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Abstract

Recent work of Bui, Duong and Yan in [1] defined Besov spaces associated with a

certain operator L under the weak assumption that L generates an analytic semigroup

e−tL with Poisson kernel bounds on L2(X) where X is a (possibly non-doubling) quasi-

metric space of polynomial upper bound on volume growth. This note aims to extend

Theorem 5.12 in [1], the decomposition of Besov spaces associated with Schrödinger

operators, to more general α, p, q.
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1 Introduction

The theory of Besov spaces has been an active area of research in the last few decades

because of its important role in the study of approximation of functions and regularity of

solutions to partial differential equations.

Classical theory of Besov spaces, for example, can be found in [2, 3, 6, 10, 9, 13, 14].

Some of more recent results on Besov spaces are [12, 15, 7, 5].

Recent work of Bui, Duong and Yan in [1] defined Besov spaces associated with a

certain operator L under the weak assumption that L generates an analytic semigroup e−tL

with Poisson kernel bounds on L2(X) where X is a (possibly non-doubling) quasi-metric

space of polynomial upper bound on volume growth. When L is the Laplace operator −∆ or

its square root
√
−∆ acting on the Euclidean space Rn, this class of Besov spaces associated

with the operator L are equivalent to the classical Besov spaces. Depending on the choice

of L, the Besov spaces are natural settings for generic estimates for certain singular integral

operators such as the fractional powers Lα.
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In Theorem 5.12 of [1], the decomposition of Besov spaces associated with Schrödinger

operators is given, but only for the case α = 0, p= q= 1. This note aims to extend that result

to more general α, p, q.

The paper is organized as follows. In Section 2, we give some preliminaries on Schrödinger

operators. In Section 3, we define the notion of molecules, then our main result.

2 Schrödinger operators

Suppose that V is a fixed non-negative function on Rn, n ≥ 3, satisfying a reverse Hölder

inequality RHS (Rn) for some s > n
2
; that is, there is a C =C(s,V) > 0 with the property that

( 1

|B|

∫

B

V(x)s dx
)1/s
≤ C

|B|

∫

B

V(x)dx (2.1)

for all balls B ⊂ Rn. Let us consider the time independent Schrödinger operator with the

potential V on L2(Rn):

L = −∆+V(x). (2.2)

We note that the operator L is non-negative self-adjoint on L2(Rn) and it generates a semi-

group

e−tL f (x) =

∫

Rn

pt(x,y) f (y)dy, f ∈ L2(Rn), t > 0,

where the kernel pt(x,y) is dominated by the heat kernel of the Laplacian onRn, thus pt(x,y)

has a Gaussian upper bound.

Let us recall some estimates for the heat kernel of e−tL. In the same way as in [11], we

shall define a function ρ(x;V) = ρ(x) by

ρ(x) = sup
{

r > 0 :
1

rn−2

∫

B(x,r)

V(y)dy ≤ 1
}

.

In this paper we make the assumption that V . 0, hence 0 < ρ(x) < ∞. Using a result in

[11], there exist k0 ≥ 1 and c > 0 such that for every x,y ∈ Rn,

c−1ρ(x)
(

1+
|x− y|
ρ(x)

)−k0 ≤ ρ(y) ≤ cρ(x)
(

1+
|x− y|
ρ(x)

)

k0
k0+1
. (2.3)

In particular, we have ρ(x) ∼ ρ(y) when r ≤ ρ(x) and y ∈ B(x,r). Furthermore, when r = ρ(x),

we have
1

rn−2

∫

B(x,r)

V(y)dy ≤ 1.

Lemma 2.1. Suppose that V ∈ RHS (Rn), s > n
2 . Then for every N there exists a constant CN

such that the kernel pt(x,y) of the semigroup e−tL satisfies

0 ≤ pt(x,y) ≤CN t−
n
2 exp

(

− |x− y|2
5t

)(

1+

√
t

ρ(x)
+

√
t

ρ(y)

)−N
. (2.4)

Proof. For a proof, we refer the reader to p. 332, Proposition 2 in [4]. �
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We will require estimates for the kernel of the operator t2Le−t2L,

qt(x,y) = t2∂ps(x,y)

∂s

∣

∣

∣

∣

s=t2
, (2.5)

as follows.

Proposition 2.2. There are constants c,σ > 0 such that for every N there exists a constant

CN > 0 so that

(i) |qt(x,y)| ≤CN t−n exp
(

− |x− y|2

ct2

)(

1+
t

ρ(x)
+

t

ρ(y)

)−N
;

(ii) |qt(x+h,y)−qt (x,y)|

≤CN

( |h|
t

)σ
t−n exp

(

− |x− y|2

ct2

)(

1+
t

ρ(x)
+

t

ρ(y)

)−N
for all |h| ≤ t;

(iii)
∣

∣

∣

∣

∫

Rn

qt(x,y)dy

∣

∣

∣

∣
≤CN

( t

ρ(x)

)σ(

1+
t

ρ(x)

)−N
.

