Algebraic and ergodicity properties of the Berezin TRANSFORM

Namita Das*
P.G. Department of Mathematics
Utkal University
Vanivihar, Bhubaneswar, 751004, Odisha, India
Rajendra Prasad Lal ${ }^{\dagger}$
Department of Computer and Information Sciences
University of Hyderabad
Hyderabad, India-500046

(Communicated by Palle Jorgensen)

Abstract

In this paper we derive certain algebraic and ergodicity properties of the Berezin transform defined on $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ where \mathbb{B}_{N} is the open unit ball in $\mathbb{C}^{N}, N \geq 1, N \in \mathbb{Z}$, $d \eta^{\prime}(z)=K_{\mathbb{B}_{N}}(z, z) d v(z)$ is the Mobius invariant measure, $K_{\mathbb{B}_{N}}$ is the reproducing kernel of the Bergman space $L_{a}^{2}\left(\mathbb{B}_{N}, d v\right)$ and $d v$ is the Lebesgue measure on \mathbb{C}^{N}, normalized so that $v\left(\mathbb{B}_{N}\right)=1$. We establish that the Berezin transform B is a contractive linear operator on each of the spaces $L^{p}\left(\mathbb{B}_{N}, d \eta^{\prime}(z)\right), 1 \leq p \leq \infty, B^{n} \rightarrow 0$ in norm topology and B is similar to a part of the adjoint of the unilateral shift. As a consequence of these results we also derive certain algebraic and asymptotic properties of the integral operator defined on $L^{2}[0,1]$ associated with the Berezin transform.

AMS Subject Classification: 47B38, 31B05.
Keywords: Bergman space, Berezin transform, positive operators, contraction, HelgasonFourier transform.

1 Introduction

Let \mathbb{B}_{N} be the open unit ball of $\mathbb{C}^{N}, N \geq 1, N \in \mathbb{Z}$, with respect to the Euclidean metric. The letter v denotes the Lebesgue measure on \mathbb{C}^{N}, normalized so that $v\left(\mathbb{B}_{N}\right)=1$ and $L^{p}\left(\mathbb{B}_{N}, d v\right), 1 \leq p \leq \infty$ are the usual Lebesgue spaces and the integration is with respect to

[^0]the measure v. When $N=1, d v=d A$, the normalized area measure on the open unit disk \mathbb{D} in the complex plane \mathbb{C}. Consider the space $L^{2}\left(\mathbb{B}_{N}, d v\right)$ for an integer $N \geq 1$. Let $L_{a}^{2}\left(\mathbb{B}_{N}, d v\right)$ be the Bergman space of holomorphic functions in $L^{2}\left(\mathbb{B}_{N}, d v\right)$ and $K_{\mathbb{B}_{N}}$ be the reproducing kernel for $L_{a}^{2}\left(\mathbb{B}_{N}, d v\right)$. Notice that for $z, \lambda \in \mathbb{B}_{N}$,
\[

$$
\begin{equation*}
K_{\mathbb{B}_{N}}(z, \lambda)=\frac{N!}{(1-z \cdot \bar{\lambda})^{N+1}} \tag{1.1}
\end{equation*}
$$

\]

where $z \cdot \bar{\lambda}=z_{1} \bar{\lambda}_{1}+\cdots+z_{N} \bar{\lambda}_{N}$. For details see [15]. Let $d \eta^{\prime}(z)=K_{\mathbb{B}_{N}}(z, z) d v(z)$. The reproducing kernel $K_{\mathbb{B}_{N}}(z, w)$ of $L_{a}^{2}\left(\mathbb{B}_{N}, d v\right)$ is holomorphic in z and antiholomorphic in w and

$$
\begin{equation*}
\int_{\mathbb{B}_{N}}\left|K_{\mathbb{B}_{N}}(z, w)\right|^{2} d v(w)=K_{\mathbb{B}_{N}}(z, z)>0 \tag{1.2}
\end{equation*}
$$

for all $z \in \mathbb{B}_{N}$. Thus we define for each $\lambda \in \mathbb{B}_{N}$, a unit vector k_{λ} in $L_{a}^{2}\left(\mathbb{B}_{N}\right)$ by

$$
\begin{equation*}
k_{\lambda}(z)=\frac{K_{\mathbb{B}_{N}}(z, \lambda)}{\sqrt{K_{\mathbb{B}_{N}}(\lambda, \lambda)}} \tag{1.3}
\end{equation*}
$$

The Bergman space $L_{a}^{2}\left(\mathbb{B}_{N}, d v\right)$ is a closed subspace [5], [23] of $L^{2}\left(\mathbb{B}_{N}, d v\right)$. Let P be the orthogonal projection of $L^{2}\left(\mathbb{B}_{N}, d v\right)$ onto $L_{a}^{2}\left(\mathbb{B}_{N}, d v\right)$. For $\phi \in L^{\infty}\left(\mathbb{B}_{N}\right)$, define the Toeplitz operator T_{ϕ} from $L_{a}^{2}\left(\mathbb{B}_{N}\right)$ into itself as $T_{\phi} f=P(\phi f)$. The operator T_{ϕ} is a bounded linear operator and $\left\|T_{\phi}\right\| \leq\|\phi\|_{\infty}$. Toeplitz operators can also be defined for unbounded symbols. Since the Bergman projection P can be extended to the space $L^{1}\left(\mathbb{B}_{N}, d v\right)$, we also have $T_{\phi} f=P(\phi f), f \in H^{\infty}\left(\mathbb{B}_{N}\right)$, even for $\phi \in L^{1}\left(\mathbb{B}_{N}, d v\right)$. It is easy to see that $H^{\infty}\left(\mathbb{B}_{N}\right)$, the space of bounded analytic functions on \mathbb{B}_{N} is dense in $L_{a}^{2}\left(\mathbb{B}_{N}\right)$. The Berezin transform plays an important role [22],[12] in the theory of Toeplitz and Hankel operators on the Bergman space.

The group of all one-to-one holomorphic maps of \mathbb{B}_{N} onto \mathbb{B}_{N} (the automorphisms of $\left.\mathbb{B}_{N}\right)$ will be denoted by $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$. It is generated by the unitary operators on \mathbb{C}^{N} and the involutions ϕ_{a} of the form

$$
\begin{equation*}
\phi_{a}(z)=\frac{a-\mathcal{P}_{z}-\left(1-|a|^{2}\right)^{\frac{1}{2}} Q z}{1-\langle z, a\rangle} \tag{1.4}
\end{equation*}
$$

where $a \in \mathbb{B}_{N}, \mathcal{P}$ is the orthogonal projection onto the space spanned by $a, Q z=z-\mathcal{P}_{z}$,

$$
\langle z, a\rangle=\sum_{i=1}^{n} z_{i} \overline{a_{i}}, \text { and }|a|^{2}=\langle a, a\rangle
$$

Let G_{0} be the isotropy subgroup of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ at 0 ; i.e.

$$
G_{0}=\left\{\psi \in \operatorname{Aut}\left(\mathbb{B}_{N}\right): \psi(0)=0\right\}
$$

It is well known [21] that G_{0} is compact and that G_{0} is a subgroup of the unitary group \mathcal{U}_{N} of \mathbb{C}^{N}. Given $\psi \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$, let $a=\psi^{-1}(0)$, then we have,

$$
\psi \circ \phi_{a}(0)=\psi(a)=0
$$

thus $\psi \circ \phi_{a} \in G_{0}$ and so there exists a unitary matrix U such that $\psi=U \phi_{a}$ where $U \in G_{0}$. It is also not difficult to verify that the identity

$$
1-\left|\phi_{z}(w)\right|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{|1-\langle z, w\rangle|^{2}}
$$

holds and that the (real) Jacobian of ϕ_{z} is

$$
\left(J_{\mathbb{R}} \phi_{z}\right)(w)=\frac{\left(1-|z|^{2}\right)^{N+1}}{|1-\langle z, w\rangle|^{2 N+2}} .
$$

