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Université de Franche-Comté
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Abstract

We propose here a mathematical study of the small oscillations of a heavy viscous liq-

uid in an arbitrary open rigid container supported by an elastic structure, i.e a spring-

mass-damper system. From the equations of motion of the system, we deduce a varia-

tional formulation of the problem and after, an operatorial equation in a suitable Hilbert

space. Then, we can study the spectrum of the problem. At first, we prove that it is

formed by eigenvalues that are located in the right half-plane, so that the equilibrium

position is stable. Besides, we show that the operator pencil of the problem is a well-

known pencil, whose we prove by a simple method that it has two branches of real

eigenvalues having as points of accumulation zero and the infinity and a number at

most finite of complex eigenvalues. Finally, we prove the existence and the unicity of

the solution of the associated evolution problem by means of Lions method. After-

wards, we consider the case where the damper is removed, that is very different. We

prove in this case that the equilibrium position is stable, but the problem is reduced

to the study of a Krein-Langer pencil, so that in particular, there exist always non

oscillatory eigenmotions.
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1 Introduction

The problem of the small oscillations of a heavy inviscid liquid in an open rigid container

by means of the methods of the functional analysis has been studied extensively [10, 7].

The more difficult case of a viscous liquid has been the subject of many papers, analyzed in

[8]. The analogous problems, when the container is closed by an elastic cover or bottom,

have been studied in the case of an inviscid liquid [7]. But for a viscous liquid, they have

been treated by analytical methods and only for particular vessels [1, 2, 6]. Recently, we

have studied the case of an arbitrary container closed by an elastic membrane [4].

In this work, we propose a mathematical study of the small oscillations of a heavy

viscous liquid in an arbitrary open rigid container supported by an elastic structure, i.e a

spring-mass-damper system. Such problems can appear in the study of the dynamics of

liquid sloshing absorbers [6; ch.10].

From the equations of motion of the system, we deduce a variational formulation of the

problem and after, an operatorial equation in a suitable Hilbert space. Then, we can study

the spectrum of the problem. At first, we prove that it is formed by eigenvalues that are

located in the right half-plane, so that the equilibrium position is stable in linear approxi-

mation.

Besides, we show that the operator pencil of the problem is a well-known pencil, whose we

find aigan the properties by a very simple method: there are two branches of real eigenval-

ues having as points of accumulation zero and the infinity and a number at most finite of

complex eigenvalues.

Finally, we prove the existence and the unicity of the solution of the associated evolu-

tion problem by means of a well known Lions method [3].

On the other hand, we consider the case where the damper is removed, case that is very dif-

ferent. We prove in this case that the equilibrium position is stable in linear approximation,

but the problem is reduced to the study of a Krein-Langer pencil, so that, in particular, there

exist always damped non oscillatory eigenmotions.

2 Position of the problem

The problem is treated in linear theory.

We consider an open arbitrary rigid container that partially filled by a heavy viscous liquid

and that is supported by an elastic structure represented by a mass M, a spring stiffness k2

and dashpot with damping coefficient K [6, ch.10].

In the equilibrium postion, we denote by (see Fig.1):

• Ω: domain occupied by the liquid;

• Γ: horizontal free surface (lies in the plane Ox1x2);
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Figure 1. Model of the system.

• Ox3; vertical upwards fixed axe (unit vector ~x3);

• Ox1,Ox2: horizontal fixed axes (unit vectors ~x1, ~x2);

• ρ: density of the liquid;

• µ: constant coefficient of viscosity of the liquid;

• pa: constant external atmospheric pressure;

• Σ, M: area and masse of the structure.

• S : wetted wall of the container ;

• g: constant acceleration of the gravity;

and we denote by:

• Γt: position of the free surface at the instant t.

a) Let us study the equilibrium of the system.

The pressure of the liquid is

Pe = pa−ρgx3 .
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We denote by d the displacement of the spring from the natural state to the equilibrium

position and by h the distance of O to the structure.

We have the equation

−Mg+ k2d+

∫

Σ

[pa− (pa +ρgh)]dΣ = 0

or

k2d = Mg+ρghΣ . (2.1)

We remark that, since h > d, k2−ρgΣ is positive.

b) Let us study the motion of the viscous liquid.

