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Abstract

New index transforms of the Lebedev type are investigated. It involves the real part
of the product of the modified Bessel functions as the kernel. Boundedness properties
are examined for these operators in the Lebesgue weighted spaces. Inversion theorems
are proved. Important particular cases are exhibited. The results are applied to solve
an initial value problem for the fourth order PDE, involving the Laplacian. Finally,
it is shown that the same PDE has another fundamental solution, which is associated
with the generalized Lebedev index transform, involving the square of the modulus of
Macdonald’s function, recently considered by the author.
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1 Introduction

Let @ € R. The objects of this paper are the following index transforms [7], [6]

(Faf)(‘r) = 2—\/; foo Re [er+i‘r( \/;) Ia—i‘r( \/;)] f(x)dx, TE R’ (11)
cosh(rrt) Jy

(Gag)(x) =27 f Re[Kosie( V) oie(V3)] Cofl(l? Sdn xeR,  (12)
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where i is the imaginary unit, Re denotes the real part of the complex-valued function and
K,(2),1,(z) [1], Vol. 1I are modified Bessel functions, satisfying the differential equation

2d2u du
P tz—

2.2
— =0. 1.3
2T @ +p)u (1.3)

The asymptotic behaviour at infinity is given by the formulas

x\1/2
K@ =(Z) etvoasml  zoe. (14)
1/2
Iu(Z)Z(—) e‘[1+0(1/2)], Z— oo, (1.5)
2nz

Near zero we have, correspondingly, the relations
Ku(2) = 0", p#0,  Ko() = O(logz), z =0, (1.6)
L,(z) = O, z - 0. (1.7)

The product of the modified Bessel functions can be represented by the following inte-
grals (see relations (2.12.14.1) in [4], Vol. II and (8.4.23.25) in [4], Vol. III)

Re | Kosir (V) Lo-ir(VD)| = fo o (2VE sinhy)cos@yridy. x>0, (18)

cosh(rrt)

4 \[mi
y f7+"°° C I(s+a)(1)2
Y

Re [ Kasir( V) Lo-ir( V)| =

I'(s+in)'(s— —Sds, x>0, 1.9

" (s+in)I(s—it) F(ta— s xds, x (1.9)

where max(—«,0) <y < 1/2 and J,(2) is the Bessel function of the first kind [1], Vol. II.

The latter integral is a key ingredient to derive the differential equation for the kernel of the
index transforms (1.1), (1.2). In fact, denoting by

2Vr

Porl0) = cosh(z7)

Re | Kosir( VD) Lo-ir(VD)] (1.10)

we have

Lemma 1.1. The kernel @, (x) is a fundamental solution of the following fourth order
differential equation with variable coefficients

d*o o d*® 5 \do
3 a,T 2 a,T 2 2 a,T 2 2 a,T
X o +6x ppe +x(7+T - —x) 2 +(1+T - —Ex) T
2
—((m) +—) Dr = 0. (1.11)
X 2
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Proof. Indeed, recalling the representation (1.9), we appeal to the Stirling asymptotic for-
mula for the gamma-function [1], Vol. I, to write for each t € R and s =y + it
. TG+l /2-5) 0 g 2y-3/2
O e R O(e™Me=372), | - co. (1.12)
This means that the repeated differentiation with respect to x under the integral sign in (1.9)
is allowed, and with the use of the reduction formula for the gamma-function [1], Vol. I,
we obtain

d 1 e , S T(s+a)T(1/2-5) _,
(xa) QQ’T(X)_%L—M I'(s+in)I(s—iTt) Fdta—sTG) xds

1 y+ico ) . F(S-I‘Cl)r(l/z_s) —s
= T (x) + i J;_,-oo T+ s+l +s-i7) T(+a—-s)I(s) &

1 [Hrie [(s—1+a)(3/2-
= Dy (1) + — f [(s+inl(s— iry 1T OGR4y
1

271 J14yico IR+a-s5I'(s—1)
_ 2 Lf”y“"” . . I(s+a)'(1/2=5)(1/2=8)(s-1) |_
=—7Dy(x)+ 7 1yt I'(s+in)(s—it) Golta)lta—sTlta_ s)l"(s)x ds.

Hence, moving the contour to the left by Cauchy’s theorem, we multiply the latter equality
by x* and differentiate with respect to x again. Then

d a d 2 _ 2 d a
EC [x (XE) (Da,‘r(x)l =-T % [X CD(,’T(X)]

x(l—Sds.

