C Commicatains in $\mathbf{M a t i t e m a t a c a l} \mathbf{A}_{\text {nalyss }}$

Some Jensen Type Inequalities for Square-Convex Functions of Selfadjoint Operators in Hilbert Spaces

S.S. Dragomir ${ }^{1,2 *}$
${ }^{1}$ Mathematics, School of Engineering \& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001, Australia.
${ }^{2}$ School of Computational \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa.

(Communicated by Hitoshi Kitada)

Abstract

Some Jensen type inequalities for square-convex functions of selfadjoint operators in Hilbert spaces under suitable assumptions for the involved operators are given. Applications for particular cases of interest are also provided.

AMS Subject Classification:47A63; 47A99
Keywords: Selfadjoint operators, Positive operators, Jensen's inequality, Convex functions, Functions of selfadjoint operators.

1 Introduction

Let A be a selfadjoint linear operator on a complex Hilbert space ($H ;\langle.,\rangle$.$) . The Gelfand map$ establishes a $*$-isometrically isomorphism Φ between the set $C(S p(A))$ of all continuous functions defined on the spectrum of A, denoted $S p(A)$, an the C^{*}-algebra $C^{*}(A)$ generated by A and the identity operator 1_{H} on H as follows (see for instance [14, p. 3]):

For any $f, g \in C(S p(A))$ and any $\alpha, \beta \in \mathbb{C}$ we have
(i) $\Phi(\alpha f+\beta g)=\alpha \Phi(f)+\beta \Phi(g)$;
(ii) $\Phi(f g)=\Phi(f) \Phi(g)$ and $\Phi(\bar{f})=\Phi(f)^{*}$;
(iii) $\|\Phi(f)\|=\|f\|:=\sup _{t \in S p(A)}|f(t)|$;
(iv) $\Phi\left(f_{0}\right)=1_{H}$ and $\Phi\left(f_{1}\right)=A$, where $f_{0}(t)=1$ and $f_{1}(t)=t$, for $t \in S p(A)$.

[^0]With this notation we define

$$
f(A):=\Phi(f) \text { for all } f \in C(S p(A))
$$

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on $S p(A)$, then $f(t) \geq 0$ for any $t \in S p(A)$ implies that $f(A) \geq 0$, i.e. $f(A)$ is a positive operator on H. Moreover, if both f and g are real valued functions on $S p(A)$ then the following important property holds:

$$
\begin{equation*}
f(t) \geq g(t) \text { for any } t \in S p(A) \text { implies that } f(A) \geq g(A) \tag{P}
\end{equation*}
$$

in the operator order of $B(H)$.
For a recent monograph devoted to various inequalities for functions of selfadjoint operators, see [14] and the references therein. For other results, see [20], [21], [16] and [18].

Let U be a selfadjoint operator on the complex Hilbert space $(H,\langle.,\rangle$.$) with the spectrum$ $S p(U)$ included in the interval $[m, M]$ for some real numbers $m<M$ and let $\left\{E_{\lambda}\right\}_{\lambda}$ be its spectral family. Then for any continuous function $f:[m, M] \rightarrow \mathbb{R}$, it is well known that we have the following spectral representation in terms of the Riemann-Stieltjes integral:

$$
\begin{equation*}
\langle f(U) x, y\rangle=\int_{m-0}^{M} f(\lambda) d\left(\left\langle E_{\lambda} x, y\right\rangle\right), \tag{1.1}
\end{equation*}
$$

for any $x, y \in H$. The function $g_{x, y}(\lambda):=\left\langle E_{\lambda} x, y\right\rangle$ is of bounded variation on the interval [m, M] and

$$
g_{x, y}(m-0)=0 \text { and } g_{x, y}(M)=\langle x, y\rangle
$$

for any $x, y \in H$. It is also well known that $g_{x}(\lambda):=\left\langle E_{\lambda} x, x\right\rangle$ is monotonic nondecreasing and right continuous on $[m, M]$.

