E ∈C(Rn,L(Rn)) with supx∈Rn ‖E(x)‖<∞ and eaωc= 1, when c> 0 and f (t, x)=
E(sin( πω t)eat x)x with eaωc = −1, when c < 0.
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