C ommunications in $\mathbf{N}_{\text {athematical }} \boldsymbol{A}_{\text {nalysis }}$

A Uniform Ergodic Theorem for Some Nörlund Means

Laura Burlando*
Department of Mathematics
University of Genoa
Via Dodecaneso 35, 16146 Genoa, ITALY

(Communicated by En-Bing Lin)

Abstract

We obtain a uniform ergodic theorem for the sequence $\frac{1}{s(n)} \sum_{k=0}^{n}(\Delta s)(n-k) T^{k}$, where Δ is the inverse of the endomorphism on the vector space of scalar sequences which maps each sequence into the sequence of its partial sums, T is a bounded linear operator on a Banach space and s is a divergent nondecreasing sequence of strictly positive real numbers, such that $\lim _{n \rightarrow+\infty} s(n+1) / s(n)=1$ and $\Delta^{q} s \in \ell_{1}$ for some positive integer q. Indeed, we prove that if $T^{n} / s(n)$ converges to zero in the uniform operator topology, then the sequence of averages above converges in the same topology if and only if 1 is either in the resolvent set of T, or a simple pole of the resolvent function of T.

AMS Subject Classification: Primary (47A35, 47A10).
Keywords: Bounded linear operators, uniform ergodic theorem, Nörlund means of operator iterates, spectrum, poles of the resolvent, concave real sequences, least concave majorant of a real sequence.

1 Introduction

Throughout this paper, we will write \mathbb{N} and \mathbb{Z}_{+}for the sets of nonnegative integers and of strictly positive integers, respectively. Also, for each $v \in \mathbb{N}$, we will write \mathbb{N}_{ν} for the set of all nonnegative integers n satisfying $n \geq v$.
\mathbb{K} will stand for either \mathbb{R} or \mathbb{C}, and we will denote by $\mathbb{K}^{\mathbb{N}}$ the vector space (over \mathbb{K}) of all sequences in \mathbb{K}. For each vector space V over \mathbb{K}, let 0_{V} and I_{V} denote respectively the zero element of V and the identity operator on V. If V and W are vector spaces over \mathbb{K} and $\Lambda: V \longrightarrow W$ is a linear map, let $\mathcal{N}(\Lambda)$ and $\mathcal{R}(\Lambda)$ stand respectively for the kernel and the range of Λ.

For each normed space X, we will write $\left\|\|_{X}\right.$ for the norm of X, and $L(X)$ for the normed algebra of all bounded linear operators on X. Henceforth, by convergence in $L(X)$ of a sequence of bounded linear operators on X, we will mean convergence with respect to the topology induced by $\left\|\|_{L_{(X)}}\right.$, that is, the uniform operator topology.

[^0]If X is a complex nonzero Banach space, then $L(X)$ is a complex Banach algebra-with identity I_{X}.
For each $T \in L(X)$, let $r(T)$ and $\sigma(T)$ stand respectively for the spectral radius and for the spectrum of T. Also, let $\rho(T)$ and $\mathfrak{\Re}_{T}$ stand respectively for the resolvent set and for the resolvent function of T. Namely, $\rho(T)=\mathbb{C} \backslash \sigma(T)$ and $\Re_{T}: \rho(T) \ni \lambda \longmapsto\left(\lambda I_{X}-T\right)^{-1} \in L(X)$. It is well known that \Re_{T} is analytic on the open set $\rho(T)$.

In [3], N. Dunford obtained several results about convergence of the sequence $f_{n}(T)$ in different topologies (where $T \in L(X)$ for a complex Banach space X, and, for each $n \in \mathbb{N}$, f_{n} is a complex-valued function, holomorphic in some open neighborhood of $\sigma(T)$). The uniform ergodic theorem, establishing equivalence between convergence of the sequence $\frac{1}{n} \sum_{k=0}^{n-1} T^{k}$ in $L(X)$ and 1 being either in $\rho(T)$ or a simple pole of \Re_{T}, under the hypothesis $\lim _{n \rightarrow+\infty} \frac{1}{n}\left\|T^{n}\right\|_{L(X)}=0$, is a special case of one of these results (see [3], 3.16; see also [4], comments following Theorem 8). Notice that if the sequence $\frac{1}{n} \sum_{k=0}^{n-1} T^{k}$ converges in $L(X)$, then $\frac{1}{n}\left\|T^{n}\right\|_{L(X)}$ necessarily converges to zero, as $\frac{1}{n} T^{n}=\frac{n+1}{n}\left(\frac{1}{n+1} \sum_{k=0}^{n} T^{k}\right)-\frac{1}{n} \sum_{k=0}^{n-1} T^{k}$ for each $n \in \mathbb{Z}_{+}$.

More general means of the sequence of the iterates of the bounded linear operator T than the arithmetical ones involved in the uniform ergodic theorem, that is, the (C, α) means $\frac{1}{A_{\alpha}(n)} \sum_{k=0}^{n} A_{\alpha-1}(n-k) T^{k}, n \in \mathbb{N}$ (where $\alpha \in(0,+\infty)$, and A_{α} and $A_{\alpha-1}$ denote respectively the sequences of Cesàro numbers-whose definition is recalled here in Section 2-of order α and $\alpha-1$; notice that for $\alpha=1$ we have $\frac{1}{A_{\alpha}(n)} \sum_{k=0}^{n} A_{\alpha-1}(n-k) T^{k}=\frac{1}{n+1} \sum_{k=0}^{n} T^{k}$ for each $\left.n \in \mathbb{N}\right)$, were considered by E. Hille in [8]. Indeed, in [8], Theorem 6 he proved that if the sequence $\frac{1}{A_{\alpha}(n)} \sum_{k=0}^{n} A_{\alpha-1}(n-k) T^{k}$ converges to some $E \in L(X)$ in $L(X)$, then $\frac{\left\|T^{n}\right\|_{L X}}{n^{\alpha}} \longrightarrow 0$ as $n \rightarrow+\infty$ and $\lim _{\lambda \rightarrow 1^{+}}\left\|(\lambda-1) \Re_{T}(\lambda)-E\right\|_{L(X)}=0$. Notice that the former of these two conditions yields $r(T) \leq 1$, and then the latter is equivalent to 1 being either in $\rho(T)$, or a simple pole of \mathfrak{R}_{T}, and moreover E being the residue of \Re_{T} at 1 (see the result recorded here as Theorem 2.4). Theorem 6 of [8] also provides a partial converse of this, establishing that if T is powerbounded and $\lim _{\lambda \rightarrow 1^{+}}\left\|(\lambda-1) \Re_{T}(\lambda)-E\right\|_{L(X)}=0$, then $\lim _{n \rightarrow+\infty}\left\|\frac{1}{A_{\alpha}(n)} \sum_{k=0}^{n} A_{\alpha-1}(n-k) T^{k}-E\right\|_{L(X)}=$ 0 for each $\alpha \in(0,+\infty)$.

More recently, an improvement of [8], Theorem 6 was obtained by T. Yoshimoto, who in [12], Theorem 1 replaced power-boundedness of T by $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(X)}}{n^{\omega}}=0$ (where $\omega=\min \{1, \alpha\}$). Finally, in [5], E. Ed-dari was able to complete the (C, α) uniform ergodic theorem, by proving that the sequence $\frac{1}{A_{\alpha}(n)} \sum_{k=0}^{n} A_{\alpha-1}(n-k) T^{k}$ converges to E in $L(X)$ if and only if $\frac{\left\|T^{n}\right\|_{L(x)}}{n^{\alpha}} \longrightarrow 0$ as $n \rightarrow+\infty$ and $\lim _{\lambda \rightarrow 1^{+}}\left\|(\lambda-1) \Re_{T}(\lambda)-E\right\|_{L(X)}=0$. E. Ed-dari's result is recorded here as Theorem 2.6.

We are interested here in obtaining a uniform ergodic theorem for the Nörlund means of the sequence T^{n}, that is, for the means $\frac{1}{s(n)} \sum_{k=0}^{n}(\Delta s)(n-k) T^{k}, n \in \mathbb{N}$, where s is a divergent
nondecreasing sequence of strictly positive real numbers (and $\Delta: \mathbb{K}^{\mathbb{N}} \rightarrow \mathbb{K}^{\mathbb{N}}$ is as in the abstract; see Definition 4.1 here). Notice that for $s=A_{\alpha}, \alpha \in(0,+\infty)$, one obtains the (C, α) means.

In Section 2 we collect some preliminaries, in order to make this paper as self-contained as possible.
In Sections 3, 4 and 5 we derive some properties of real sequences, that we use in the final section dealing with bounded linear operators.

In Section 3 we are concerned with the least concave majorant of a real sequence.
In particular, in Theorem 3.9 we prove that if b is a real sequence such that the sequence $\left(\frac{b(n)}{n}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above and b is not, then the least concave majorant of b, besides being strictly increasing and divergent, has a subsequence that is asymptotic to the corresponding subsequence of b.

In Section 4 we mainly deal with the real sequences s for which $\Delta^{p} s$ is concave for some $p \in \mathbb{N}$.
The main result of this section is Theorem 4.7, in which we derive several properties of a sequence s of nonnegative real numbers such that $\Delta^{p} s$ is concave and unbounded from above for some $p \in \mathbb{N}$. In particular, we prove that s is strictly increasing and divergent, $\lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1$, and $\Delta^{p+2} s \in \ell_{1}$. Also, in Example 4.9 we show that if $\alpha \in(0,+\infty)$ the sequence A_{α} satisfies the hypotheses of Theorem 4.7 (for $p=[\alpha]$ if $\alpha \notin \mathbb{Z}_{+}$; for $p=\alpha-1$ if $\alpha \in \mathbb{Z}_{+}$).

In Section 5 we introduce an index $\mathcal{H}(b)(\in \mathbb{N} \cup\{+\infty\})$ for a real sequence b, such that $\mathcal{H}(b)<+\infty$ if and only if the sequence $\left(\frac{b(n)}{n^{m}}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above for some $m \in \mathbb{N}$, in which case $\mathcal{H}(b)$ is the minimum of such nonnegative integers m.
In Theorem 5.3 we use Theorem 3.9 to prove that if b is unbounded from above and such that $\mathcal{H}(b)<+\infty$, then b has a majorant s which satisfies the hypotheses of Theorem 4.7 for $p=$ $\mathcal{H}(b)-1$, and moreover is such that $\limsup _{n \rightarrow+\infty} \frac{b(n)}{s(n)} \in\left[\frac{1}{\mathcal{H}(b)}, 1\right]$. We also prove (in Proposition 5.4) that if a is a real sequence such that $\Delta^{q} a \in \ell_{1}$ for some $q \in \mathbb{Z}_{+}$, then $\mathcal{H}(a) \leq q-1$.

Section 6 contains our main result, that is Theorem 6.7: we prove that if T is a bounded linear operator on a complex Banach space, and b is a divergent sequence of strictly positive real numbers, such that $\mathcal{H}(b)<+\infty$ and $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(X)}}{b(n)}=0$ (which gives $r(T) \leq 1$), then, for each divergent nondecreasing sequence s of strictly positive real numbers, such that $\lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1, \Delta^{q} s \in \ell_{1}$ for some $q \in \mathbb{N}_{2}$, and the sequence $\left(\frac{b(n)}{s(n)}\right)_{n \in \mathbb{N}}$ is bounded (which gives $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(X)}}{s(n)}=0$), the sequence $\frac{1}{s(n)} \sum_{k=0}^{n}(\Delta s)(n-k) T^{k}$ converges in $L(X)$ if and only if 1 is either in $\rho(T)$, or a simple pole of \Re_{T}. The sequence s can be chosen so that it is not infinite of higher order than b, and $\Delta^{p} s$ is concave and unbounded from above for some $p \in \mathbb{N}$.

We conclude this section-and the paper—with an example (Example 6.10), showing that, contrary to the case of the sequence A_{α} considered in Theorem 6 of [8], convergence in $L(X)$ of the sequence $\frac{1}{s(n)} \sum_{k=0}^{n}(\Delta s)(n-k) T^{k}$ does not imply $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(X)}}{s(n)}=0$, even if s satisfies the hypotheses of Theorem 4.7.

2 Preliminaries

If X is a Banach space, and Y, Z are closed subspaces of X, satisfying $X=Y \oplus Z$, by the projection of X onto Y along Z we mean the bounded linear map $P: X \longrightarrow X$ such that $P x \in Y$ and $x-P x \in Z$ for every $x \in X$. Notice that $I_{X}-P$ is the projection of X onto Z along Y, and that $P^{2}=P$. On the other hand, if $E \in L(X)$ satisfies $E^{2}=E$, it is easily seen that $\mathcal{R}(E)$ is closed in $X, X=\mathcal{R}(E) \oplus \mathcal{N}(E)$, and E is the projection of X onto $\mathcal{R}(E)$ along $\mathcal{N}(E)$.

We begin by recalling a classical characterization of simple poles of \mathfrak{R}_{T}, that will be useful to us in this paper.

Theorem 2.1 (see [11], V, 10.1, 10.2, 6.2, 6.3 and 6.4, and IV, 5.10)). Let X be a complex nonzero Banach space, $T \in L(X)$ and $\lambda_{0} \in \mathbb{C}$. If λ_{0} is a simple pole of \mathfrak{R}_{T}, then λ_{0} is an eigenvalue of $T, \mathcal{N}\left(\left(\lambda_{0} I_{X}-T\right)^{n}\right)=\mathcal{N}\left(\lambda_{0} I_{X}-T\right)$ and $\mathcal{R}\left(\left(\lambda_{0} I_{X}-T\right)^{n}\right)=\mathcal{R}\left(\lambda_{0} I_{X}-T\right)$ for every $n \in \mathbb{Z}_{+}, \mathcal{R}\left(\lambda_{0} I_{X}-T\right)$ is closed in $X, X=\mathcal{N}\left(\lambda_{0} I_{X}-T\right) \oplus \mathcal{R}\left(\lambda_{0} I_{X}-T\right)$, and the projection of X onto $\mathcal{N}\left(\lambda_{0} I_{X}-T\right)$ along $\mathcal{R}\left(\lambda_{0} I_{X}-T\right)$ coincides with the residue of \Re_{T} at λ_{0}. Conversely, if $X=\mathcal{N}\left(\lambda_{0} I_{X}-T\right) \oplus \mathcal{R}\left(\lambda_{0} I_{X}-T\right)$, then λ_{0} is either in $\rho(T)$, or else a simple pole of \Re_{T}.

If X is a complex nonzero Banach space and $T \in L(X)$, following [11], Definition on page 310 , we denote by $\mathfrak{A}(T)$ the set of all complex-valued holomorphic functions f whose domain $\operatorname{Dom}(f)$ is an open neighbourhood of $\sigma(T)$. For each $f \in \mathfrak{A}(T)$, the operator $f(T) \in$ $L(X)$ is defined as follows:

$$
f(T)=\frac{1}{2 \pi i} \int_{+\partial D} f(\lambda) \Re_{T}(\lambda) d \lambda
$$

where $+\partial D$ denotes the positively oriented boundary of D, and D is any open bounded subset of \mathbb{C}, such that $D \supseteq \sigma(T), \bar{D} \subseteq \operatorname{Dom}(f), D$ has a finite number of components, with pairwise disjoint closures, and ∂D consists of a finite number of simple closed rectifiable curves, no two of which intersect; the integral above does not depend on the particular choice of D (see [11], comment 2 on pages $310-311$; see also [3], 2.2, 2.3 and 2.6). We recall that for each polynomial $\mathfrak{p}: \mathbb{C} \ni \lambda \longmapsto \sum_{k=0}^{n} a_{k} \lambda^{k} \in \mathbb{C}$ (where $n \in \mathbb{N}$, and $a_{0}, \ldots, a_{n} \in \mathbb{C}$), we have $\mathfrak{p}(T)=\sum_{k=0}^{n} a_{k} T^{k}$ (see [11], V, 8.1).
We will use the following convergence result for the elements of $\mathfrak{A}(T)$, due to N . Dunford, a special case of which is the classical uniform ergodic theorem.

Theorem 2.2 (see [3], 3.16). Let X be a complex nonzero Banach space, $T \in L(X)$, and $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathfrak{H}(T)$, satisfying $1 \in \operatorname{Dom}\left(f_{n}\right)$ for each $n \in \mathbb{N}$, such that $\lim _{n \rightarrow+\infty} f_{n}(1)=$ 1 and $\left(I_{X}-T\right) f_{n}(T) \longrightarrow 0_{L(X)}$ in $L(X)$ as $n \rightarrow+\infty$. Then the following three conditions are equivalent:
(2.2.1) there exists $E \in L(X)$ such that $E^{2}=E, \mathcal{R}(E)=\mathcal{N}\left(I_{X}-T\right)$, and $f_{n}(T) \longrightarrow E$ in $L(X)$ as $n \rightarrow+\infty$;
(2.2.2) 1 is either in $\rho(T)$, or a simple pole of \mathfrak{R}_{T};
(2.2.3) $\mathcal{R}\left(I_{X}-T\right)$ is closed and $X=\mathcal{N}\left(I_{X}-T\right) \oplus \mathcal{R}\left(I_{X}-T\right)$.

Remark 2.3. We remark that, under the hypotheses of Theorem 2.2, each of conditions (2.2.1)-(2.2.3) is actually equivalent to each of the following two conditions (which at first glance might respectively appear to be weaker and stronger than them):
(2.3.1) the sequence $\left(f_{n}(T)\right)_{n \in \mathbb{N}}$ converges in $L(X)$;
(2.3.2) $\mathcal{R}\left(I_{X}-T\right)$ is closed, $X=\mathcal{N}\left(I_{X}-T\right) \oplus \mathcal{R}\left(I_{X}-T\right)$, and the sequence $\left(f_{n}(T)\right)_{n \in \mathbb{N}}$ converges in $L(X)$ to the projection of X onto $\mathcal{N}\left(I_{X}-T\right)$ along $\mathcal{R}\left(I_{X}-T\right)$.