The following result that provides an operator version for the Jensen inequality is due to Mond \& Pečarić [19] (see also [14, p. 5]):
Theorem 1.1 (Mond- Pečarić, 1993, [19]). Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If h is a convex function on $[m, M]$, then

$$
\begin{equation*}
h(\langle A x, x\rangle) \leq\langle h(A) x, x\rangle \tag{MP}
\end{equation*}
$$

for each $x \in H$ with $\|x\|=1$.
As a special case of Theorem 1.1 we have the following Hölder-McCarthy inequality:
Theorem 1.2 (Hölder-McCarthy, 1967, [17]). Let A be a selfadjoint positive operator on a Hilbert space H. Then for all $x \in H$ with $\|x\|=1$,
(i) $\left\langle A^{r} x, x\right\rangle \geq\langle A x, x\rangle^{r}$ for all $\left.r\right\rangle 1$;
(ii) $\left\langle A^{r} x, x\right\rangle \leq\langle A x, x\rangle^{r}$ for all $0<r<1$;
(iii) If A is invertible, then $\left\langle A^{r} x, x\right\rangle \geq\langle A x, x\rangle^{r}$ for all $r<0$.

For recent results concerning the vectorial Jensen inequality for continuous convex functions of selfadjoint operators (MP) see [5]-[11].

In this paper we introduce the concept of square-convex functions that can be naturally extended to complex-valued functions. We establish here the corresponding Jensen type inequality, provide some simple examples and obtain a number of reverse inequalities of interest.

2 Jensen's Inequality for Square-convex Functions

We introduce the following class of complex valued functions:
Definition 2.1. A function $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{C}$ is called square-convex on $[a, b]$ if the associated function $\varphi:[a, b] \rightarrow[0, \infty), \varphi(t)=|f(t)|^{2}$ is convex on $[a, b]$.

A simple example of such a function is the concave power function $f:[a, b] \subset[0, \infty) \rightarrow$ $[0, \infty), f(t)=t^{r}$ with $r \in\left[\frac{1}{2}, 1\right]$. Also, if $h:[a, b] \rightarrow[0, \infty)$ is convex then the complex valued function $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{C}$ given by $f(t)=h^{1 / 2}(t) e^{i t}$ is square-convex on $[a, b]$.

The following version of Jensen inequality holds:
Theorem 2.2. Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If $f:[m, M] \subset \mathbb{R} \rightarrow \mathbb{C}$ is a continuous square-convex function on $[m, M]$, then for any $x \in H$ with $\|x\|=1$ we have the inequality

$$
\begin{equation*}
|f(\langle A x, x\rangle)| \leq\|f(A) x\| . \tag{2.1}
\end{equation*}
$$

Proof. We give here two proofs. The first is using the Mond-Pečarić result (MP) and the continuous functional calculus. The second is using the spectral representation (1.1) and the Jensen inequality for the Riemann-Stieltjes integral with monotonic nondecreasing integrators.

1. Writing the (MP) inequality for $h=|f|^{2}$ we have

$$
\begin{equation*}
\left.|f(\langle A x, x\rangle)|^{2} \leq\left.\langle | f\right|^{2}(A) x, x\right\rangle \tag{2.2}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
However by the continuous functional calculus we have

$$
\begin{align*}
\left.\left.\langle | f\right|^{2}(A) x, x\right\rangle & =\langle\bar{f}(A) f(A) x, x\rangle=\left\langle(f(A))^{*} f(A) x, x\right\rangle \tag{2.3}\\
& =\langle f(A) x, f(A) x\rangle=\|f(A) x\|^{2}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Therefore (2.2) becomes $|f(\langle A x, x\rangle)|^{2} \leq\|f(A) x\|^{2}$ which is equivalent with (2.1).
2. If $\left\{E_{t}\right\}_{t}$ is the spectral family of the operator A, then by the spectral representation (1.1) we have (see for instance [15, p. 257])

$$
\begin{equation*}
\|f(A) x\|^{2}=\int_{m-0}^{M}|f(t)|^{2} d\left\|E_{t} x\right\|^{2}=\int_{m-0}^{M}|f(t)|^{2} d\left(\left\langle E_{t} x, x\right\rangle\right) \tag{2.4}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
The following inequality is the well known Jensen's inequality for the Riemann-Stieltjes integral with monotonic nondecreasing integrators $u:[a, b] \rightarrow \mathbb{R}$

$$
\begin{equation*}
\frac{1}{u(b)-u(a)} \int_{a}^{b} \Phi(t) d u(t) \geq \Phi\left(\frac{1}{u(b)-u(a)} \int_{a}^{b} t d u(t)\right), \tag{2.5}
\end{equation*}
$$

provided that Φ is continuous convex on $[a, b]$.