1 fy ico F(s—}—iT)r(S_iT)F(S+a)F(1/2_ $)(1/2=s)(s=1)
Y

i) G-I+ (1+a—sI()

In a similar manner we continue to reduce the denominator of the integrand, multiplying by
x172% and fulfilling again the differentiation. Hence,

d [xl_za d d l = —T2i [Xl_zai [x“q)aﬁ(x)]]

2
ax|" | (d_) Pa.r(®) | @

1 yHico . T+ a)l(A/2-95)(1/2=-5)(s-1) _,_
~ o - I'(s+in)I(s—iTt) Tdta—ss) X ds.

Now multiplying by x* and accounting (1.9), we find

d| o, d d\’
_ a a _ q)(x-r
dx | dx [x (xdx) ’ (x)}

@ — —T2 X%

d| 19pd
. (L’_ (Y@a .
dx [x dx Lx ’ (x)]]

Li Hieo . . [(s+a)'(1/2-5)(1/2-5) |_
+2m'dx . I'(s+in)I'(s—it) T +a—sI(G) x ds

2
2 xai [xl—Zai [XQCD(,’T(X)]] _ E i [x Do ()] + 5—2 [x2 (Da’T(x)] .
X

dx dx 2 dx

Finally, fulfilling the differentiation, we end up with the equation (1.11), completing the
proof of Lemma 1.1. O
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2 Mapping Properties for Index Transform (1.1)

Our approach to examine the boundedness properties for the introduced index transforms
and to prove the corresponding inversion theorems is based on the Mellin transform tech-
nique developed in [6], and an extensive use of the Marichev table for the Mellin transform
in [3], [4], Vol. III. Appealing to the classical Titchmarsh monograph [5], the Mellin trans-
form is defined, for instance, in L, ,(R,), 1 < p <2 by the integral

o= [ roo e @)
0
where the convergence is understood in mean with respect to the norm in Ly(v —ico,v +
ic0), g = p/(p—1). Moreover, the Parseval equality holds for f € L, ,(R;), g € L1, 4(Ry)
00 1 V+ico

f f(x)g(x)dx = —— (g (1= s)ds. 2.2)

0 y—ico

The inverse Mellin transform is given accordingly

1 V+ico
f@=5 [ s 23)
2 y—ioo

where the integral converges in mean with respect to the norm in L, ,(R;)

00 1/p
flhp = ( | If(x)l”xv”‘ldX) . @4
0
In particular, letting v = 1/p we get the usual space L;(R). Further, denoting by Cp(R) the

space of bounded continuous functions, we prove the following result.

Theorem 2.1. Let @ > —1/4. The index transform (1.1) is well-defined as a bounded opera-
tor Fo : L3ja1 (Ry) — Cp(R). Moreover, if in addition f € L1, ,(R), 1 < p <2, max(-a,0) <
v<1/2, then

(Fafyo = —Y2 f " Kir(VORe [l VO] g0, @.5)
cosh(rt) Jy

where the integral converges absolutely,

- fr()x"¢ds, (2.6)
2mi

0 = 1 f—VH'“’ I(1-s+a)I(s)
PV T om0 i T(s+@T(1 =)

and integral (2.6) converges in mean with respect to the norm in Li_, ,(R,) .

Proof. Recalling the integral representation (1.8) of the index kernel in (1.1) and elementary
inequality for the Bessel function of the first kind, which is a straightforward consequence
of its asymptotic behaviour [1], Vol. II, namely,

Vx|J (x| <C, Repu>-1/2,
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where C is a positive constant, depending on u, we have the estimate (we will keep the same
notation for different positive constants )

2 \/; 00 (o) )
(Faf)ON < s [ [ 220 (2 v sinh) 1oy
1
x‘”4|f(X)| dx=C||fllza1. @2 —.

e[ -4 o
\/smh ' 4

Hence via the absolute and uniform convergence it follows the continuity of (F, f)(7) and
the boundedness of the operator (1.1), namely

sup|(Fo )OI = IFe fllew) < Cllfll3/4,1-

TeR

Further, from the condition f € L, ,(R;), asymptotic behaviour (1.12) and the Parseval
equality (2.2) we derive the representation

vico [(s+a)(1/2-5)

1
(Fof)(1) = %f ‘ I'(s+in)['(s—iT) T ta— s f(—s)ds. 2.7)

Meanwhile, by virtue of the Stirling formula for the gamma-function

I'(1-s+a)(s)

m =0(1), s=1-v+it, |t| - oo. (2.8)

Therefore, employing relation (8.4.23.23) in [4], Vol. III, we apply again the Parseval
equality (2.2) to the right-hand side of (2.7). This leads to the formula (2.5), which is, in
turn, the Lebedev index transform with the modified Bessel functions as the kernel [2] of
the function ¢, defined by (2.6). Theorem 2.1 is proved.