Equivalence between (2.2.1) and (2.3.1) is observed in [4], comments following Theorem 8. For the convenience of the reader, we give here a proof of equivalence of these five conditions. Indeed, it suffices to prove that (2.3.1) implies (2.3.2). Suppose that (2.3.1) is satisfied, and let $E \in L(X)$ be such that $f_{n}(T) \longrightarrow E$ in $L(X)$ as $n \rightarrow+\infty$. We prove that then $E^{2}=E$ and $\mathcal{R}(E)=\mathcal{N}\left(I_{X}-T\right)$.
We begin by proving that for each $x \in \mathcal{N}\left(I_{X}-T\right)$ we have $E x=x$. This is clear if $\mathcal{N}\left(I_{X}-T\right)=$ $\left\{0_{X}\right\}$. If instead $\mathcal{N}\left(I_{X}-T\right) \neq\left\{0_{X}\right\}$, then $1 \in \sigma(T)$, and $\Re_{T}(\lambda) x=\frac{1}{\lambda-1} x$ for every $\lambda \in \rho(T)$. Hence (see [11], V, 1.3) $f_{n}(T) x=f_{n}(1) x$ for every $n \in \mathbb{N}$. Since $\lim _{n \rightarrow+\infty} f_{n}(1)=1$, we conclude that $E x=x$. This gives the desired result, which in turn yields $\mathcal{N}\left(I_{X}-T\right) \subseteq \mathcal{R}(E)$. On the other hand, since $\left(I_{X}-T\right) E=\lim _{n \rightarrow+\infty}\left(I_{X}-T\right) f_{n}(T)=0_{L(X)}$, we have $\mathcal{R}(E) \subseteq \mathcal{N}\left(I_{X}-T\right)$. Hence $\mathcal{R}(E)=\mathcal{N}\left(I_{X}-T\right)$, and $E^{2}=E$.
We have thus proved that the equivalent conditions (2.2.1)-(2.2.3) are satisfied. Now we observe that, since $f_{n}(T)$ commutes with $I_{X}-T$ for each $n \in \mathbb{N}$ by [11], V, 8.1, and consequently E also does, we have $E\left(I_{X}-T\right)=0_{L(X)}$. Hence $\mathcal{R}\left(I_{X}-T\right) \subseteq \mathcal{N}(E)$. Since $E^{2}=E$ and $\mathcal{R}(E)=\mathcal{N}\left(I_{X}-T\right)$ give $X=\mathcal{N}\left(I_{X}-T\right) \oplus \mathcal{N}(E)$, and condition (2.2.3) in turn gives $X=\mathcal{N}\left(I_{X}-T\right) \oplus \mathcal{R}\left(I_{X}-T\right)$, we conclude that $\mathcal{N}(E)=\mathcal{R}\left(I_{X}-T\right)$. Then condition (2.3.2) is satisfied.

We also recall the following consequence of [3], 3.16.
Theorem 2.4 ([5], 1.3; [9], 18.8.1). Let X be a complex nonzero Banach space and $T, E \in$ $L(X)$. If there exists a sequence $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ in $\rho(T)$ such that $\lim _{n \rightarrow+\infty} \lambda_{n}=1$ and $\left(\lambda_{n}-1\right) \Re_{T}\left(\lambda_{n}\right) \longrightarrow$ E in $L(X)$ as $n \rightarrow+\infty$, then 1 is either in $\rho(T)$, or a simple pole of \Re_{T}. Furthermore, $\mathcal{R}\left(I_{X}-T\right)$ is closed in $X, X=\mathcal{N}\left(I_{X}-T\right) \oplus \mathcal{R}\left(I_{X}-T\right)$ and E is the projection of X onto $\mathcal{N}\left(I_{X}-T\right)$ along $\mathcal{R}\left(I_{X}-T\right)$.

For each $\alpha \in \mathbb{R}$, let $A_{\alpha}: \mathbb{N} \rightarrow \mathbb{R}$ denote the sequence of the Cesàro numbers of order α. That is,

$$
A_{\alpha}(n)=\binom{n+\alpha}{n}= \begin{cases}\prod_{n}^{n}(\alpha+j) & \text { if } n=0 \\ \frac{\prod_{1}=1}{n!} & \text { if } n \in \mathbb{Z}_{+} .\end{cases}
$$

Hence $A_{\alpha}(n)>0$ for each $n \in \mathbb{N}$ if $\alpha>-1$. Notice also that $A_{0}(n)=1$ for all $n \in \mathbb{N}$. We recall that
(2.1) $\sum_{k=0}^{n} A_{\alpha}(k)=A_{\alpha+1}(n)$ for each $n \in \mathbb{N}$ and each $\alpha \in \mathbb{R}$
and
(2.2) $\lim _{n \rightarrow+\infty} \frac{A_{\alpha}(n)}{n^{\alpha}}=\frac{1}{\Gamma(\alpha+1)}$ for each $\alpha \in \mathbb{R} \backslash\left\{-k: k \in \mathbb{Z}_{+}\right\}$,
where Γ denotes Euler's gamma function (see for instance [13], III, (1-11) and (1-15)).
The following well known identity-which we will need in the sequel-can be obtained from (2.1) as a straightforward consequence, or else is not difficult to check directly, by induction on n.
(2.3) $\sum_{k=j}^{n}\binom{k}{j}=\binom{n+1}{j+1}$ for every $j \in \mathbb{N}$ and every $n \in \mathbb{N}_{j}$.

Remark 2.5. Let X be a complex nonzero Banach space, and let $T \in L(X)$. We recall that if the sequence $\left(\frac{\left\|T^{n}\right\|_{L X X}}{n^{\alpha}}\right)_{n \in \mathbb{Z}_{+}}$is bounded for some $\alpha \in(0,+\infty)$, then $r(T) \leq 1$. Indeed, if $M \in(0,+\infty)$ is such that $\frac{\left\|T^{n}\right\|_{L(X)}}{n^{\alpha}} \leq M$ for each $n \in \mathbb{Z}_{+}$, then

$$
r(T)=\lim _{n \rightarrow+\infty}\left\|T^{n}\right\|_{L(X)}^{\frac{1}{n}}=\lim _{n \rightarrow+\infty}\left(\frac{\left\|T^{n}\right\|_{L(X)}}{n^{\alpha}}\right)^{\frac{1}{n}} \leq \lim _{n \rightarrow+\infty} M^{\frac{1}{n}}=1
$$

Finally, by also taking Theorem 2.4 into account, the improvement of E. Hille's (C, α) ergodic theorem obtained by E. Ed-dari can be formulated as follows.

Theorem 2.6 (see [5], Theorem 1). Let X be a complex nonzero Banach space, $T \in L(X)$, and $\alpha \in(0,+\infty)$. Then, given any $E \in L(X)$, we have

$$
\lim _{n \rightarrow+\infty}\left\|\frac{\sum_{k=0}^{n} A_{\alpha-1}(n-k) T^{k}}{A_{\alpha}(n)}-E\right\|_{L(X)}=0
$$

if and only if

$$
\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(X)}}{n^{\alpha}}=0 \quad \text { and } \quad \lim _{\lambda \rightarrow 1^{+}}\left\|(\lambda-1) \mathfrak{R}_{T}(\lambda)-E\right\|_{L(X)}=0 . .^{1}
$$

Hence the following two conditions are equivalent:
(2.6.1) the sequence $\left(\frac{\sum_{k=0}^{n} A_{\alpha-1}(n-k) T^{k}}{A_{\alpha}(n)}\right)_{n \in \mathbb{N}}$ converges in $L(X)$;
(2.6.2) $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(X)}}{n^{\alpha}}=0$ and 1 is either in $\rho(T)$, or a simple pole of \Re_{T}.

3 The least concave majorant of a real sequence

We begin with some results concerning the least concave majorant of a real sequence.
We recall that a real sequence $a: \mathbb{N} \rightarrow \mathbb{R}$ is called concave (convex) if the real sequence $(a(n+1)-a(n))_{n \in \mathbb{N}}$ is nonincreasing (nondecreasing). Notice that a is concave (convex) if and only if $a(n+1) \geq \frac{a(n)+a(n+2)}{2}\left(a(n+1) \leq \frac{a(n)+a(n+2)}{2}\right)$ for every $n \in \mathbb{N}$.

[^1]Definition 3.1. For each real sequence $a: \mathbb{N} \rightarrow \mathbb{R}$, let $\phi_{a}:[0,+\infty) \rightarrow \mathbb{R}$ be the function defined by

$$
\phi_{a}(x)=a(n)+(x-n)(a(n+1)-a(n)) \quad \text { for every } x \in[n, n+1] \text { and every } n \in \mathbb{N} .
$$

Notice that $\phi_{a}(x)=a(n)(n+1-x)+a(n+1)(x-n)$ for every $x \in[n, n+1]$ and every $n \in \mathbb{N}$. Hence $\phi_{a}(n)=a(n)$ for every $n \in \mathbb{N}$.

Proposition 3.2. Let $a: \mathbb{N} \rightarrow \mathbb{R}$ be a real sequence. Then a is concave if and only if the function ϕ_{a} is concave.

Proof. It is easily seen that a is concave if ϕ_{a} is. Conversely, suppose a to be concave. Notice that ϕ_{a} is continuous. Also, the right derivative $\left(\phi_{a}\right)_{+}^{\prime}$ of ϕ_{a} exists at every point of $[0,+\infty)$, and $\left(\phi_{a}\right)_{+}^{\prime}(x)=a(n+1)-a(n)$ for every $x \in[n, n+1)$ and every $n \in \mathbb{N}$. Since a is concave, it follows that $\left(\phi_{a}\right)_{+}^{\prime}$ is nonincreasing, and consequently (see [10], 5, Proposition 18) ϕ_{a} is concave.

We recall that a majorant of a real sequence $b: \mathbb{N} \rightarrow \mathbb{R}$ is a real sequence $c: \mathbb{N} \rightarrow \mathbb{R}$ satisfying $c(n) \geq b(n)$ for every $n \in \mathbb{N}$.
The following result is probably known. Indeed, for instance, the authors of [1] seem to be aware of it when (in the proof of Proposition 2.1) they derive that the sequence $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ has a least concave majorant from being $\lim _{n \rightarrow+\infty} \frac{\rho_{n}}{n}=0$. Anyway, we give a (short) proof here, for the convenience of the reader.

Proposition 3.3. A real sequence $b: \mathbb{N} \rightarrow \mathbb{R}$ has a concave majorant if and only if the sequence $\left(\frac{b(n)}{n}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above.

Proof. By virtue of Proposition 3.2, it is easily seen that b has a concave majorant if and only if there exists a concave function $f:[0,+\infty) \rightarrow \mathbb{R}$ such that $f(x) \geq \phi_{b}(x)$ for every $x \in[0,+\infty)$. The latter condition is satisfied if and only if there exist $\alpha, \beta \in \mathbb{R}$ such that $\phi_{b}(x) \leq \alpha+\beta x$ for every $x \in[0,+\infty)$ (see [6], Theorem 1.2) or, equivalently, $b(n) \leq \alpha+\beta n$ for every $n \in \mathbb{N}$. Now it is straightforward to observe that such α and β exist if and only if the sequence $\left(\frac{b(n)}{n}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above. We have thus obtained the desired result.

Remark 3.4. If $a: \mathbb{N} \rightarrow \mathbb{R}$ is a concave sequence, then the sequence $\left(\frac{a(n)}{n}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above.

Remark 3.5. If a real sequence $b: \mathbb{N} \rightarrow \mathbb{R}$ has a concave majorant, then b has a least concave majorant c. Furthermore, we have

$$
c(n)=\inf \left\{a(n): a \in \mathbb{R}^{\mathbb{N}}, a \text { concave majorant of } b\right\} \quad \text { for every } n \in \mathbb{N} .
$$

Indeed, once one observes that the real sequence c defined as above is concave and is a majorant of b, from the definition of c it follows that each concave majorant of b is also a majorant of c, that is, c is the least concave majorant of b.

Theorem 3.6. Let $b: \mathbb{N} \rightarrow \mathbb{R}$ be a real sequence such that the sequence $\left(\frac{b(n)}{n}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above, and let $c: \mathbb{N} \rightarrow \mathbb{R}$ be the least concave majorant of b. Then c satisfies the following properties.
(3.6.1) $c(0)=b(0)$.
(3.6.2) $c(n+1)=c(n)+\sup \left\{\frac{b(k)-c(n)}{k-n}: k \in \mathbb{N}_{n+1}\right\}$ for every ${ }^{2} n \in \mathbb{N}$.
(3.6.3) For each $n \in \mathbb{N}$ and each $k \in \mathbb{N}_{n+2}$, we have

$$
\frac{b(k)-c(n+1)}{k-n-1} \leq \frac{b(k)-c(n)}{k-n} .
$$

If in addition

$$
\frac{b(k)-c(n)}{k-n}=\max \left\{\frac{b(j)-c(n)}{j-n}: j \in \mathbb{N}_{n+1}\right\},
$$

then

$$
\begin{aligned}
\frac{b(k)-c(h)}{k-h} & =\max \left\{\frac{b(j)-c(h)}{j-h}: j \in \mathbb{N}_{h+1}\right\} \\
& =\frac{b(k)-c(n)}{k-n} \quad \text { for all } h=n, \ldots, k-1,
\end{aligned}
$$

and consequently $c(h+1)-c(h)=c(n+1)-c(n)$ for all $h=n, \ldots, k-1$.
Proof. Let $a: \mathbb{N} \rightarrow \mathbb{R}$ be defined by

$$
a(0)=b(0),
$$

$$
a(n+1)=a(n)+\sup \left\{\frac{b(k)-a(n)}{k-n}: k \in \mathbb{N}_{n+1}\right\} \quad \text { for every } n \in \mathbb{N} .
$$

We prove that $a=c$. First of all, we prove that $a(n) \geq b(n)$ for every $n \in \mathbb{N}$.
We proceed by induction. The desired result clearly holds for $n=0$. Besides, if for some $n \in \mathbb{N}$ we have $a(n) \geq b(n)$, then

$$
a(n+1)=a(n)+\sup \left\{\frac{b(k)-a(n)}{k-n}: k \in \mathbb{N}_{n+1}\right\} \geq a(n)+b(n+1)-a(n)=b(n+1) .
$$

We have thus proved that a is a majorant of b. Now we prove that a is concave.
For each $n \in \mathbb{N}$, we have

$$
\begin{equation*}
a(n+1)-a(n)=\sup \left\{\frac{b(k)-a(n)}{k-n}: k \in \mathbb{N}_{n+1}\right\} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a(n+2)-a(n+1)=\sup \left\{\frac{b(k)-a(n+1)}{k-n-1}: k \in \mathbb{N}_{n+2}\right\} . \tag{3.2}
\end{equation*}
$$

Now, for each $k \in \mathbb{N}_{n+2}$, (3.1) yields

$$
\begin{array}{r}
\frac{b(k)-a(n+1)}{k-n-1}=\frac{b(k)-a(n)}{k-n-1}-\frac{a(n+1)-a(n)}{k-n-1} \\
=\left(\frac{k-n}{k-n-1}\right)\left(\frac{b(k)-a(n)}{k-n}\right)-\left(\frac{1}{k-n-1}\right) \sup \left\{\frac{b(j)-a(n)}{j-n}: j \in \mathbb{N}_{n+1}\right\} \tag{3.3}\\
\leq\left(\frac{k-n}{k-n-1}\right)\left(\frac{b(k)-a(n)}{k-n}\right)-\frac{1}{k-n-1}\left(\frac{b(k)-a(n)}{k-n}\right) \\
=\left(\frac{b(k)-a(n)}{k-n}\right)\left(\frac{k-n}{k-n-1}-\frac{1}{k-n-1}\right)=\frac{b(k)-a(n)}{k-n} .
\end{array}
$$

[^2]Now from (3.3), together with (3.1) and (3.2), we derive that a is concave. Hence a is a concave majorant of b. In order to conclude that $a=c$, it suffices to prove that $c(n) \geq a(n)$ for every $n \in \mathbb{N}$. We proceed by induction.
Since $c(0) \geq b(0)=a(0)$, the desired inequality holds for $n=0$. Now let $n \in \mathbb{N}$ be such that $c(n) \geq a(n)$. Since c is concave and is a majorant of b, from Proposition 3.2 and from the three chord lemma we conclude that for each $k \in \mathbb{N}_{n+1}$ we have

$$
c(n+1)-c(n) \geq \frac{c(k)-c(n)}{k-n} \geq \frac{b(k)-c(n)}{k-n}
$$

and consequently, since $c(n) \geq a(n)$,

$$
\begin{array}{r}
c(n+1) \geq c(n)+\frac{b(k)-c(n)}{k-n}=c(n)+\frac{b(k)-a(n)}{k-n}+\frac{a(n)-c(n)}{k-n} \\
\quad=\frac{(k-n-1)}{k-n} c(n)+\frac{1}{k-n} a(n)+\frac{b(k)-a(n)}{k-n} \\
\geq\left(\frac{k-n-1}{k-n}+\frac{1}{k-n}\right) a(n)+\frac{b(k)-a(n)}{k-n}=a(n)+\frac{b(k)-a(n)}{k-n} .
\end{array}
$$

Then

$$
c(n+1) \geq a(n)+\sup \left\{\frac{b(k)-a(n)}{k-n}: k \in \mathbb{N}_{n+1}\right\}=a(n+1) .
$$

We have thus proved that $c(n) \geq a(n)$ for every $n \in \mathbb{N}$. Then $a=c$, from which we obtain (3.6.1) and (3.6.2). Also, the inequality in (3.6.3) now follows from (3.3).