Applying the inequality (2.5) for the functions $\Phi=|f|^{2}$ and $u=\left\langle E_{(\cdot)} x, x\right\rangle$ for a fixed $x \in H$ with $\|x\|=1$, we have

$$
\int_{m-0}^{M}|f(t)|^{2} d\left(\left\langle E_{t} x, x\right\rangle\right) \geq\left|f\left(\int_{m-0}^{M} t d\left(\left\langle E_{t} x, x\right\rangle\right)\right)\right|^{2}
$$

which gives the inequality $|f(\langle A x, x\rangle)|^{2} \leq\|f(A) x\|^{2}$ for any $x \in H$ with $\|x\|=1$.
It is known that for any positive operator B we have the inequality $\left\langle B^{2} x, x\right\rangle \geq\langle B x, x\rangle^{2}$ for any $x \in H$ with $\|x\|=1$. Utilising this inequality we have then

$$
\left.\|f(A) x\|^{2}=\left.\langle | f(A)\right|^{2} x, x\right\rangle \geq\langle | f(A)|x, x\rangle^{2}
$$

which gives that

$$
\begin{equation*}
\|f(A) x\| \geq\langle | f(A)|x, x\rangle \tag{2.6}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$, where A is a selfadjoint operator on the Hilbert space H with $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$ and $f:[m, M] \subset \mathbb{R} \rightarrow \mathbb{C}$ is a continuous function on $[m, M]$.

We can provide the following refinement of (2.6):
Corollary 2.3. Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If $f:[m, M] \subset \mathbb{R} \rightarrow \mathbb{C}$ is a continuous square-convex function on $[m, M]$ and f is concave in absolute value, i.e. $|f|$ is concave, then for any $x \in H$ with $\|x\|=1$ we have the inequality

$$
\begin{equation*}
\|f(A) x\| \geq|f(\langle A x, x\rangle)| \geq\langle | f(A)|x, x\rangle \tag{2.7}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
The proof is obvious since the second inequality in (2.7) follows by (MP) applied for the concave function $h=|f|$.
Remark 2.4. We notice that the function $f(t)=t^{r}$ with $r \in\left[\frac{1}{2}, 1\right]$ is concave and squareconvex on $[0, \infty)$. Therefore, for any positive operator we have the inequalities

$$
\begin{equation*}
\left\|A^{r} x\right\| \geq\langle A x, x\rangle^{r} \geq\left\langle A^{r} x, x\right\rangle \tag{2.8}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$ and $r \in\left[\frac{1}{2}, 1\right]$.
Consider the function $f(t)=\ln (t+1)$. We observe that it is concave and positive on $(0, \infty)$ and if define $\varphi(t)=[\ln (t+1)]^{2}$, then we have that

$$
\varphi^{\prime \prime}(t)=\frac{2}{(t+1)^{2}}[1-\ln (t+1)], t>-1
$$

showing that f is square-convex on the interval [$0, e-1$]. Therefore, for any selfadjoint operator A with $S p(A) \subseteq[0, e-1]$ we have the inequality

$$
\begin{equation*}
\left\|\ln \left(A+1_{H}\right) x\right\| \geq \ln (\langle A x, x\rangle+1) \geq\left\langle\ln \left(A+1_{H}\right) x, x\right\rangle \tag{2.9}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
Another example for trigonometric functions is for instance $f(t)=\cos t, t \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$. The function $\varphi(t)=\cos ^{2} t$ has the second derivative $\varphi^{\prime \prime}(t)=-2 \cos (2 t)$ which is positive for $t \in$ $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$. Therefore, for any selfadjoint operator A with $S p(A) \subseteq\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ we have the inequality

$$
\begin{equation*}
\|\cos A x\| \geq|\cos \langle A x, x\rangle| \geq\langle\cos A x, x\rangle \tag{2.10}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
The following reverse of Jensen's inequality holds:

Theorem 2.5. With the assumptions of Theorem 2.2 we have

$$
\begin{align*}
& \|f(A) x\| \leq\left\langle\frac{\left(M 1_{H}-A\right)|f(m)|^{2}+\left(A-m 1_{H}\right)|f(M)|^{2}}{M-m} x, x\right\rangle^{1 / 2} \tag{2.11}\\
& \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\langle | \frac{A-\frac{m+M}{2} 1_{H}}{M-m}|x, x\rangle\right]^{1 / 2}\left[|f(m)|^{2}+|f(M)|^{2}\right]^{1 / 2} ;} \\
\left\langle\left[\left(\frac{M 1_{H}-A}{M-m}\right)^{q}+\left(\frac{A-m 1_{H}}{M-m}\right)^{q}\right]^{1 / q} x, x\right\rangle^{1 / 2} \\
\times\left[|f(m)|^{2 p}+|f(M)|^{2 p}\right]^{\frac{1}{2 p}}, p>1,1 / p+1 / q=1 ; \\
\max \{|f(m)|,|f(M)|\} ;
\end{array}\right.
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Proof. Utilising the convexity of the function $|f|^{2}$ we have

