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Abstract

This paper deals with the existence and the stability of solutions of a class of fractional
order functional Riemann-Liouville Volterra-Stieltjes partial integral equations. Our
results are obtained by using an extension of the Burton-Kirk fixed point theorem in
the case of an unbounded domain.
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fixed point.

1 Introduction

Integral equations are one of the most useful mathematical tools in both pure and applied
analysis. This is particularly true of problems in mechanical vibrations and the related
fields of engineering and mathematical physics. We can find numerous applications of
differential and integral equations of fractional order in viscoelasticity, electrochemistry,
control, porous media, electromagnetism, etc., [12, 16, 25]. There has been a significant
development in ordinary and partial fractional differential and integral equations in recent
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years; see the monographs of Abbas et al. [7], Kilbas et al. [19], Miller and Ross [20],
Podlubny [22], Samko et al. [24], and the papers of Abbas et al. [1, 2, 3, 4, 5, 6, 8, 9],
Ahmad et al. [10], Banaś and Zaja̧c [14], Darwish et al. [15], Diethelm and Ford [17] and
the references therein.

In [5], Abbas et al. used the Schauder fixed point theorem in Banach spaces, for the
study of the existence of solutions to the following nonlinear quadratic Volterra integral
equation of Riemann-Liouville fractional order,

u(t, x) = f (t, x,u(t, x),u(α(t), x))+ 1
Γ(r)

∫ β(t)
0 (β(t)− s)r−1

×g(t, x, s,u(s, x),u(γ(s), x))ds, (t, x) ∈ R+× [0,b],
(1.1)

where b > 0, r ∈ (0,∞), α, β, γ : R+→ R+, f : R+× [0,b]×R×R→ R and g : R+× [0,b]×
R+ ×R×R→ R are given continuous functions and Γ(·) is the (Euler’s) Gamma function
defined by

Γ(ξ) =
∫ ∞

0
tξ−1e−tdt, ξ > 0.

Motivated by that paper, this work deals with the existence and the stability of solutions
to the following nonlinear fractional order Riemann-Liouville Volterra-Stieltjes quadratic
partial integral equations,

u(t, x) = f (t, x,u(t, x),u(α(t), x))+
∫ β(t)

0

∫ x
0

(β(t)−s)r1−1(x−y)r2−1

Γ(r1)Γ(r2)

×h(t, x, s,y,u(s,y),u(γ(s),y))dydsg(t, s); (t, x) ∈ J,
(1.2)

where J =R+× [0,b], b > 0, R+ = [0,∞), r1,r2 ∈ (0,∞), α, β, γ :R+→R+, f : J×R×R→
R, g : R+ ×R+ → R, h : J′ ×R×R→ R are given continuous functions, limt→∞α(t) =∞,
and J′ = {(t, x, s,y) ∈ J2 : s ≤ t, y ≤ x}. We use an extension of the Burton-Kirk fixed point
theorem in the case of an unbounded domain for the existence of solutions of the equation
(1.2), and we prove that all solutions are globally asymptotically stable. Finally, we present
an example illustrating the applicability of the imposed conditions.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. By L1([0, p]× [0,q]), for p,q > 0, we denote the space of Lebesgue-
integrable functions u : [0, p]× [0,q]→ R with the norm

‖u‖1 =
∫ p

0

∫ q

0
|u(t, x)|dxdt.

As usual, AC(J) is the space of absolutely continuous functions from J into R, and C(J) is
the space of all continuous functions from J into R.

Definition 2.1. [26] Let r = (r1,r2) ∈ (0,∞)× (0,∞), θ = (0,0) and u ∈ L1([0, p]× [0,q]).
The left-sided mixed Riemann-Liouville integral of order r of u is defined by

(Ir
θu)(t, x) =

1
Γ(r1)Γ(r2)

∫ t

0

∫ x

0
(t−τ)r1−1(x− s)r2−1u(s, t)dsdτ.
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In particular,

(Iθθu)(t, x) = u(t, x), (Iσθ u)(t, x) =
∫ t

0

∫ x

0
u(τ, s)dsdτ;

for almost all (t, x) ∈ [0, p]× [0,q], where σ = (1,1).
For instance, Ir

θu exists for all r1,r2 ∈ (0,∞),when u ∈ L1([0, p]× [0,q]).Note also that when
u ∈C([0, p]× [0,q]), then (Ir

θu) ∈C([0, p]× [0,q]).Moreover

(Ir
θu)(t,0) = (Ir

θu)(0, x) = 0; t ∈ [0, p], x ∈ [0,q].