In order to complete the proof, it remains to prove that if $n \in \mathbb{N}$ and $k \in \mathbb{N}_{n+2}$ satisfy $\frac{b(k)-c(n)}{k-n}=\max \left\{\frac{b(j)-c(n)}{j-n}: j \in \mathbb{N}_{n+1}\right\}$, then $\frac{b(k)-c(h)}{k-h}=\max \left\{\frac{b(j)-c(h)}{j-h}: j \in \mathbb{N}_{h+1}\right\}=\frac{b(k)-c(n)}{k-n}$ for all $h=n, \ldots, k-1$.
Let $n \in \mathbb{N}, k \in \mathbb{N}_{n+2}$ be as above. As a straightforward consequence of (3.3), we obtain

$$
\frac{b(k)-c(n+1)}{k-n-1}=\frac{b(k)-c(n)}{k-n}
$$

and consequently

$$
c(n+2)-c(n+1)=\sup \left\{\frac{b(j)-c(n+1)}{j-n-1}: j \in \mathbb{N}_{n+2}\right\} \geq \frac{b(k)-c(n)}{k-n}=c(n+1)-c(n) .
$$

Since c is concave, the opposite inequality also holds. Hence

$$
\frac{b(k)-c(n+1)}{k-n-1}=\max \left\{\frac{b(j)-c(n+1)}{j-n-1}: j \in \mathbb{N}_{n+2}\right\}=\frac{b(k)-c(n)}{k-n} .
$$

If $k=n+2$, the proof is complete. Otherwise, we finish the proof by applying the same argument again $k-n-2$ times, with $\frac{b(k)-c(n)}{k-n}$ replaced by $\frac{b(k)-c(h)}{k-h}, h=n+1, \ldots, k-2$.

Lemma 3.7. Let $a: \mathbb{N} \rightarrow \mathbb{R}$ be a real sequence. If there exists $v \in \mathbb{N}$ such that $a(v) \geq$ $\limsup a(n)$, then the set $\{a(n): n \in \mathbb{N}\}$ has a maximum.

Proof. We set $\ell=\limsup _{n \rightarrow+\infty} a(n)$ and observe that $\ell \in[-\infty,+\infty)$. Since assuming $a(n) \leq \ell$ for every $n \in \mathbb{N}$ yields $\ell \in \mathbb{R}$ and $a(v)=\ell \geq a(n)$ for every $n \in \mathbb{N}$-which means that $a(v)$ is the maximum of $\{a(n): n \in \mathbb{N}\}$, we may assume that $a(v)>\ell$. Then there exists $n_{0} \in \mathbb{N}$ such that $a(n)<a(v)$ for every $n \in \mathbb{N}_{n_{0}}$, from which we conclude that $v<n_{0}$. Now let $n_{1} \in\left\{0, \ldots, n_{0}-1\right\}$ be such that $a\left(n_{1}\right) \geq a(k)$ for all $k=0, \ldots, n_{0}-1$. It suffices to remark that for each $n \in \mathbb{N}_{n_{0}}$ we have $a(n)<a(v) \leq a\left(n_{1}\right)$. Hence $a\left(n_{1}\right) \geq a(n)$ for every $n \in \mathbb{N}$.

Theorem 3.8. Let $b: \mathbb{N} \rightarrow \mathbb{R}$ be a real sequence such that the sequence $\left(\frac{b(n)}{n}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above, and let $c: \mathbb{N} \rightarrow \mathbb{R}$ be the least concave majorant of b.
(3.8.1) If we set $\ell=\limsup _{n \rightarrow+\infty} \frac{b(n)}{n}$, we have $\ell \in[-\infty,+\infty), c(n+1)-c(n) \geq \ell$ for every $n \in \mathbb{N}$ and $\limsup _{k \rightarrow+\infty}\left(\frac{\left.\begin{array}{l}n \rightarrow+\infty \\ b(k)-c(n) \\ k-n\end{array}\right)}{}=\ell\right.$ for every $n \in \mathbb{N}$.
(3.8.2) If we set

$$
\mathfrak{N}=\{0\} \cup\left\{n \in \mathbb{Z}_{+}: c(n)-c(n-1)=\max \left\{\frac{b(k)-c(n-1)}{k-n+1}: k \in \mathbb{N}_{n}\right\}\right\},
$$

it follows that $n \in \mathfrak{N} \Longrightarrow\{0, \ldots, n\} \subseteq \mathfrak{N}$.
(3.8.3) If we set $N=\sup (\mathfrak{N})$ and $\left(v_{k}\right)_{k \in \mathbb{N}}$ is the nondecreasing sequence of nonnegative integers defined by $v_{0}=0$,
$v_{k+1}= \begin{cases}\min \left\{n \in \mathbb{N}_{v_{k}+1}: \frac{b(n)-c\left(v_{k}\right)}{n-v_{k}}=c\left(v_{k}+1\right)-c\left(v_{k}\right)\right\} & \text { if } f^{3} v_{k}<N \\ v_{k} & \text { if } v_{k} \geq N\end{cases}$
for every $k \in \mathbb{N}$, it follows that $v_{k} \in \mathfrak{N}$ for every $k \in \mathbb{N}$ and $\left\{v_{k}: k \in \mathbb{N}\right\}=\{n \in \mathbb{N}: c(n)=$ $b(n)\}$.
(3.8.4) If \mathfrak{M} is finite (that is, $N \in \mathbb{N}, N=\max (\mathfrak{M})$), then the sequence $\left(v_{k}\right)_{k \in \mathbb{N}}$ is eventually constant (and consequently $v_{k} \geq N$ for sufficiently large n). Furthermore, if we set $k_{0}=\min \left\{k \in \mathbb{N}: v_{k} \geq N\right\}$ we have: $v_{k}=N$ for every $k \in \mathbb{N}_{k_{0}}, v_{k}<v_{k+1}$ for each $k \in \mathbb{N}$ satisfying $k<k_{0}, \ell \in \mathbb{R}$, and, for each $n \in \mathbb{N}$,

$$
\begin{aligned}
c(n) & = \begin{cases}b\left(v_{k}\right)+\left(\frac{n-v_{k}}{v_{k+1}-v_{k}}\right)\left(b\left(v_{k+1}\right)-b\left(v_{k}\right)\right) & \text { if } v_{k} \leq n \leq v_{k+1} \text { for some } k \in \mathbb{N} \\
b(N)+\ell(n-N) & \text { if } n \geq N \quad \text { satisfying } k<k_{0}\end{cases} \\
& = \begin{cases}\left(\frac{v_{k+1}-n}{v_{k+1}-v_{k}}\right) b\left(v_{k}\right)+\left(\frac{n-v_{k}}{v_{k+1}-v_{k}}\right) b\left(v_{k+1}\right) & \text { if } v_{k} \leq n \leq v_{k+1} \text { for some } k \in \mathbb{N} \\
b(N)+\ell(n-N) & \text { if } n \geq N .\end{cases}
\end{aligned}
$$

Finally, $c(n)>b(n)$ for every $n \in \mathbb{N}_{N+1}$.

[^3](3.8.5) If \mathfrak{M} is infinite (that is, $\mathfrak{N}=\mathbb{N}$), then the sequence $\left(v_{k}\right)_{k \in \mathbb{N}}$ is strictly increasing. Furthermore, for each $k \in \mathbb{N}$ we have
$$
c(n)=b\left(v_{k}\right)+\left(\frac{n-v_{k}}{v_{k+1}-v_{k}}\right)\left(b\left(v_{k+1}\right)-b\left(v_{k}\right)\right)=\left(\frac{v_{k+1}-n}{v_{k+1}-v_{k}}\right) b\left(v_{k}\right)+\left(\frac{n-v_{k}}{v_{k+1}-v_{k}}\right) b\left(v_{k+1}\right)
$$
for every $n \in \mathbb{N}$ satisfying $v_{k} \leq n \leq v_{k+1}$.
Proof. We begin by proving (3.8.1). As a straightforward consequence of $\left(\frac{b(n)}{n}\right)_{n \in \mathbb{Z}_{+}}$being bounded from above, we have $\ell \in[-\infty,+\infty)$.
Now let $\left(k_{j}\right)_{j \in \mathbb{N}}$ be a strictly increasing sequence of strictly positive integers such that $\lim _{j \rightarrow+\infty} \frac{b\left(k_{j}\right)}{k_{j}}=\ell$. Then for each $n \in \mathbb{N}$ we have
\[

$$
\begin{equation*}
\lim _{j \rightarrow+\infty}\left(\frac{b\left(k_{j}\right)-c(n)}{k_{j}-n}\right)=\lim _{j \rightarrow+\infty}\left(\frac{k_{j}}{k_{j}-n}\right)\left(\frac{b\left(k_{j}\right)}{k_{j}}-\frac{c(n)}{k_{j}}\right)=\ell . \tag{3.4}
\end{equation*}
$$

\]

Hence, by virtue of (3.6.2),

$$
c(n+1)-c(n)=\sup \left\{\frac{b(k)-c(n)}{k-n}: k \in \mathbb{N}_{n+1}\right\} \geq \ell
$$

Now if we set $s=\limsup _{k \rightarrow+\infty}\left(\frac{b(k)-c(n)}{k-n}\right)$, from (3.4) we also derive that $s \geq \ell$. On the other hand, if $\left(m_{j}\right)_{j \in \mathbb{N}}$ is a strictly increasing sequence of nonnegative integers such that $\lim _{j \rightarrow+\infty}\left(\frac{b\left(m_{j}\right)-c(n)}{m_{j}-n}\right)$ $=s$, we obtain

$$
\frac{b\left(m_{j}\right)}{m j}=\left(\frac{b\left(m_{j}\right)-c(n)}{m_{j}-n}\right)\left(\frac{m_{j}-n}{m_{j}}\right)+\frac{c(n)}{m_{j}} \xrightarrow[j \rightarrow+\infty]{ } s,
$$

which gives $s \leq \ell$. Hence $s=\ell$.
(3.8.1) is thus proved. Now we prove (3.8.2).

Fix $n \in \mathfrak{N}$ and let $k \in\{0, \ldots, n\}$. We prove that $k \in \mathfrak{N}$. This is clearly true if $k=0$. If $k \in \mathbb{Z}_{+}$, then $n \in \mathbb{Z}_{+}$and $c(n)-c(n-1)=\frac{b\left(p_{n}\right)-c(n-1)}{p_{n}-n+1}$ for some $p_{n} \in \mathbb{N}_{n}$. It is not restrictive to assume $k \leq n-1$ (which gives $n-k \in \mathbb{Z}_{+}, n \in \mathbb{N}_{2}, k-1 \leq n-2$). Since for each $j \in\{k-1, \ldots, n-2\}$ we have $j+2 \leq p_{n}$, and consequently $\frac{b\left(p_{n}\right)-c(j+1)}{p_{n}-j-1} \leq \frac{b\left(p_{n}\right)-c(j)}{p_{n}-j}$ by (3.6.3), by taking (3.8.1) into account we obtain

$$
\frac{b\left(p_{n}\right)-c(k-1)}{p_{n}-k+1} \geq \frac{b\left(p_{n}\right)-c(n-1)}{p_{n}-n+1}=c(n)-c(n-1) \geq \ell=\limsup _{m \rightarrow+\infty}\left(\frac{b(m)-c(k-1)}{m-k+1}\right)
$$

Now from Lemma 3.7 we conclude that the $\operatorname{set}\left\{\frac{b(m)-c(k-1)}{m-k+1}: m \in \mathbb{N}_{k}\right\}$ has a maximum. This, together with (3.6.2), yields $k \in \mathfrak{N}$.
We prove (3.8.3).
We begin by proving that for each $k \in \mathbb{N}$ we have $v_{k} \in \mathfrak{M}$ and $\left\{n \in\left\{0, \ldots v_{k}\right\}: c(n)=b(n)\right\}=$ $\left\{v_{j}: j=0, \ldots, k\right\}$. We proceed by induction. We set

$$
\mathcal{S}=\left\{k \in \mathbb{N}: v_{k} \in \mathfrak{M} \text { and }\left\{n \in\left\{0, \ldots, v_{k}\right\}: c(n)=b(n)\right\}=\left\{v_{j}: j=0, \ldots, k\right\}\right\}
$$

Since $v_{0}=0$, by the definition of \mathfrak{N} and by (3.6.1) we have $0 \in \mathcal{S}$. Now suppose $k \in \mathcal{S}$. Then $v_{k} \in \mathfrak{R}$ and $\left\{n \in\left\{0, \ldots v_{k}\right\}: c(n)=b(n)\right\}=\left\{v_{j}: j=0, \ldots, k\right\}$. If $v_{k} \geq N$, we have $v_{k+1}=$
$v_{k} \in \mathfrak{N}$ and $\left\{n \in\left\{0, \ldots, v_{k+1}\right\}: c(n)=b(n)\right\}=\left\{n \in\left\{0, \ldots v_{k}\right\}: c(n)=b(n)\right\}=\left\{v_{j}: j=0, \ldots, k\right\}=$ $\left\{v_{j}: j=0, \ldots, k+1\right\}$, which gives $k+1 \in \mathcal{S}$. Thus, let us assume $v_{k}<N$. Then $v_{k+1} \geq v_{k}+1$ and

$$
\begin{equation*}
v_{k+1}=\min \left\{n \in \mathbb{N}_{v_{k}+1}: \frac{b(n)-c\left(v_{k}\right)}{n-v_{k}}=c\left(v_{k}+1\right)-c\left(v_{k}\right)\right\} \tag{3.5}
\end{equation*}
$$

From (3.6.3) we derive that for each $j \in \mathbb{N}$ satisfying $v_{k} \leq j \leq v_{k+1}-1$ we have

$$
\begin{equation*}
\frac{b\left(v_{k+1}\right)-c(j)}{v_{k+1}-j}=\max \left\{\frac{b(m)-c(j)}{m-j}: m \in \mathbb{N}_{j+1}\right\}=\frac{b\left(v_{k+1}\right)-c\left(v_{k}\right)}{v_{k+1}-v_{k}} \tag{3.6}
\end{equation*}
$$

By letting $j=v_{k+1}-1$, from (3.6)—together with (3.6.2)—we conclude that $v_{k+1} \in \mathfrak{N}$ and besides

$$
b\left(v_{k+1}\right)-c\left(v_{k+1}-1\right)=\max \left\{\frac{b(m)-c\left(v_{k+1}-1\right)}{m-v_{k+1}+1}: m \in \mathbb{N}_{v_{k+1}}\right\}=c\left(v_{k+1}\right)-c\left(v_{k+1}-1\right)
$$

which gives $c\left(v_{k+1}\right)=b\left(v_{k+1}\right)$. Finally, for each $n \in \mathbb{N}_{v_{k}+1}$ satisfying $n<v_{k+1}$, (3.6.2), (3.6.3), (3.5) and (3.6) give

$$
\begin{aligned}
& c(n)-c(n-1)=\max \left\{\frac{b(m)-c(n-1)}{m-n+1}: m \in \mathbb{N}_{n}\right\} \\
&=\frac{b\left(v_{k+1}\right)-c\left(v_{k}\right)}{v_{k+1}-v_{k}}>\frac{b(n)-c\left(v_{k}\right)}{n-v_{k}} \geq b(n)-c(n-1)
\end{aligned}
$$

the latter inequality being trivially an equality if $n=v_{k}+1$, and being a consequence of (3.6.3) if $n \geq v_{k}+2$ (as $\frac{b(n)-c(j)}{n-j} \geq \frac{b(n)-c(j+1)}{n-j-1}$ for all $j=v_{k}, \ldots, n-2$). Consequently, $c(n)>$ $b(n)$. Hence

$$
\begin{array}{r}
\left\{n \in\left\{0, \ldots, v_{k+1}\right\}: c(n)=b(n)\right\} \\
=\left\{n \in\left\{0, \ldots v_{k}\right\}: c(n)=b(n)\right\} \cup\left\{n \in\left\{v_{k}+1, \ldots, v_{k+1}\right\}: c(n)=b(n)\right\} \\
=\left\{v_{j}: j=0, \ldots, k\right\} \cup\left\{v_{k+1}\right\}=\left\{v_{j}: j=0, \ldots, k+1\right\},
\end{array}
$$

which gives $k+1 \in \mathcal{S}$.
We have thus proved that $v_{k} \in \mathfrak{N}$ for every $k \in \mathbb{N}$. Also,

$$
\begin{equation*}
\left\{n \in\left\{0, \ldots, v_{k}\right\}: c(n)=b(n)\right\}=\left\{v_{j}: j=0, \ldots, k\right\} \quad \text { for every } k \in \mathbb{N} \tag{3.7}
\end{equation*}
$$

Now we prove that $\{n \in \mathbb{N}: c(n)=b(n)\}=\left\{v_{k}: k \in \mathbb{N}\right\}$.
If $N=+\infty$, then $v_{k+1} \geq v_{k}+1$ for every $k \in \mathbb{N}$, which gives $\lim _{k \rightarrow+\infty} v_{k}=+\infty$, and consequently $\bigcup_{k \in \mathbb{N}}\left\{0, \ldots, v_{k}\right\}=\mathbb{N}$. Hence

$$
\begin{aligned}
\{n \in \mathbb{N}: c(n)=b(n)\} & =\bigcup_{k \in \mathbb{N}}\left\{n \in\left\{0, \ldots, v_{k}\right\}: c(n)=b(n)\right\} \\
& =\bigcup_{k \in \mathbb{N}}\left\{v_{j}: j=0, \ldots, k\right\}=\left\{v_{k}: k \in \mathbb{N}\right\}
\end{aligned}
$$

which is the desired result.
If $N<+\infty$, then there exists $\bar{k} \in \mathbb{N}$ such that $v_{\bar{k}} \geq N$: otherwise, if $v_{k}<N$ for all $k \in \mathbb{N}$,
the sequence $\left(v_{k}\right)_{k \in \mathbb{N}}$ would be strictly increasing and consequently we would have $+\infty=$ $\lim _{k \rightarrow+\infty} v_{k} \leq N$, a contradiction. Hence $v_{k}=v_{\bar{k}}$ for every $k \in \mathbb{N}_{\bar{k}}$. Furthermore, for each $n \in$ ${\underset{\mathbb{N}}{v_{k}+1}}_{k \rightarrow+\infty}$, we have $n>N$ and consequently $n \notin \mathfrak{N}$. Then $n \in \mathbb{Z}_{+}$and, by virtue of (3.6.2), $c(n)-c(n-1)>b(n)-c(n-1)$, which gives $c(n)>b(n)$. From this, together with (3.7), we obtain

$$
\begin{array}{r}
\{n \in \mathbb{N}: c(n)=b(n)\}=\left\{n \in\left\{0, \ldots, v_{\bar{k}}\right\}: c(n)=b(n)\right\} \\
=\left\{v_{j}: j=0, \ldots, \bar{k}\right\}=\left\{v_{k}: k \in \mathbb{N}\right\} .
\end{array}
$$