$$
\begin{align*}
|f(t)|^{2} & =\left|f\left(\frac{(M-t) m+(t-m) M}{M-m}\right)\right|^{2} \tag{2.12}\\
& \leq \frac{(M-t)|f(m)|^{2}+(t-m)|f(M)|^{2}}{M-m} \\
& \leq \frac{1}{M-m}\left\{\begin{array}{l}
{\left[\frac{M-m}{2}+\left|t-\frac{m+M}{2}\right|\right]\left[|f(m)|^{2}+|f(M)|^{2}\right]} \\
{\left[(M-t)^{q}+(t-m)^{q}\right]^{1 / q}} \\
\times\left[|f(m)|^{2 p}+|f(M)|^{2 p}\right]^{1 / p}, p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\max \left\{|f(m)|^{2},|f(M)|^{2}\right\}(M-m)
\end{array}\right.
\end{align*}
$$

for any $t \in[m, M]$. For the last inequality we used the Hölder inequality for two positive numbers.

Applying the property (P) to the inequality (2.12) we have

$$
\begin{align*}
& \left.\left.\langle | f(A)\right|^{2} x, x\right\rangle \tag{2.13}\\
& \leq\left\langle\frac{|f(m)|^{2}\left(M 1_{H}-A\right)+|f(M)|^{2}\left(A-m 1_{H}\right)}{M-m} x, x\right\rangle \\
& \leq\left\{\begin{array}{l}
{\left[\frac{1}{2}+\langle | \frac{A-\frac{m+M}{2} 1_{H}}{M-m}|x, x\rangle\right]\left[|f(m)|^{2}+|f(M)|^{2}\right]} \\
\left\langle\left[\left(\frac{M 1_{H}-A}{M-m}\right)^{q}+\left(\frac{A-m 1_{H}}{M-m}\right)^{q}\right]^{1 / q} x, x\right\rangle \\
\times\left[|f(m)|^{2 p}+|f(M)|^{2 p}\right]^{1 / p}, p>1, \frac{1}{p}+\frac{1}{q}=1 \\
\max \left\{|f(m)|^{2},|f(M)|^{2}\right\}
\end{array}\right.
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Since $\left.\left.\langle | f(A)\right|^{2} x, x\right\rangle=\|f(A) x\|$, then by taking the square root in (2.13) we deduce the desired result (2.11).

Remark 2.6. If we consider a selfadjoint operator A with $S p(A) \subseteq[0, e-1]$, then by (2.11) we get

$$
\left\|\ln \left(A+1_{H}\right) x\right\| \leq \frac{1}{\sqrt{e-1}}\langle A x, x\rangle^{1 / 2}
$$

for any $x \in H$ with $\|x\|=1$. In particular, for any selfadjoint operator P with $0 \leq P \leq 1_{H}$ we have from (2.11) that

$$
\left\|\ln \left(P+1_{H}\right) x\right\| \leq\langle P x, x\rangle^{1 / 2} \ln 2
$$

for any $x \in H$ with $\|x\|=1$.

3 General Reverses

In this section some upper bounds for the positive quantity

$$
0 \leq\|f(A) x\|^{2}-|f(\langle A x, x\rangle)|^{2}
$$

for $x \in H$ with $\|x\|=1$, where $f:[m, M] \subset \mathbb{R} \rightarrow \mathbb{C}$ is a continuous square-convex function on $[m, M]$ and A is a selfadjoint operator on the Hilbert space H with $S p(A) \subseteq[m, M]$ are obtained.

Theorem 3.1. Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If $f:[m, M] \subset \mathbb{R} \rightarrow \mathbb{C}$ is a continuous
square-convex function on $[m, M]$, then for any $x \in H$ with $\|x\|=1$ we have the inequality

$$
\begin{align*}
0 & \leq\|f(A) x\|^{2}-|f(\langle A x, x\rangle)|^{2} \tag{3.1}\\
& \leq 2 \max \left\{\frac{M-\langle A x, x\rangle}{M-m}, \frac{\langle A x, x\rangle-m}{M-m}\right\} \\
& \times\left[\frac{|f(m)|^{2}+|f(M)|^{2}}{2}-\left|f\left(\frac{M+m}{2}\right)\right|^{2}\right] \\
& \leq 2\left[\frac{|f(m)|^{2}+|f(M)|^{2}}{2}-\left|f\left(\frac{M+m}{2}\right)\right|^{2}\right] .
\end{align*}
$$