For details see [1] and [15].
The invariant Laplacian $\widetilde{\triangle}$ is defined [19] for $f \in C^{2}\left(\mathbb{B}_{N}\right)$ by

$$
(\widetilde{\Delta} f)(z)=\Delta\left(f \circ \phi_{z}\right)(0)
$$

where Δ is the ordinary Laplacian. It commutes with every $\psi \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$:

$$
(\widetilde{\Delta} f) \circ \psi=\widetilde{\Delta}(f \circ \psi) .
$$

The \mathcal{M}-harmonic functions in \mathbb{B}_{N} are those for which $\widetilde{\Delta} f=0$. We recall that " \mathcal{M}-harmonic" is the same as "harmonic" when $N=1$, but not when $N>1$. For more details see [1],[3] and [2]. If $\widetilde{\triangle} f=0$ then the mean value of f on spheres of radius $r<1$ is $f(0)$. If f is also in $L^{1}\left(\mathbb{B}_{N}\right)$ it follows that

$$
\begin{equation*}
\int_{\mathbb{B}_{N}}(f \circ \psi) d v=f(\psi(0)) \tag{1.5}
\end{equation*}
$$

for every $\psi \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$. It happens as $\widetilde{\Delta} f=0$ implies $\widetilde{\Delta}(f \circ \psi)=0$ for all $\psi \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$. The property described in equation (1.5) is called the invariant mean value property. It is invariant in the sense that $f \circ \psi$ has it for every $\psi \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ whenever f has it.
Let $\Gamma(s)$ stand for the usual Gamma function, which is an analytic function of s in the whole complex plane except for simple poles at the points $\{0,-1,-2, \cdots\}$. In fact

$$
\Gamma(z)=\frac{e^{-\beta z}}{z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1} e^{\frac{z}{n}}
$$

where β is the Euler's constant; its approximate value is 0.57722 .
If $f \in L^{1}\left(\mathbb{B}_{N}, d v\right)$, the Berezin transform of f is defined by

$$
\begin{equation*}
(B f)(w)=\int_{\mathbb{B}_{N}} f(z)\left|k_{w}(z)\right|^{2} d v(z) \tag{1.6}
\end{equation*}
$$

where $k_{w}(z)$ is the normalized reproducing kernel at $w \in \mathbb{B}_{N}$. Notice that $k_{w} \in L^{\infty}\left(\mathbb{B}_{N}\right)$ for all $w \in \mathbb{B}_{N}$, so the definition makes sense and $(B f)(w)=\left\langle T_{f} k_{w}, k_{w}\right\rangle$ for $f \in L^{1}\left(\mathbb{B}_{N}, d v\right)$. Let $\tilde{f}(w)=(B f)(w)$. The function \tilde{f} is called the Berezin symbol of the Toeplitz operator T_{f} and $B f$ is called the Berezin transform of f. If f is a bounded \mathcal{M}-harmonic function then since $\left\langle T_{f} k_{w}, k_{w}\right\rangle=\tilde{f}(w)=(B f)(w)=f(w)$, hence the Berezin symbol of T_{f} is the function f itself. Ahern, Flores and Rudin [1] proved that if $B f=f, f \in L^{1}\left(\mathbb{B}_{N}, d v\right)$, then f is \mathcal{M}-harmonic if $N \leq 11$, but not if $N \geq 12$. In what follows, we present some basic properties of the operator
B. It is known [1] that if f is radial, $f \in L^{1}\left(\mathbb{B}_{N}, d v\right)$ and $f(z)=g\left(|z|^{2}\right)$ for all $z \in \mathbb{B}_{N}$ then $B f=f$ if and only if $T g=g$ where T is the integral operator given by

$$
\begin{equation*}
(T g)(x)=(1-x)^{N+1} \int_{0}^{1} \frac{N+t x}{(1-t x)^{N+2}} g(t) t^{N-1} d t \tag{1.7}
\end{equation*}
$$

Now

$$
\begin{equation*}
(B f)(z)=\int_{\mathbb{B}_{N}} \frac{\left(1-|z|^{2}\right)^{N+1}}{|1-\langle z, w\rangle|^{2(N+1)}} f(w) d v(w) \tag{1.8}
\end{equation*}
$$

Thus we obtain, if f is radial and $f(z)=g\left(|z|^{2}\right)$ then

$$
\int_{\mathbb{B}_{N}} \frac{\left(1-|z|^{2}\right)^{N+1}}{|1-\langle z, w\rangle|^{2(N+1)}} f(w) d v(w)=f
$$

if and only if

$$
\begin{equation*}
g(x)=(1-x)^{N+1} \int_{0}^{1} \frac{N+t x}{(1-t x)^{N+2}} g(t) t^{N-1} d t=T g(x) \tag{1.9}
\end{equation*}
$$

In this paper, we derive certain algebraic and ergodicity properties of the Berezin transform. The layout of this paper is as follows.

In section 2 we establish certain algebraic properties of the Berezin transform. We present an alternative formula for $B f$. Given $a \in \mathbb{B}_{N}$ and f any measurable function on \mathbb{B}_{N}, we define $C_{a} f=f\left(\phi_{a}(z)\right)$. We prove that the Berezin transform B commutes with all the composition operators $C_{a}, a \in \mathbb{B}_{N}$ and extending this result we also show that $C_{\psi} B=B C_{\psi}$ where C_{ψ} is the composition operator defined on $L^{1}\left(\mathbb{B}_{N}, d v\right)$ defined by $C_{\psi} f=$ $f \circ \psi, \psi \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$. We further show that the Berezin transform B is a contractive linear operator on each of the spaces $L^{p}\left(\mathbb{B}_{N}, d \eta^{\prime}(z)\right), 1 \leq p \leq \infty$. In this section we also show that if $f \in L^{1}(\mathbb{D}, d A)$ is radial then $B f$ is radial and if $f \in L^{1}(\mathbb{D}, d A)$ then \widetilde{f} is real analytic on \mathbb{D}. As a consequence of these results we also derive certain algebraic properties of the integral operator T defined on $L^{1}[0,1]$ associated with the Berezin transform. In section 3 we show that the Berezin transform B defined on $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ into itself is a positive operator and has spectral radius less than 1 . We also show that $\|B\|=\Phi_{N}\left(\frac{N}{2}\right)<1$ where $\Phi_{N}(\gamma)=\frac{\Gamma(\gamma+1) \Gamma(N+1-\gamma)}{\Gamma(N+1)}, \gamma \in \mathbb{N}$. Further we establish that B is similar to a part of the adjoint of the unilateral shift and $B^{n} \rightarrow 0$ in norm topology. From these results we derive many ergodicity properties of the Berezin transform and the corresponding integral operator T defined on $L^{1}[0,1]$. Applications of these results are also discussed.

2 Algebraic properties of the Berezin transform

In this section we establish certain algebraic properties of the Berezin transform. We present an alternative formula for $B f$. Given $a \in \mathbb{B}_{N}$ and f any measurable function on \mathbb{B}_{N}, we define $C_{a} f=f\left(\phi_{a}(z)\right)$. We prove that the Berezin transform B commutes with all the composition operators $C_{a}, a \in \mathbb{B}_{N}$ and extending this result we also show that $C_{\psi} B=B C_{\psi}$ where C_{ψ} is the composition operator defined on $L^{1}\left(\mathbb{B}_{N}, d v\right)$ defined by $C_{\psi} f=f \circ \psi, \psi \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$. We further show that the Berezin transform B is a contractive linear operator on each of the spaces $L^{p}\left(\mathbb{B}_{N}, d \eta^{\prime}(z)\right), 1 \leq p \leq \infty$. We also derive certain algebraic properties of the integral
operator T defined on $L^{1}[0,1]$ associated with the Berezin transform. Let $\mathcal{L}(H)$ denote the set of all bounded linear operators from the Hilbert space H into itself.

Lemma 2.1. The operator B satisfies the following algebraic properties:
(i) The operator B is a contraction in $L^{\infty}\left(\mathbb{B}_{N}\right)$.
(ii) If $f \geq 0$, then $B f \geq 0$; if $f \geq g$, then $B f \geq B g$.
(iii) Constants are fixed points of B on $L^{1}\left(\mathbb{B}_{N}, d v\right)$.
(iv) If $f \in L^{1}\left(\mathbb{B}_{N}, d v\right)$, then

$$
(B f)(z)=\int_{\mathbb{B}_{N}} f\left(\phi_{z}(w)\right) d v(w)
$$

(v) For every $f \in L^{2}\left(\mathbb{B}_{N}, d v\right), a \in \mathbb{B}_{N}, B C_{a} f=C_{a} B f$. That is, B commutes with all the composition operators $C_{a}, a \in \mathbb{B}_{N}$.
(vi) If $\Psi \in \operatorname{Aut}\left(\mathbb{B}_{N}\right), f \in L^{1}\left(\mathbb{B}_{N}, d v\right)$ then $(B f) \circ \Psi=B(f \circ \Psi)$.