We have thus finished the proof of (3.8.3).
We prove (3.8.4). Suppose \mathfrak{N} to be finite. Then $N \in \mathbb{N}$ and $N=\max (\mathfrak{P})$. Also, we have already observed-in the proof of (3.8.3)-that the sequence $\left(v_{k}\right)_{k \in \mathbb{N}}$ is eventually constant and not less than N. We set $k_{0}=\min \left\{k \in \mathbb{N}: v_{k} \geq N\right\}$. Then $v_{k_{0}} \geq N$. On the other hand, since $v_{k_{0}} \in \mathfrak{N}$ by (3.8.3), we have $v_{k_{0}} \leq N$. Then $v_{k_{0}}=N$, and consequently $v_{k}=N$ for each $k \in \mathbb{N}_{k_{0}}$. Furthermore, for each $k \in \mathbb{N}$ satisfying $k<k_{0}$ we have $v_{k}<N$, and consequently $v_{k}<v_{k+1}$. From (3.6) and (3.6.2) we conclude that for each $n \in \mathbb{N}$ satisfying $v_{k}+1 \leq n \leq v_{k+1}$ we have

$$
c(j)-c(j-1)=\frac{b\left(v_{k+1}\right)-c\left(v_{k}\right)}{v_{k+1}-v_{k}} \quad \text { for all } j=v_{k}+1, \ldots, n
$$

and consequently

$$
c(n)-c\left(v_{k}\right)=\sum_{j=v_{k}+1}^{n}(c(j)-c(j-1))=\left(n-v_{k}\right)\left(\frac{b\left(v_{k+1}\right)-c\left(v_{k}\right)}{v_{k+1}-v_{k}}\right) .
$$

Hence

$$
\begin{equation*}
c(n)-c\left(v_{k}\right)=\left(n-v_{k}\right)\left(\frac{b\left(v_{k+1}\right)-c\left(v_{k}\right)}{v_{k+1}-v_{k}}\right) \quad \text { for all } n=v_{k}, \ldots, v_{k+1} . \tag{3.8}
\end{equation*}
$$

Since $c\left(v_{k}\right)=b\left(v_{k}\right)$ by (3.8.3), from (3.8) we derive that for each $n \in\left\{v_{k}, \ldots, v_{k+1}\right\}$ we have

$$
c(n)=c\left(v_{k}\right)+\left(n-v_{k}\right)\left(\frac{b\left(v_{k+1}\right)-c\left(v_{k}\right)}{v_{k+1}-v_{k}}\right)=b\left(v_{k}\right)+\left(\frac{n-v_{k}}{v_{k+1}-v_{k}}\right)\left(b\left(v_{k+1}\right)-b\left(v_{k}\right)\right) .
$$

Now we prove that $\ell \in \mathbb{R}$ and $c(n)=b(N)+\ell(n-N)$ for every $n \in \mathbb{N}_{N}$.
For each $n \in \mathbb{N}_{N}$, we have $n+1>N$ and consequently $n+1 \notin \mathfrak{M}$. From (3.6.2) we conclude that the set $\left\{\frac{b(k)-c(n)}{k-n}: k \in \mathbb{N}_{n+1}\right\}$ has no maximum. From Lemma 3.7 and from (3.8.1) we derive that $\frac{b(k)-c(n)}{k-n}<\ell$ for every $k \in \mathbb{N}_{n+1}$, and consequently $\ell \in \mathbb{R}$. Besides, from (3.6.2) we obtain

$$
c(n+1)-c(n)=\sup \left\{\frac{b(k)-c(n)}{k-n}: k \in \mathbb{N}_{n+1}\right\} \leq \ell,
$$

which, together with (3.8.1), gives $c(n+1)-c(n)=\ell$. Notice also that by virtue of (3.8.3), $v_{k_{0}}=N$ yields $c(N)=c\left(v_{k_{0}}\right)=b\left(v_{k_{0}}\right)=b(N)$. Now, proceeding by induction, we conclude that $c(n)=b(N)+\ell(n-N)$ for every $n \in \mathbb{N}_{N}$. Finally, from (3.8.3) we derive that $c(n)>b(n)$ for every $n \in \mathbb{N}_{N+1}$ and the proof of (3.8.4) is complete.
We prove (3.8.5). If we assume \mathfrak{N} to be infinite (or equivalently, by virtue of (3.8.2), $\mathfrak{N}=\mathbb{N}$), then $N=+\infty$ and consequently the sequence $\left(v_{k}\right)_{k \in \mathbb{N}}$ is strictly increasing. The remaining assertion can be derived from (3.6), (3.6.2) and (3.8.3), proceeding as in the proof of (3.8.4). The proof is now finished.

Theorem 3.9. Let $b: \mathbb{N} \rightarrow \mathbb{R}$ be a real sequence such that the sequence $\left(\frac{b(n)}{n}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above and b is not, and let c be the least concave majorant of b. Then c is strictly increasing, $\lim _{n \rightarrow+\infty} c(n)=+\infty$ and $\limsup _{n \rightarrow+\infty} \frac{b(n)}{c(n)}=1$.

Proof. We set $\ell=\limsup _{n \rightarrow+\infty} \frac{b(n)}{n}$. We observe that $\limsup _{n \rightarrow+\infty} b(n)=+\infty$, and consequently $\ell \in$ $[0,+\infty)$. From (3.8.1) it follows that c is nondecreasing, and consequently there exists $\lim _{n \rightarrow+\infty} c(n)$. Since $c(n) \geq b(n)$ for every $n \in \mathbb{N}$, we conclude that

$$
\lim _{n \rightarrow+\infty} c(n) \geq \limsup _{n \rightarrow+\infty} b(n)=+\infty
$$

Hence $c(n) \longrightarrow+\infty$ as $n \rightarrow+\infty$. Now we prove that c is strictly increasing.
If c were not strictly increasing, then-being c nondecreasing-there would be $n_{0} \in \mathbb{N}$ such that $c\left(n_{0}+1\right)-c\left(n_{0}\right)=0$. Since c is concave as well as nondecreasing, we would conclude that c is eventually constant, in contradiction with $\lim _{n \rightarrow+\infty} c(n)=+\infty$.
Finally, we prove that $\limsup _{n \rightarrow+\infty} \frac{b(n)}{c(n)}=1$. By virtue of Theorem 3.8, one of the following two conditions is satisfied:
(3.9.1) there exists a strictly increasing sequence $\left(v_{k}\right)_{k \in \mathbb{N}}$ of nonnegative integers such that $c\left(v_{k}\right)=b\left(v_{k}\right)$ for every $k \in \mathbb{N}$;
(3.9.2) there exists $N \in \mathbb{N}$ such that $c(n)>b(n)$ for every $n \in \mathbb{N}_{N+1}$ and $c(n)=b(N)+\ell(n-N)$ for every $n \in \mathbb{N}_{N}$.
If (3.9.1) holds, it suffices to observe that $\limsup _{n \rightarrow+\infty} \frac{b(n)}{c(n)} \geq \lim _{k \rightarrow+\infty} \frac{b\left(v_{k}\right)}{c\left(v_{k}\right)}=1$. The opposite inequality follows from c being a majorant of b.
If (3.9.2) holds, then $\lim _{n \rightarrow+\infty}(b(N)+\ell(n-N))=\lim _{n \rightarrow+\infty} c(n)=+\infty$ gives $\ell \in(0,+\infty)$. Hence

$$
\limsup _{n \rightarrow+\infty}\left(\frac{b(n)}{c(n)}\right)=\limsup _{n \rightarrow+\infty}\left(\frac{b(n)}{n}\right) \cdot \frac{1}{\ell+\left(\frac{b(N)-\ell N}{n}\right)}=1
$$

The desired result is thus proved.
The following is a consequence of Remark 3.4 and Theorem 3.9. Alternatively, it can be derived from Proposition 3.2 and the properties of concave functions.
Corollary 3.10. If a concave sequence $a: \mathbb{N} \rightarrow \mathbb{R}$ is not bounded from above, then a is strictly increasing and $\lim _{n \rightarrow+\infty} a(n)=+\infty$.

4 Real sequences with concave $p^{\text {th }}$-difference

Definition 4.1. Let $\Sigma, \Delta: \mathbb{K}^{\mathbb{N}} \rightarrow \mathbb{K}^{\mathbb{N}}$ be the linear operators defined by

$$
(\Sigma a)(n)=\sum_{k=0}^{n} a(k) \quad \text { and } \quad(\Delta a)(n)= \begin{cases}a(0) & \text { if } n=0 \\ a(n)-a(n-1) & \text { if } n \in \mathbb{Z}_{+}\end{cases}
$$

for every $n \in \mathbb{N}$ and every $a \in \mathbb{K}^{\mathbb{N}}$.

Notice that both linear operators Σ and Δ are bijective. Besides, $\Delta=\Sigma^{-1}$ (or, equivalently, $\Sigma=\Delta^{-1}$). We also remark that $\Delta\left(\ell_{1}\right) \subseteq \ell_{1}$. Finally, we observe that the operator Σ preserves inequalities: indeed, if $a, b \in \mathbb{R}^{\mathbb{N}}$ satisfy $a(n) \leq b(n)$ for each $n \in \mathbb{N}$, then $(\Sigma a)(n) \leq$ $(\Sigma b)(n)$ for each $n \in \mathbb{N}$.

The following is a consequence of Proposition 3.2 and of the the three chord lemma.
Lemma 4.2. Let $a: \mathbb{N} \rightarrow \mathbb{R}$ be a concave sequence. Then

$$
n(a(k)-a(0)) \geq k(a(n)-a(0)) \quad \text { for every } n \in \mathbb{N} \text { and every } k=0, \ldots, n
$$

Theorem 4.3. Let $a: \mathbb{N} \rightarrow \mathbb{R}$ be a nondecreasing concave sequence. Then for each $p \in \mathbb{N}$ we have

$$
\frac{1}{p+1}\binom{n+p}{p} a(n)+\frac{p}{p+1}\binom{n+p}{p} a(0) \leq\left(\Sigma^{p} a\right)(n) \leq\binom{ n+p}{p} a(n) \quad \text { for every } n \in \mathbb{N} .
$$

Proof. We begin by proving that $\left(\Sigma^{p} a\right)(n) \leq\binom{ n+p}{p} a(n)$ for all $n, p \in \mathbb{N}$. We proceed by induction on p.
For $p=0$, the desired inequality trivially holds for every $n \in \mathbb{N}$. Now let $p \in \mathbb{N}$ be such that $\left(\Sigma^{p} a\right)(n) \leq\binom{ n+p}{p} a(n)$ for every $n \in \mathbb{N}$. Then for each $n \in \mathbb{N}$, since a is nondecreasing we have

$$
\left(\Sigma^{p+1} a\right)(n)=\sum_{k=0}^{n}\left(\Sigma^{p} a\right)(k) \leq \sum_{k=0}^{n}\binom{k+p}{p} a(k) \leq a(n) \sum_{k=0}^{n}\binom{k+p}{p}=\binom{n+p+1}{p+1} a(n)
$$

by (2.3).
We have thus proved the desired inequality. Now, proceeding again by induction on p, we prove that $\left(\Sigma^{p} a\right)(n) \geq \frac{1}{p+1}\binom{n+p}{p} a(n)+\frac{p}{p+1}\binom{n+p}{p} a(0)$ for all $n, p \in \mathbb{N}$.
For $p=0$, the desired inequality is trivially satisfied for every $n \in \mathbb{N}$. Now let $p \in \mathbb{N}$ be such that $\left(\Sigma^{p} a\right)(n) \geq \frac{1}{p+1}\binom{n+p}{p} a(n)+\frac{p}{p+1}\binom{n+p}{p} a(0)$ for every $n \in \mathbb{N}$. We prove that $\left(\Sigma^{p+1} a\right)(n) \geq$ $\frac{1}{p+2}\binom{n+p+1}{p+1} a(n)+\frac{p+1}{p+2}\binom{n+p+1}{p+1} a(0)$ for every $n \in \mathbb{N}$.
For $n=0$, since $\left(\Sigma^{p+1} a\right)(0)=a(0)$ the desired inequality is straightforward. Now fix $n \in \mathbb{Z}_{+}$. Then from Lemma 4.2 and (2.3) we obtain

$$
\begin{array}{r}
\left(\Sigma^{p+1} a\right)(n)=\sum_{k=0}^{n}\left(\Sigma^{p} a\right)(k) \geq \frac{1}{p+1} \sum_{k=0}^{n}\binom{k+p}{p} a(k)+\frac{p}{p+1} a(0) \sum_{k=0}^{n}\binom{k+p}{p} \\
\geq \frac{1}{n(p+1)} \sum_{k=0}^{n}\binom{k+p}{p}(k a(n)+(n-k) a(0))+\frac{p}{p+1} a(0)\binom{n+p+1}{p+1} \\
=\frac{(a(n)-a(0))}{n} \sum_{k=1}^{n} \frac{k}{p+1}\binom{k+p}{p}+\frac{a(0)}{p+1} \sum_{k=0}^{n}\binom{k+p}{p}+\frac{p}{p+1} a(0)\binom{n+p+1}{p+1} \\
=\frac{(a(n)-a(0))}{n} \sum_{k=1}^{n}\binom{k+p}{p+1}+a(0)\binom{n+p+1}{p+1} \\
=\frac{(a(n)-a(0))}{n} \sum_{k=0}^{n-1}\binom{k+p+1}{p+1}+a(0)\binom{n+p+1}{p+1}
\end{array}
$$

$$
\begin{array}{r}
\quad=\frac{(a(n)-a(0))}{n}\binom{n+p+1}{p+2}+a(0)\binom{n+p+1}{p+1} \\
=\frac{(a(n)-a(0))}{p+2} \cdot \frac{(n+p+1)!}{n(p+1)!(n-1)!}+a(0)\binom{n+p+1}{p+1} \\
=\frac{(a(n)-a(0))}{p+2}\binom{n+p+1}{p+1}+a(0)\binom{n+p+1}{p+1} \\
=\frac{1}{p+2}\binom{n+p+1}{p+1} a(n)+\frac{p+1}{p+2}\binom{n+p+1}{p+1} a(0),
\end{array}
$$

which is the desired result. The proof is now complete.
Lemma 4.4. Let $b: \mathbb{N} \rightarrow \mathbb{R}$ be a nondecreasing sequence, satisfying $b(0) \geq 0$ and $b(1)>0$. Then for each $k \in \mathbb{Z}_{+}$the sequence $\Sigma^{k} b$ is convex and strictly increasing.

Proof. It suffices to prove that Σb is convex and strictly increasing. Indeed, once this is proved, the desired result follows by induction on $k\left(\right.$ as $\left(\Sigma^{k} b\right)(0)=b(0) \geq 0$ for every $k \in \mathbb{Z}_{+}$, and then $\Sigma^{k} b$ strictly increasing gives $\left.\left(\Sigma^{k} b\right)(1)>0\right)$.
Sice b is nondecreasing, $b(1)>0$ yields $b(n)>0$ for every $n \in \mathbb{Z}_{+}$, and consequently $(\Sigma b)(n+1)=(\Sigma b)(n)+b(n+1)>(\Sigma b)(n)$ for every $n \in \mathbb{N}$. Hence Σb is strictly increasing. Furthermore, being the sequence $((\Sigma b)(n+1)-(\Sigma b)(n))_{n \in \mathbb{N}}=(b(n+1))_{n \in \mathbb{N}}$ nondecreasing, Σb is convex. We have thus obtained the desired result.

Lemma 4.5. Let $c: \mathbb{N} \rightarrow \mathbb{R}$ be a concave nondecreasing sequence. Then Δc is convergent, and $\Delta^{2} c \in \ell_{1}$.

Proof. Since c is concave and nondecreasing, it follows that the sequence $((\Delta c)(n+1))_{n \in \mathbb{N}}$ is nonincreasing and $(\Delta c)(n) \geq 0$ for each $n \in \mathbb{Z}_{+}$. Then $\lim _{n \rightarrow+\infty}(\Delta c)(n)=\lambda$ for some $\lambda \in[0,+\infty)$ (and so Δc converges). Besides, $\left(\Delta^{2} c\right)(n) \leq 0$ for each $n \in \mathbb{N}_{2}$. Since

$$
\sum_{k=0}^{n}\left(\Delta^{2} c\right)(n)=\left(\Sigma \Delta^{2} c\right)(n)=(\Delta c)(n) \xrightarrow[n \rightarrow+\infty]{ } \lambda
$$

(that is, the series $\sum_{n=0}^{+\infty}\left(\Delta^{2} c\right)(n)$ converges), being $\Delta^{2} c$ eventually nonpositive it follows that the series $\sum_{n=0}^{+\infty}\left|\left(\Delta^{2} c\right)(n)\right|$ also converges. Hence $\Delta^{2} c \in \ell_{1}$.

Remark 4.6. Let $s \in \mathbb{K}^{\mathbb{N}}$ be an eventually nonzero sequence. If we fix $v \in \mathbb{Z}_{+}$such that $s(n) \neq 0$ for all $n \in \mathbb{N}_{\nu}$, then for each $n \in \mathbb{N}_{\nu}$ we have $\frac{(\Delta s)(n)}{s(n)}=1-\frac{s(n-1)}{s(n)}$. Hence

$$
\lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1 \quad \Longleftrightarrow \quad \lim _{n \rightarrow+\infty} \frac{(\Delta s)(n)}{s(n)}=0
$$

Theorem 4.7. Let $s: \mathbb{N} \rightarrow \mathbb{R}$ be a real sequence satisfying $s(0) \geq 0$, and let $p \in \mathbb{N}$ be such that the sequence $\Delta^{p} s$ is concave and is not bounded from above. Then:
(4.7.1) $s(n)>0$ for every $n \in \mathbb{Z}_{+}$;
(4.7.2) s is strictly increasing;
(4.7.3) $\lim _{n \rightarrow+\infty} \frac{s(n)}{n^{p}}=+\infty$ (and consequently $\lim _{n \rightarrow+\infty} s(n)=+\infty$);
(4.7.4) the sequence $\left(\frac{s(n)}{n^{p+1}}\right)_{n \in \mathbb{Z}_{+}}$is bounded;
(4.7.5) $\lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1$;
(4.7.6) $\Delta^{p+2} s \in \ell_{1}$.