Proof. For a proof, we refer the reader to p. 332, Proposition 4 in [4]. �

3 Molecular decomposition of Ḃ
α,L
p,q (Rn)

Let us define the notion of molecules. In the following, the definition of a molecule associ-

ated with a cube Q = {x ∈ Rn : ai ≤ xi ≤ bi, i = 1,2, . . . ,n} involves the “lower left corner of

Q”, xQ = a = (a1,a2, . . . ,an), and `(Q), the side length of Q.

Definition 3.1. Let ε ∈ (0,1], α ∈ (−1,1) and p ≥ 1. A function mQ is called an (ε,α, p)-

molecule for L associated to the cube Q if mQ = LgQ for some gQ, and the following condi-

tions hold:

|mQ(x)|+ `(Q)−2 |gQ(x)| ≤ `(Q)α−n/p
{

1+
|x− xQ |
`(Q)

}−n−ε
for x ∈ Rn; (3.1)

∫

|y|≤`(Q)

‖mQ(x+ y)−mQ(x)‖Lp (dx)
dy

|y|n+α
≤ 1. (3.2)

The following result is a molecular characterization of Ḃ
α,L
p,q (Rn). It is an extension of

Theorem 5.12 in [1], where only the case α = 0, p = q = 1 is considered, to more general

α, p, q. In the following, given j ∈ Z, we use D j to denote the set of all dyadic cubes of

sidelength 2− j.

Theorem 3.2. Suppose that L =−∆+V, where V . 0 is a non-negative potential in RHs(R
n)

for some s > n
2
. Assume that f ∈ L1(Rn) and let σ be the constant from Proposition 2.2. Let

−1 < α <min{1,σ} and 1 ≤ p ≤ q <∞. Then in the following we have (a)⇒ (b) and (b)⇒
(c):

(a) f ∈ Ḃ
α,L
p,q (Rn)∩L2(Rn).
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(b) For any 0 < ε ≤ 1, there exist a sequence of coefficients {sQ}, 0 ≤ sQ < ∞, where Q

ranges over the dyadic cubes, and a sequence {mQ} of (ε,α, p)-molecules for L, such

that

f =
∑

Q

sQmQ in Ḃα,Lp,q(Rn), (3.3)

and
(
∑

j∈Z

(
∑

Q∈D j

|sQ|p
)q/p)1/q

≈ ‖ f ‖
Ḃ
α,L
p,q (Rn). (3.4)

(c) f ∈ Ḃ
α,L
p,q (Rn).

Proof of Theorem 3.2. The proof is a modification of that in Theorem 5.12 in [1].

We shall show that (b)⇒ (c).

Let mQ be an (ε,α, p)-molecule for L associated to a cube Q. We will prove that

‖mQ‖Ḃα,Lp,q
≤C.

We first split

‖mQ‖Ḃα,Lp,q
=

{(

∫ `(Q)

0

+

∫ ∞

`(Q)

)∥

∥

∥t2Le−t2LmQ

∥

∥

∥

q

Lp

dt

t1+αq

}1/q
≤ I + II

where

I =
{

∫ `(Q)

0

∥

∥

∥t2Le−t2LmQ

∥

∥

∥

q

Lp

dt

t1+αq

}1/q
,

II =
{

∫ ∞

`(Q)

∥

∥

∥t2Le−t2LmQ

∥

∥

∥

q

Lp

dt

t1+αq

}1/q
.

Let us estimate the second term. Firstly the bounds for gQ in (3.1) allow us to obtain

‖gQ‖L1 . `(Q)α+2+n(1−1/p).

Next using that mQ = LgQ for some gQ, the kernel bounds in Proposition 2.2 (i), and

Minkowski’s inequality, we have

II =
{

∫ ∞

`(Q)

(

∫

Rn

∣

∣

∣(t2L)2e−t2LgQ(x)
∣

∣

∣

p
dx

)q/p dt

t1+q(α+2)

}1/q

.

{

∫ ∞

`(Q)

(

∫

Rn

(

∫

Rn

e−p|x−y|2/ct2

dx
)1/p
|gQ(y)|dy

)q dt

t1+q(α+2+n)

}1/q

. ‖gQ‖L1

{

∫ ∞

`(Q)

dt

t1+q(α+2+n(1−1/p))

}1/q
. C.