Proof. The proof of (i),(ii) and (iii) is a straightforward generalization of the unit disk case given in [9]. We shall now establish (iv). For any $\Psi \in \operatorname{Aut}\left(\mathbb{B}_{N}\right)$, we denote by $J_{\Psi}(z)$ the complex Jacobian determinant of the mapping $\Psi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$. If $a \in \mathbb{B}_{N}$, then by a result of [15], [21] there exists a unimodular constant $\theta(a)$ such that

$$
J_{\phi_{a}}(z)=\theta(a) k_{a}(z)
$$

for all $z \in \mathbb{B}_{N}$. In fact if $a \in \mathbb{B}_{N}$ then $\theta(a)=(-1)^{N}$. Thus $\left|J_{\phi_{a}}(z)\right|^{2}=\left|k_{a}(z)\right|^{2}$. Hence $(B f)(z)=$ $\int_{\mathbb{B}_{N}} f(w)\left|k_{z}(w)\right|^{2} d v(w)=\int_{\mathbb{B}_{N}}\left(f \circ \phi_{z}\right)(w) d v(w)$. Now we shall prove (v). By a change of variable,

$$
\begin{aligned}
B f\left(\phi_{a}(z)\right) & =\int_{\mathbb{B}_{N}} f(w)\left|k_{\phi_{a}(z)}(w)\right|^{2} d v(w) \\
& =\int_{\mathbb{B}_{N}} f\left(\phi_{a}(w)\right)\left|k_{\phi_{a}(z)} \circ \phi_{a}(w)\right|^{2}\left|k_{a}(w)\right|^{2} d v(w) .
\end{aligned}
$$

Let $U=\phi_{\phi_{a}(z)} \circ \phi_{a} \circ \phi_{z}$. Then $U \in \operatorname{Aut}\left(\mathbb{B}_{N}\right), U(0)=0$ and U is unitary. Further,

$$
\phi_{\phi_{a}(z)} \circ \phi_{a}=U \phi_{\phi_{a} \circ \phi_{a}(z)}=U \phi_{z} .
$$

Taking the real Jacobian determinant of the above equation, we get

$$
\left|k_{\phi_{a}(z)} \circ \phi_{a}(w)\right|^{2}\left|k_{a}(w)\right|^{2}=\left|k_{z}(w)\right|^{2}
$$

for all a, z, and w in \mathbb{B}_{N}. Therefore,

$$
\begin{aligned}
(B f)\left(\phi_{a}(z)\right) & =\int_{\mathbb{B}_{N}} f\left(\phi_{a}(w)\right)\left|k_{z}(w)\right|^{2} d v(w) \\
& =B\left(f \circ \phi_{a}\right)(z) .
\end{aligned}
$$

Thus $B C_{a} f=C_{a} B f$ for $f \in L^{2}\left(\mathbb{B}_{N}, d v\right)$. We shall now establish (vi). For every $z \in \mathbb{B}_{N}$, the automorphism $\phi_{\Psi(z)} \circ \Psi \circ \phi_{z}$ takes 0 to 0 , hence is some unitary U. Thus

$$
\begin{aligned}
B(f \circ \Psi)(z) & =\int_{\mathbb{B}_{N}} f\left(\Psi\left(\phi_{z}(w)\right)\right) d v(w) \\
& =\int_{\mathbb{B}_{N}} f\left(\phi_{\Psi(z)} U w\right) d v(w) \\
& =(B f)(\Psi(z))
\end{aligned}
$$

since v is rotation invariant.
It follows from Lemma 2.1 that if $g_{1}, g_{2} \in L^{1}[0,1], g_{1} \geq 0, g_{1} \geq g_{2}$ then $T g_{1} \geq 0$ and $T g_{1} \geq T g_{2}$. We shall show below that the Berezin transform is a contractive linear operator on $L^{p}\left(\mathbb{B}_{N}, d \eta^{\prime}(z)\right)$ where $d \eta^{\prime}(z)=K_{\mathbb{B}_{N}}(z, z) d v(z)$, and $1 \leq p \leq \infty$.

Lemma 2.2. The Berezin transform B is a contractive linear operator on each of the spaces $L^{p}\left(\mathbb{B}_{N}, d \eta^{\prime}(z)\right), 1 \leq p \leq \infty$.

Proof. Notice that $L^{1}\left(\mathbb{B}_{N}, d \eta^{\prime}\right) \subset L^{1}\left(\mathbb{B}_{N}, d v\right)$. Since the Berezin transform is defined on the space $L^{1}\left(\mathbb{B}_{N}, d v\right)$ hence B is defined on $L^{1}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$. Further

$$
|(B f)(w)|=\left.\left|\int_{\mathbb{B}_{N}} f(z)\right| k_{w}(z)\right|^{2} d v(z) \mid \leq B(|f|)(w)
$$

Thus

$$
\begin{aligned}
\int_{\mathbb{B}_{N}}|(B f)(w)| K_{\mathbb{B}_{N}}(w, w) d v(w) & \leq \int_{\mathbb{B}_{N}}\left(\int_{\mathbb{B}_{N}}|f(z)|\left|k_{w}(z)\right|^{2} d v(z)\right) K_{\mathbb{B}_{N}}(w, w) d v(w) \\
& =\int_{\mathbb{B}_{N}}|f(z)|\left(\int_{\mathbb{B}_{N}}\left|K_{\mathbb{B}_{N}}(z, w)\right|^{2} d v(w)\right) d v(z) \\
& =\int_{\mathbb{B}_{N}}|f(z)| K_{\mathbb{B}_{N}}(z, z) d v(z) .
\end{aligned}
$$

The change of the order of integration being justified by the positivity of the integrand. Hence it follows that B is a contraction on $L^{1}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$. The same is true for $L^{\infty}\left(\mathbb{B}_{N}\right)$ by Lemma 2.1 and so the result follows from the Marcinkiewicz interpolation theorem.

Thus by Lemma 2.2, the integral operator T is a contractive linear operator on each of the spaces $L^{p}\left([0,1], \frac{t^{N-1} d t}{(1-t)^{N+1}}\right), 1 \leq p \leq \infty, N \geq 1$.

Notice that the Berezin transform B does not carry $L^{1}\left(\mathbb{B}_{N}, d v\right)$ into $L^{1}\left(\mathbb{B}_{N}, d v\right)$, because

$$
\int_{\mathbb{B}_{N}} \frac{\left(1-|z|^{2}\right)^{N+1}}{|1-\langle z, w\rangle|^{2 N+2}} d v(z)
$$

tends to ∞ when $|w| \rightarrow 1$. It is not difficult to verify [1], [4] that B is bounded as an operator from $L^{1}\left(\mathbb{B}_{N}, d v\right)$ to $L^{1}\left(\mathbb{B}_{N},(1-|z|) d v\right)$. Again we know in \mathbb{D}, the only measure left invariant by all Mobius transformations is the pseudo-hyperbolic measure $d \eta(z)=\frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}$. Therefore, the only harmonic function in $L^{p}(\mathbb{D}, d \eta)$ is constant zero. Thus even though one can show
that every space $L^{p}\left((0,1), \frac{d t}{(1-t)^{2}}\right), 1 \leq p \leq \infty$ is an invariant subspace [1], [8] of the operator T (when $N=1$) but these spaces are no good in this context. This is because (except for L^{∞}) the corresponding spaces $L^{p}(\mathbb{D}, d \eta)$ do not contain nonzero harmonic functions, even no nonzero constants. Similar is the case for \mathbb{B}_{N}.

Lemma 2.3. (i) If a function $f \in L^{1}\left(\mathbb{B}_{N}, d v\right)$ is \mathcal{M}-harmonic then $B f=f$.
(ii) Suppose $N \in \mathbb{Z}_{+}$and $N \leq 11$. If $f \in L^{1}\left(\mathbb{B}_{N}, d v\right)$ and $B f=f$ then f is \mathcal{M}-harmonic.
(iii) If $f \in L^{1}\left(\mathbb{B}_{N}, d \eta^{\prime}\right), N \in \mathbb{Z}_{+}, N \leq 11$ then $B f=f$ if and only if f is \mathcal{M}-harmonic.
(iv) If $f \in L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ is \mathcal{M}-harmonic then $f=0$.

Proof. (i) If $f \in L^{1}\left(\mathbb{B}_{N}, d v\right)$ is \mathcal{M}-harmonic, then so is $f \circ \phi_{a}$ for any $a \in \mathbb{B}_{N}$; by the mean value property,

$$
(B f)(z)=\int_{\mathbb{B}_{N}} f\left(\phi_{z}(w)\right) d v(w)=\left(f \circ \phi_{z}\right)(0)=f(z)
$$

(ii)The result follows from [1]. (iii) Since $L^{1}\left(\mathbb{B}_{N}, d \eta^{\prime}\right) \subset L^{1}\left(\mathbb{B}_{N}, d v\right)$, the result follows. (iv)Denote the unit sphere, the boundary of the open unit ball \mathbb{B}_{N} in \mathbb{C}^{N} by S_{N}. Let $d \sigma$ be the normalized surface-area measure (Hausdorff measure) of S_{N} such that $\sigma\left(S_{N}\right)=1$. Let $M(r)=\int_{\partial \mathbb{B}_{N}}|f(r \xi)|^{2} d \sigma(\xi)$. Then

$$
\begin{aligned}
\|f\|_{L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)}^{2} & =\int_{\mathbb{B}_{N}}|f(z)|^{2} d \eta^{\prime}(z) \\
& =\int_{0}^{1} M(r) K_{\mathbb{B}_{N}}(z, z) 2 N r^{2 N-1} d r \\
& =2 N \int_{0}^{1} M(r) N!\frac{r^{2 N-1}}{\left(1-r^{2}\right)^{N+1}} d r \\
& =N N!\int_{0}^{1} M(r) \frac{r^{2 N-2}}{\left(1-r^{2}\right)^{N+1}} 2 r d r \\
& =N N!\int_{0}^{1} M(\sqrt{t}) \frac{t^{N-1}}{(1-t)^{N+1}} d t
\end{aligned}
$$

where $t=r^{2}$. So $M(r)$ must tend to zero as $r \rightarrow 1$. Thus $M(r) \equiv 0$. Hence since f is \mathcal{M} harmonic, by maximum principle $f=0$.