Proof. First of all, we recall the following result obtained by the author in [12] that provides a refinement and a reverse for the weighted Jensen's discrete inequality:

$$
\begin{align*}
& n \min _{i \in\{1, \ldots, n\}}\left\{p_{i}\right\}\left[\frac{1}{n} \sum_{i=1}^{n} \Phi\left(x_{i}\right)-\Phi\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)\right] \tag{3.2}\\
& \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} \Phi\left(x_{i}\right)-\Phi\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \\
& \leq n \max _{i \in\{1, \ldots, n\}}\left\{p_{i}\right\}\left[\frac{1}{n} \sum_{i=1}^{n} \Phi\left(x_{i}\right)-\Phi\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)\right],
\end{align*}
$$

where $\Phi: C \rightarrow \mathbb{R}$ is a convex function defined on the convex subset C of the linear space X, $\left\{x_{i}\right\}_{i \in\{1, \ldots, n\}}$ are vectors and $\left\{p_{i}\right\}_{i \in\{1, \ldots, n\}}$ are nonnegative numbers with $P_{n}:=\sum_{i=1}^{n} p_{i}>0$.

For $n=2$ we deduce from (3.2) that

$$
\begin{align*}
& 2 \min \{t, 1-t\}\left[\frac{\Phi(x)+\Phi(y)}{2}-\Phi\left(\frac{x+y}{2}\right)\right] \tag{3.3}\\
& \leq t \Phi(x)+(1-t) \Phi(y)-\Phi(t x+(1-t) y) \\
& \leq 2 \max \{t, 1-t\}\left[\frac{\Phi(x)+\Phi(y)}{2}-\Phi\left(\frac{x+y}{2}\right)\right]
\end{align*}
$$

for any $x, y \in C$ and $t \in[0,1]$.
Since $|f|^{2}$ is convex, then we have

$$
\begin{align*}
& |f(t)|^{2}-|f(\langle A x, x\rangle)|^{2} \tag{3.4}\\
& =\left|f\left(\frac{(M-t) m+(t-m) M}{M-m}\right)\right|^{2}-|f(\langle A x, x\rangle)|^{2} \\
& \leq \frac{(M-t)|f(m)|^{2}+(t-m)|f(M)|^{2}}{M-m} \\
& -\left|f\left(\frac{(M-\langle A x, x\rangle) m+(\langle A x, x\rangle-m) M}{M-m}\right)\right|^{2}
\end{align*}
$$

for any $t \in[m, M]$ and any $x \in H$ with $\|x\|=1$.

Fix $x \in H$ with $\|x\|=1$ and apply the inequality (P) to get in the operator order the following inequality

$$
\begin{align*}
& |f(A)|^{2}-|f(\langle A x, x\rangle)|^{2} 1_{H} \tag{3.5}\\
& \leq \frac{|f(m)|^{2}\left(M 1_{H}-A\right)+|f(M)|^{2}\left(A-m 1_{H}\right)}{M-m} \\
& -\left|f\left(\frac{(M-\langle A x, x\rangle) m+(\langle A x, x\rangle-m) M}{M-m}\right)\right|^{2} 1_{H} .
\end{align*}
$$

We notice that (3.5) implies the following vectorial inequality

$$
\begin{align*}
& \left.\left.\langle | f(A)\right|^{2} x, x\right\rangle-|f(\langle A x, x\rangle)|^{2} \tag{3.6}\\
& \leq \frac{|f(m)|^{2}(M-\langle A x, x\rangle)+|f(M)|^{2}\left(\langle A x, x\rangle-m 1_{H}\right)}{M-m} \\
& -\left|f\left(\frac{(M-\langle A x, x\rangle) m+(\langle A x, x\rangle-m) M}{M-m}\right)\right|^{2}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$. This inequality is also of interest in itself.
Now, on applying the second inequality in (3.3) we have

$$
\begin{aligned}
& \frac{|f(m)|^{2}(M-\langle A x, x\rangle)+|f(M)|^{2}\left(\langle A x, x\rangle-m 1_{H}\right)}{M-m} \\
& -\left|f\left(\frac{(M-\langle A x, x\rangle) m+(\langle A x, x\rangle-m) M}{M-m}\right)\right|^{2} \\
& \leq 2 \max \left\{\frac{M-\langle A x, x\rangle}{M-m}, \frac{\langle A x, x\rangle-m}{M-m}\right\} \\
& \times\left[\frac{|f(m)|^{2}+|f(M)|^{2}}{2}-\left|f\left(\frac{M+m}{2}\right)\right|\right]
\end{aligned}
$$