To estimate the first term we write

I =
{

∫ `(Q)

0

(

∫

Rn

∣

∣

∣

∣

∫

Rn

qt(x,y)mQ(y)dy

∣

∣

∣

∣

p
dx

)q/p dt

t1+αq

}1/q

=
{

∫ `(Q)

0

(

∫

Rn

∣

∣

∣

∣

∫

Rn

qt(x,y) [mQ(y)+mQ(x)−mQ(x)]dy
∣

∣

∣

∣

p
dx

)q/p dt

t1+αq

}1/q

≤ I1 + I2
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where

I1 =
{

∫ `(Q)

0

(

∫

Rn

∣

∣

∣

∣

∫

Rn

qt(x,y)mQ(x)dy

∣

∣

∣

∣

p
dx

)q/p dt

t1+αq

}1/q
,

I2 =
{

∫ `(Q)

0

(

∫

Rn

∣

∣

∣

∣

∫

Rn

qt(x,y) [mQ(y)−mQ(x)]dy

∣

∣

∣

∣

p
dx

)q/p dt

t1+αq

}1/q
.

Let us estimate I1. By using (iii) of Proposition 2.2, Minkowski’s inequality and the

assumption that p ≤ q we obtain

I1 ≤
{

∫ `(Q)

0

(

∫

Rn

∣

∣

∣

∣

∫

Rn

qt(x,y)dy

∣

∣

∣

∣

p
|mQ(x)|p dx

)q/p dt

t1+αq

}1/q

≤CN

{

∫ `(Q)

0

(

∫

Rn

∣

∣

∣

∣

(t/ρ(x))σ

(1+ t/ρ(x))N

∣

∣

∣

∣

p
|mQ(x)|p dx

)q/p dt

t1+αq

}1/q

=CN

(

{

∫ `(Q)

0

(

∫

Rn

∣

∣

∣

∣

(t/ρ(x))σ

(1+ t/ρ(x))N

∣

∣

∣

∣

p
|mQ(x)|p dx

)q/p dt

t1+αq

}p/q
)1/p

≤CN

(∫

Rn

{

∫ `(Q)

0

∣

∣

∣

∣

(t/ρ(x))σ

(1+ t/ρ(x))N

∣

∣

∣

∣

q dt

t1+αq

}p/q
|mQ(x)|dx

)1/p

≤CN,σ .

We estimate the second term by splitting the region of integration in the y variable into

two regions: |x− y| ≥ `(Q) and |x− y| < `(Q). That is,

I2 ≤
{

∫ `(Q)

0

(

∫

Rn

(

∫

Rn

e−|x−y|2/ct2 |mQ(y)−mQ(x)|dy
)p

dx
)q/p dt

t1+q(n+α)

}1/q

≤ I2.1+ I2.2

where

I2.1 =
{

∫ `(Q)

0

(

∫

Rn

(

∫

|x−y|≥`(Q)

e−|x−y|2/ct2|mQ(y)−mQ(x)|dy
)p

dx
)q/p dt

t1+q(n+α)

}1/q
,

I2.2 =
{

∫ `(Q)

0

(

∫

Rn

(

∫

|x−y|<`(Q)

e−|x−y|2/ct2|mQ(y)−mQ(x)|dy
)p

dx
)q/p dt

t1+q(n+α)

}1/q

For the first case we integrate

I2.1 ≤ I2.1.1+ I2.1.2

where

I2.1.1 =
{

∫ `(Q)

0

(

∫

Rn

(

∫

|x−y|≥`(Q)

e−|x−y|2/ct2 |mQ(y)|dy
)p

dx
)q/p dt

t1+q(n+α)

}1/q
,

I2.1.2 =
{

∫ `(Q)

0

(

∫

Rn

(

∫

|x−y|≥`(Q)

e−|x−y|2/ct2 |mQ(x)|dy
)p

dx
)q/p dt

t1+q(n+α)

}1/q
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Then for any δ >
n

2
(1−1/p)+α, Minkowski’s inequality gives

I2.1.1 ≤
{

∫ `(Q)

0

(

∫

Rn

(

∫

|x−y|≥`(Q)

e−p|x−y|2/ct2

dx
)1/p
|mQ(y)|dy

)q dt

t1+q(n+α)

}1/q

. `(Q)−2δ/p ‖mQ‖L1

{

∫ `(Q)

0

dt

t1+q(α+n(1−1/p)−2δ/p)

}1/q
. C.

In the last step we used the estimate

‖mQ‖L1 . `(Q)n+α−n/p

which holds via the bounds in (3.1).

Next, for any δ > 0, x ∈ Rn and cube Q we have

∫

|x−y|≥`(Q)

e−|x−y|2/ct2

dy . tn+2δ`(Q)−2δ.