Corollary 2.4. If $f \in L^{1}\left([0,1], \frac{t^{N-1} d t}{(1-t)^{N+1}}\right), N \in \mathbb{Z}_{+}, N \leq 11$ then $T f=f$ if and only if f is a constant.

Proof. It is not difficult to verify that if f is a constant then $T f=f$. Now suppose $T f=f$. Let $g(z)=f\left(|z|^{2}\right.$). Then g is radial and $B g=g$. By Lemma 2.3, g is \mathcal{M}-harmonic. Since a radial \mathcal{M}-harmonic function on \mathbb{B}_{N} is a constant, hence g and therefore, f is a constant.

Lemma 2.5. (i) If $f \in L^{1}(\mathbb{D}, d A)$, then \widetilde{f} is real analytic on \mathbb{D}.
(ii) If $f \in L^{1}(\mathbb{D}, d A)$ is radial then $B f$ is radial.

Proof. (i)Define a complex valued function F on $\mathbb{D} \times \mathbb{D}$ by $F(w, z)=\left\langle T_{f} K_{\bar{w}}, K_{z}\right\rangle$ for $w, z \in \mathbb{D}$. Here we are using the unnormalized reproducing kernels $K_{z}(w)=\overline{K(z, w)}=\frac{1}{(1-\bar{z} w)^{2}}$. Because F is analytic in each variable separately, we conclude that F is holomorphic on $\mathbb{D} \times \mathbb{D}$ and since $\widetilde{f}(z)=\left\langle T_{f} k_{z}, k_{z}\right\rangle=\left(1-|z|^{2}\right)^{2} F(\bar{z}, z)$, the function \widetilde{f} is real analytic on \mathbb{D}.
(ii) For $f \in L^{1}(\mathbb{D}, d A)$, the Berezin transform $B f$ is defined as follows :

$$
(B f)(z)=\widetilde{f}(z)=\int_{\mathbb{D}} f(w)\left|k_{z}(w)\right|^{2} d A(w)
$$

We need to show if $f \in L^{1}(\mathbb{D}, d A)$ then $B(\operatorname{rad} f)=\operatorname{rad}(B f)$. Because if f is radial then $\operatorname{rad} f=f$. In that case $B f=B(\operatorname{rad} f)=\operatorname{rad}(B f)$. Therefore, this will imply $B f$ is radial.

$$
\begin{aligned}
B(\operatorname{rad} f)(z) & =\int_{\mathbb{D}} \operatorname{rad}(f)(w)\left|k_{z}(w)\right|^{2} d A(w) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\int_{\mathbb{D}} f\left(w e^{i t}\right)\left|k_{z}(w)\right|^{2} d A(w)\right) d t \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\int_{\mathbb{D}} f\left(w e^{i t}\right)\left|k_{e^{i t z}}\left(e^{i t} w\right)\right|^{2} d A(w)\right) d t \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\int_{\mathbb{D}} f(u)\left|k_{e^{i t_{z}}}(u)\right|^{2} d A(u)\right) d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \widetilde{f}\left(e^{i t} z\right) d t \\
& =\operatorname{rad}(\widetilde{f})(z)=\operatorname{rad}(B f)(z)
\end{aligned}
$$

Thus $B(\operatorname{rad} f)=\operatorname{rad}(B f)$. The theorem is proved.
Recall that the invariant Laplacian $\widetilde{\Delta}$ is defined [19] for $f \in C^{2}\left(\mathbb{B}_{N}\right)$ by

$$
(\widetilde{\Delta} f)(z)=\Delta\left(f \circ \phi_{z}\right)(0)
$$

where Δ is the ordinary Laplacian. Let $M=\left\{f \in L^{1}\left(\mathbb{B}_{N}, d v\right): B f=f\right\}$. If $f \in M$ then f is real analytic as f lies in the range of B. Thus $\widetilde{\Delta} f$ exists for all $f \in M$.
For $f \in L^{1}\left(\mathbb{B}_{N}, d v\right), z \in \mathbb{B}_{N}$ define

$$
\begin{aligned}
(A f)(z) & =(N+1) \int_{\mathbb{B}_{N}}\left(1-|w|^{2}\right) f\left(\phi_{z}(w)\right) d v(w) \\
& =(N+1) \int_{\mathbb{B}_{N}} \frac{\left(1-|z|^{2}\right)^{N+2}\left(1-|w|^{2}\right) f(w)}{|1-\langle z, w\rangle|^{2(N+2)}} d v(w) .
\end{aligned}
$$

It is shown in [1], [4] that $\|A\| \leq N+2$ and $A f=\left(1-\frac{\widetilde{\Delta}}{4(N+1)}\right) B f$. Further for $f \in L^{1}\left(\mathbb{B}_{N}, d v\right), B A f=$ $A B f$. When $N=1$, let $A=A_{1}$. Then

$$
\begin{aligned}
\left(A_{1} f\right)(z) & =2 \int_{\mathbb{D}}\left(1-|w|^{2}\right) f\left(\phi_{z}(w)\right) d A(w) \\
& =2 \int_{\mathbb{D}}\left(1-\left|\phi_{z}(w)\right|^{2}\right) f(w)\left|k_{z}(w)\right|^{2} d A(w)
\end{aligned}
$$

We show below that if f is radial on \mathbb{D} then $A_{1} f$ is radial.

Theorem 2.6. If $f \in L^{1}(\mathbb{D}, d A)$ is radial, then $A_{1} f$ is radial.
Proof. It is sufficient to show that for $f \in L^{1}(\mathbb{D}, d A), A_{1}(\operatorname{rad} f)=\operatorname{rad}\left(A_{1} f\right)$. For $z \in \mathbb{D}$,

$$
\begin{aligned}
A_{1}(\operatorname{rad} f)(z) & =2 \int_{\mathbb{D}}\left(1-\left|\phi_{z}(w)\right|^{2}\right) \operatorname{rad}(f)(w)\left|k_{z}(w)\right|^{2} d A(w) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(2 \int_{\mathbb{D}} f\left(w e^{i t}\right)\left|k_{z}(w)\right|^{2}\left(1-\left|\phi_{z}(w)\right|^{2}\right) d A(w)\right) d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(2 \int_{\mathbb{D}} f\left(w e^{i t}\right)\left|k_{e^{i t_{z}}}\left(e^{i t} w\right)\right|^{2}\left(1-\left|\phi_{e^{i t z}}\left(e^{i t} w\right)\right|^{2}\right) d A(w)\right) d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(2 \int_{\mathbb{D}} f(u)\left|k_{e^{i t_{z}}}(u)\right|^{2}\left(1-\left|\phi_{e^{i t_{z}}}(u)\right|^{2}\right) d A(u)\right) d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(A_{1} f\right)\left(e^{i t_{z}} z\right) d t \\
& =\operatorname{rad}\left(A_{1} f\right)(z) .
\end{aligned}
$$

Thus if f is radial, we have $\operatorname{rad} f=f$. Hence $A_{1} f=A_{1}(\operatorname{rad} f)=\operatorname{rad}\left(A_{1} f\right)$. Therefore $A_{1} f$ is radial.

Theorem 2.7. If f is radial, $f \in L^{1}\left(\mathbb{B}_{N}, d v\right)$ and $f(z)=g\left(|z|^{2}\right)$ then $A f=f$ if and only if

$$
g(x)=N(1-x)^{N+2} \int_{0}^{1} \frac{N+1+t x}{(1-t x)^{N+3}} g(t)(1-t) t^{N-1} d t
$$

Proof. We have seen that

$$
(A f)(z)=(N+1) \int_{\mathbb{B}_{N}} \frac{\left(1-|z|^{2}\right)^{N+2}\left(1-|w|^{2}\right)}{|1-\langle z, w\rangle|^{2(N+2)}} f(w) d v(w) .
$$

If $f(w)=g\left(|w|^{2}\right)=g\left(r^{2}\right)$ then from [19] it follows that

$$
(A f)(z)=\left(1-|z|^{2}\right)^{N+2} 2(N+1) N \int_{0}^{1} I_{N+3}(r z)\left(1-r^{2}\right) r^{2 N-1} g\left(r^{2}\right) d r
$$

and

$$
I_{N+3}(r z)=\frac{\Gamma(N+1)}{\Gamma^{2}(N+2)} \sum_{k=0}^{\infty} \frac{\Gamma^{2}(k+N+2)}{\Gamma(k+1) \Gamma(k+N+1)}|r z|^{2 k}
$$

where we use polar coordinates $w=r \rho, \rho \in S_{N}\left(\right.$ the sphere that bounds $\left.\mathbb{B}_{N}\right)$. Proceeding as in [1], one can show that $(A f)(z)=f(z)$ if and only if

$$
g(s)=N(1-s)^{N+2} \int_{0}^{1} \frac{N+1+t s}{(1-t s)^{N+3}} g(t)(1-t) t^{N-1} d t
$$

If B is the Berezin transform on $L^{1}(\mathbb{D}, d A)$, we have $B A_{1} f=A_{1} B f$ for $f \in L^{1}(\mathbb{D}, d A)$. For details see [1]. If $f \in L^{1}(\mathbb{D}, d A)$ and $f(z)=g\left(|z|^{2}\right)$, then $g \in L^{1}[0,1]$. Define for $g \in L^{1}[0,1]$,

$$
\begin{equation*}
\left(T_{1} g\right)(s)=N(1-s)^{N+2} \int_{0}^{1} \frac{N+1+t s}{(1-t s)^{N+3}} g(t)(1-t) t^{N-1} d t \tag{2.1}
\end{equation*}
$$

Theorem 2.8. If T is the integral operator defined on $L^{1}[0,1]$ as

$$
(T g)(x)=(1-x)^{N+1} \int_{0}^{1} \frac{N+x s}{(1-x s)^{N+2}} g(s) s^{N-1} d s
$$

and T_{1} is the integral operator as defined in (2.1) then $T T_{1} g=T_{1} T g$ for all $g \in L^{1}[0,1]$.