Example 2.2. Let λ,ω ∈ (−1,∞) and r = (r1,r2) ∈ (0,∞)× (0,∞), then

Ir
θt
λxω =

Γ(1+λ)Γ(1+ω)
Γ(1+λ+ r1)Γ(1+ω+ r2)

tλ+r1 xω+r2 , for almost all (t, x) ∈ [0, p]× [0,q].

If u is a real function defined on the interval [a,b], then the symbol
∨b

a u denotes the
variation of u on [a,b].We say that u is of bounded variation on the interval [a,b] whenever∨b

a u is finite. If w : [a,b]× [c,b]→R, then the symbol
∨q

t=p w(t, s) indicates the variation of
the function t→ w(t, s) on the interval [p,q] ⊂ [a,b], where s is arbitrarily fixed in [c,d]. In
the same way we define

∨q
s=p w(t, s). For the properties of functions of bounded variation

we refer to [21].

If u and ϕ are two real functions defined on the interval [a,b], then under some condi-
tions (see [21]) we can define the Stieltjes integral (in the Riemann-Stieltjes sense)∫ b

a
u(t)dϕ(t)

of the function u with respect to ϕ. In this case we say that u is Stieltjes integrable on [a,b]
with respect to ϕ. Several conditions are known guaranteeing Stieltjes integrability [21].
One of the most frequently used requires that u is continuous and ϕ is of bounded variation
on [a,b].

In what follows we use the following properties of the Stieltjes integral ([23], section
8.13).
If u is Stieltjes integrable on the interval [a,b] with respect to a function ϕ of bounded
variation, then ∣∣∣∣∣∣

∫ b

a
u(t)dϕ(t)

∣∣∣∣∣∣ ≤
∫ b

a
|u(t)|d

 t∨
a

ϕ

 .
If u and v are Stieltjes integrable functions on the interval [a,b] with respect to a nonde-
creasing function ϕ such that u(t) ≤ v(t) for t ∈ [a,b], then∫ b

a
u(t)dϕ(t) ≤

∫ b

a
v(t)dϕ(t).

In the sequel we also consider Stieltjes integrals of the form∫ b

a
u(t)dsg(t, s),
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and Riemann-Liouville Stieltjes integrals of fractional order of the form

1
Γ(r)

∫ t

0
(t− s)r−1u(s)dsg(t, s),

where g : R+×R+→ R, r ∈ (0,∞) and the symbol ds indicates the integration with respect
to s.

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N∗ . We assume that the
family of semi-norms {‖ · ‖n} verifies:

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ ... f or every x ∈ X.

Let Y ⊂ X, we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such that

‖y‖n ≤ Mn f or all y ∈ Y.

To X we associate a sequence of Banach spaces {(Xn,‖ · ‖n)} as follows: For every n ∈N, we
consider the equivalence relation ∼n defined by: x ∼n y if and only if ‖x−y‖n = 0 for x,y ∈ X.
We denote Xn = (X|∼n ,‖·‖n) the quotient space, the completion of Xn with respect to ‖·‖n. To
every Y ⊂ X, we associate a sequence {Yn} of subsets Yn ⊂ Xn as follows : For every x ∈ X,
we denote [x]n the equivalence class of x of subset Xn and we defined Yn = {[x]n : x ∈ Y}.
We denote Yn, intn(Yn) and ∂nYn, respectively, the closure, the interior and the boundary of
Yn with respect to ‖ · ‖n in Xn. For more information about this subject see [18].

For each p ∈ N we consider following set, Cp =C([0, p]× [0,b]), and we define in C(J)
the semi-norms by

‖u‖p = sup
(t,x)∈[0,p]×[0,b]

‖u(t, x)‖.

Then C(J) is a Fréchet space with the family of semi-norms {‖u‖p}.

Definition 2.3. Let X be a Fréchet space. A function N : X −→ X is said to be a contraction
if for each n ∈ N∗ there exists kn ∈ [0,1) such that

‖N(u)−N(v)‖n ≤ kn‖u− v‖n for all u,v ∈ X.