Applying this with some δ > α/2 gives

I2.1.2 =
{

∫ `(Q)

0

(

∫

Rn

|mQ(x)|p
(

∫

|x−y|≥`(Q)

e−|x−y|2/ct2

dy
)p

dx
)q/p dt

t1+q(n+α)

}1/q

. `(Q)2δ ‖mQ‖Lp

{

∫ `(Q)

0

dt

t1+q(α−2δ)

}1/q
. C.

In the last step we used the estimate

‖mQ‖Lp . `(Q)α

which holds via again the bounds in (3.1).

Next, with a change of variable y = x+w, and applying Minkowski’s inequality twice,

we obtain

I2.2 =
{

∫ `(Q)

0

(

∫

Rn

(

∫

|w|≤`(Q)

e−|w|
2/ct2 |mQ(x+w)−mQ(x)|dw

)p
dx

)q/p dt

t1+q(n+α)

}1/q

≤
{

∫ `(Q)

0

(

∫

|w|≤`(Q)

e−|w|
2/ct2‖mQ(·+w)−mQ(·)‖Lp dw

)q dt

t1+q(n+α)

}1/q

≤
∫

|w|≤`(Q)

‖mQ(·+w)−mQ(·)‖Lp

{

∫ `(Q)

0

e−q|w|2/ct2 dt

t1+q(n+α)

}1/q
dw

.

∫

|w|≤`(Q)

‖mQ(·+w)−mQ(·)‖Lp

dw

|w|n+α . C

In the last step we applied (3.2).

We show (a)⇒ (b).

Let f ∈ Ḃ
α,L
p,q(Rn)∩L2(Rn). Applying the Calderón reproducing formula I to f we obtain

f =
1

8

∫ ∞

0

(t2L)2e−2t2L f
dt

t
=

1

8

∫ ∞

0

∫

Rn

qt(x,y)
(

t2Le−t2L f
)

(y)
dydt

t
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We then “discretize” the right hand side by splitting Rn into dyadic cubes. Let Q be a

dyadic cube. We define

T (Q) :=
{

(x, t) ∈ Rn+1
+ : x ∈ Q, `(Q)/2 < t ≤ `(Q)

}

to be the “half-cube” in Rn+1
+ over Q.

We then have

f (x) =
∑

j∈Z

∑

Q∈D j

1

8

"
T (Q)

qt(x,y)
(

t2Le−t2L f
)

(y)
dydt

t

=
∑

j∈Z

∑

Q∈D j

sQ mQ(x)

where

sQ =
1

`(Q)α+n(1−1/p)

"
T (Q)

∣

∣

∣t2Le−t2 L f (y)
∣

∣

∣

dydt

t

mQ(x) =
1

8sQ

"
T (Q)

qt(x,y)
(

t2Le−t2 L f
)

(y)
dydt

t
.

We now show that mQ satisfies (3.1) and (3.2).

We first check (3.2). By using estimate (ii) from Proposition 2.2, we have

∫

|z|≤`(Q)

‖mQ(·+ z)−mQ(·)‖Lp

dz

|z|n+α

≤ 1

8sQ

"
T (Q)

∣

∣

∣t2Le−t2L f (y)
∣

∣

∣

(

∫

|z|≤`(Q)

‖qt(·+ z,y)−qy(·,y)‖Lp

dz

|z|n+α
)dydt

t

.
1

sQ

"
T (Q)

∣

∣

∣t2Le−t2L f (y)
∣

∣

∣

dydt

t1+σ+n(1−1/p)

∫

|z|≤`(Q)

dz

|z|n+α−σ

.
1

`(Q)α+n(1−1/p) sQ

"
T (Q)

∣

∣

∣t2Le−t2L f (y)
∣

∣

∣

dydt

t
. C

In the next to last step we used the condition that σ > α in the second integral. We also used

that (y, t) ∈ T (Q) implies t ≈ `(Q).

We now check (3.1). For each x ∈ Rn, and any ε > 0

|mQ(x)| . 1

sQ

"
T (Q)

|qt(x,y)|
∣

∣

∣t2Le−t2 L f (y)
∣

∣

∣

dydt

t

. `(Q)α+n(1−1/p) sup
(y,t)∈T (Q)

|qt(x,y)|

. `(Q)α−n/p sup
(y,t)∈T (Q)

e−|x−y|2/ct2

. `(Q)α−n/p
(

1+
|x− xQ |
`(Q)

)−n−ε
.

By a similar argument using (2.4) it follows that (3.1) is true for gQ. �
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[4] J. Dziubański, G. Garrigós, T. Martı́nez, J. Torrea, J. Zienkiewicz, BMO spaces related

to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math.
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