O

The inversion formula for the Lebedev type transform (1.1) is established by

Theorem 2.2. Let a > 1/4, f € Li_,,(R}), its Mellin transform f*(s) € Li(1 —v—ico,1 -
v+ico) and be analytic in the open strip Res = 1—-v € (0,a+ 1). Then under the integrability
condition (Fo f)(T) € Li(R, ;7™ d7) the following inversion formula holds for all x > 0

ro=-== [ 5:

(Re | Kasir(VX) Loi(VX)] ) = Vi Re [Kaie(VE) I, (V) |

t0 L (Im [ Koar (VD) Lo (V)| )} cosh(n7)(Fof)()dr, (2.9)
dx

where 1 is the symbol for derivative, Im denotes the imaginary part of a complex -valued
function and the corresponding integral converges absolutely.
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Proof. Since f € Li_,,,(R;) we have from Theorem 86 in [5] that f*(s) € L,(1 —v—ico,1 -
v+io0), g = p/(p—1). Recalling (2.5), our goal now is to verify conditions of the Lebedev
expansion theorem in [2] in order to prove the following inversion formula

2

foo o V)dy = 2 foo‘rsinh(27r‘r)Ki2T( VX)(Fo f)(T)dT, x> 0. (2.10)
X \/7_1' 0

To do this, we show that ¢, € L3/4,1((0,1)) N Ls;41((1,00)). Indeed, the integrability con-
dition, estimate (2.8) and analyticity of f*(s) in the strip Res =1 —-v € (0, + 1) allow to
to move the contour in (2.6) by Cauchy’s theorem , keeping the same value. Therefore,
choosing v € (1/4,1), we use the Holder inequality to find

! ! YT gl
_ -1/4 (-1/4)g-1 _ _ Walll-vp
= X)X dx < _ X dx = <™
all3/4.1 fo l@a(x)] @alli v,,,( fo ) o1l
In the meantime, taking v € (—a,—1/4), we have
I @alls /a1 = foo lea(O)xdx < llgall; fmx(v“/“)"‘ldx v __ alli—vp
all5/4, | [0 = alll-v,p 1 [—(V+ 1/4)q]]/q

Therefore, substituting (2.6) in the left-hand side of (2.10) and making the integration with
respect to y via Fubini’s theorem and a simple substitution, we obtain

1 —V+ico r _ r 1
L (@-9)(s+1) F+ s)xds
27 )i T(1+s+a)I(1 =)

2

2
Further, taking the Mellin transform from both sides of (2.11), basing on the condition
(Fof)(1) € Li(Ry;7e?™dr) and the uniform estimate |K;-( vx)| < Ko(/x) for the modified
Bessel function, we change the order of integration due to the absolute and uniform conver-
gence and appeal to relation (8.4.23.27) in [4], Vol. III to calculate the inner integral with
respect to x in the right-hand side of the obtained equality. Hence, recalling the reduction
formula for the gamma-function, we end up with the equality

f wfsinh(zm)Kl?T( VX (Fof)(@)dr. @2.11)
0

1 Td+s+a)l(1-5) a

) = = T a6+ 1/2) Jo

7sinh2ar)['(s +in)['(s —it)(Fo f)(T)dt. (2.12)
Then, reciprocally, via formula (2.3) and properties of the Mellin transform we find
1 00
xf(x)= ) f 7sinh(2r7)S (x, T)(Fo f)(T)dT, (2.13)
72 Jo

where

1 00 Y+ , T+ s+l d-s) oy
Sx,7)= 27ri£ j;_ioo I'(s+iD)I(s—irt) T@—s st 1/2) y dsdy (2.14)
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and y € (0,1). The kernel S (y,7) can be calculated, recalling relation (8.4.23.25) in [4],
Vol. 1II, and using repeated differentiation under the integral sign. In fact, via relation
(8.4.23.25) we have that