We need the following extension of the Burton-Kirk fixed point theorem in the case of
a Fréchet space.

Theorem 2.4. [11] Let (X,‖.‖n) be a Fréchet space and let A,B : X→ X be two operators
such that

(a) A is a compact operator;

(b) B is a contraction operator with respect to a family of seminorms {‖.‖n};

(c) the set
{
x ∈ X : x = λA(x)+λB

(
x
λ

)
, λ ∈ (0,1)

}
is bounded.

Then the operator equation A(u)+B(u) = u has a solution in X.
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Let ∅ ,Ω ⊂C(J), and let G :Ω→Ω, and consider the solutions of equation

(Gu)(t, x) = u(t, x). (2.1)

Now we introduce the concept of attractivity of solutions for our equations.

Definition 2.5. ([13]) Solutions of equation (2.1) are locally attractive if there exists a ball
B(u0,η) in the space C(J) such that, for arbitrary solutions v = v(t, x) and w = w(t, x) of
equation (2.1) belonging to B(u0,η)∩Ω, we have that, for each x ∈ [0,b],

lim
t→∞

(
v(t, x)−w(t, x)

)
= 0. (2.2)

When the limit (2.2) is uniform with respect to B(u0,η)∩Ω, solutions of equation (2.1) are
said to be uniformly locally attractive (or equivalently that solutions of (2.1) are locally
asymptotically stable).

Definition 2.6. ([13]) The solution v = v(t, x) of equation (2.1) is said to be globally at-
tractive if (2.2) holds for each solution w = w(t, x) of (2.1). If condition (2.2) is satisfied
uniformly with respect to the set Ω, solutions of equation (2.1) are said to be globally
asymptotically stable (or uniformly globally attractive).

3 Main Results

In this section, we are concerned with the existence and the stability of solutions for the
equation (1.2). Let us start by defining what we mean by a solution of the equation (1.2).

Definition 3.1. We mean by a solution of equation (1.2), every function u ∈C(J) such that
u satisfies the equation (1.2) on J.

The following hypotheses will be used in the sequel.

(H1) There exist continuous functions l,k : J→ R+ such that

| f (t, x,u1,u2)− f (t, x,v1,v2)| ≤
l(t, x)|u1− v1|+ k(t, x)|u2− v2|

1+ |u1− v1|+ |u2− v2|
,

for (t, x) ∈ J and u1,u2,v1,v2 ∈ R.Moreover, assume that

lim
t→∞

l(t, x) = lim
t→∞

k(t, x) = 0; f or x ∈ [0,b], (3.1)

and the function t→ f (t, x,0,0) is bounded on J with f ∗ = sup
(t,x)∈J

f (t, x,0,0).

(H2) For all t1, t2 ∈ R+ such that t1 < t2 the function s 7→ g(t2, s)−g(t1, s) is nondecreasing
on R+.

(H3) The function s 7→ g(0, s) is nondecreasing on R+.

(H4) The functions s 7→ g(t, s) and t 7→ g(t, s) are continuous on R+ for each fixed t ∈ R+ or
s ∈ R+, respectively.
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(H5) There exist continuous functions P,Q : J′→ R+ such that

|h(t, x, s,y,u,v)| ≤
P(t, x, s,y)|u|+Q(t, x, s,y)|v|

1+ |u|+ |v|
;

for (t, x, s,y) ∈ J′, u,v ∈ R.Moreover, assume that

lim
t→∞

∫ β(t)
0

P(t, x, s,y)+Q(t, x, s,y)
(β(t)− s)1−r1

ds

 s∨
k=0

g(t,k)

 = 0. (3.2)

Theorem 3.2. Assume that hypotheses (H1)− (H5) hold. If

lp+ kp < 1, (3.3)

where
lp = sup

(t,x)∈[0,p]×[0,b]
l(t, x), kp = sup

(t,x)∈[0,p]×[0,b]
k(t, x); p ∈ N∗,

then the equation (1.2) has at least one solution in the space C(J). Moreover, solutions of
equation (1.2) are globally asymptotically stable.