Let ~u(x1, x2, x3, t) and s(t)~x3 the (small) displacements of a particle of the liquid and of the

structure with respect to their equilibrium position, P the pressure, p = P−Pe the dynamic

pressure.

We have

ρ~̈u = −
−−−→
gradp+µ∆~̇u (Navier-Stokes equation) , (2.2)

div~̇u = 0 (incompressibility) .

Integrating from the datum of the equilibrium to t, we obtain

div~u = 0 . (2.3)

The kinematic conditions are

~u |S = 0 , (2.4)

~u |Σ = s(t)~x3 . (2.5)

We denote by

εi j =
1

2

(
∂u̇i

∂x j

+
∂u̇ j

∂xi

)
,

the components of the strain tensor.

Then, the components of the stress tensor are

σi j = −Pδi j +2µεi j .

On Γt, the equation of which is x3 = un|Γ+ · · · , where ~n is the exterior normal unit vector to

Γt, the dynamic conditions are

(
−Pδi j +2µεi j

)
n j + pani = 0 (i, j = 1,2,3) ,

or, in linear theory (
−p+ρgun|Γ

)
ni+2µεi jn j = 0 on Γ ,

i.e

ε13 = ε23 = 0 on Γ , (2.6)
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p|Γ = ρgun|Γ+2µε33|Γ . (2.7)

c) Let us study the motion of the structure.

On the element dΣ of the structure, the liquid exerts the force ~TdΣ, ~T being the stress vector

of components

Ti = σi jn j (i, j = 1,2,3) .

Since n1 = n2 = 0 on Σ, we have

T1 = 2µε13 ; T2 = 2µε23 ,

that counterbalance the lateral stress exerted on the structure.

The equation of motion of the structure is

−k2 [s(t)−d]−Mg+

∫

Σ

[
pa −P+2µε33

]
dΣ−Kṡ(t) = 0 ,

Introducing the dynamic pressure p, using x3|Σ = −h+ s(t) and the equation (2.1), we obtain

Ms̈+Kṡ+ (k2−ρgΣ)s+

∫

Σ

(p−2µε33) dΣ = 0 . (2.8)

3 Variational formulation of the problem

We define the space of the kinematically admissible displacements by

Uad =

{
Ũ =

(
~̃u

s̃

)
;
{
s̃ ∈ C; div~̃u = 0; ~̃u|S = 0; ~̃u|Σ = s̃~x3

}}
.

This space will be stated more precisely in what follows.

We have

∫

Ω

ρ~̈u · ~̃̄udΩ = −

∫

Ω

−−−→
gradp · ~̄̃udΩ+µ

∫

Ω

∆~̇u · ~̃̄udΩ .

But, using the Green formula, we have

−

∫

Ω

−−−→
gradp · ~̃̄udΩ = −

∫

Γ

p|Γ ¯̃un|ΓdΓ+

∫

Σ

p|Σ ¯̃u3|ΣdΣ .

On the other hand, the vectorial laplacian formula [7] gives

∫

Ω

∆~̇u · ~̃̄udΩ = −2

∫

Ω

εi j(~̇u)εi j(~̃̄u)dΩ+2

∫

∂Ω

εi j(~̇u)n j
¯̃ui d(∂Ω)

= −2

∫

Ω

εi j(~̇u)εi j(~̃̄u)dΩ+2

∫

Γ

ε33(~̇u) ¯̃un|ΓdΓ−2

∫

Σ

ε33(~̇u) ¯̃u3|ΣdΣ ,



72 H. Essaouini and P. Capodanno

therefore, we have

∫

Ω

ρ~̈u ·~̃̄udΩ+2µ

∫

Ω

εi j(~̇u)εi j(~̃̄u)dΩ−

∫

Σ

(p|Σ−2µε33|Σ) ¯̃u3|ΣdΣ−

∫

Γ

(−p|Γ+2µε33|Γ) ¯̃un|ΓdΓ= 0 .