If in addition $p \in \mathbb{Z}_{+}$, then the sequence s is also convex.
Proof. From Corollary 3.10 it follows that $\Delta^{p} s$ is strictly increasing and $\lim _{n \rightarrow+\infty}\left(\Delta^{p} s\right)(n)=$ $+\infty$. Also, $\left(\Delta^{p} s\right)(0)=s(0) \geq 0$, and consequently $\left(\Delta^{p} s\right)(n)>0$ for every $n \in \mathbb{Z}_{+}$. By applying Lemma 4.4 in case $p \in \mathbb{Z}_{+}$, since $s=\Sigma^{p}\left(\Delta^{p} s\right)$ we conclude that s is strictly increasing. Hence $s(n)>0$ for every $n \in \mathbb{Z}_{+}$. From Lemma 4.4 we also derive that if $p \in \mathbb{Z}_{+}$, then s is convex. We have thus proved (4.7.1) and (4.7.2), plus the final assertion.
Now we prove (4.7.3). If $p=0$, the desired result holds as $+\infty=\lim _{n \rightarrow+\infty}\left(4^{0} s\right)(n)=\lim _{n \rightarrow+\infty} s(n)$. Thus, let us assume $p \in \mathbb{Z}_{+}$. Since $\Delta^{p} s$ is nondecreasing, from Theorem 4.3 it follows that, for each $n \in \mathbb{Z}_{+}$, we have

$$
\begin{array}{r}
s(n)=\left(\Sigma^{p}\left(\Delta^{p} s\right)\right)(n) \geq \frac{1}{p+1}\binom{n+p}{p}\left(\Delta^{p} s\right)(n)+\frac{p}{p+1}\binom{n+p}{p} s(0) \\
\geq \frac{1}{p+1}\binom{n+p}{p}\left(\Delta^{p} s\right)(n)
\end{array}
$$

and consequently

$$
\frac{s(n)}{n^{p}} \geq \frac{\prod_{k=1}^{p}(n+k)}{(p+1)!n^{p}} \cdot\left(\Delta^{p} s\right)(n) \geq \frac{\left(\Delta^{p} s\right)(n)}{(p+1)!}
$$

Since $\lim _{n \rightarrow+\infty}\left(\Delta^{p} s\right)(n)=+\infty$, we obtain the desired result.
We prove (4.7.4). Since $s(n) \geq 0$ for every $n \in \mathbb{N}$, it suffices to prove that the sequence $\left(\frac{s(n)}{n^{p+1}}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above. By Remark 3.4, the sequence $\left(\frac{\left(\Delta^{p} s\right)(n)}{n}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above, which is the desired result if $p=0$. Now suppose $p \in \mathbb{Z}_{+}$. From Theorem 4.3 it follows that

$$
\frac{s(n)}{n^{p+1}}=\frac{\left(\Sigma^{p}\left(\Delta^{p} s\right)\right)(n)}{n^{p+1}} \leq \frac{1}{p!}\left(\frac{\prod_{k=1}^{p}(n+k)}{n^{p}}\right)\left(\frac{\left(\Delta^{p} s\right)(n)}{n}\right) \quad \text { for every } n \in \mathbb{Z}_{+}
$$

Since $\lim _{n \rightarrow+\infty}\left(\frac{\prod_{k=1}^{p}(n+k)}{n^{p}}\right)=1$ and $\left(\frac{\left(\left(^{p} s\right)(n)\right.}{n}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above, we obtain the desired result.
Now we prove (4.7.5). We prove that $\lim _{n \rightarrow+\infty} \frac{(\Delta s)(n)}{s(n)}=0$, which is equivalent to proving that $\lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1$ by Remark 4.6. If $p=0$, then s is concave by hypothesis. Furthermore, s is
strictly increasing and $\lim _{n \rightarrow+\infty} s(n)=+\infty$. Since Δs converges by Lemma 4.5, it follows that $\lim _{n \rightarrow+\infty} \frac{(\Delta s)(n)}{s(n)}=0$. Now assume $p \in \mathbb{Z}_{+}$(and consequently $p-1 \in \mathbb{N}$). From Theorem 4.3 we derive that, for each $n \in \mathbb{N}$, we have

$$
s(n)=\left(\Sigma^{p}\left(\Delta^{p} s\right)\right)(n) \geq \frac{1}{p+1}\binom{n+p}{p}\left(\Delta^{p} s\right)(n) \quad\left(\text { as }\left(\Delta^{p} s\right)(0)=s(0) \geq 0\right)
$$

and

$$
(\Delta s)(n)=\left(\Sigma^{p-1}\left(\Delta^{p} s\right)\right)(n) \leq\binom{ n+p-1}{p-1}\left(\Delta^{p} s\right)(n) .
$$

Since both $s(n)$ and $(\Delta s)(n)$ are strictly positive for every $n \in \mathbb{Z}_{+}$(see (4.7.1) and (4.7.2)), from the two inequalities above we conclude that

$$
0<\frac{(\Delta s)(n)}{s(n)} \leq \frac{\binom{n+p-1}{p-1}\left(\Delta^{p} s\right)(n)}{\frac{1}{p+1}\binom{n+p}{p}\left(\Delta^{p} s\right)(n)}=\frac{\frac{(n+p-1)!}{(p-1)!n!}}{\frac{1}{p+1} \cdot \frac{(n+p)!}{p!n!}}=\frac{(p+1)!(n+p-1)!}{(p-1)!(n+p)!}=\frac{p(p+1)}{n+p}
$$

for every $n \in \mathbb{Z}_{+}$. Now $\lim _{n \rightarrow+\infty} \frac{p(p+1)}{n+p}=0$ yields $\lim _{n \rightarrow+\infty} \frac{(\Delta s)(n)}{s(n)}=0$, which is the desired result. Finally, (4.7.6) is a consequence of Corollary 3.10 and Lemma 4.5. The proof is now complete.

Remark 4.8. Under the hypotheses of Theorem 4.7, for each $j=0, \ldots, p$ we have $\Delta^{p-j}\left(\Delta^{j} s\right)=\Delta^{p} s$. Since $\left(\Delta^{j} s\right)(0)=s(0) \geq 0$, we are enabled to apply Theorem 4.7 to the sequence $\Delta^{j} s$. Hence:
(4.8.1) $\left(\Delta^{j} s\right)(n)>0$ for every $n \in \mathbb{Z}_{+}$;
(4.8.2) $\Delta^{j} S$ is strictly increasing;
(4.8.3) $\lim _{n \rightarrow+\infty} \frac{\left(\Delta^{j}\right)(n)}{n^{p-j}}=+\infty$ (and consequently $\left.\lim _{n \rightarrow+\infty}\left(\Delta^{j} S\right)(n)=+\infty\right)$;
(4.8.4) the sequence $\left(\frac{\left(4^{j} s\right)(n)}{n^{p+1-j}}\right)_{n \in \mathbb{Z}_{+}}$is bounded;
(4.8.5) $\lim _{n \rightarrow+\infty} \frac{\left(4^{j} s\right)(n+1)}{\left(4^{j} s\right)(n)}=1$ (or, equivalently, $\lim _{n \rightarrow+\infty} \frac{\left(4^{j+1} s\right)(n)}{\left(4^{j} s\right)(n)}=0$).

If in addition $j<p$, then the sequence $\Delta^{j} s$ is also convex.
We conclude this section with an example of an important sequence satisfying the hypotheses of Theorem 4.7, that is, the sequence of the Cesàro numbers of order α for $\alpha>0$.

Example 4.9. Fix $\alpha \in(0,+\infty)$, and consider the sequence $A_{\alpha}: \mathbb{N} \rightarrow \mathbb{R}$ of the Cesàro numbers of order α. Then $A_{\alpha}(0)=1>0$. Also, from (2.1) it follows that $A_{\alpha}=\Sigma A_{\alpha-1}$, or equivalently $\Delta A_{\alpha}=A_{\alpha-1}$. Hence $\Delta^{k} A_{\alpha}=A_{\alpha-k}$ for each $k \in \mathbb{N}$. Now we set

$$
\begin{equation*}
p=\max \{k \in \mathbb{N}: k<\alpha\} . \tag{4.1}
\end{equation*}
$$

Then

$$
p=\left\{\begin{array}{ll}
{[\alpha]} & \text { if } \alpha \notin \mathbb{Z}_{+} \\
\alpha-1 & \text { if } \alpha \in \mathbb{Z}_{+}
\end{array} \quad \text { and } \quad 0<\alpha-p \leq 1 .\right.
$$

Since $\alpha-p>0$, from (2.2) we derive that the sequence $\Delta^{p} A_{\alpha}=A_{\alpha-p}$ is unbounded from above. Besides, since $-1<\alpha-p-1 \leq 0$, it follows that the sequence $\Delta\left(\Delta^{p} A_{\alpha}\right)=A_{\alpha-p-1}$ is nonincreasing (see [13], III, (1-17)), and consequently $\Delta^{p} A_{\alpha}$ is concave. Hence A_{α} satisfies the hypotheses of Theorem 4.7 if p is as in (4.1).

Notice that a real sequence need not be infinite of order α for some $\alpha \in(0,+\infty)$ in order to satisfy the hypotheses of Theorem 4.7: for instance, the sequence $(\log (n+1))_{n \in \mathbb{N}}$ of nonnegative real numbers, being concave and unbounded from above, satisfies the hypotheses of Theorem 4.7 for $p=0$. Nevertheless, it is infinite of order less than α for each $\alpha \in(0,+\infty)$.

5 An index of unboundedness from above for a real sequence

Definition 5.1. For each real sequence $a: \mathbb{N} \rightarrow \mathbb{R}$, we set

$$
\mathcal{H}(a)=\inf \left\{m \in \mathbb{N}: \text { the sequence }\left(\frac{a(n)}{n^{m}}\right)_{n \in \mathbb{Z}_{+}} \text {is bounded from above }\right\} .
$$

Remark 5.2. Let $a: \mathbb{N} \rightarrow \mathbb{R}$ be a real sequence. We observe that $\mathcal{H}(a) \in \mathbb{N} \cup\{+\infty\}$ and the infimum above is attained if and only if $\mathcal{H}(a)<+\infty$. Also, $\mathcal{H}(a)<+\infty$ if and only if the sequence $\left(\frac{a(n)}{n^{\alpha}}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above for some $\alpha \in[0,+\infty)$, in which case $\mathcal{H}(a)$ is the minimum nonnegative integer m for which the sequence $\left(\frac{a(n)}{n^{m}}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above. Moreover, if $\mathcal{H}(a)<+\infty$, then clearly $\left(\frac{a(n)}{n^{m}}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above for every $m \in \mathbb{N}_{\mathcal{H}(a)}$ (indeed, for every $m \in[\mathcal{H}(a),+\infty)$). Notice also that a is bounded from above if and only if $\mathcal{H}(a)=0$.
Finally, we remark that if $s: \mathbb{N} \rightarrow \mathbb{R}$ is a real sequence satisfying the hypotheses of Theorem 4.7, then $\mathcal{H}(s)=p+1$. Thus, if $s: \mathbb{N} \rightarrow \mathbb{R}$ is a real sequence such that $s(0) \geq 0$, there exists at most one $p \in \mathbb{N}$ for which the hypotheses of Theorem 4.7 are satisfied.

Theorem 5.3. Let $b: \mathbb{N} \rightarrow \mathbb{R}$ be a real sequence, which is not bounded from above and satisfies $\mathcal{H}(b)<+\infty$. Then $\mathcal{H}(b) \in \mathbb{Z}_{+}$. Besides, if we set $p=\mathcal{H}(b)-1$, then $p \in \mathbb{N}$ and b has a majorant $s: \mathbb{N} \rightarrow \mathbb{R}$ such that $s(0) \geq 0$ and Δ^{p} s is concave and is not bounded from above (which implies that s satisfies (4.7.1)-(4.7.6), besides being convex if $p \in \mathbb{Z}_{+}$-equivalently, if $\left.\mathcal{H}(b) \in \mathbb{N}_{2}\right)$, and moreover $\limsup _{n \rightarrow+\infty} \frac{b(n)}{s(n)} \in\left[\frac{1}{p+1}, 1\right]=\left[\frac{1}{\mathcal{H}(b)}, 1\right]$.

Proof. Let us first notice that $\mathcal{H}(b) \in \mathbb{Z}_{+}$-and consequently $p \in \mathbb{N}$-by Remark 5.2, being b unbounded from above. By going to the sequence

$$
\tilde{b}: \mathbb{N} \ni n \longmapsto\left\{\begin{array}{ll}
b(n) & \text { if } n \in \mathbb{Z}_{+} \\
0 & \text { if } n=0
\end{array} \in \mathbb{R}\right.
$$

if $b(0)<0$, it is not restrictive to assume that $b(0) \geq 0$. Now let $a: \mathbb{N} \rightarrow \mathbb{R}$ be the sequence defined by

$$
a(n)=\frac{(p+1) b(n)}{\binom{n+p}{p}}-p b(0) \quad \text { for every } n \in \mathbb{N}
$$

Then $a(0)=b(0)$. Furthermore, since $\lim _{n \rightarrow+\infty} \frac{\left(\begin{array}{c}n+p \\ n^{p}\end{array}\right.}{n^{p}}=\lim _{n \rightarrow+\infty}\left(\frac{\prod_{k=1}^{p}(n+k)}{p!n^{p}}\right)=\frac{1}{p!}$, and the sequence $\left(\frac{b(n)}{n^{p+1}}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above, whereas $\left(\frac{b(n)}{n^{p}}\right)_{n \in \mathbb{Z}_{+}}$is not (as $\mathcal{H}(b)=p+1$), it follows that the sequence $\left(\frac{a(n)}{n}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above, and a is not. Hence a has a concave majorant by Proposition 3.3, and consequently (see Remark 3.5) has a least concave majorant. Let $c: \mathbb{N} \rightarrow \mathbb{R}$ denote the least concave majorant of a. Then from (3.6.1) we obtain $c(0)=a(0)=$ $b(0)$. Moreover, from Theorem 3.9 we conclude that c is strictly increasing, $\lim _{n \rightarrow+\infty} c(n)=$ $+\infty$, and $\limsup _{n \rightarrow+\infty} \frac{a(n)}{c(n)}=1$. Hence $\lim _{n \rightarrow+\infty} \frac{p b(0)}{c(n)}=0$, and consequently

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{b(n)}{\frac{1}{p+1}\binom{n+p}{p} c(n)}=1 \tag{5.1}
\end{equation*}
$$

Now let $s \in \mathbb{R}^{\mathbb{N}}$ be defined by $s=\Sigma^{p} c$. We prove that s is a majorant of b. Since c is concave and nondecreasing, from Theorem 4.3 we derive that, for each $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& s(n)=\left(\Sigma^{p} c\right)(n) \geq \frac{1}{p+1}\binom{n+p}{p} c(n)+\frac{p}{p+1}\binom{n+p}{p} c(0) \\
&=\frac{1}{p+1}\binom{n+p}{p} c(n)+\frac{p}{p+1}\binom{n+p}{p} b(0) \\
& \geq \frac{1}{p+1}\binom{n+p}{p} a(n)+\frac{p}{p+1}\binom{n+p}{p} b(0) \\
&= \frac{1}{p+1}\binom{n+p}{p}\left(\frac{(p+1) b(n)}{\binom{n+p}{p}}-p b(0)\right)+\frac{p}{p+1}\binom{n+p}{p} b(0) \\
&=b(n)-\frac{p}{p+1}\binom{n+p}{p} b(0)+\frac{p}{p+1}\binom{n+p}{p} b(0)=b(n),
\end{aligned}
$$

which is the desired result. We also remark that $s(0)=c(0)=b(0) \geq 0$, and $\Delta^{p} s=c$ is concave and is not bounded from above.
Now it remains to prove that $\limsup _{n \rightarrow+\infty} \frac{b(n)}{s(n)} \in\left[\frac{1}{p+1}, 1\right]$. From Theorem 4.7 it follows that $\left(\Sigma^{p} c\right)(n)=s(n)>0$ for every $n \underset{\substack{n \rightarrow+\infty \\ \mathbb{Z}_{+}}}{ }$. Then, since s is a majorant of b, we clearly have $\limsup _{n \rightarrow+\infty} \frac{b(n)}{s(n)} \leq 1$. Finally, we prove that $\limsup _{n \rightarrow+\infty} \frac{b(n)}{s(n)} \geq \frac{1}{p+1}$. Since c is strictly increasing, $\stackrel{n \rightarrow+\infty}{c(0) \geq 0} 0$ yields $c(n)>0$ for every $n \in \mathbb{Z}_{+}$. Then

$$
\begin{equation*}
\frac{b(n)}{s(n)}=\left(\frac{b(n)}{\frac{1}{p+1}\binom{n+p}{p} c(n)}\right)\left(\frac{\frac{1}{p+1}\binom{n+p}{p} c(n)}{\left(\Sigma^{p} c\right)(n)}\right) \quad \text { for every } n \in \mathbb{Z}_{+} \tag{5.2}
\end{equation*}
$$

Since c is concave and nondecreasing, from Theorem 4.3 we conclude that

$$
\begin{equation*}
\frac{1}{p+1} \leq \frac{\frac{1}{p+1}\binom{n+p}{p} c(n)}{\left(\Sigma^{p} c\right)(n)} \quad \text { for every } n \in \mathbb{Z}_{+} \tag{5.3}
\end{equation*}
$$

Now the desired result is a consequence of (5.1), (5.2) and (5.3). The proof is thus complete.