Proof. It is shown in [1] that for $f \in L^{1}\left(\mathbb{B}_{N}, d v\right), B A f=A B f$. Hence if $f(z)=g\left(|z|^{2}\right)$ then $g \in L^{1}[0,1]$ and $T T_{1} g=T_{1} T g$.

3 Norm of the Berezin transform

In this section we show that the Berezin transform B defined on $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ into itself is a positive operator and has spectral radius less than 1 . We also show that $\|B\|=\Phi_{N}\left(\frac{N}{2}\right)<1$ where $\Phi_{N}(\gamma)=\frac{\Gamma(\gamma+1) \Gamma(N+1-\gamma)}{\Gamma(N+1)}, \gamma \in \mathbb{N}$.

Further we establish that B is similar to a part of the adjoint of the unilateral shift and $B^{n} \rightarrow 0$ in norm topology. From these results we derive many ergodicity properties of the Berezin transform and the corresponding integral operator T defined on $L^{1}[0,1]$. Applications of these results are also discussed.

Since the operator B on $L^{\infty}\left(\mathbb{B}_{N}\right)$ is the adjoint of B on $L^{1}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ and $L^{\infty}\left(\mathbb{B}_{N}\right)=$ $\left(L^{1}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)\right)^{*}$, the spectrum of B on $L^{\infty}\left(\mathbb{B}_{N}\right)=$ spectrum of B on $L^{1}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$. The spectrum of B on $L^{\infty}\left(\mathbb{B}_{N}\right)$ is [1] the set

$$
\left\{\frac{\Gamma(\gamma+1) \Gamma(N+1-\gamma)}{\Gamma(N+1)}: \gamma \in \mathbb{C}, 0 \leq \mathfrak{R} \gamma \leq N\right\}
$$

Let $\Phi_{N}(\gamma)=\frac{\Gamma(\gamma+1) \Gamma(N+1-\gamma)}{\Gamma(N+1)}=\frac{\pi \gamma}{\sin (\pi \gamma)} \prod_{j=1}^{N}\left(1-\frac{\gamma}{j}\right)$. From Ahern, Flores, Rudin [1], it follows that $\left|\Phi_{N}(\gamma)\right|<1$ if $0<\mathfrak{R} \gamma<N$. Further $\Phi_{N}(0)=\Phi_{N}(N)=1$. Thus the spectrum of B on $L^{1}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ and $L^{\infty}\left(\mathbb{B}_{N}\right)$ contains the point 1 and further since B fixes the constants hence $\|B\|=1$ and spectral radius of B is 1 .

Theorem 3.1. Let B be the Berezin transform defined on $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$. Then $B^{n} \rightarrow 0$ in norm topology and B is similar to a part of the adjoint of the unilateral shift.

Proof. By Lemma 2.2, the operator B is a contraction on $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$. Further B is a selfadjoint operator on $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$. Because for $f \in L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$,

$$
\begin{aligned}
\langle B f, f\rangle & =\int_{\mathbb{B}_{N}}(B f)(z) \overline{f(z)} K_{\mathbb{B}_{N}}(z, z) d v(z) \\
& =\int_{\mathbb{B}_{N}}\left(\int_{\mathbb{B}_{N}}\left(f \circ \phi_{z}\right)(w) d v(w)\right) \overline{f(z)} K_{\mathbb{B}_{N}}(z, z) d v(z) \\
& =\int_{\mathbb{B}_{N}}\left(\int_{\mathbb{B}_{N}} f(w)\left|k_{z}(w)\right|^{2} d v(w)\right) \overline{f(z)} K_{\mathbb{B}_{N}}(z, z) d v(z) \\
& =\int_{\mathbb{B}_{N}} \int_{\mathbb{B}_{N}} f(w)\left|K_{\mathbb{B}_{N}}(z, w)\right|^{2} d v(w) \overline{f(z)} d v(z) \\
& =\int_{\mathbb{B}_{N}} f(w) K_{\mathbb{B}_{N}}(w, w) d v(w) \int_{\mathbb{B}_{N}} \overline{f(z)} \frac{\left|K_{\mathbb{B}_{N}}(z, w)\right|^{2}}{K_{\mathbb{B}_{N}}(w, w)} d v(z) \\
& =\int_{\mathbb{B}_{N}} f(w) d \eta^{\prime}(w) \overline{\left(\int_{\mathbb{B}_{N}} f(z)\left|K_{w}(z)\right|^{2} d v(z)\right)} \\
& =\langle f, B f\rangle .
\end{aligned}
$$

It is known that in the space $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$, the Berezin transform is a Fourier multiplier with respect to the Helgason-Fourier transform [13]. Consider the family of conical functions $e_{\lambda, b}$ indexed by $\lambda \in \mathbb{R}$ and $b \in S_{N}$ given by

$$
e_{\lambda, b}(x)=\left(\frac{1-\|x\|^{2}}{\|b-x\|^{N}}\right)^{\frac{N}{2}+i \lambda}, x \in \mathbb{B}_{N}
$$

On the space $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$, one defines the Helgason-Fourier transform \widehat{f} of f as

$$
\widehat{f}(\lambda, b)=\int_{\mathbb{B}_{N}} f(x) e_{\lambda, b}(x) d \eta^{\prime}(x) .
$$

There is also [13] an inversion formula

$$
f(x)=\int_{\mathbb{R}} \int_{S_{N}} \widehat{f}(\lambda, b) e_{-\lambda, b}(x)|c(\lambda)|^{2} d b d \lambda
$$

with some function c on \mathbb{R} (the Harish-chandra c-function) and $d b$ the Haar measure on S_{N}; and a Plancheral isometry

$$
\int_{\mathbb{B}_{N}}|f(x)|^{2} d \eta^{\prime}(x)=\int_{\mathbb{R}} \int_{S_{N}}|\widehat{f}(\lambda, b)|^{2}|c(\lambda)|^{2} d b d \lambda,
$$

exists which establishes a unitary isomorphism between $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ and a subspace \mathcal{M} of all functions in $L^{2}\left(\mathbb{R} \times S_{N},|c(\lambda)|^{2} d b d \lambda\right)$ satisfying a certain symmetry condition. Under this isomorphism, an operator on $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ commuting with the action of $\operatorname{Aut}\left(\mathbb{B}_{N}\right)$ corresponds to the operator on \mathcal{M} of multiplication by a certain function depending only on λ. That is, if B is the Berezin transform on $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ then $\left.\widehat{(B f}\right)(\lambda, b)=m(\lambda) \widehat{f}(\lambda, b)$ where $m(\lambda)=\Phi_{N}(N / 2+i \lambda)=\left(\lambda^{2}+\frac{1}{4}\right) \frac{\pi}{\cosh (\pi \lambda)} \prod_{j=2}^{N}\left(1-\frac{\frac{1}{2}+i \lambda}{j}\right)$. Thus

$$
\begin{aligned}
\langle B f, f\rangle & =\langle\widehat{(B f)}, \widehat{f\rangle} \\
& =\int_{\mathbb{R}} \int_{S_{N}} m(\lambda)|\widehat{f}(\lambda, b)|^{2} d b d \lambda \\
& \geq 0
\end{aligned}
$$

since the multiplier function $m(\lambda)=\left(\lambda^{2}+\frac{1}{4}\right) \frac{\pi}{\cosh (\pi \lambda)} \prod_{j=2}^{N}\left(1-\frac{\frac{1}{2}+i \lambda}{j}\right)$ is positive. Thus the operator B is positive. This also gives the spectral decomposition of B. Let $E(\beta)$ be the resolution of identity for the self-adjoint operator B. Then $\left\|B^{n} f\right\|^{2}=\int_{(0,1)}\left|\beta^{n}\right|^{2} d\langle E(\beta) f, f\rangle$. According to the Lebesgue monotone convergence theorem, this tends to $\|(I-E(1-)) f\|^{2}=$ $\left\|P_{\operatorname{ker}(B-I)} f\right\|^{2}$. Now $\operatorname{ker}(I-B)=\{0\}$ since 1 is not in the spectrum of B, so $\left\|B^{n} f\right\|$ tends to zero.