The equation (2.8) gives

Ms̈ ¯̃s+Kṡ ¯̃s+ (k2 −ρgΣ)s ¯̃s+

∫

Σ

(p|Σ−2µε33|Σ) ¯̃sdΣ = 0 .

Adding and taking into account the condition ũ3|Σ = ¯̃s and (2.7), we obtain

∫

Ω

ρ~̈u · ~̃̄udΩ+2µ

∫

Ω

εi j(~̇u)εi j(~̃̄u)dΩ+ρg

∫

Γ

un|Γ
¯̃un|ΓdΓ+

[
Ms̈+Kṡ+ (k2−ρgΣ)s

]
¯̃s = 0 ,

(3.1)

for each admissible Ũ.

Conversely, let U a function of t belonging to the space of admissible displacements

and verifying the equation (3.1).

Then, U verifies the equation

∫

Ω

ρ~̈u · ~̃̄udΩ+2µ

∫

Ω

εi j(~̇u)εi j(~̃̄u)dΩ+ρg

∫

Γ

un |Γ
¯̃un|ΓdΓ+

[
Ms̈+Kṡ+ (k2−ρgΣ)s

]
¯̃s

+

∫

Ω

Xdiv ~̃̄udΩ= 0 ,

for each Ũ verifying only
~̃u|S = 0; ~̃u|Σ = s̃~x3; s̃ ∈ C ,

where X is the multiplier associated to the constraint div~̃u = 0.

Let us take ~̃u ∈ [D(Ω)]3; then ~̃u|∂Ω = 0, ¯̃s = ũ3|Σ = 0, we obtain

∫

Ω

(
ρ~̈u−
−−−→
gradX−µ∆~̇u

)
· ~̃̄udΩ = 0 ∀~̃̄u ∈ [D(Ω)]3

or

ρ~̈u−
−−−→
gradX−µ∆~̇u = 0 in

(
[D(Ω)]3

)′
.

and
[
Ms̈ +Kṡ + (k2 −ρgΣ)s−

∫

Σ

(
X|Σ +2µε33|Σ

)
dΣ

]
¯̃s

+

∫

Γ

(
ρgun|Γ +X|Γ +2µε33|Γ

)
¯̃u3|ΓdΓ = 0 .

Taking s̃ = 0, and ũ3 arbitrary on Γ we obtain

ρgun |Γ +X|Γ +2µε33|Γ = 0 .
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Taking s̃ arbitrary, we obtain

Ms̈ +Kṡ + (k2 −ρgΣ)s−

∫

Σ

(
X|Σ +2µε33|Σ

)
dΣ = 0 .

Setting X = −p, we obtain the equations of motion and the condition on Γ.

4 Operatorial equation of the problem

4.1. We precise the space Uad by introducing the space:

V =

{
U =

(
~u

s

)
;


s ∈ C;

~u ∈ J1
0,S (Ω)

def
=

{
~u ∈ χ1(Ω)

def
=

[
H1(Ω)

]3
; div~u = 0 in Ω ; ~u|S = 0

}
; ~̃u|Σ = s~x3



 ,

equipped with the norm defined by

∥∥∥~u
∥∥∥2

V
= 2µ

∫

Ω

εi j(~u)εi j(~̄u)dΩ+K |s|2 .

We denote by χ the completion of V for the norm associated to the scalar product:

(
U,Ũ

)
χ
=

∫

Ω

ρ~u · ~̃̄udΩ+Ms ¯̃s .

The variational equation (3.1) takes the form

(
Ü,Ũ

)
χ
+

(
U̇,Ũ

)
V
+a

(
U,Ũ

)
= 0 , ∀ Ũ ∈ V , (4.1)

where

a
(
U,Ũ

)
= ρg

∫

Γ

un|Γ
¯̃un|ΓdΓ+ (k2−ρgΣ)s ¯̃s .

By virtue of a trace theorem in χ1(Ω), we have

a (U,U) ≤ c0 ‖U‖
2
V
∀U ∈ V (c0 > 0) .

Then, we can set

a
(
U,Ũ

)
=

(
BU,Ũ

)
V
,

where B is a non negative, selfadjoint, bounded operator from V into V.