We remark that, by virtue of Theorem 5.3, any real sequence b which is unbounded from above and such that $\mathcal{H}(b)<+\infty$, has a majorant s which enjoys the good properties of Theorem 4.7 for $p=\mathcal{H}(b)-1$, satisfies $\mathcal{H}(s)=p+1=\mathcal{H}(b)$ (see Remark 5.2) and is not infinite of higher order than b (equivalently, has a subsequence which is infinite of the same order as the corresponding subsequence of b). Thus, in some sense, s is not "too far" from b.

Proposition 5.4. Let $a: \mathbb{N} \rightarrow \mathbb{R}$ be a real sequence, and $q \in \mathbb{Z}_{+}$be such that $\Delta^{q} a \in \ell_{1}$. Then $\mathcal{H}(a) \leq q-1$.

Proof. If we set $M=\left\|\Delta^{q} a\right\|_{\ell_{1}}$, for each $n \in \mathbb{N}$ we have

$$
\begin{aligned}
&\left(\Delta^{q-1} a\right)(n) \leq\left|\left(\Delta^{q-1} a\right)(n)\right|=\left|\left(\Sigma \Delta^{q} a\right)(n)\right| \\
&=\left|\sum_{k=0}^{n}\left(\Delta^{q} a\right)(k)\right| \\
& \leq \sum_{k=0}^{n}\left|\left(\Delta^{q} a\right)(k)\right| \leq M=M A_{0}(n) .
\end{aligned}
$$

Since the linear operator Σ preserves inequalities, and consequently Σ^{q-1} also does, from (2.1) we conclude that

$$
a(n)=\left(\Sigma^{q-1} \Delta^{q-1} a\right)(n) \leq M\left(\Sigma^{q-1} A_{0}\right)(n)=M A_{q-1}(n)=M\binom{n+q-1}{n}
$$

for each $n \in \mathbb{N}$.
Since $\lim _{n \rightarrow+\infty} \frac{1}{n^{q-1}}\binom{n+q-1}{n}=\frac{1}{(q-1)!}$, and consequently the sequence $\left(\frac{1}{n^{q-1}}\binom{n+q-1}{n}\right)_{n \in \mathbb{Z}_{+}}$is bounded, it follows that the sequence $\left(\frac{a(n)}{n^{q-1}}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above. Hence $\mathcal{H}(a) \leq q-1$.

Remark 5.5. Let $a: \mathbb{N} \rightarrow \mathbb{R}$ be a real sequence. If $\Delta^{q} a \in \ell_{1}$ for some $q \in \mathbb{N}$, since $\Delta\left(\ell_{1}\right) \subseteq \ell_{1}$ it follows that $\Delta^{k} a \in \ell_{1}$ for each $k \in \mathbb{N}_{q}$.

Remark 5.6. If a real sequence a is unbounded from above, and $q \in \mathbb{Z}_{+}$is such that $\Delta^{q} a \in \ell_{1}$, then from Proposition 5.4 it follows that $q \geq 2$ (as $\mathcal{H}(a) \geq 1)$.

6 A uniform ergodic theorem for Nörlund means

We begin with a result relating several properties of the sequence of the norms of the iterates of a bounded linear operator.

Theorem 6.1. Let X be a complex nonzero Banach space, and $T \in L(X)$. Then the following conditions are equivalent:
(6.1.1) $\mathcal{H}\left(\left(\left\|T^{n}\right\|_{L(X)}\right)_{n \in \mathbb{N}}\right)<+\infty$;
(6.1.2) there exists a sequence b of strictly positive real numbers such that $\mathcal{H}(b)<+\infty$, $\lim _{n \rightarrow+\infty} b(n)=+\infty$, and $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(x)}}{b(n)}=0$;
(6.1.3) there exists a sequence s of strictly positive real numbers such that Δ^{p} s is concave and unbounded from above for some $p \in \mathbb{N}$ (which implies that s satisfies (4.7.2)-(4.7.6), besides being convex if $p \in \mathbb{Z}_{+}$), and $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(X)}}{s(n)}=0$;
(6.1.4) there exists a nondecreasing sequence s of strictly positive real numbers such that $\lim _{n \rightarrow+\infty} s(n)=+\infty, \lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1, \Delta^{q} s \in \ell_{1}$ for some $q \in \mathbb{N}_{2}$, and $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(X)}}{s(n)}=0$.

Furthermore, if $b: \mathbb{N} \rightarrow \mathbb{R}$ is a sequence of strictly positive real numbers satisfying (6.1.2), then $\mathcal{H}(b) \in \mathbb{Z}_{+}$, and a sequence $s: \mathbb{N} \rightarrow \mathbb{R}$ of strictly positive real numbers can be chosen so that (6.1.3) is satisfied for $p=\mathcal{H}(b)-1, s(n) \geq b(n)$ for each $n \in \mathbb{N}$, and moreover $\limsup _{n \rightarrow+\infty} \frac{b(n)}{s(n)} \in\left[\frac{1}{\mathcal{H}(b)}, 1\right]$.
Finally, the equivalent conditions (6.1.1)-(6.1.4) imply the following:
(6.1.5) $r(T) \leq 1$.

Proof. We begin by proving that (6.1.1) implies (6.1.2). If $\mathcal{H}\left(\left(\left\|T^{n}\right\|_{L(X)}\right)_{n \in \mathbb{N}}\right)<+\infty$, it suffices to define $b: \mathbb{N} \rightarrow \mathbb{R}$ as follows: $b(n)=(n+1)^{\mathcal{H}\left(\left(\left\|I^{k}\right\|_{L X}()_{k \in \mathbb{N}}\right)+1\right.}$ for every $n \in \mathbb{N}$. Indeed, $b(n)>0$ for every $n \in \mathbb{N}, \lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L X}}{b(n)}=\lim _{n \rightarrow+\infty}\left(\frac{\left\|T^{n}\right\|_{L X}}{(n+1)^{\left.\mathcal{H}\left(\left\|T^{k}\right\|_{L(X)}\right)_{k \in \mathbb{N}}\right)}}\right)\left(\frac{1}{n+1}\right)=0$, and $\mathcal{H}(b)=\mathcal{H}\left(\left(\left\|T^{n}\right\|_{L(X)}\right)_{n \in \mathbb{N}}\right)+1<+\infty$.
Now let us assume that condition (6.1.2) is satisfied by a sequence b of strictly positive real numbers. Since $\mathcal{H}(b)<+\infty$ and b is unbounded from above, from Theorem 5.3 it follows that $\mathcal{H}(b) \in \mathbb{Z}_{+}$. Furthermore, if we set $p=\mathcal{H}(b)-1$ (which gives $p \in \mathbb{N}$), then b has a majorant s such that $\Delta^{p} s$ is concave and is not bounded from above, and besides $\limsup _{n \rightarrow+\infty} \frac{b(n)}{s(n)} \in\left[\frac{1}{\mathcal{H}(b)}, 1\right]$. Notice also that $s(n) \geq b(n)>0$ for each $n \in \mathbb{N}$. Finally, since $\frac{\left\|T^{n}\right\|_{L(X)}}{s(n)} \leq \frac{\left\|T^{n}\right\|_{L(X)}}{b(n)}$ for each $n \in \mathbb{N}$, we derive that $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L X}}{s(n)}=0$. Hence condition (6.1.3) is satisfied by s for $p=\mathcal{H}(b)-1$.
From Theorem 4.7 it follows that (6.1.3) implies (6.1.4). Now we prove that (6.1.4) implies (6.1.1). Let $s: \mathbb{N} \rightarrow \mathbb{R}$ be a nondecreasing sequence of strictly positive real numbers which satisfies (6.1.4). Then $\mathcal{H}(s) \leq q-1$ by Proposition 5.4. Also, the sequence $\left(\frac{\left\|T^{n}\right\|_{L(x)}}{s(n)}\right)_{n \in \mathbb{N}}$ is bounded, and consequently $\mathcal{H}\left(\left(\left\|T^{n}\right\|_{L(X)}\right)_{n \in \mathbb{N}}\right) \leq \mathcal{H}(s)<+\infty$.

We have thus proved equivalence of conditions (6.1.1)-(6.1.4), as well as the subsequent claim. It remains to prove that if the equivalent conditions (6.1.1)-(6.1.4) are satisfied, then $r(T) \leq 1$, which follows from Remark 2.5.

Remark 6.2. If T is a bounded linear operator on a complex nonzero Banach space X, such that $r(T)<1$, then $\lim _{n \rightarrow+\infty}\left\|T^{n}\right\|_{L(X)}=0$. Consequently, the sequence $\left(\left\|T^{n}\right\|_{L(X)}\right)_{n \in \mathbb{N}}$ is bounded, which gives $\mathcal{H}\left(\left(\left\|T^{n}\right\|_{L(X)}\right)_{n \in \mathbb{N}}\right)=0$.
However, condition (6.1.5) is not equivalent to (6.1.1)-(6.1.4). Indeed, the following example shows that a bounded linear operator T on a complex nonzero Banach space X, such that $r(T)=1$, need not satisfy $\mathcal{H}\left(\left(\left\|T^{n}\right\|_{L(X)}\right)_{n \in \mathbb{N}}\right)<+\infty$.

Example 6.3. Let us consider the complex Hilbert space ℓ_{2} and the unilateral weighted
shift operator $T: \ell_{2} \rightarrow \ell_{2}$ defined by

$$
T x=\sum_{n=0}^{+\infty} e^{\frac{1}{\sqrt{(n+1)}}} x(n) e_{n+1} \quad \text { for every } x \in \ell_{2},
$$

where $\left\{e_{n}: n \in \mathbb{N}\right\}$ denotes the canonical orthonormal basis of ℓ_{2}. Then $T \in L\left(\ell_{2}\right)$. Besides (see [7], Solution 77), for each $k \in \mathbb{Z}_{+}$we have

$$
\left\|T^{k}\right\|_{L\left(\left(_{2}\right)\right.}=\sup \left\{\prod_{j=1}^{k} e^{\frac{1}{\sqrt{n+j}}}: n \in \mathbb{N}\right\}=\sup \left\{e^{\sum_{j=1}^{k} \frac{1}{\sqrt{n+j}}}: n \in \mathbb{N}\right\}=e^{\sum_{j=1}^{k} \frac{1}{\sqrt{j}}} .
$$

Since $\frac{1}{\sqrt{j}} \rightarrow 0$ as $j \rightarrow+\infty$, from the classical Cesàro means theorem we conclude that

$$
\sqrt[k]{\left\|T^{k}\right\|_{L\left(\ell_{2}\right)}}=e^{\frac{1}{k} \sum_{j=1}^{k} \frac{1}{\sqrt{j}}} \xrightarrow[k \rightarrow+\infty]{ } e^{0}=1
$$

and consequently $r(T)=1$.
Now fix $\alpha \in(0,+\infty)$. Since for each $j \in \mathbb{Z}_{+}$we have $\frac{1}{\sqrt{j}} \geq \frac{1}{\sqrt{x}}$ for every $x \in[j, j+1]$, and consequently $\frac{1}{\sqrt{j}} \geq \int_{j}^{j+1} \frac{1}{\sqrt{x}} d x$, it follows that

$$
\sum_{j=1}^{k} \frac{1}{\sqrt{j}} \geq \sum_{j=1}^{k} \int_{j}^{j+1} \frac{1}{\sqrt{x}} d x=\int_{1}^{k+1} \frac{1}{\sqrt{x}} d x=2 \sqrt{k+1}-2 \quad \text { for every } k \in \mathbb{Z}_{+}
$$

Then

$$
\frac{\left\|T^{k}\right\|_{L\left(\ell_{2}\right)}}{k^{\alpha}}=e^{\sum_{j=1}^{k} \frac{1}{\sqrt{j}}-\alpha \log k} \geq e^{2 \sqrt{k+1}-\alpha \log k-2} \xrightarrow[k \rightarrow+\infty]{\longrightarrow}+\infty .
$$

Hence the sequence $\left(\frac{\left\|T^{n}\right\|_{L(x)}}{n^{\alpha}}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above for no $\alpha \in(0,+\infty)$, that is, $\mathcal{H}\left(\left(\left\|T^{n}\right\|_{L(X)}\right)_{n \in \mathbb{N}}\right)=+\infty$.
Lemma 6.4. Let \mathcal{A} be an algebra with identity $\mathbf{1}_{\mathcal{A}}$ over $\mathbb{K}, \tau \in \mathcal{A}, a \in \mathbb{K}^{\mathbb{N}}$. Then for each $m \in \mathbb{Z}_{+}$and each $n \in \mathbb{N}$ we have

$$
\begin{array}{r}
\quad\left(\sum_{k=0}^{n} a(n-k) \tau^{k}\right)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)^{m} \\
=(-1)^{m} \sum_{k=0}^{n+m}\left(\Delta^{m} a\right)(n+m-k) \tau^{k}+\sum_{j=0}^{m-1}(-1)^{j}\left(\Delta^{j} a\right)(n+j+1)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)^{m-1-j} .
\end{array}
$$

Proof. We proceed by induction on m. We set

$$
\begin{aligned}
S=\left\{m \in \mathbb{Z}_{+}\right. & :\left(\sum_{k=0}^{n} a(n-k) \tau^{k}\right)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)^{m}=(-1)^{m} \sum_{k=0}^{n+m}\left(\Delta^{m} a\right)(n+m-k) \tau^{k} \\
& \left.+\sum_{j=0}^{m-1}(-1)^{j}\left(\Delta^{j} a\right)(n+j+1)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)^{m-1-j} \text { for every } n \in \mathbb{N}\right\} .
\end{aligned}
$$

Since for each $n \in \mathbb{N}$ we have

$$
\begin{array}{r}
\left(\sum_{k=0}^{n} a(n-k) \tau^{k}\right)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)=\sum_{k=0}^{n} a(n-k) \tau^{k}-\sum_{k=0}^{n} a(n-k) \tau^{k+1} \\
=\sum_{k=0}^{n} a(n-k) \tau^{k}-\sum_{k=1}^{n+1} a(n+1-k) \tau^{k} \\
=-\sum_{k=0}^{n} a(n+1-k) \tau^{k}+\sum_{k=0}^{n} a(n-k) \tau^{k}-a(0) \tau^{n+1}+a(n+1) \mathbf{1}_{\mathcal{A}} \\
=-\left(\sum_{k=0}^{n}(\Delta a)(n+1-k) \tau^{k}+(\Delta a)(0) \tau^{n+1}\right)+\left(\Delta^{0} a\right)(n+1) \mathbf{1}_{\mathcal{A}} \\
=-\left(\sum_{k=0}^{n+1}(\Delta a)(n+1-k) \tau^{k}\right)+\left(\Delta^{0} a\right)(n+1)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)^{0},
\end{array}
$$

it follows that $1 \in S$.
Now let $m \in S$. Then, since $\left(\Delta^{m} a\right)(0)=a(0)=\left(\Delta^{m+1} a\right)(0)$, for each $n \in \mathbb{N}$ we have

$$
\left.\begin{array}{r}
\left(\sum_{k=0}^{n} a(n-k) \tau^{k}\right)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)^{m+1}=\left(\left(\sum_{k=0}^{n} a(n-k) \tau^{k}\right)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)^{m}\right)\left(\mathbf{1}_{\mathcal{A}}-\tau\right) \\
=\left((-1)^{m} \sum_{k=0}^{n+m}\left(\Delta^{m} a\right)(n+m-k) \tau^{k}+\sum_{j=0}^{m-1}(-1)^{j}\left(\Delta^{j} a\right)(n+j+1)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)^{m-1-j}\right)\left(\mathbf{1}_{\mathcal{A}}-\tau\right) \\
=(-1)^{m} \sum_{k=0}^{n+m}\left(\Delta^{m} a\right)(n+m-k) \tau^{k}+(-1)^{m+1} \sum_{k=0}^{n+m}\left(\Delta^{m} a\right)(n+m-k) \tau^{k+1} \\
+\sum_{j=0}^{m-1}(-1)^{j}\left(\Delta^{j} a\right)(n+j+1)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)^{m-j} \\
=(-1)^{m+1}\left(\sum_{k=1}^{n+m+1}\left(\Delta^{m} a\right)(n+m+1-k) \tau^{k}-\sum_{k=0}^{n+m}\left(\Delta^{m} a\right)(n+m-k) \tau^{k}\right) \\
+\sum_{j=0}^{m-1}(-1)^{j}\left(\Delta^{j} a\right)(n+j+1)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)^{m-j} \\
=(-1)^{m+1}\left(\sum_{k=0}^{n+m}\left(\Delta^{m+1} a\right)(n+m+1-k) \tau^{k}+\left(\Delta^{m} a\right)(0) \tau^{n+m+1}-\left(\Delta^{m} a\right)(n+m+1) \mathbf{1}_{\mathcal{A}}\right) \\
+\sum_{j=0}^{m-1}(-1)^{j}\left(\Delta^{j} a\right)(n+j+1)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)^{m-j}
\end{array}\right] \begin{aligned}
& =(-1)^{m+1}\left(\sum_{k=0}^{n+m}\left(\Delta^{m+1} a\right)(n+m+1-k) \tau^{k}+\left(\Delta^{m+1} a\right)(0) \tau^{n+m+1}\right) \\
& +(-1)^{m}\left(\Delta^{m} a\right)(n+m+1) \mathbf{1}_{\mathcal{A}}+\sum_{j=0}^{m-1}(-1)^{j}\left(\Delta^{j} a\right)(n+j+1)\left(\mathbf{1}_{\mathcal{H}}-\tau\right)^{m-j}
\end{aligned}
$$

$$
=(-1)^{m+1}\left(\sum_{k=0}^{n+m+1}\left(\Delta^{m+1} a\right)(n+m+1-k) \tau^{k}\right)+\sum_{j=0}^{m}(-1)^{j}\left(\Delta^{j} a\right)(n+j+1)\left(\mathbf{1}_{\mathcal{A}}-\tau\right)^{m-j},
$$

from which we conclude that $m+1 \in S$. The proof is now complete.
Lemma 6.5. Let $s \in \mathbb{K}^{\mathbb{N}}$ be an eventually nonzero sequence, such that $\lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1$. Then for each $k \in \mathbb{Z}_{+}$we have $\lim _{n \rightarrow+\infty} \frac{\left(4^{k} s\right)(n)}{s(n)}=0$ and $\lim _{n \rightarrow+\infty} \frac{s(n+k)}{s(n)}=1$.