N

isinh(z7)

| Kasie( V) Lamie( VE) = Komie (V) Lsin (V)]

1 e : o Ts+all-s)
= Tﬂiﬁ—ioo I“(s+l'r)l“(s—n')r(1 Ta—sIGT 1/2)x ds, x>0, T e R\{0}. (2.15)

Hence, involving the repeated differentiation and the reduction formula for the gamma-
function, it is not difficult to verify the equalities

[ (1 (-
S p— I'(s+in)(s—iT) (d+s+ )l S)x_s_lds
271 Jyico Ia—sI'(s+1/2)

d d
\/7_.[ x*— xl—Zaa x? [Ka+i‘r( \/;) To-iz( \/;) = Ko-ir( \/;) Losir( \/;):I

~ isinh(xr) dx

d d
S . [ | Karsie( V) Lomie( VE) = Komie (V) Lpsie (V)]
isinh(z7) X

dx " dx
2
_a/; [Ka+i7( ‘/}) Ia—i‘r( ‘/J_C) - Ka—i‘r( \/}) Ioz+i‘r( ‘/})]} .

Therefore, taking into account the asymptotic behaviour of the function

d
xa [Ka/+i‘r( \/}) Lo-ir( \/}) — Ko-ir( \/}) Lo+ir( \/})] =o(1), x = +oo,

which can be established, for instance, from the integral representation (2.15) and Stirling
asymptotic formula for the gamma-function, we return to (2.14) to obtain

* d
S(x,7) = _L [Zazf [Ka/+i7'(y) Io—iv(y) = Ko—iz(y) Ia+i‘r(y)] ;y

isinh(nrt) N
d
+xa [KG/H'T( \/)_C) Lo-ir( \/}) — Kq-ir( ‘/)_C) Lo+ir( \/)_C)]] . (2.16)

However, the integral in (2.16) can be treated, employing relations (1.12.4.4), (2.16.28.3)
in [4], Vol. II and asymptotic formulae (1.4), (1.5), (1.6), (1.7) for the modified Bessel
functions. Then we derive

o0 d
f [Ka+i7'(y) Ioz—iT(y) - Ka—i‘r(y) Ia+i‘r(y)] _y
Vx y

-0+

(o dy
= lim f _f [Ka+i7'(y) lose-ic(y) — Ka—ir(¥) Ia+s+i‘r(y)] —
0 0 y

Vx

1

. d
= 2_ — lim [Ka+i‘r()}) Ia+8—i‘r(Y) - Ka—i‘r(y) Ia/+8+i‘l'(y)] _y
at -0+ Jy y
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l\/_ [ a+lT( ‘/_) I, lT( ‘/_) K(1/+IT( ‘/_) Ia ”_( \/_)]

2m’ dat
ivx )
= [Ko V) Lot V) = Komie (VD) Ly (V))
aTt
i ix d

= E 2CL’T dx [Ka+t‘r( \/_) To-iz( \/_) + Ko—iz( \/_) Lo+ir( \/_):I

_;ﬂ [Ka/+i‘r( \/;) I(,l—i‘r( \/}) + K(Z—i‘r( \/}) IC,Y-H'T( \/;):I .
aT

Hence, combining with (2.16), we find

@ N7

7sinh(z7)

1 +2xi (RC [ (1’+lT( ‘/_) Ia lT( \/_)] )

Sx,7)=- P

~2Vx Re [Kesir( VX) I (V) || - Slnh(f)di(lm | Karie( V) Lo-ie(V3)] )

Substituting this expression of S (x,7) into (2.13), we come up with inversion formula (2.9),
completing the proof of Theorem 2.2.
O

Remark 2.3. Letting formally @ = 0 in (2.9), we appeal to the relation (cf. [1], Vol. II) for
the Macdonald function

Ki( \/_) =

g™ [V, 2.17)

and making simple substitutions, we arrive at the Lebedev inversion formula (2.10), where
@o(x) = f(x) via (2.3) .

3 Index Transform (1.2)

In this section we investigate the boundedness and establish the inversion theorem for the
Lebedev type transform (1.2).