Proof. Let us define the operators A,B : C(J)→C(J) defined by

(Au)(t, x) = 1
Γ(r1)Γ(r2)

∫ β(t)
0

∫ x
0 (β(t)− s)r1−1(x− y)r2−1

×h(t, x, s,y,u(s,y),u(γ(s),y))dydsg(t, s); (t, x) ∈ J,
(3.4)

(Bu)(t, x) = f (t, x,u(t, x),u(α(t), x)); (t, x) ∈ J. (3.5)

We shall show that operators A and B satisfied all the conditions of Theorem 2.4. The proof
will be given in several steps.

Step 1: A is compact.
To this aim, we must prove that A is continuous and it transforms every bounded set into a
relatively compact set. Recall that M ⊂C(J) is bounded if and only if

∀p ∈ N∗, ∃`p > 0 : ∀u ∈ M, ‖u‖p ≤ `p,

and M = {u(t, x); (t, x)) ∈ J} ⊂ C(J) is relatively compact if and only if for any p ∈ N∗, the
family {u(t, x)|(t,x)]∈[0,p]×[0,b]} is equicontinuous and uniformly bounded on [0, p]×[0,b]. The
proof will be given in several claims.

Claim 1: A is continuous.
Let {un}n∈N be a sequence such that un→ u in C(J). Then, for each (t, x) ∈ J, we have

|(Aun)(t, x)− (Au)(t, x)|
≤ 1

Γ(r1)Γ(r2)

∫ β(t)
0

∫ x
0 (β(t)− s)r1−1(x− y)r2−1

×|h(t, x, s,y,un(s,y),un(γ(s),y))−h(t, x, s,y,u(s,y),u(γ(s),y))|dydsg(t, s)
≤ 1

Γ(r1)Γ(r2)

∫ β(t)
0

∫ x
0 (β(t)− s)r1−1(x− y)r2−1

×|h(t, x, s,y,un(s,y),un(γ(s),y))
−h(t, x, s,y,u(s,y),u(γ(s),y))|dyds

(∨s
k=0 g(t,k)

)
.

(3.6)
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If (t, x) ∈ [0, p]× [0,b]; p ∈ N∗, then, since un→ u as n→∞ and g,h are continuous, (3.6)
gives

‖N(un)−N(u)‖p→ 0 as n→∞.

Claim 2: A maps bounded sets into bonded sets in C(J).
Let M be a bounded set in C(J), then, for each p ∈ N∗, there exists `p > 0, such that for all
u ∈C(J) we have ‖u‖p ≤ `p. Then, for arbitrarily fixed (t, x) ∈ [0, p]× [0,b] we have

|(Au)(t, x)| =≤
∣∣∣∣ 1
Γ(r1)Γ(r2)

∫ β(t)
0

∫ x

0
(β(t)− s)r1−1(x− y)r2−1

×h(t, x, s,y,u(s,y),u(γ(s),y))dydsg(t, s)
∣∣∣∣

≤
1

Γ(r1)Γ(r2)

∫ β(t)
0

∫ x

0
(β(t)− s)r1−1(x− y)r2−1

×
P(t, x, s,y)|u(s,y)|+Q(t, x, s,y)|u(γ(s),y)|

1+ |u(s,y)|+ |u(γ(s),y)|
dyds

 s∨
k=0

g(t,k)


≤

1
Γ(r1)Γ(r2)

∫ β(t)
0

∫ x

0
(β(t)− s)r1−1(x− y)r2−1

× (P(t, x, s,y)+Q(t, x, s,y))dyds

 s∨
k=0

g(t,k)


≤ (Pp+Qp)‖u‖p,

where

Pp := sup
(t,x)∈(t,x)∈[0,p]×[0,b]

∫ β(t)
0

∫ x

0

P(t, x, s,y)
Γ(r1)Γ(r2)(β(t)− s)1−r1(x− y)1−r2

dyds

 s∨
k=0

g(t,k)

 ,
and

Qp := sup
(t,x)∈(t,x)∈[0,p]×[0,b]

∫ β(t)
0

∫ x

0

Q(t, x, s,y)
Γ(r1)Γ(r2)(β(t)− s)1−r1(x− y)1−r2

dyds

 s∨
k=0

g(t,k)

 .
Thus

‖A(u)‖p ≤ (Pp+Qp)`p := `′p.