On the other hand, let {Up} a weakly convergent sequence in V; we have

(
B(Up −Uq),Up −Uq)

V = ρg
∥∥∥∥un

p

|Γ
−un

q

|Γ

∥∥∥∥
2

L2(Γ)
+ (k2 −ρgΣ)

∣∣∣sp− sq
∣∣∣2 .
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By virtue of a trace theorem in χ1(Ω), the sequence
{
un

p

|Γ

}
converges strongly in L2(Γ). The

sequence {sp} converges weakly, then strongly in C .

Therefore, we have

(
B(Up −Uq),Up −Uq)

V→ 0 when p,q→ +∞ ,

so that B is compact from V into V [11, p.204].

The variational equation (4.1) can be written

(
Ü,Ũ

)
χ
+

(
U̇,Ũ

)
V
+

(
BU,Ũ

)
V
= 0 , ∀ Ũ ∈ V . (4.2)

4.2. The embedding V ⊂ χ is classically dense, continuous and compact.

Let A the unbounded operator of χ associated to the pair (V,χ) and to the scalar product(
U,Ũ

)
V

.

The variational equation (4.2) is equivalent [9] to the operatorial equation

Ü +A
(
U̇ +BU

)
= 0 , ∀U ∈ V , (4.3)

we obtain an equation with bounded coefficients by setting

A1/2U =W ∈ χ .

Carrying out in (4.3) and applying the operator A−1/2, we obtain

A−1Ẅ + Ẇ +A1/2
BA−1/2W = 0 , W ∈ χ . (4.4)

A−1 is classically a compact, positive definite, self adjoint operator from χ into χ and

A1/2BA−1/2 is compact, not negative and selfadjoint from χ into χ.

5 Study of the spectrum of the problem

Seeking the solutions of (4.4) depending on the time by the law e−λt, λ ∈ C, we obtain

L (λ)W
def
=

(
λ2A−1−λIχ +A1/2

BA−1/2
)
W = 0 .

5.1. λ = 0 is an eigenvalue of infinite multiplicity:

Indeed, for λ = 0, we have A1/2BA−1/2W = 0, so that W ∈ KerBA−1/2.

We precise the space:

(
A1/2

BA−1/2W,W
)
χ
= 0 is equivalent to (BU,U)V = 0,

i.e {
U =

(
~u

s

)
, ~u ∈ J1

0,S (Ω), ~u|Σ = 0, un|Γ = 0; s = 0,and W = A1/2U

}
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5.2. Discarding λ = 0, we have

[
Iχ−

(
λA−1+λ−1A1/2

BA−1/2
)]

W = 0 .

The pencil is a Fredholm pencil in C− {0}− {∞}, that is regular since, for λ real negative,

the bracket is strongly positive and, consequently, has an inverse.

Then, we have a discrete spectrum formed by eigenvalues of finite multiplicity, having

λ = 0,λ =∞ as possible points of accumulation.

5.3. The pencil L (λ) being selfadjoint, its spectrum is symmetrical with respect to the

real axis.

5.4. If λ is an eigenevalue and W , 0 a corresponding eigenelement, we have

λ
(
A−1W,W

)
χ
+λ−1

(
A1/2

BA−1/2W,W
)
χ
= ‖W‖2χ .

Taking the real part, we obtain

<λ
[(

A−1W,W
)
χ
+ |λ|−2

(
A1/2

BA−1/2W,W
)
χ

]
= ‖W‖2χ ,

so that we have

<λ ≥ 0 .

The mechanical system is stable in linear approximation.

5.5. Taking the imaginary parts, we have

=λ
[(

A−1W,W
)
χ
− |λ|−2

(
A1/2

BA−1/2W,W
)
χ

]
= 0 ,

so that, for the non real eigenvalues, if they exist, we have

(
A−1W,W

)
χ
= |λ|−2

(
A1/2

BA−1/2W,W
)
χ

and consequently, using a precedent result:

2<λ
(
A−1W,W

)
χ
= ‖W‖2χ

or

<λ =
1

2

‖W‖2χ(
A−1W,W

)
χ

and finally

<λ ≥
1

2
∥∥∥A−1

∥∥∥
.