It is well known [7] that the spectrum of a multiplication operator is the essential range of its symbol. In the case of the Berezin transform the multiplier function is m and the range of m is the set $\{m(\lambda): \lambda \in \mathbb{R}\}=\left\{\Phi_{N}(\lambda): \mathfrak{R} \lambda=\frac{N}{2}\right\}$. Thus in view of the spectral decomposition of B on $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ given by the Helgason-Fourier transform, the spectrum of B on $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ consists of

$$
\left\{\Phi_{N}(\gamma): \mathfrak{R} \gamma=\frac{N}{2}\right\}
$$

From the properties of the Gamma function [1] it follows that for $\gamma=\frac{N}{2}+i t, t$ real, $\Phi_{N}(\gamma)$ decreases to 0 as t tends to infinity, and has maximum at $t=0$. Hence $\|B\|=r(B)=\Phi_{N}\left(\frac{N}{2}\right)$ and thus is <1 by the sub-multiplicativity (log-convexity) of the [1] Gamma function. Thus $B^{n} \rightarrow 0$ in norm as $\|B\|<1$ and it follows from [10] that B is similar to a part of the adjoint of the unilateral shift.

Corollary 3.2. Let B be the Berezin transform defined from $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ into itself. The following assertions hold.
(i) $\left\|B^{n}\right\| \leq \beta \alpha^{n}$ for every $n \geq 0$, for some $\beta \geq 1$ and $0<\alpha<1$.
(ii) $\sum_{n=0}^{\infty}\left\|B^{n}\right\|^{k}<\infty$ for an arbitrary $k>0$.
(iii) $\sum_{n=0}^{\infty}\left\|B^{n} f\right\|^{k}<\infty$ for all $f \in L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ and for an arbitrary $k>0$.
(iv) $\sum_{n=0}^{\infty}\left|\left\langle B^{n} f, g\right\rangle\right|^{k}<\infty$ for all $f, g \in L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$, for an arbitrary $k \geq 1$.
(v) The space RangeB is the set of all $g \in L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ for which the series $\sum_{k=0}^{\infty}(I-B)^{k} g$ converges with respect to the norm of $L^{2}\left(\mathbb{B}_{N},, d \eta^{\prime}\right)$. In this case if $f=\sum_{k=0}^{\infty}(I-B)^{k} g$ then $f \in(\operatorname{ker} B)^{\perp}$ and $B f=g$.
(vi) The function $g \in$ range B if and only if $\sum_{k=0}^{\infty}\left\|\left(I-B^{2}\right)^{\frac{k}{2}} g\right\|^{2}<\infty$. Further, the series $\sum_{k=0}^{\infty}\left(I-B^{2}\right)^{k} B g$ converges and if $\sum_{k=0}^{\infty}\left(I-B^{2}\right)^{k} B g=e$ then $g=B e$.

Proof. The proof follows from [20] and [6].

Corollary 3.3. Suppose $N \in \mathbb{Z}_{+}$. Consider the integral operator T on $L^{2}\left([0,1], \frac{t^{N-1} d t}{(1-t)^{N+1}}\right)$. Then $T^{n} \rightarrow 0$ in norm.

Proof. It follows from Theorem 3.1 that $\|T\|<1$ and the Corollary follows.
Corollary 3.4. The following is true for the Berezin transform B as an operator on $L^{2}\left(\mathbb{B}_{N}, d \eta\right)$: $\frac{1}{n} \sum_{k=0}^{n-1} B^{k} \rightarrow 0$ in the strong operator topology as $n \rightarrow \infty$.

Proof. The result follows from Theorem 3.1 and [17].
Corollary 3.5. The following is true for the integral operator T as an operator on $L^{2}\left([0,1], \frac{t^{N-1} d t}{(1-t)^{N+1}}\right): \frac{1}{n} \sum_{k=0}^{n-1} T^{k} \rightarrow 0$ in the strong operator topology as $n \rightarrow \infty$.

Proof. The proof follows from corollary 3.3 and [17].
A continuous real-valued function u is subharmonic in \mathbb{D} if and only if it satisfies the inequality

$$
u\left(z_{0}\right) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta
$$

for every disk $\left|z-z_{0}\right| \leq r$ contained in \mathbb{D}. For a more detailed discussion on subharmonic functions see [11].

Definition 3.6. Suppose $f \in L^{1}(\mathbb{D}, d A)$ is a real-valued subharmonic function on \mathbb{D}. We say f admits an integrable harmonic majorant if there exists a function $v \in L^{1}(\mathbb{D}, d A)$ harmonic on \mathbb{D} and such that $v(x) \geq f(x)$ for all $x \in \mathbb{D}$.

Corollary 3.7. Assume that $f \in L^{1}(\mathbb{D}, d A)$ is a real-valued, radial, subharmonic function on \mathbb{D} which is twice continuously differentiable and admits an integrable harmonic majorant u. Let $f(z)=g\left(|z|^{2}\right)$. Then $T^{m} g \rightarrow c$, as $m \rightarrow \infty$, where c is a fixed constant and T is the integral operator defined in (1.7).

Proof. From [9], it follows that $B^{m} f \rightarrow u$, the least harmonic majorant of f. The function f is radial and belong to $L^{1}(\mathbb{D}, d A)$. This implies $B f=T g$. We have already seen that if f is radial, then $B f$ is radial. Thus $B^{2} f=B(B f)=T(B f)=T(T g)=T^{2} g$. By induction, we can show that $B^{m} f=T^{m} g$. Since $B^{m} f \rightarrow u$, the sequence $T^{m} g \rightarrow v$, a radial harmonic function. Hence v is a constant c. That is, $T^{m} g \rightarrow c$.

Theorem 3.8. Assume $f \in L^{1}(\mathbb{D}, d A)$ is real-valued subharmonic function on \mathbb{D} which admits an integrable harmonic majorant v. Then the following hold:
(i) The functions $B^{n} f$ are subharmonic for all $n \in \mathbb{N}$. Further, if f is radial, $f(z)=g\left(|z|^{2}\right)$, then the functions $T^{m} g$ are subharmonic for all $m \in \mathbb{N}$.
(ii)If $f \in V(\mathbb{D})=\left\{f \in L^{\infty}(\mathbb{D})\right.$: ess $\left.\lim _{|z| \rightarrow 1} f(z)=0\right\}$ then $B^{n} f$ converges uniformly to 0 . Moreover, if $f \in V(\mathbb{D})$ is radial and $f(z)=g\left(|z|^{2}\right)$, then $T^{m} g$ converges to 0 uniformly.
(iii) If $f \in C(\overline{\mathbb{D}})$ then $\left\{B^{n} f\right\}$ converges uniformly to h, the harmonic function whose boundary values coincide with $\left.f\right|_{\mathbb{T}}$ where \mathbb{T} is the unit circle in \mathbb{C}. Suppose $f \in C(\overline{\mathbb{D}})$ is radial. Let $f(z)=g\left(|z|^{2}\right)$ for all $z \in \mathbb{D}$. Then $T^{m} g$ converges to a constant.

Proof. The theorem follows from [9] and the fact that if $f(z)=g\left(|z|^{2}\right)$ then $B f=T g$.

Corollary 3.9. Let $S=\frac{I+B}{2}$. Then $S^{n} \rightarrow 0$ in norm in the space $\mathcal{L}\left(L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)\right)$.
Proof. Notice that $S^{n} f=\frac{1}{2^{n}} \sum_{j=0}^{n}\binom{n}{j} B^{j} f, f \in L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ and hence

$$
\begin{aligned}
B S^{n} f & =\frac{1}{2^{n}} \sum_{j=0}^{n}\binom{n}{j} B^{j+1} f \\
& =\frac{1}{2^{n}} \sum_{j=1}^{n+1}\binom{n}{j-1} B^{j} f, f \in L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)
\end{aligned}
$$

We may assume that $n=2 k$ is even, the case when n is odd being similar. Since $\binom{n}{j}=\binom{n}{n-j}$ and $S B=B S$, we obtain

$$
\begin{aligned}
S^{n}(I-B) f & =S^{n} f-S^{n} B f=\frac{1}{2^{n}}\left\{\left[f-B^{n+1} f\right]+\sum_{j=1}^{n}\left[\binom{n}{j}-\binom{n}{j-1}\right] B^{j} f\right\} \\
& =\frac{1}{2^{n}}\left\{\left[f-B^{n+1} f\right]+\sum_{j=1}^{k}\left[\binom{n}{j}-\binom{n}{j-1}\right]\left(B^{j} f-B^{n-j+1} f\right)\right\} .
\end{aligned}
$$