Claim 3: A maps bounded sets into equicontinuous sets in C(J).
Let (t1, x1), (t2, x2) ∈ [0, p]× [0,b]; p ∈ N∗, t1 < t2, x1 < x2 and let u ∈ M. Also without loss
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of generality, suppose that β(t1) ≤ β(t2). Then we have

|(Au)(t2, x2)− (Au)(t1, x1)|

≤
1

Γ(r1)Γ(r2)

∣∣∣∣∫ β(t2)

0

∫ x2

0
(β(t2)− s)r1−1(x2− y)r2−1

×[h(t2, x2, s,y,u(s,y),u(γ(s),y))

−h(t1, x1, s,y,u(s,y),u(γ(s),y))]dydsg(t, s)
∣∣∣∣

+
1

Γ(r1)Γ(r2)

∣∣∣∣∫ β(t2)

0

∫ x2

0
(β(t2)− s)r1−1(x2− y)r2−1

×h(t1, x1, s,y,u(s,y),u(γ(s),y))dydsg(t, s)

−

∫ β(t1)

0

∫ x2

0
(β(t2)− s)r1−1(x2− y)r2−1h(t1, x1, s,y,u(s,y),u(γ(s),y))dydsg(t, s)

∣∣∣∣
+

1
Γ(r1)Γ(r2)

∣∣∣∣∫ β(t1)

0

∫ x2

0
(β(t2)− s)r1−1(x2− y)r2−1

×h(t1, x1, s,y,u(s,y),u(γ(s),y))dydsg(t, s)

−

∫ β(t1)

0

∫ x1

0
(β(t1)− s)r1−1(x1− y)r2−1h(t1, x1, s,y,u(s,y),u(γ(s),y))dydsg(t, s)

∣∣∣∣.
Thus, we obtain

|(Au)(t2, x2)− (Au)(t1, x1)|

≤
1

Γ(r1)Γ(r2)

∫ β(t2)

0

∫ x2

0
(β(t2)− s)r1−1(x2− y)r2−1

×

∣∣∣∣h(t2, x2, s,y,u(s,y),u(γ(s),y))

−h(t1, x1, s,y,u(s,y),u(γ(s),y))
∣∣∣∣dyds

 s∨
k=0

g(t,k)


+

1
Γ(r1)Γ(r2)

∫ β(t2)

β(t1)

∫ x2

0
(β(t2)− s)r1−1(x2− y)r2−1

×

∣∣∣∣h(t1, x1, s,y,u(s,y),u(γ(s),y))
∣∣∣∣dyds

 s∨
k=0

g(t,k)


+

1
Γ(r1)Γ(r2)

∫ β(t1)

0

∫ x1

0

∣∣∣∣(β(t2)− s)r1−1(x2− y)r2−1− (β(t1)− s)r1−1(x1− y)r2−1
∣∣∣∣

×

∣∣∣∣h(t1, x1, s,y,u(s,y),u(γ(s),y))
∣∣∣∣dyds

 s∨
k=0

g(t,k)


+

1
Γ(r1)Γ(r2)

∫ β(t1)

0

∫ x2

x1

|(β(t2)− s)r1−1(x2− y)r2−1|

×

∣∣∣∣h(t1, x1, s,y,u(s,y),u(γ(s),y))
∣∣∣∣dyds

 s∨
k=0

g(t,k)

 .
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Hence, we get

|(Au)(t2, x2)− (Au)(t1, x1)|

≤
1

Γ(r1)Γ(r2)

∫ β(t2)

0

∫ x2

0
(β(t2)− s)r1−1(x2− y)r2−1

×

∣∣∣∣h(t2, x2, s,y,u(s,y),u(γ(s),y))

−h(t1, x1, s,y,u(s,y),u(γ(s),y))
∣∣∣∣dyds

 s∨
k=0

g(t,k)


+

1
Γ(r1)Γ(r2)

∫ β(t2)

β(t1)

∫ x2

0
(β(t2)− s)r1−1(x2− y)r2−1

×
(
P(t1, x1, s,y)+Q(t1, x1, s,y)

)
dyds

 s∨
k=0

g(t,k)


+

1
Γ(r1)Γ(r2)

∫ β(t1)