We have still

2<λ |λ|−2
(
A1/2

BA−1/2W,W
)
χ
= ‖W‖2χ
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or

|λ| ≤
|λ|2

<λ
=

2
(
A1/2

BA−1/2W,W
)
χ

‖W‖2χ

and

|λ| ≤
2(BU,U)V

‖U‖2
V

≤ 2‖B‖ .

Figure 2. Localisation of the eigenvalues.

Consequently, if 4
∥∥∥A−1

∥∥∥‖B‖< 1, i.e if the coefficient of viscosity µ is sufficiently small,

the possible non real eigenvalues are located in the hatched domain (see Fig.2), and then,

there is an at most finite number of such eigenvalues.

L (λ) is a pencil of type studied in the book [8]. But we are going to obtain easily two

important results by using a theorem of the theory of selfadjoint operators pencils [7; p.74].

5.6. There exists a set of positive real eigenvalues having zero as point of accumu-

lation.

L (λ) is an operatorial function holomorphic in the vicinity of λ = 0.

we have

L (0) = A1/2
BA−1/2 compact, non negative ,

L
′(0) = −Iχ strongly negative .

Then [7, p 74], for each ε > 0 sufficiently small, there exists in ]−ε,ε[ an infinity of positive

real eigenvalues λn having zero as point of accumulation. The corresponding eigenelements

and an orthogonal basis of KerBA−1/2 form a Riesz basis in a subspace of χ with finite de-

fect.
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5.7. There exists a set of positive real eigenvalues having the infinity as point of

accumulation.

We set λ′ = λ−1 and we consider the selfadjoint operators pencil:

L̂ (λ′)
def
= λ′2L (λ′−1) = A−1−λ′Iχ+λ

′2A1/2
BA−1/2 .

L̂ (λ′) is an operatorial function holomorphic in the vicinity of λ′ = 0.

We have

L̂ (0) = A−1 compact, positive definite ,

L̂
′(0) = −Iχ strongly negative .

Then, for each ε > 0 sufficiently small, there exists in ]0,ε[ an infinity of positive real

eigenvalues λ′n having zero as point of accumulation and the corresponding eigenelements

form a Riesz basis in a subspace of χ with finite defect.

For our problem, there is an infinity of eigenvalues λ̂n = λ
′−1
n having the infinity as point of

accumulation.

We can obtain an asymptotic formula for the λ̂n.

Indeed, we have

−λ−1
L (λ) = Iχ−λA

−1 −λ−1A1/2
BA−1/2 .

This pencil has the form indicated in [7, pp 71–72], so that we have

λ̂n =
1

λn(A−1)
[1+o(1)] .

6 Existence and unicity of the solution of the associated evolu-

tion problem

Setting U = Uet in the variational equation (4.2), we obtain:

(
Ü, Ũ

)
χ
+

[(
2U̇, Ũ

)
χ
+

(
U̇,Ũ

)
V

]
+

[(
U,Ũ

)
V
+

(
BU,Ũ

)
V
+

(
U,Ũ

)
χ

]
= 0 .

We have 

(U,U)V+ (BU,U)V+ (U,U)χ ≥ ‖U‖
2
V

(U,U)V = ‖U‖
2
V(

2U, Ũ
)
χ
≤ 2‖U‖χ

∥∥∥Ũ
∥∥∥
χ
≤ c‖U‖V

∥∥∥Ũ
∥∥∥
χ

(c > 0)

.

The conditions of the problem denoted by P1 in the book [3, Vol 8, p 666] are satisfied.

Then, let

U
0 = U(0) ∈ V, U

1 = U̇(0) ∈ χ.
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The problem for U hase one and only one solution such that

U(t) ∈ L2 ([0,T ]; V) ; U̇ ∈ L2 ([0,T ]; V) (T > 0) .

Since

U(0) = U(0) ∈ V ; U̇(0) = U̇(0)+U(0) ∈ χ ,

the problem for U has one and only one solution in the same spaces.

7 The case where the dashpot is removed (K = 0)

We are going to see that the results are very different.