Proof. We begin by proving that $\lim _{n \rightarrow+\infty} \frac{\left(山^{k} s\right)(n)}{s(n)}=0$ for each $k \in \mathbb{Z}_{+}$, proceeding by induction. From Remark 4.6 it follows that $\lim _{n \rightarrow+\infty} \frac{(\Delta s)(n)}{s(n)}=0$. Now let $k \in \mathbb{Z}_{+}$be such that $\lim _{n \rightarrow+\infty} \frac{\left(\Delta^{k} s\right)(n)}{s(n)}=$ 0 . Since for each $n \in \mathbb{N}$ such that $s(n) \neq 0$-and therefore for sufficiently large n-we have

$$
\frac{\left(\Delta^{k+1} s\right)(n)}{s(n)}=\frac{\left(\Delta^{k} s\right)(n)}{s(n)}-\frac{\left(\Delta^{k} s\right)(n-1)}{s(n-1)} \cdot \frac{s(n-1)}{s(n)}
$$

we conclude that $\lim _{n \rightarrow+\infty} \frac{\left(\Delta^{k+1} s\right)(n)}{s(n)}=0$, which gives the desired result.
Now, in order to finish the proof of the lemma, it suffices to observe that for each $k \in \mathbb{Z}_{+}$we have

$$
\frac{s(n+k)}{s(n)}=\prod_{j=0}^{k-1} \frac{s(n+j+1)}{s(n+j)} \xrightarrow[n \rightarrow+\infty]{ } 1 .
$$

Definition 6.6. If X is a normed space and $T \in L(X)$, let $\mathcal{M}_{T}: \mathbb{N} \rightarrow \mathbb{R}$ be the real sequence defined by

$$
\mathcal{M}_{T}(n)=\max \left\{\left\|T^{k}\right\|_{L(X)}: k=0, \ldots, n\right\} \quad \text { for every } n \in \mathbb{N}
$$

Theorem 6.7. Let X be a complex nonzero Banach space, $T \in L(X)$, and $b: \mathbb{N} \rightarrow \mathbb{R}$ be a sequence of strictly positive real numbers, such that $\mathcal{H}(b)<+\infty, \lim _{n \rightarrow+\infty} b(n)=+\infty$ and $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L X X}}{b(n)}=0$. Then $r(T) \leq 1$. Furthermore, if $s: \mathbb{N} \rightarrow \mathbb{R}$ is any nondecreasing sequence of strictly positive real numbers, such that $\lim _{n \rightarrow+\infty} s(n)=+\infty, \lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1, \Delta^{q} s \in \ell_{1}$ for some $q \in \mathbb{N}_{2}$, and the sequence $\left(\frac{b(n)}{s(n)}\right)_{n \in \mathbb{N}}$ is bounded ${ }^{4}$, then $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L X}}{s(n)}=0$, and the following conditions are equivalent:
(6.7.1) the sequence $\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)_{n \in \mathbb{N}}$ converges in $L(X)$;
(6.7.2) 1 is either in $\rho(T)$, or a simple pole of \Re_{T};
(6.7.3) $X=\mathcal{N}\left(I_{X}-T\right) \oplus \mathcal{R}\left(I_{X}-T\right)$;
(6.7.4) $\mathcal{R}\left(I_{X}-T\right)$ is closed in X and $X=\mathcal{N}\left(I_{X}-T\right) \oplus \mathcal{R}\left(I_{X}-T\right)$.

[^4]Finally, if the equivalent conditions (6.7.1)-(6.7.4) are satisfied and $P \in L(X)$ is such that $\frac{\sum_{k=0}^{n}\left((s)(n-k) T^{k}\right.}{\mathcal{R}\left(I_{X}-T\right)} \longrightarrow P$ in $L(X)$ as $n \rightarrow+\infty$, then P is the projection of X onto $\mathcal{N}\left(I_{X}-T\right)$ along $\mathcal{R}\left(I_{X}-T\right)$.

Proof. We begin by remarking that $r(T) \leq 1$ by Theorem 6.1. Now let $s: \mathbb{N} \rightarrow \mathbb{R}$ be a nondecreasing sequence of strictly positive real numbers, such that $\lim _{n \rightarrow+\infty} s(n)=+\infty$, $\lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1, \Delta^{q} s \in \ell_{1}$ for some $q \in \mathbb{N}_{2}$, and the sequence $\left(\frac{b(n)}{s(n)}\right)_{n \in \mathbb{N}}$ is bounded. Clearly, $\lim _{n \rightarrow+\infty}^{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L X}}{b(n)}=0$ yields $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L X}}{s(n)}=0$. We prove that conditions (6.7.1)-(6.7.4) are equivalent.
We first observe that conditions (6.7.2)-(6.7.4) are equivalent by Theorem 2.1. Now suppose that the equivalent conditions (6.7.2)-(6.7.4) are satisfied, and let P denote the projection of X onto $\mathcal{N}\left(I_{X}-T\right)$ along $\mathcal{R}\left(I_{X}-T\right)$. Then $P \in L(X)$. We prove that $\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)} \longrightarrow P$ in $L(X)$ as $n \rightarrow+\infty$.
Since $T x=x$ for every $x \in \mathcal{N}\left(I_{X}-T\right)$, it follows that $T P=P$, and consequently $T^{k} P=P$ for every $k \in \mathbb{N}$. Then for each $n \in \mathbb{N}$ we have

$$
\begin{gather*}
\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right) P=\frac{\sum_{k=0}^{n}(\Delta s)(n-k) P}{s(n)}=\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k)}{s(n)}\right) P \\
=\left(\frac{\sum_{j=0}^{n}(\Delta s)(j)}{s(n)}\right) P=\left(\frac{(\Sigma \Delta s)(n)}{s(n)}\right) P=\left(\frac{s(n)}{s(n)}\right) P=P . \tag{6.1}
\end{gather*}
$$

Now we prove that $\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)\left(I_{X}-P\right) \longrightarrow 0_{L(X)}$ in $L(X)$ as $n \rightarrow+\infty$. Since T satisfies the equivalent conditions (6.7.2)-(6.7.4), from Theorem 2.1 it follows that $\mathcal{N}\left(\left(I_{X}-T\right)^{n}\right)=$ $\mathcal{N}\left(I_{X}-T\right)$ and $\mathcal{R}\left(\left(I_{X}-T\right)^{n}\right)=\mathcal{R}\left(I_{X}-T\right)$ for every $n \in \mathbb{Z}_{+}$. Then the bounded linear operator

$$
A: \mathcal{R}\left(I_{X}-T\right) \ni x \longmapsto\left(I_{X}-T\right)^{q-1} x \in \mathcal{R}\left(I_{X}-T\right)
$$

is bijective: indeed, since $q \in \mathbb{N}_{2}$ (and so $q-1 \in \mathbb{Z}_{+}$), we have

$$
\mathcal{N}(A)=\mathcal{N}\left(\left(I_{X}-T\right)^{q-1}\right) \cap \mathcal{R}\left(I_{X}-T\right)=\mathcal{N}\left(I_{X}-T\right) \cap \mathcal{R}\left(I_{X}-T\right)=\left\{0_{X}\right\},
$$

and

$$
\mathcal{R}(A)=\mathcal{R}\left(\left(I_{X}-T\right)^{q}\right)=\mathcal{R}\left(I_{X}-T\right) .
$$

Since $\mathcal{R}\left(I_{X}-T\right)$ is a closed subspace of X, and consequently a Banach space, it follows that the linear map $A^{-1}: \mathcal{R}\left(I_{X}-T\right) \longrightarrow \mathcal{R}\left(I_{X}-T\right)$ is bounded. Since $I_{X}-P$ is the projection of X onto $\mathcal{R}\left(I_{X}-T\right)$ along $\mathcal{N}\left(I_{X}-T\right)$, and consequently $\mathcal{R}\left(I_{X}-P\right)=\mathcal{R}\left(I_{X}-T\right)$, that is the domain of A^{-1}, we can define the linear operator

$$
B: X \ni x \longmapsto A^{-1}\left(I_{X}-P\right) x \in X .
$$

We remark that $B \in L(X)$ and

$$
\begin{equation*}
\left(I_{X}-T\right)^{q-1} B=I_{X}-P . \tag{6.2}
\end{equation*}
$$

By virtue of Lemma 6.4, for each $n \in \mathbb{N}$ we have

$$
\begin{array}{r}
\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)\left(I_{X}-T\right)^{q-1}= \\
(-1)^{q-1} \sum_{k=0}^{n+q-1}\left(\Delta^{q} s\right)(n+q-1-k) T^{k}+\sum_{j=0}^{q-2}(-1)^{j}\left(\Delta^{j+1} s\right)(n+j+1)\left(I_{X}-T\right)^{q-2-j} \\
s(n)
\end{array}
$$

from which we conclude that, for each $n \in \mathbb{N}$,

$$
\left.\begin{array}{r}
\|\left(\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}\right. \\
s(n)
\end{array}\right)\left(I_{X}-T\right)^{q-1}\left\|\sum_{j=0}^{q-2} \frac{\left|\left(\Delta^{j+1} s\right)(n+j+1)\right|}{s(n)}\right\| I_{X}-T \|_{L(X)}^{q-2-j}+\frac{\sum_{k=0}^{n+q-1} \mid\left(\Delta^{q} s\right)(n+q-1-k)\left\|T^{k}\right\|_{L(X)}}{s(n)} .
$$

For each $j \in\{0, \ldots, q-2\}$, we have

$$
\begin{equation*}
\frac{\left(\Delta^{j+1} s\right)(n+j+1)}{s(n)}=\frac{\left(\Delta^{j+1} s\right)(n+j+1)}{s(n+j+1)} \cdot \frac{s(n+j+1)}{s(n)} \quad \text { for each } n \in \mathbb{N} \text {. } \tag{6.4}
\end{equation*}
$$

From Lemma 6.5 it follows that

$$
\begin{equation*}
\frac{\left(\Delta^{j+1} s\right)(n+j+1)}{s(n+j+1)} \underset{n \rightarrow+\infty}{\longrightarrow} 0 \quad \text { and } \quad \frac{s(n+j+1)}{s(n)} \xrightarrow[n \rightarrow+\infty]{ } 1 . \tag{6.5}
\end{equation*}
$$

Now from (6.4) and (6.5) we obtain

$$
\lim _{n \rightarrow+\infty} \frac{\left(\Delta^{j+1} s\right)(n+j+1)}{s(n)}=0 \quad \text { for all } j=0, \ldots, q-2
$$

from which we derive that

$$
\begin{equation*}
\sum_{j=0}^{q-2} \frac{\left|\left(\Delta^{j+1} s\right)(n+j+1)\right|}{s(n)}\left\|I_{X}-T\right\|_{L(X)}^{q-2-j} \xrightarrow[n \rightarrow+\infty]{ } 0 . \tag{6.6}
\end{equation*}
$$

By hypothesis, s is nondecreasing and $s(n)>0$ for each $n \in \mathbb{N}$. Then the sequence $\left(\frac{1}{s(n)}\right)_{n \in \mathbb{N}}$ is nonincreasing. Since $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(X)}}{s(n)}=0=\lim _{n \rightarrow+\infty} \frac{1}{s(n)}$ (as $\lim _{n \rightarrow+\infty} s(n)=+\infty$), from [2], 2.3 we conclude that $\lim _{n \rightarrow+\infty} \frac{\mathcal{M}_{T}(n)}{s(n)}=0$. Since $\lim _{n \rightarrow+\infty} \frac{s(n+q-1)}{s(n)}=1$ by Lemma 6.5, we derive that

$$
\frac{\mathcal{M}_{T}(n+q-1)}{s(n)}=\frac{\mathcal{M}_{T}(n+q-1)}{s(n+q-1)} \cdot \frac{s(n+q-1)}{s(n)} \underset{n \rightarrow+\infty}{ } 0
$$

This, together with (6.6) and (6.3), gives

$$
\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)\left(I_{X}-T\right)^{q-1} \xrightarrow[n \rightarrow+\infty]{ } 0_{L(X)} \quad \text { in } L(X)
$$

Consequently, by (6.2),

$$
\begin{align*}
& \left(\begin{array}{l}
\left.\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)\left(I_{X}-P\right) \\
\quad=\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)\left(I_{X}-T\right)^{q-1} B \xrightarrow[n \rightarrow+\infty]{\longrightarrow} 0_{L(X)} \quad \text { in } L(X) .
\end{array} .\right.
\end{align*}
$$

Now from (6.1) and (6.7) we conclude that

$$
\begin{aligned}
\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)} & =\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right) P+\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)\left(I_{X}-P\right) \\
& =P+\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)\left(I_{X}-P\right) \xrightarrow[n \rightarrow+\infty]{ } P \quad \text { in } L(X) .
\end{aligned}
$$

We have thus proved that if the equivalent conditions (6.7.2)-(6.7.4) are satisfied, then the sequence $\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)_{n \in \mathbb{N}}$ converges in $L(X)$ to the projection of X onto $\mathcal{N}\left(I_{X}-T\right)$ along $\mathcal{R}\left(I_{X}-T\right)$. It remains to prove that if the sequence $\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)_{n \in \mathbb{N}}$ converges in $L(X)$, then the equivalent conditions (6.7.2)-(6.7.4) hold.
Let $P \in L(X)$ be such that $\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)} \longrightarrow P$ in $L(X)$ as $n \rightarrow+\infty$. Since

$$
\frac{\sum_{k=0}^{n+1}(\Delta s)(n+1-k) T^{k}}{s(n+1)} \underset{n \rightarrow+\infty}{ } P \quad \text { in } L(X) \quad \text { and } \quad \frac{s(n+1)}{s(n)} \underset{n \rightarrow+\infty}{ } 1
$$

it follows that

$$
\frac{\sum_{k=0}^{n+1}(\Delta s)(n+1-k) T^{k}}{s(n)} \underset{n \rightarrow+\infty}{\longrightarrow} P \quad \text { in } L(X),
$$

which in turn yields the following limit in $L(X)$.

$$
\begin{array}{r}
0_{L(X)}=\lim _{n \rightarrow+\infty}\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}-\frac{\sum_{k=0}^{n+1}(\Delta s)(n+1-k) T^{k}}{s(n)}\right) \\
=\lim _{n \rightarrow+\infty}\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}-\frac{(\Delta s)(n+1) I_{X}+\sum_{k=1}^{n+1}(\Delta s)(n+1-k) T^{k}}{s(n)}\right) \\
=\lim _{n \rightarrow+\infty}\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}-\frac{(\Delta s)(n+1) I_{X}+\sum_{k=0}^{n}(\Delta s)(n-k) T^{k+1}}{s(n)}\right) \tag{6.8}\\
=\lim _{n \rightarrow+\infty}\left(\frac{\left(I_{X}-T\right) \sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}-\frac{(\Delta s)(n+1)}{s(n)} I_{X}\right) \\
=\lim _{n \rightarrow+\infty}\left(I_{X}-T\right)\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)
\end{array}
$$

(as $\lim _{n \rightarrow+\infty} \frac{(\Delta s)(n+1)}{s(n+1)}=0$ by Remark 4.6, being $\lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1$, and consequently $\frac{(\Delta s)(n+1)}{s(n)}=$ $\frac{(\Delta s)(n+1)}{s(n+1)} \cdot \frac{s(n+1)}{s(n)} \longrightarrow 0$ as $\left.n \rightarrow+\infty\right)$.
Now, for each $n \in \mathbb{N}$, let $f_{n}: \mathbb{C} \longrightarrow \mathbb{C}$ be the polynomial defined by

$$
f_{n}(z)=\frac{\sum_{k=0}^{n}(\Delta s)(n-k) z^{k}}{s(n)} \quad \text { for each } z \in \mathbb{C} \text {. }
$$

Since $f_{n}(1)=\frac{(\Sigma \Delta s)(n)}{s(n)}=\frac{s(n)}{s(n)}=1$ and $f_{n}(T)=\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}$ for every $n \in \mathbb{N}$, (6.8) enables us to apply Theorem 2.2 (together with Remark 2.3) to the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$, and to conclude that the equivalent conditions (6.7.2)-(6.7.4) are satisfied. This finishes the proof.

Remark 6.8. Let X be a complex nonzero Banach space, $T \in L(X)$, and $s: \mathbb{N} \rightarrow \mathbb{R}$ be a nondecreasing sequence of strictly positive real numbers, such that $\lim _{n \rightarrow+\infty} s(n)=+\infty$, $\lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1, \Delta^{q} s \in \ell_{1}$ for some $q \in \mathbb{N}_{2}$ (which implies $\mathcal{H}(s) \leq q-1$ by Proposition 5.4), and $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(X)}}{s(n)}=0$. Then $r(T) \leq 1$ by Theorem 6.1. Furthermore, from Theorem
6.7 and Theorem 2.4 we derive that, given any $E \in L(X)$, the following two conditions are equivalent:

$$
\begin{equation*}
\text { 1) } \lim _{n \rightarrow+\infty}\left\|\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}-E\right\|_{L(X)}=0 ; \tag{6.8.1}
\end{equation*}
$$

(6.8.2) $\lim _{\lambda \rightarrow 1^{+}}\left\|(\lambda-1) \Re_{T}(\lambda)-E\right\|_{L(X)}=0$.