0

∫ x1

0

∣∣∣∣(β(t2)− s)r1−1(x2− y)r2−1− (β(t1)− s)r1−1(x1− y)r2−1
∣∣∣∣

×
(
P(t1, x1, s,y)+Q(t1, x1, s,y)

)
dyds

 s∨
k=0

g(t,k)


+

1
Γ(r1)Γ(r2)

∫ β(t1)

0

∫ x2

x1

|(β(t2)− s)r1−1(x2− y)r2−1|

×
(
P(t1, x1, s,y)+Q(t1, x1, s,y)

)
dyds

 s∨
k=0

g(t,k)

 .
From continuity of α,β,g,h,P,Q and as t1→ t2 and x1→ x2, the right-hand side of the above
inequality tends to zero. As a consequence of claims 1 to 3 together with the Arzelá-Ascoli
theorem, we can conclude that A is continuous and compact.

Step 2: B is a contraction.
Consider v,w ∈C(J). Then, by (H2), for any p ∈ N and each (t, x) ∈ [0, p]× [0,b], we have

|(Bv)(t, x)− (Bw)(t, x)| ≤ | f (t, x,v(t, x),v(α(t), x))− f (t, x,w(t, x),w(α(t), x))|

≤
l(t, x)|v(t, x)−w(t, x)|+ k(t, x)|v(α(t), x)−w(α(t), x)|

1+α(t)
≤ (l(t, x)+ k(t, x))|v−w|.

Thus

‖B(v)−B(w)‖p ≤ (lp+ kp)‖v−w‖p.

By (3.3), we conclude that B is a contraction.

Step 3: The set E :=
{
u ∈C(J) : u = λA(u)+λB

(
u
λ

)
, λ ∈ (0,1)

}
is bounded.

Let u ∈C(J), such that u = λA(u)+λB
(

u
λ

)
for some λ ∈ (0,1). Then, for any p ∈N∗ and each
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(t, x) ∈ [0, p]× [0,b], we have

|u(t, x)| ≤ λ|A(u)|+λ|B
(u
λ

)
|

≤ P(t, x)+Q(t, x)+ f ∗+ l(t, x)+ k(t, x)

≤ Pp+Qp+ f ∗+ lp+ kp.

Thus
‖u‖p ≤ Pp+Qp+ f ∗+ lp+ kp =: `∗p.

Hence, the set E is bounded.
Step 4: The uniform global attractivity of solutions of the equation (1.2).

Let u and v be any two solutions of equation (1.2), then for each (t, x) ∈ J we have

|u(t, x)− v(t, x)| ≤ | f (t, x,u(t, x),u(α(t), x))− f (t, x,v(t, x),v(α(t), x))|

+
1

Γ(r1)Γ(r2)

∫ β(t)
0

∫ x

0
(β(t)− s)r1−1(x− y)r2−1

×|h(t, x, s,y,u(s,y),u(γ(s),y))−h(t, x, s,y,v(s,y),v(γ(s),y))|dydsg(t, s)

≤ l(t, x)|u(t, x)− v(t, x)‖+ k(t, x)|u(α(t), x)− v(α(t), x)|

+
1

Γ(r1)Γ(r2)

∫ β(t)
0

∫ x

0
(β(t)− s)r1−1(x− y)r2−1

×|h(t, x, s,y,u(s,y),u(γ(s),y))−h(t, x, s,y,v(s,y),v(γ(s,y)))|dyds

 s∨
k=0

g(t,k)


≤ l(t, x)|u(t, x)− v(t, x)|+ k(t, x)|u(α(t), x)− v(α(t), x)|

+
1

Γ(r1)Γ(r2)

∫ β(t)
0

∫ x

0
(β(t)− s)r1−1(x− y)r2−1

×(P(t, x, s,y)+Q(t, x, s,y))dyds

 s∨
k=0

g(t,k)

 . (3.7)

By using (3.3), (3.7) and the fact that α(t)→∞ as t→∞, we deduce that

lim
t→∞
|u(t, x)− v(t, x)| ≤ lim

t→∞

1
Γ(r1)Γ(r2)(1− l(t, x)− k(t, x))

×

∫ β(t)
0

∫ x

0
(β(t)− s)r1−1(x− y)r2−1(P(t, x, s,y)+Q(t, x, s,y))dydsg(t, s)

≤ lim
t→∞

1
(1− l(t, x)− k(t, x))Γ(r1)Γ(r2)

×

∫ x

0
(x− y)r2−1

∫ β(t)
0

P(t, x, s,y)+Q(t, x, s,y)
(β(t)− s)1−r1

ds

 s∨
k=0

g(t,k)


dy. (3.8)

Hence, by (3.1), (3.2) and (3.8), we deduce that

lim
t→∞

(u(t, x)− v(t, x)) = 0.