Theorem 3.1. Let @ > —1/4, g € Li(R; [cosh(n7)]"'dr). Then x'/*(G,g)(x) is bounded
continuous on R, and

sup x'*(Gog)()] < CllgllL, & coshiery-'do)- 3.1)

x>0

Besides, if g € Li(R) and (G,g8)(x) € L,,1((0, 1)), max(—a,0) <v < 1/2, then for all y > 0

1 (TSI +a—s)

— “(s)y~ds = Yo g (1) 80
i | T Tre G @y ds = R f @ Kw( ) dr.  (32)

2/ cosh(nt)
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Proof. Doing similarly as in the proof of Theorem 2.1, we employ (1.8) to have an imme-
diate estimate

7 = ClIgllz, (r: [cosh(rr)]-1dr)s

- = 1@l
(Gl =Ca™* | s
which yields (3.1). In order to prove the equality (3.2), we use the uniform estimate for the
kernel (1.10), which can be obtained from the Mellin-Barnes representation (1.9). Indeed,
by definition of the Euler beta-function [1], Vol. I and Stirling asymptotic formula for the
gamma-function we have for x > 0

Y [y . C T(s+a)(1/2-5)
|(DQ,T(X)| < E‘fy‘ ‘F(S-i-lT)F(S—lT) T(1+a—(s) ds

—ico

7By yHieo I[(s+a)(1/2-5)
- 21 I'(l+a-s5I(s)

where max(—a,0) < y < 1/2. Hence applying the Mellin transform (2.1) to both sides of
(1.2), we change the order of integration in the right-hand side of the obtained equality
by Fubini’s theorem. The Mellin transform of its left-hand side exists under the condi-
tion (Gog8)(x) € L,1((0,1)), max(—a,0) < v < 1/2 and estimate (3.3), which guarantees the
integrability of (G,g)(x) over (1,00). Therefore we end up with the equality

ds=Cx7"7 3.3)

‘F(Zs)

y—ico

I'SId+a-s)
I'(s+a)

Finally, the inverse Mellin transform (2.3) and relation (8.4.23.5) in [4], Vol. III will drive
us to the equality (3.2), completing the proof of Theorem 3.1.

(Geg)'(s)=T(1/2—5) foo g (s +in)[ (s —iT)dT.

O
Now we are ready to prove the inversion formula for the index transform (1.2).
Theorem 3.2. Let g(z/i) be an even analytic function in the strip

D={zeC: [Rez| <f<1/2},5(0)= g (0)=0

and g(z/i) is absolutely integrable over any vertical line in D. Then under conditions of
Theorem 3 for all x € R the following inversion formula holds

() = ST f w[ @
g - 71'\/7_1' -0 Jo Y

3
X 2F3(1+a/, §+a/—8; 14+2a, 2+a—e—ix, 2+a—s+ix; y)

[e—1-a+ix)]? I'(l+a)
I'(ix) Ird+2a)l(e-1/2—-a)

+

e—1 ix :
Y Re[(y) lﬂ(g_'_lx)1"(1—8+a—ix)

v |[\4) TGx)
1
X o F3 (8+ix, 3 +ix; 142ix,e—a+ix, e+a+ix; y)” (Ge2)y)dy, 3.4)

where 2 F3(ay, ay; by, by, bs;z) is the generalized hypergeometric function [1], Vol. 1.
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Proof. In fact, multiplying both sides of (3.2) by e™/?K;, (y/2)y*~! for some positive & €
(0,1) we integrate with respect to y over (0,00). Hence, since under conditions of the the-
orem (G,g)*(s) is bounded, we change the order of integration in the left-hand side of
the obtained equality and appeal to the relation (8.4.23.3) in [4], Vol. III. Therefore, for
v € (0,min(e, 1+a))

1 V4R Ne— s+ ix)[(e—s—ix)[(s)[(1+a—s)

2710 Jyieo T(1/2+e-9)(s+a) (Gag)"(5)ds

[ [l s

In the meantime, the right-hand side of (3.5) can be treated, taking into account the
evenness of g and representation (2.17) for the Macdonald function. Indeed, we have

fy G ) e

=2m'f0w1<,~ (%)ya-lj::lz(%)sfrfé/z)dz dy. (3.6)

On the other hand, according to our assumption g(z/7) is analytic in the vertical strip 0 <
Rez <B<1/2, g(0) = g’(0) = 0 and integrable in the strip. Hence, appealing to the inequality
for the modified Bessel function of the first kind (see [6], p. 93)