Let $r=\sup \left\{\left\|B^{i} f-B^{j} f\right\|: i, j \geq 0\right\}$. Since $\binom{n}{j}-\binom{n}{j-1}>0$ for $1 \leq j \leq k$, we obtain by Stirling's formula $\left(\frac{\sqrt{n}(2 n)!}{\left(2^{n} n!\right)^{2}} \approx \frac{1}{\sqrt{\pi}}\right.$ as $\left.n \rightarrow \infty\right)$

$$
\begin{aligned}
\left\|S^{n}(I-B) f\right\| & \leq \frac{r}{2^{n}}\left\{1+\sum_{j=1}^{k}\left[\binom{n}{j}-\binom{n}{j-1}\right]\right\} \\
& =\frac{r}{2^{n}}\binom{n}{k} \\
& =\frac{r}{2^{n}} \frac{n!}{(k!)^{2}} \\
& \approx \frac{r}{\sqrt{\pi} \sqrt{k}} \\
& =\frac{\sqrt{2} r}{\sqrt{\pi} \sqrt{n}} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Since Range $(I-B)=L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$, hence $S^{n} \rightarrow 0$ strongly. We now show that $S^{n} \rightarrow 0$ in norm.
From [14], it follow that $\sigma(S) \cap\{z \in \mathbb{C}:|z|=1\} \subseteq\{1\}$. Now Range $(I-B)=L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ if and only if $1 \notin \sigma(B)$, the spectrum of B. This is true if and only if $1 \notin \sigma(S)$. That is, if and only if $\sigma(S) \cap\{z \in \mathbb{C}:|z|=1\}=\emptyset$. Hence $\left\|S^{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Corollary 3.10. If V is a linear power bounded operator from $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ into itself, $V^{n} \rightarrow$ 0 strongly, $V B=B V$ and $S=\left(\frac{V+B}{2}\right)$ then $S^{n} \rightarrow 0$ strongly in $\mathcal{L}\left(L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)\right)$.

Proof. We have already verified that $\|B\|<1$, hence $\left\|B^{n}\right\|<1$ for all $n \geq 1$. Further $S B=B S$. Since Range $(I-B)=L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$, it is sufficient to establish that $\lim _{n \rightarrow \infty}\left\|S^{n}(I-B) f\right\|=$ $\lim _{n \rightarrow \infty}\left\|S^{n} f-B S^{n} f\right\|=0$ for all $f \in L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$. Notice that

$$
\begin{aligned}
\frac{1}{2^{n}} \sum_{j=0}^{n}\binom{n}{j} V^{n-j} B^{j} f & =\left(\frac{V+B}{2}\right)^{n} f \\
& =S^{n} f
\end{aligned}
$$

and

$$
\begin{aligned}
B S^{n} f & =\frac{1}{2^{n}} \sum_{j=0}^{n}\binom{n}{j} V^{n-j} B^{j+1} f \\
& =\frac{1}{2^{n}} \sum_{j=1}^{n+1}\binom{n}{j-1} V^{n-j+1} B^{j} f
\end{aligned}
$$

Hence

$$
\begin{aligned}
S^{n}(I-B) f & =(I-B) S^{n} f \\
& =\frac{1}{2^{n}}\left(V^{n} f-B^{n+1} f\right)+\frac{1}{2^{n}} \sum_{j=1}^{n}\left[\binom{n}{j} V^{n-j}-\binom{n}{j-1} V^{n-j+1}\right] B^{j} f \\
& =\frac{1}{2^{n}}\left(V^{n} f-B^{n+1} f\right)+\frac{1}{2^{n}} \sum_{j=1}^{n}\left[\binom{n}{j}-\binom{n}{j-1}\right] V^{n-j} B^{j} f \\
& +\frac{1}{2^{n}} \sum_{j=1}^{n}\binom{n}{j-1} B^{j}\left(V^{n-j} f-V^{n-j+1} f\right) \\
& =C_{n}+D_{n}+E_{n} .
\end{aligned}
$$

Let $s=\sup \left\{\left\|V^{i} B^{j} f-V^{k} B^{l} f\right\|: i, j, k, l \geq 0\right\}$. Notice that s is finite since V and B are power bounded. It is not difficult to see that $\left\|C_{n}\right\| \leq \frac{s}{2^{n}} \rightarrow 0$ as $n \rightarrow \infty$.

Without loss of generality we may assume that $n=2 k$ is an even integer, the case of an odd integer n being similar. Using again the fact that $\binom{n}{j}=\binom{n}{n-j}$, we have

$$
\begin{aligned}
\sum_{j=1}^{n}\left[\binom{n}{j}\right. & \left.-\binom{n}{j-1}\right] V^{n-j} B^{j} f=\sum_{j=1}^{k}\left[\binom{n}{j}-\binom{n}{j-1}\right] V^{n-j} B^{j} f \\
& +\sum_{j=k+1}^{n}\left[\binom{n}{j}-\binom{n}{j-1}\right] V^{n-j} B^{j} f \\
& =\sum_{j=1}^{k}\left[\binom{n}{j}-\binom{n}{j-1}\right] V^{n-j} B^{j} f \\
& +\sum_{j=1}^{k}\left[\binom{n}{k+j}-\binom{n}{k+j-1}\right] V^{n-k-j} B^{k+j} f \\
& =\sum_{j=1}^{k}\left[\binom{n}{j}-\binom{n}{j-1}\right] V^{n-j} B^{j} f \\
& +\sum_{j=1}^{k}\left[\binom{n}{k-j}-\binom{n}{k-j+1}\right] V^{n-k-j} B^{k+j} f \\
& =\sum_{j=1}^{k}\left[\binom{n}{j}-\binom{n}{j-1}\right] V^{n-j} B^{j} f \\
& +\sum_{j=1}^{k}\left[\binom{n}{j-1}-\binom{n}{j}\right] V^{j-1} B^{n-j+1} f \\
& =\sum_{j=1}^{k}\left[\binom{n}{j}-\binom{n}{j-1}\right]\left(V^{n-j} B^{j} f-V^{j-1} B^{n-j+1} f\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|D_{n}\right\| & \leq \frac{s}{2^{n}} \sum_{j=1}^{k}\left[\binom{n}{j}-\binom{n}{j-1}\right] \\
& \leq \frac{s}{2^{n}}\binom{n}{k} \\
& \approx \frac{s}{\sqrt{\pi k}} \\
& =\frac{\sqrt{2 s}}{\sqrt{\pi n}} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ by Stirling's formula.
To prove that $\left\|E_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
\begin{aligned}
\left\|E_{n}\right\| & \leq \frac{1}{2^{n}} \sum_{j=1}^{n}\binom{n}{j-1}\left\|V^{n-j} f-V^{n-j+1} f\right\| \\
& =\frac{1}{2^{n}} \sum_{j=0}^{n-1}\binom{n}{n-j-1}\left\|V^{j} f-V^{j+1} f\right\| \\
& =\frac{1}{2^{n}} \sum_{j=0}^{n-1}\binom{n}{j+1}\left\|V^{j} f-V^{j+1} f\right\| .
\end{aligned}
$$

Now since $V^{n} \rightarrow 0$ strongly, we obtain $\left\|V^{n} f-V^{n+1} f\right\| \rightarrow 0$ as $n \rightarrow \infty$ and hence for any given $\epsilon>0$, there is an integer $n_{0}>0$ such that $\left\|V^{j} f-V^{j+1} f\right\|<\epsilon$ for all $j \geq n_{0}$. It follows that, for $n>n_{0}$,

$$
\begin{aligned}
\left\|E_{n}\right\| & \leq \frac{1}{2^{n}}\left\{\epsilon \sum_{j=n_{0}}^{n-1}\binom{n}{j+1}+s \sum_{j=0}^{n_{0}-1}\binom{n}{j+1}\right\} \\
& <\epsilon+s \sum_{j=0}^{n_{0}-1} \frac{1}{2^{n}}\binom{n}{j+1} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\binom{n}{j}=0$, hence for every fixed integer $j \geq 0$, we have $\lim _{n \rightarrow \infty}\left\|E_{n}\right\|=0$. Thus $\lim _{n \rightarrow \infty}\left\|S^{n}(I-B) f\right\|=\lim _{n \rightarrow \infty}\left\|S^{n} f-B S^{n} f\right\|=0$ for all $f \in L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$.

Corollary 3.11. If the operator B_{λ} is a convex combination of B and I in $\mathcal{L}\left(L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)\right)$ then $B_{\lambda}^{n} \rightarrow 0$ strongly.