Also, if the equivalent conditions (6.8.1) and (6.8.2) are satisfied, then 1 is either in $\rho(T)$, or a simple pole of \mathfrak{R}_{T} (so that $\mathcal{R}\left(I_{X}-T\right)$ is closed in X and $X=\mathcal{N}\left(I_{X}-T\right) \oplus \mathcal{R}\left(I_{X}-T\right)$), and E is the projection of X onto $\mathcal{N}\left(I_{X}-T\right)$ along $\mathcal{R}\left(I_{X}-T\right)$.

The following is a consequence of Theorem 6.7 and Theorem 4.7.
Corollary 6.9. Let X be a complex nonzero Banach space, $T \in L(X)$, and $b: \mathbb{N} \rightarrow \mathbb{R}$ be a sequence of strictly positive real numbers, such that $\mathcal{H}(b)<+\infty, \lim _{n \rightarrow+\infty} b(n)=+\infty$ and $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L X}}{b(n)}=0$ (so that $r(T) \leq 1$ by Theorem 6.1). If $s: \mathbb{N} \rightarrow \mathbb{R}$ is any sequence of strictly positive real numbers, such that Δ^{p} s is concave and unbounded from above for some $p \in$ \mathbb{N}, and the sequence $\left(\frac{b(n)}{s(n)}\right)_{n \in \mathbb{N}}$ is bounded, then $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(X)}}{s(n)}=0$, and each of conditions (6.7.2)-(6.7.4) is equivalent to the following:
(6.9.1) the sequence $\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)_{n \in \mathbb{N}}$ converges in $L(X)$.

Finally, if $P \in L(X)$ is such that $\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)} \longrightarrow P$ in $L(X)$ as $n \rightarrow+\infty$ (so that conditions (6.7.2)-(6.7.4) are also satisfied), then P is the projection of X onto $\mathcal{N}\left(I_{X}-T\right)$ along $\mathcal{R}\left(I_{X}-T\right)$.

Let $\alpha \in(0,+\infty)$. By applying Theorem 6.7 or Corollary 6.9 to the sequences $b=$ $\left((n+1)^{\alpha}\right)_{n \in \mathbb{N}}$ and $s=A_{\alpha}$ (see Example 4.9, (2.2) and Theorem 4.7; see also (2.1)), we derive that if T is a bounded linear operator on a complex nonzero Banach space X, such that $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L X}}{n^{\alpha}}=0$, then the sequence $\left(\frac{\sum_{k=0}^{n} A_{\alpha-1}(n-k) T^{k}}{A_{\alpha}(n)}\right)_{n \in \mathbb{N}}$ converges in $L(X)$ if and only if 1 is either in $\rho(T)$, or a simple pole of \Re_{T}. From this and from the result by E. Hille mentioned in the Introduction ([8], Theorem 6), together with Remark 6.8, Theorem 2.6 can be deduced. We remark that, however, Theorem 6.7 does not completely extend Theorem 2.6 to a larger class of sequences than the one of the sequences of Cesàro numbers (that is, the class of divergent nondecreasing sequences s of strictly positive real numbers for which $\lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1$ and $\Delta^{q} s \in \ell_{1}$ for some $q \in \mathbb{N}_{2}$), and neither does Corollary 6.9 relative to the class of all sequences s of strictly positive real numbers for which $\Delta^{p} s$ is concave and unbounded from above for some $p \in \mathbb{N}$. Indeed, if X is a complex nonzero Banach space, $T \in L(X)$, and s is a nondecreasing sequence of strictly positive real numbers, such that $\lim _{n \rightarrow+\infty} s(n)=+\infty, \lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1, \Delta^{q} S \in \ell_{1}$ for some $q \in \mathbb{N}_{2}$, and the sequence $\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)_{n \in \mathbb{N}}$ converges in $L(X)$, then $\frac{\left\|T^{n}\right\|_{L(X)}}{s(n)}$ need not converge to zero as $n \rightarrow+\infty$,
even if $\Delta^{p} s$ is concave and unbounded from above for some $p \in \mathbb{N}$. The following is an example.

Example 6.10. Let us consider the complex Banach space \mathbb{C}^{2}, endowed with the infinity norm (that is, $\left\|\left(z_{1}, z_{2}\right)\right\|_{\mathbb{C}^{2}}=\max \left\{\left|z_{1}\right|,\left|z_{2}\right|\right\}$ for all $\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}\right)$. If $A \in L\left(\mathbb{C}^{2}\right)$ is the operator represented by the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ (with respect to the canonical basis of \mathbb{C}^{2}), then $\sigma(A)=$ $\{1\}$. Furthermore, for each $n \in \mathbb{N}, A^{n}$ is represented by the matrix $\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)$.
Now let $T \in L\left(\mathbb{C}^{2}\right)$ be defined by $T=-A$. Then $\sigma(T)=\{-1\}$, which gives $r(T)=1$ and $1 \in \rho(T)$.
We define a sequence $a: \mathbb{N} \rightarrow \mathbb{R}$ of strictly positive real numbers as follows:

$$
a(n)= \begin{cases}1 & \text { if } n=0 \\ \frac{5}{2} & \text { if } n=1 \\ \frac{1}{n-1}+\frac{2}{n}+\frac{1}{n+1} & \text { if } n \in \mathbb{N}_{2} .\end{cases}
$$

Since $a(2)=\frac{7}{3}<\frac{5}{2}=a(1)$, it follows that the sequence $(a(n))_{n \in \mathbb{Z}_{+}}$is strictly decreasing. Now let $s: \mathbb{N} \rightarrow \mathbb{R}$ be the sequence defined by $s=\Sigma a$. Then $\Delta s=a$. We also remark that $s(n)>0$ for each $n \in \mathbb{N}$, and $\lim _{n \rightarrow+\infty} s(n)=+\infty$. Furthermore, since the sequence $(s(n+1)-s(n))_{n \in \mathbb{N}}=$ $(a(n+1))_{n \in \mathbb{N}}$ is strictly decreasing, it follows that s is concave. Then s satisfies the hypotheses of Theorem 4.7 for $p=0$ (so that $\lim _{n \rightarrow+\infty} \frac{s(n+1)}{s(n)}=1$ and $\Delta^{2} s \in \ell_{1}$).
We prove that

$$
\begin{equation*}
\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)} \xrightarrow[n \rightarrow+\infty]{ } 0_{L\left(\mathbb{C}^{2}\right)} \quad \text { in } L\left(\mathbb{C}^{2}\right) . \tag{6.9}
\end{equation*}
$$

We remark that, for each $k \in \mathbb{N}, T^{k}$ is represented by the matrix $\left(\begin{array}{cc}(-1)^{k} & (-1)^{k} k \\ 0 & (-1)^{k}\end{array}\right)$. Hence proving (6.9) is equivalent to proving that

$$
\begin{equation*}
\frac{\sum_{k=0}^{n}(-1)^{k}(\Delta s)(n-k)}{s(n)} \xrightarrow[n \rightarrow+\infty]{ } 0 \tag{6.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sum_{k=0}^{n}(-1)^{k} k(\Delta s)(n-k)}{s(n)} \xrightarrow[n \rightarrow+\infty]{ } 0 . \tag{6.11}
\end{equation*}
$$

We begin by proving (6.10). We observe that for each $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}(\Delta s)(n-k)=\sum_{k=0}^{n}(-1)^{n-k}(\Delta s)(k)=(-1)^{n} \sum_{k=0}^{n}(-1)^{k} a(k) \tag{6.12}
\end{equation*}
$$

Since a is eventually nonincreasing and $\lim _{n \rightarrow+\infty} a(n)=0$, we conclude that the series $\sum_{n=0}^{+\infty}(-1)^{n} a(n)$ converges, and consequently the sequence $\left(\sum_{k=0}^{n}(-1)^{k} a(k)\right)_{n \in \mathbb{N}}$ is bounded.

Since $\lim _{n \rightarrow+\infty} s(n)=+\infty$, the desired result now follows from (6.12).
Now we prove (6.11). We first remark that, since for each $t \in(-1,1)$ we have $\frac{1}{(1-t)^{2}}=$ $\sum_{n=1}^{+\infty} n t^{n-1}$, we obtain

$$
\begin{equation*}
\sum_{n=0}^{+\infty}(-1)^{n} n t^{n}=-t \sum_{n=1}^{+\infty} n(-t)^{n-1}=-\frac{t}{(t+1)^{2}} \quad \text { for each } t \in(-1,1) \tag{6.13}
\end{equation*}
$$

Also, since $\sum_{n=0}^{+\infty} \frac{t^{n}}{n+1}=\frac{1}{t} \sum_{n=1}^{+\infty} \frac{t^{n}}{n}=-\frac{\log (1-t)}{t}$ for each $t \in(0,1)$, we conclude that

$$
\begin{array}{r}
-\frac{(t+1)^{2} \log (1-t)}{t}=\left(t^{2}+2 t+1\right) \sum_{n=0}^{+\infty} \frac{t^{n}}{n+1} \\
=\sum_{n=0}^{+\infty} \frac{t^{n+2}}{n+1}+\sum_{n=0}^{+\infty} \frac{2 t^{n+1}}{n+1}+\sum_{n=0}^{+\infty} \frac{t^{n}}{n+1}=1+\left(\frac{1}{2}+2\right) t+\sum_{n=2}^{+\infty}\left(\frac{1}{n-1}+\frac{2}{n}+\frac{1}{n+1}\right) t^{n} \tag{6.14}\\
=1+\frac{5}{2} t+\sum_{n=2}^{+\infty}\left(\frac{1}{n-1}+\frac{2}{n}+\frac{1}{n+1}\right) t^{n}=\sum_{n=0}^{+\infty} a(n) t^{n} \quad \text { for each } t \in(0,1) .
\end{array}
$$

Since

$$
-\frac{t}{(t+1)^{2}}\left(-\frac{(t+1)^{2} \log (1-t)}{t}\right)=\log (1-t)=-\sum_{n=1}^{+\infty} \frac{t^{n}}{n} \quad \text { for each } t \in(0,1)
$$

from (6.13) and (6.14) it follows that

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} k a(n-k)=-\frac{1}{n} \quad \text { for each } n \in \mathbb{Z}_{+} \tag{6.15}
\end{equation*}
$$

Since $\lim _{n \rightarrow+\infty} s(n)=+\infty$, from (6.15) we conclude that

$$
\frac{\sum_{k=0}^{n}(-1)^{k} k(\Delta s)(n-k)}{s(n)}=\frac{\sum_{k=0}^{n}(-1)^{k} k a(n-k)}{s(n)}=-\frac{1}{n s(n)} \xrightarrow[n \rightarrow+\infty]{\longrightarrow} 0,
$$

which is the desired result. We have thus proved (6.10) and (6.11), and consequently (6.9).
Hence $r(T)=1,1 \in \rho(T)$, and the sequence $\left(\frac{\sum_{k=0}^{n}(\Delta s)(n-k) T^{k}}{s(n)}\right)_{n \in \mathbb{N}}$ converges in $L\left(\mathbb{C}^{2}\right)$ to $0_{L\left(\mathbb{C}^{2}\right)}$, which is, by the way, the projection of \mathbb{C}^{2} onto $\left\{0_{\mathbb{C}^{2}}\right\}=\mathcal{N}\left(I_{\mathbb{C}^{2}}-T\right)$ along $\mathbb{C}^{2}=\mathcal{R}\left(I_{\mathbb{C}^{2}}-T\right)$. Nevertheless, we prove that the sequence $\left(\frac{\left\|T^{n}\right\|_{L\left(C^{2}\right)}}{s(n)}\right)_{n \in \mathbb{N}}$ does not converge to zero as $n \rightarrow+\infty$.
Since for each $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\left\|T^{n}\left(z_{1}, z_{2}\right)\right\|_{\mathbb{C}^{2}} & =\left\|(-1)^{n}\left(z_{1}+n z_{2}, z_{2}\right)\right\| \|_{\mathbb{C}^{2}}=\max \left\{\left|z_{1}+n z_{2}\right|,\left|z_{2}\right|\right\} \leq \max \left\{\left|z_{1}\right|+n\left|z_{2}\right|,\left|z_{2}\right|\right\} \\
& \leq(n+1) \max \left\{\left|z_{1}\right|,\left|z_{2}\right|\right\}=(n+1)\left\|\left(z_{1}, z_{2}\right)\right\| \mathbb{C}^{2} \quad \text { for each }\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}
\end{aligned}
$$

and

$$
\left\|T^{n}(1,1)\right\|_{\mathbb{C}^{2}}=\|(n+1,1)\|_{\mathbb{C}^{2}}=n+1,
$$

being $\|(1,1)\|_{\mathbb{C}^{2}}=1$ it follows that $\left\|T^{n}\right\|_{L\left(C^{2}\right)}=n+1$ for each $n \in \mathbb{N}$. On the other hand, since s is concave, by Remark 3.4 there exists $M \in(0,+\infty)$ such that $\frac{s(n)}{n+1} \leq M$ for each $n \in \mathbb{N}$. Since $s(n)>0$ for each $n \in \mathbb{N}$, it follows that

$$
\frac{\left\|T^{n}\right\|_{L\left(\mathbb{C}^{2}\right)}}{s(n)}=\frac{n+1}{s(n)} \geq \frac{1}{M} \quad \text { for each } n \in \mathbb{N} \text {. }
$$

Hence the sequence $\left(\frac{\left\|T^{n}\right\|_{L\left(C^{2}\right)}}{s(n)}\right)_{n \in \mathbb{N}}$ does not converge to zero as $n \rightarrow+\infty$.
Actually, we can see that $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L\left(C^{2}\right)}}{s(n)}=+\infty$. Indeed, since for each $k \in \mathbb{N}_{2}$ we have $\frac{1}{k} \leq \frac{1}{x}$ for each $x \in[k-1, k]$, and consequently $\frac{1}{k} \leq \int_{k-1}^{k} \frac{1}{x} d x$, it follows that for each $n \in \mathbb{N}_{3}$ we have

$$
\begin{array}{r}
s(n)=1+\frac{5}{2}+\sum_{k=2}^{n}\left(\frac{1}{k-1}+\frac{2}{k}+\frac{1}{k+1}\right) \leq \frac{7}{2}+4 \sum_{k=2}^{n} \frac{1}{k-1}=\frac{7}{2}+4+4 \sum_{k=3}^{n} \frac{1}{k-1}=\frac{15}{2}+4 \sum_{k=2}^{n-1} \frac{1}{k} \\
\leq \frac{15}{2}+4 \sum_{k=2}^{n-1} \int_{k-1}^{k} \frac{1}{x} d x=\frac{15}{2}+4 \int_{1}^{n-1} \frac{1}{x} d x=\frac{15}{2}+4 \log (n-1) .
\end{array}
$$

Hence

$$
\frac{\left\|T^{n}\right\|_{L\left(\mathbb{C}^{2}\right)}}{s(n)}=\frac{n+1}{s(n)} \geq \frac{n+1}{\frac{15}{2}+4 \log (n-1)} \quad \text { for each } n \in \mathbb{N}_{3},
$$

which gives $\lim _{n \rightarrow+\infty} \frac{\left.\left\|T^{n}\right\|_{L(1)}\right)}{s(n)}=+\infty$.

References

[1] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra. Studia Math. 94 (1989), pp 63-79.
[2] L. Burlando, A generalization of the uniform ergodic theorem to poles of arbitrary order. Studia Math. 122 (1997), pp 75-98.
[3] N. Dunford, Spectral theory. I. Convergence to projections. Trans. Amer. Math. Soc. 54 (1943), pp 185-217.
[4] N. Dunford, Spectral theory. Bull. Amer. Math. Soc. 49 (1943), pp 637-651.
[5] E. Ed-dari, On the (C, α) uniform ergodic theorem. Studia Math. 156 (2003), pp 3-13.
[6] P. M. Gruber Convex and Discrete Geometry, Grundlehren der Mathematischen Wissenschaften 336, Springer, 2007.
[7] P. R. Halmos A Hilbert Space Problem Book, D. Van Nostrand Company, Inc., 1967.
[8] E. Hille, Remarks on ergodic theorems. Trans. Amer. Math. Soc. 57 (1945), pp 246269.
[9] E. Hille and R. S. Phillips Functional Analysis and Semi-Groups, Revised and Expanded Edition, American Mathematical Society Colloquium Publications 31, American Mathematical Society, 1957.
[10] H. L. Royden Real Analysis, Third Edition, Macmillan Publishing Company, 1988.
[11] A. E. Taylor and D. C. Lay Introduction to Functional Analysis, Second Edition, John Wiley \& Sons, 1980.
[12] T. Yoshimoto, Uniform and strong ergodic theorems in Banach spaces. Illinois J. Math. 42 (1988), pp 525-543.
[13] A. Zygmund Trigonometric Series, Third Edition, Volumes I \& II combined, Cambridge University Press, 2002.

[^0]: *E-mail address: burlando@dima.unige.it

[^1]: ${ }^{1}$ We point out that, by virtue of Remark 2.5, $\lim _{n \rightarrow+\infty} \frac{\left\|T^{n}\right\|_{L(X)}}{n^{\alpha}}=0$ gives $r(T) \leq 1$. Then $\rho(T)$ contains all real numbers λ satisfying $\lambda>1$, which allows the limit $\lim _{\lambda \rightarrow 1^{+}}\left\|(\lambda-1) \mathfrak{R}_{T}(\lambda)-E\right\|_{L(X)}$ to be considered.

[^2]: ${ }^{2}$ Notice that, since the sequence $\left(\frac{b(n)}{n}\right)_{n \in \mathbb{Z}_{+}}$is bounded from above, this supremum is finite for every $n \in \mathbb{N}$.

[^3]: ${ }^{3}$ Notice that if $v_{k}<N$, from (3.8.2) it follows that $v_{k}+1 \in \mathfrak{N}$ and consequently $c\left(v_{k}+1\right)-c\left(v_{k}\right)=\frac{b(n)-c\left(v_{k}\right)}{n-v_{k}}$ for some $n \in \mathbb{N}_{v_{k}+1}$.

[^4]: ${ }^{4}$ Notice that, by virtue of Theorem 6.1, such a sequence s exists, and can be chosen so that it is not infinite of higher order than b.