ILO)| < Irez(y) €™2 0 < Rez <3,

one can move the contour to the right in the latter integral in (3.6). Then
T e (2Nt [ () _8GD
2 K (—) s f I(—).—d d
mj; 2 4 _ico \2/sin(272) Ly

00 B+ico .

. VYoot v\ 8(z/i)
=i | K (—) ¢ f I (—).—dzd .
j; 2P S F\2)sin@an @

Now Rez > 0, and it is possible to pass to the limit under the integral sign when £ — 0 and
to change the order of integration due to the absolute and uniform convergence. Recalling
the relation (2.16.28.3) in [4], Vol. II, we find

(Yot [ () &G
limri [ Kiu(5)y" f L(3) 25 dzd
o0 fo 20 )2 sin@an @

B+ico . —f—ico B+ico .
A 8(z/i) . g(z/i) dz
i [ <x2+z2)sin(2nz>dz"”(LM o Joi iz ©7

Hence, using the Cauchy formula in the right-hand side of the latter equality in (3.7) under
conditions of the theorem, we derive

00 j00 . 2
lim27rif K, (X)ys—lf Iz(y)ﬂdzdy—m XeR\(0). (3.8)
0 —ico

£—0 2 2) sin(2xz) ~ xsinh(2rx)’
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Thus, returning to (3.5), employing the Parseval identity (2.2) and passing to the limit when
£ — 0, we come up with the equality

272 g(x) *
——— =1 s(x, o , .
EE fo § (2. )(Gag) )y (3.9)
where
1 ("7 Te=1+s+ix)(e=1+s—i0)[(s+a)(1-s5) _
So(x,y) = — sds.  (3.10
@)= fl_v_,-w Te—1/2+)(1-s+a) y ds. (3:10)

Meanwhile, integral (3.10) can be calculated with the use of Slater’s theorem [3] in terms
of the generalized hypergeometric functions F3. Namely, it involves the left-hand simple
poles of the gamma-functions s =1 —-e+ix—n, s = —a—n, n € Ny. Consequently, after
straightforward calculations we express the kernel S ;(x,y) in the form

JTA+a)T(e—1-a+ix)?
[(1+2a)(s—1/2—-q)

Se(x,y)=y

3
X 2F3(1+a/, §+a—s; 1420, 2+a—e—ix, 2+a—e+ix; y)

e—1
+y—Re
T

\/_

N . . .
><2F3(8+1x, §+1x; 14+2ix, e—a+ix, e+a+ix; y||.

(%)ix [(1 =&+ —in(e+ix)(=ix)

Substituting this value in (3.9) and using the reduction formula for the gamma-function, we
end up with the inversion formula (3.4), completing the proof.
O

4 [Initial value problem

In this section the index transform (1.2) is employed to investigate the solvability of an
initial value problem for the following fourth order partial differential equation, involving
the Laplacian

2

o o0 NV ., V2424222 0 0
l:(Xaﬁ'ya—y-FZ) + Au_xz—-|-y2 Xa'i'ya—y u
3 ou 8
— x—”+y—”]+L =0, (x,y) € R2\{0}, @.1)
242 +y2 0x TOy| 2\[x24y2

where A = a% + a% is the Laplacian in RZ. In fact, writing (4.1) in polar coordinates (r,6),
we end up with the equation

ort or206? or3  Or 06? or?
a? 8*u 5\0u u
— —+|l-®-=| —+==0. 4.2
o +( “ 2r)8r+2 4.2)
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Lemma 4.1. Let a > —1/4,8(7) € Ly (R;e#ldr), B € (0,2m). Then the function

)
ta(r,0) = 2 V7 f ¢ Re[Kouir( VF) Loie(V9)| =2 43)
osh(m')
satisfies the partial differential equation (4.2) on the wedge (r,0) : r >0, 0 <8 < B, vanishing
at infinity.

Proof. The proof is straightforward by substitution (4.3) into (4.2) and the use of (1.11).
The necessary differentiation with respect to r and 6 under the integral sign is allowed via
the absolute and uniform convergence, which can be verified using inequality (3.1) and the
integrability condition g € L (R; e<ﬁ‘”)|T|dT), B €(0,2m) of the lemma. Finally, the condition
u(r,0) — 0, r — oo is again due to (3.1). O

We are ready to formulate the initial value problem for equation (4.2) and give its solu-
tion.