We keep the same notations V, χ, A, · · · although it is matter of different spaces, operators,

· · ·

The variational equation (3.1) is now:

∫

Ω

ρ~̈u · ~̃̄udΩ+2µ

∫

Ω

εi j(~̇u)εi j(~̃̄u)dΩ+ρg

∫

Γ

un|Γ
¯̃un|ΓdΓ+

[
Ms̈+ (k2 −ρgΣ)s

]
¯̃s = 0 . (7.1)

7.1. We introduce the space:

V =

{
U =

(
~u

s

)
; s ∈ C; ~u ∈ J1

0,S (Ω); ~̃u|Σ = s~x3

}
,

equipped with the norm defined by

‖U‖2
V
= 2µ

∫

Ω

εi j(~u)εi j(~̄u)dΩ+ (k2−ρgΣ) |s|2

and the space χ completion of V for the norm associated to the scalar product:

(
U,Ũ

)
χ
=

∫

Ω

ρ~u · ~̃̄udΩ+Ms ¯̃s .

Since

(k2−ρgΣ) |s|2 ≤ ‖U‖2
V
,

we can write

(k2−ρgΣ)s ¯̃s =
(
CU,Ũ

)
V
,

where C is an operator from V into V, bounded, selfadjoint and not negative.

C is also compact. Indeed, let {Up} a weakly convergent sequence in V; we have

(
C

(
Up −Uq) ,Up −Uq)

V = (k2−ρgΣ)
∣∣∣sp − sq

∣∣∣2→ 0 .

By virtue of a trace theorem in χ1(Ω), we have

∥∥∥un|Γ

∥∥∥
L2(Γ)
≤ c0

∥∥∥~u
∥∥∥

J1
0,S

(Ω)
(c0 > 0) ,
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so that there exists an operator D from V into V, bounded, selfadjoint, not negative, such

that

ρg

∫

Γ

un |Γ
¯̃un|ΓdΓ =

(
DU,Ũ

)
V
.

D is also compact because

(
D

(
Up −Uq) ,Up −Uq)

V = ρg
∥∥∥∥un

p

|Γ
−un

q

|Γ

∥∥∥∥
2

L2(Γ)
→ 0 ,

by virtue of another trace theorem.

We have

2µ

∫

Ω

εi j(~u)εi j

(
~̃̄u
)

dΩ=
(
(IV−C) U,Ũ

)
V

and the variational equation (7.1) takes the form

(
Ü,Ũ

)
χ
+

(
(IV−C) U̇,Ũ

)
V
+

(
(C+D) U̇,Ũ

)
V
= 0, ∀Ũ ∈ V . (7.2)

The embedding V ⊂ χ is continuous, dense and compact. We denote by A the unbounded

operator of χ associated to the pair (V,χ) and to the scalar product (·, ·)V.

The variational equation (7.2) is equivalent to the operatorial equation [9]

Ü +A
[
(IV−C) U̇ + (C+D) U

]
= 0; ∀U ∈ V . (7.3)

Setting

A1/2U =W ∈ χ

and applying A−1/2, we obtain the operatorial equation with bounded coefficients

A−1Ẅ +
(
Iχ−A1/2CA−1/2

)
Ẇ +A1/2 (C+D) A−1/2W = 0; ∀W ∈ χ . (7.4)

A−1 and A1/2(C+D)A−1/2 are compact, but Iχ −A1/2CA−1/2 is not compact.

7.2. Seeking the solutions of (7.4) depending on the time according to the law eλt,

λ ∈ C, we have

(
λ2A−1+λ

(
Iχ−A1/2CA−1/2

)
+A1/2 (C+D) A−1/2

)
W = 0 .

a) λ = 0 is an eigenvalue with infinite multiplicity

Indeed, we have

(
A1/2 (C+D) A−1/2W,W

)
χ
= ((C+D) U,U)V = ρg

∫

Γ

∣∣∣un|Γ

∣∣∣2 dΓ+ (k2−ρgΣ) |s|2 ,

so that the eigenspace associated to λ = 0 is defined by

{
~u ∈ J1

0,S (Ω); un|Γ = 0, s = 0
}
.

b) Discarding λ = 0 and dividing by λ, we obtain the pencil

L1(λ) = Iχ −A1/2CA−1/2+λA−1 +λ−1A1/2 (C+D) A−1/2 .
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L1(λ) is a Fredholm pencil in C−{0}− {∞} since the opertaors are compact, except the first.