Consequently, the equation (1.2) has a solution and all solutions are globally asymptotically
stable. �
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4 An Example

As an application of our results we consider the following nonlinear fractional order Riemann-
Liouville Volterra-Stieltjes quadratic partial integral equation of the form

u(t, x) = f (t, x,u(t, x),u(α(t), x))+
∫ β(t)

0

∫ x
0

(β(t)−s)r1−1(x−y)r2−1

Γ(r1)Γ(r2)

×h(t, x, s,y,u(s,y),u(γ(s),y))dydsg(t, s); (t, x) ∈ J,
(4.1)

where J = R+× [0,1], r1 =
1
4 , r2 =

1
2 , α(t) = β(t) = γ(t) = t; t ∈ R+,

f (t, x,u,v) =
xe−t−p

8(1+ t)(1+ |u|+2|v|)
; p ∈ N∗, (t, x) ∈ J and u,v ∈ R,

g(t, s) = s, (t, s) ∈ R2
+,

h(t, x, s,y,u,v) =
cxs

−3
4 (1+ |u|) sin

√
t sin s

(1+ y2+ t2)(1+ |u|+ |v|)
;

i f (t, x, s,y) ∈ J′, s , 0, y ∈ [0,1] and u,v ∈ R,

h(t, x,0,y,u,v) = 0; i f (t, x) ∈ J, y ∈ [0,1] and u,v ∈ R,

c =
π

8eΓ( 1
4 )

and J′ = {(t, x, s,y) ∈ J2 : s ≤ t and x ≤ y}.

First, we can see that lim
t→0
α(t) = 0. Next, the function f is a continuous, and

| f (t, x,u1,u2)− f (t, x,v1,v2)| ≤
xe−t−p(|u1− v1|+2|u2− v2|)

8(1+ t)(1+ |u1− v1|+ |u2− v2|)
; (t, x) ∈ J, u,v ∈ R.

Then, the assumption (H1) is satisfied with

l(t, x) =
xe−t−p

8(1+ t)
, k(t, x) =

xe−t−p

4(1+ t)
, lp =

e−p

8
, kp =

e−p

4
, f ∗ =

1
8
.

Also, we can easily see that the function g satisfies the hypotheses (H2)− (H4).
The function h satisfies the assumption (H5). Indeed, h is continuous and

|h(t, x, s,y,u,v)| ≤
P(t, x, s,y)|u|+Q(t, x, s,y)|v|

1+ |u|+ |v|
; (t, x, s,y) ∈ J′, u,v ∈ R,

and  P(t, x, s,y) = Q(t, x, s,y) =
cxs

−3
4 sin

√
t sin s

1+ y2+ t2 ; (t, x, s,y) ∈ J′, y ∈ [0,1], s , 0,

P(t, x,0,y) = Q(t, x,0,y) = 0; (t, x) ∈ J, y ∈ [0,1].
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Then,∣∣∣∣∣∣
∫ t

0
(t− s)r−1P(t, x, s,y)dsg(t, s)

∣∣∣∣∣∣ ≤
∫ t

0
(t− s)

−3
4 cxs

−3
4 |sin

√
t sin s|ds

 s∨
k=0

g(t,k)


≤ cx|sin

√
t|
∫ t

0
(t− s)

−3
4 s

−3
4 ds

≤
cxΓ2( 1

4 )
√
π

∣∣∣∣∣∣sin
√

t
√

t

∣∣∣∣∣∣
≤

cxΓ2( 1
4 )

√
πt
−→ 0 as t→∞.

We shall show that condition (3.3). Indeed, for each p ∈ N∗, we get lp + kp =
3e−p

8 < 1.
Consequently, by Theorem 3.2, the equation (4.1) has a solution defined on R+× [0,1] and
solutions of this equation are globally asymptotically stable.
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