Theorem 4.2. Let g(x) be given by formula (3.4) and its transform (G,g)(t) = G, (t) satisfies
conditions of Theorem 3.1. Then u(r,0), r >0, 0 < 0 < B by formula (4.3) will be a solution
of the initial value problem for the partial differential equation (4.2) subject to the initial

condition
ua(r,0) = Go(r).

Finally we will pay our attention to the so-called generalized Lebedev index transform
recently considered by the author [8], which contains the square modulus of the Macdonald
function as the kernel

Wo(r,0) = f ) " | Karir( \/;)|2g(f)dT, (4.4)

where @ € R, r> 0, 0 <0 < 2x. Namely, we will show that the kernel |Ka+iT( \/7”)’2 satisfies
differential equation (1.11) and, correspondingly, the index transform (4.4) is a solution of
the PDE (4.2) under the boundary condition

lim W, (r,0) = 0. 4.5)
Lemma 4.3. Let o, T € R. The kernel |Ka+,-7( \/}_')|2 is a fundamental solution of the differ-
ential equation (1.11).

Proof. Taking the integral representation for the kernel in terms of the Mellin-Barnes inte-
gral via relation (8.4.23.31) in [4], Vol. III, we have

1 e , L+ ls-a)
4iﬁf,}/jiw r(S+lT)F(S—l )m d (47)

where vy > |a|. Hence, since the integrand in (4.7) behaves at infinity as

|Ka+i‘r( \/;)'2 =

L JG+l(s—a) —7l 2y=3/2\ o _ 4 oo
I(s+in)(s )—F(1/2+S)F(s) O™ =12), s=y+it, It ,
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the repeated differentiation with respect to » under the integral sign is permitted. Therefore
following the same scheme as in the proof of Lemma 1.1, we derive

S T(s+a)(s—a) s
T(/2+90(s)

(l’—) |Ka+tT( \/—)| = 4i \/— fy+loo [(s+inI(s—it)

I'(s+a)'(s—a) S

= 2 |Korie VD[ + pr \/—f Tt s =i rams e
) [+y-+ico _ CIs=-1+a)(s—1-a) s
=-7 |Ka+rr( ‘/_)| 4i \/— Lymioo [(s+in)[(s—it) T(s—1/2)[(s—1) ds
) 1+y+ico ) . (s— 1/2)(S— 1)F(s+a')r(s_a,) 1-s
= 2 |Korie (VP + \/_ N s =i T T — T 1/20(5)

Hence, shifting the contour to the left by Cauchy’s theorem, we multiply the latter equality
by r~¢ and differentiate it with respect to r again. Then

d| [ dV di _,
—_— [V (VE) |K(l+iT( W)|zl = —725 [V |Ka+iT( \/;)|2:|

dr
1 Iysico _ C(s=1/2)(s= DI(s+a)(s — @) _
_ F F _ S—a
G Jiyai O TG+ 17T @

In the same fashion we deduce the equality

2
i [7‘“201 [r_a (rdi) |Ka+ir( W)'ZH = _Tzi [era [ - |K“+”( \/_)l ”
r

dr dr dr
1 Iytieo _ (5=1/2)(s=DI(s+ ) (s—@) _i\y
+4i\/ﬁ - I'(s+i0)I'(s—it) TG+ 1/2)0() r ds.

Consequently, minding (4.7), we have

2
r“’i [r”z"i lr_" (rdi) |Ka+i‘r( \/;)'ZH = _Tzr_ai [era [ - |Ka+n( \/_)| H
r

dr dr dr
1 d e , 12T+ (s—a) |-
4i\/%aTr j;ry_iw I'(s+iD)I(s—i1) TG+ 1/200s) rds
s d +2a % | —a 2
= _Tzr E [rl 2 [ |Ka+l‘r( \/_)| ] + < [ |Ka+l‘r( \/_)| ] + —I" dr |Ka+i‘r( \/;)| .

Thus fulfilling the differentiation, we come again to (1.11).

Analogously to Lemma 4.1 one proves

Theorem 4.4. Leta e R, g(1) € L, (R; e(ﬁ_”)lTldT) , B€(0,2n). Then the function (4.4) satis-
fies the partial differential equation (4.2) on the wedge (r,0) : r >0, 0 < 0 < S, vanishing at

infinity.
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