Proof. Let $0<\lambda<1$ and $B_{\lambda}=(1-\lambda) I+\lambda B$. We claim $B_{\lambda}^{n} \rightarrow 0$ strongly in $\mathcal{L}\left(L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)\right)$. First we consider the case $0<\lambda<\frac{1}{2}$. Let $\mu=2 \lambda$ and $B_{\mu}=(1-\mu) I+\mu B$. The operator B_{μ} is a power bounded operator since $\|B\|<1$ implies $\left\|B_{\mu}\right\|=\|(1-\mu) I+\mu B\| \leq(1-\mu)+\mu\|B\|<$ $(1-\mu)+\mu=1$. Proceeding similarly as in Corollary 3.9, we have $B_{\lambda}^{n} \rightarrow 0$ strongly since $B_{\lambda}=(1-\lambda) I+\lambda B=\frac{1}{2}\left(I+B_{\mu}\right)$. For $\lambda=\frac{1}{2}$, the Corollary follows from Corollary 3.9.
Now suppose V is as given in Corollary 3.10 and $0<\lambda<\frac{1}{2}$. Let $\mu=2 \lambda<1$ and $B_{\mu}^{V}=$ $(1-\mu) V+\mu B$ and $S_{\mu}=\frac{V+B_{\mu}^{V}}{2}$. Then by Corollary 3.10 ,

$$
\begin{equation*}
S_{\mu}^{n} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

strongly where $S_{\mu}=\frac{V+B_{\mu}^{V}}{2}=\frac{V+(1-\mu) V+\mu B}{2}=(1-\lambda) V+\lambda B$. Now we prove the rest of the claim in the corollary. Notice that the set of points of the form $\frac{k}{2^{m}}$, where $m \geq 1$ and $k=$ $1,2, \cdots, 2^{m}-1$, is dense in $(0,1)$. Hence we see that for every $\lambda \in(0,1), B_{\lambda}=(1-\lambda) I+\lambda B=$ $(1-\beta) B_{\mu}+\beta B$, where $0<\beta<\frac{1}{2}$ and $\mu=\frac{k}{2^{m}}<\rho$ (but close enough to ρ) for some $1 \leq k \leq 2^{m}-1$ and $m \geq 1$. Since B_{μ} is power bounded and $0<\beta<\frac{1}{2}, B_{\mu}^{n} \rightarrow 0$ strongly and $B_{\mu} B=B B_{\mu}$, it follows from (3.1) that $B_{\lambda}^{n} \rightarrow 0$ strongly in $\mathcal{L}\left(L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)\right)$.

Corollary 3.12. If B is the Berezin transform defined from $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ into itself then (i) $\operatorname{ker}(I-B)=\operatorname{ker}(I-B)^{2}=\{0\}$ and $(i i)$ Range $(I-B)=\operatorname{Range}(I-B)^{2}=L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$.

Proof. (i) The operator $I-B$ is invertible since $\|B\|<1$. Thus $\operatorname{ker}(I-B) \cap \operatorname{Range}(I-B)=$ $\{0\}$. Let $f \in \operatorname{ker}(I-B)^{2}$. Then $g=(I-B) f$ is in the intersection of the spaces $\operatorname{ker}(I-B)$ and Range $(I-B)$ which is trivial. That is, $g=(I-B) f=0$. Thus $f \in \operatorname{ker}(I-B)$. Hence $\operatorname{ker}(I-B)^{2} \subseteq \operatorname{ker}(I-B)$. The other inclusion is always true. (ii) By [16] is enough to prove that Range $(I-B)+\operatorname{ker}(I-B)$ is closed. Now Range $(I-B)=L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ and $\operatorname{ker}(I-B)=\{0\}$. Thus from [16], it follows that Range $(I-B)^{2}$ is closed and $\operatorname{Range}(I-B)=\operatorname{Range}(I-B)^{2}=$ $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$.

Corollary 3.13. Let $U \in \mathcal{L}\left(L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)\right)$ be unitary and B be the Berezin transform defined on $L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$. Then

$$
1-\Phi_{N}\left(\frac{N}{2}\right) \leq\|U-B\| \leq 1+\Phi_{N}\left(\frac{N}{2}\right)
$$

Proof. Let $f \in L^{2}\left(\mathbb{B}_{N}, d \eta^{\prime}\right)$ be such that $\|f\|=1$. Then

$$
\|(U-B) f\|^{2}=\left\langle\left(I+B^{2}-U^{*} B-B U\right) f, f\right\rangle \geq 1+\|B f\|^{2}-2\|B f\|=(1-\|B f\|)^{2} .
$$

But since B is positive,

$$
\inf _{\|f\|=1}\|B f\|=\inf _{\|f\|=1}\langle B f, f\rangle
$$

and by Theorem 3.1,

$$
\sup _{\|f\|=1}\|B f\|=\sup _{\|f\|=1}\langle B f, f\rangle .
$$

Hence

$$
\begin{aligned}
\|(U-B)\| & \geq \sup _{\|f\|=1} \mid 1-\|B f\| \| \\
& =\sup _{\|f\|=1}|1-\langle B f, f\rangle| \\
& =\sup _{\|f\|=1}|\langle(I-B) f, f\rangle| \\
& =\|I-B\| \geq\|I\|-\|B\|=1-\Phi_{N}\left(\frac{N}{2}\right) .
\end{aligned}
$$

This proves the left inequality. Again by Theorem 3.1,

$$
\begin{aligned}
\|(U-B)\| & =\sup _{\|f\|=1}\|U f-B f\| \\
& \leq \sup _{\|f\|=1}(1+\|B f\|) \\
& =\sup _{\|f\|=1}\langle(I+B) f, f\rangle \\
& =\|I+B\| \leq\|I\|+\|B\|=1+\Phi_{N}\left(\frac{N}{2}\right) .
\end{aligned}
$$

Thus we obtain

$$
1-\Phi_{N}\left(\frac{N}{2}\right)=\|U\|-\|B\| \leq\|(U-B)\| \leq\|U\|+\|B\|=1+\Phi_{N}\left(\frac{N}{2}\right)
$$

and the result follows.

Acknowledgments

The author thanks the referees for their careful reading of the manuscript and insightful comments.

References

[1] Ahern, P., Flores, M. and Rudin, W., "An invariant volume-mean-value property", J.Funct. Anal. 111(1993), pp 380-397.
[2] Ahern, P., Bruna, J. and Cascante, C., " H^{p} - theory for generalised M-harmonic functions in the unit ball", Centre De Recerca Mathematica Institute D'estudies, 264 (1994), pp 1-26.
[3] Armigate, D.H. and Goldstein, M., "The volume mean value property of harmonic functions", Journal of complex variables, 13 (1990), pp 185-193.
[4] Berezin, F.A., "Quantization in complex symmetric spaces", Math. USSR Izv, 9 (1975), pp 341-379.
[5] Conway, J.B., "A course in Functional Analysis", Graduate texts in Mathematics, 96, Springer, 1990.
[6] Das, N., " Berezin transform on the L^{2} space with respect to the invariant measure", Communications in Math. Anal. 12(1)(2012), pp 134-144.
[7] Douglas, R.G., "Banach algebra techniques in operator theory", Academic Press, New York, 1972.
[8] Englis, M., "Functions invariant under the Berezin transform", J. Funct. Anal. 121(1994), pp 233-254.
[9] Englis, M., "Toeplitz operators on Bergman-type spaces", Thesis, Praha, 1991.
[10] Halmos, P. R., "A Hilbert space problem book", Graduate Texts in Mathematics, Springer, Berlin-Heidelberg-New York, 1978.
[11] Hayman, W. K., Kennedy, P. B., "Subharmonic functions", vol. 1, Academic Press, 1976.
[12] Hedenmalm, H., Korenblum, B. and Zhu, K. "Theory of Bergman spaces", SpringerVerlag, New York, 2000.
[13] Helgason, S., "Groups and geometric analysis", Academic Press, Orlando, 1984.
[14] Katznelson, Y. and Tzafriri, L.," On power bounded operators", J. Funct. Anal. 68 (1986), pp 313-328.
[15] Krantz, S. G., "Function theory of several complex variables", John Wiley, New York, 1982.
[16] Sharifi, K., "The product of operators with closed range in Hilbert C^{*}-modules", arXiv: 1010.4574v3 [math. OA], 24, (2011).
[17] Suciu, L. and Suciu, N., "Ergodic conditions and spectral properties for Acontractions", Opuscula Mathematica, 28(2)(2008), pp 195-216.
[18] Tricomi, F., "Integral Equations", Wiely-Interscience, New York, 1957.
[19] Rudin, W., "Function theory in the unit ball of \mathbb{C}^{n} ", Springer-Verlag, New York/Berlin, 1980.
[20] Vieira, P.C.M., Malebranche, H. and Kubrusly, C.S., "On uniform stability", Advances in Mathematical Sciences and Applications, 8(1998), pp 95-100.
[21] Zhu, K., "On certain unitary operators and composition operators", Proc. sympos. Pure Math. part 2, 51 (1990), pp 371-385.
[22] Zhu, K., "Operator theory in function spaces", Monographs and textbooks in Pure and applied Mathematics, Marcell Dekker, Inc. 139, New York, 1990.
[23] Zhu, K., "Spaces of holomorphic functions in the unit ball ", Springer-Verlag, New York, 2005.

[^0]: *E-mail address: namitadas440@yahoo.co.in
 †E-mail address: rlal77@gmail.com