It is regular in this domain, then L1(1) = Iχ+A−1+A1/2DA−1/2 is strongly positive.

We have a discrete spectrum formed by eigenvalues of finite multiplicity, having λ = 0,

λ =∞ as possible points of accumulation.

c) The pencil being selfadjoint, its spectrum is symmetrical with respect to the real

axis.

d) If λ is an eigenvalue and W , 0 a corresponding eigenelement, we have

λ
(
A−1W,W

)
χ
+λ−1

(
A1/2 (C+D) A−1/2W,W

)
χ
=

((
Iχ−A1/2CA−1/2

)
W,W

)
χ

and then

<λ
[(

A−1W,W
)
χ
+ |λ|−2

(
A1/2 (C+D) A−1/2W,W

)
χ

]
= −

((
Iχ−A1/2CA−1/2

)
W,W

)
χ
,

so that

<λ ≤ 0 .

The mechanical system is stable in linear approximation.

e) Let us prove that the pencil L1(λ) can be reduced to a Krein-Langer pencil [5, pp

295-309].

Setting

λ = λ′+1 ,

we obtain

L2(λ′)W =
(
λ′2A−1+λ′G+F

)
W ,

with

F = Iχ+A−1+A1/2DA−1/2 selfadjoint and strongly positive ,

G = 2A−1+ Iχ +A1/2CA−1/2 selfadjoint, positive definite, not compact .

Setting

F1/2W = Z ∈ χ

and applying F−1/2, we obtain the selfadjoint pencil

L3(λ′) = Iχ+λ
′F−1/2GF−1/2 +λ′2F−1/2A−1F−1/2 ,

that is a Krein-Langer pencil, since F−1/2A−1F−1/2 is positive definite and compact and

F−1/2GF−1/2 positive definite.

The theory of such pencil can be found in [5, pp 295-309].

For our problem, we mention only two new results:

α) since G = G∗ is not compact, the spectrum contains always real points; therefore,

there exists always damped not oscillatory eigenmotions,

β) the possible not real eigenvalues can have only the infinity as point of accumulation.

7.3. We are going to prove the existence and the unicity of the solution of the associated

evolution problem.
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a) For U ∈ V, we have

((IV−C) U,U)V = 2µ

∫

Ω

εi j(~u)εi j

(
~̄u
)

dΩ .

Consequently, we have

(CU,U)V < ‖U‖
2
V

for U , 0 .

Since C is selfadjoint and compact, ‖C‖ is its larger eigenvalue, so that ‖C‖ < 1 and then

((IV−C) U,U)V ≥ (1−‖C‖)‖U‖2
V
∀U ∈ V .

b) In the variational equation (7.2), we set

U = Uet

and we obtain

(
Ü, Ũ

)
χ
+

[(
2U̇, Ũ

)
χ
+

(
(IV−C) U̇,Ũ

)
V

]
+

[(
U,Ũ

)
χ
+

(
(IV+D)U,Ũ

)
V

]
= 0 .

We have 

(U,U)χ+ ((IV+D)U,U)V ≥ ‖U‖
2
V

((IV−C) U,U)V ≥ (1−‖C‖)‖U‖2
V(

2U, Ũ
)
χ
≤C0 ‖U‖V

∥∥∥Ũ
∥∥∥
χ

(C0 > 0)

.

Applying the same theorem as previously, we obtain the following analogous results:

Let

U
0 ∈ V, U

1 ∈ χ .

The problem has one and only one solution verifying:

U ∈ L2 ([0,T ]; V) ; U̇ ∈ L2 ([0,T ]; V) (T > 0) ,

U(0) = U
0; U̇(0) = U

1 .

The problem for U(·) has one and only one solution in the same spaces.
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