for any $x \in H$ with $\|x\|=1$.
The last part is obvious since

$$
\frac{M-\langle A x, x\rangle}{M-m}, \frac{\langle A x, x\rangle-m}{M-m} \leq 1
$$

for any $x \in H$ with $\|x\|=1$.
Remark 3.2. Utilising the elementary inequality $0 \leq \sqrt{a}-\sqrt{b} \leq \sqrt{a-b}$ provided $0 \leq b \leq a$ we get from (3.1) the simpler, however the coarser inequality

$$
\begin{align*}
0 & \leq\|f(A) x\|-|f(\langle A x, x\rangle)| \tag{3.7}\\
& \leq \sqrt{2} \max \left\{\left(\frac{M-\langle A x, x\rangle}{M-m}\right)^{1 / 2},\left(\frac{\langle A x, x\rangle-m}{M-m}\right)^{1 / 2}\right\} \\
& \times\left[\frac{|f(m)|^{2}+|f(M)|^{2}}{2}-\left|f\left(\frac{M+m}{2}\right)\right|^{2}\right]^{1 / 2} \\
& \leq \sqrt{2}\left[\frac{|f(m)|^{2}+|f(M)|^{2}}{2}-\left|f\left(\frac{M+m}{2}\right)\right|^{2}\right]^{1 / 2},
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Example 3.3. If we apply the inequality (3.1) for the square-convex function $f(t)=t^{r}$ with $r \in\left[\frac{1}{2}, 1\right]$ on $[m, M]$ with $0 \leq m \leq M$, then we get:

$$
\begin{align*}
0 & \leq\left\|A^{r} x\right\|^{2}-\langle A x, x\rangle^{2 r} \tag{3.8}\\
& \leq 2 \max \left\{\frac{M-\langle A x, x\rangle}{M-m}, \frac{\langle A x, x\rangle-m}{M-m}\right\} \\
& \times\left[\frac{m^{2 r}+M^{2 r}}{2}-\left(\frac{M+m}{2}\right)^{2 r}\right] \\
& \leq 2\left[\frac{m^{2 r}+M^{2 r}}{2}-\left(\frac{M+m}{2}\right)^{2 r}\right],
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Theorem 3.4. With the assumptions of Theorem 3.1 we have for any $x \in H$ with $\|x\|=1$ that

$$
\begin{align*}
0 & \leq\|f(A) x\|^{2}-|f(\langle A x, x\rangle)|^{2} \tag{3.9}\\
& \leq\left\{\begin{array}{l}
\frac{(M-\langle A x, x\rangle)((\langle A x, x\rangle-m)}{M-m} \sup _{t \in(m, M)} \Phi_{f}(t ; m, M) \\
\frac{1}{4}(M-m) \Phi_{f}(\langle A x, x\rangle ; m, M),\langle A x, x\rangle \neq m, M,
\end{array}\right.
\end{align*}
$$

where

$$
\begin{equation*}
\Phi_{f}(t ; m, M)=\frac{|f(M)|^{2}-|f(t)|^{2}}{M-t}-\frac{|f(t)|^{2}-|f(m)|^{2}}{t-m} . \tag{3.10}
\end{equation*}
$$

Proof. By denoting

$$
\Lambda_{f}(t ; m, M):=\frac{(t-m)|f(M)|^{2}+(M-t)|f(m)|^{2}}{M-m}-|f(t)|^{2}, \quad t \in[m, M]
$$

we have

$$
\begin{align*}
& \Lambda_{f}(t ; m, M) \tag{3.11}\\
& =\frac{(t-m)|f(M)|^{2}+(M-t)|f(m)|^{2}-(M-m)|f(t)|^{2}}{M-m} \\
& =\frac{(t-m)|f(M)|^{2}+(M-t)|f(m)|^{2}-(M-t+t-m)|f(t)|^{2}}{M-m} \\
& =\frac{(t-m)\left[|f(M)|^{2}-|f(t)|^{2}\right]-(M-t)\left[|f(t)|^{2}-|f(m)|^{2}\right]}{M-m} \\
& =\frac{(M-t)(t-m)}{M-m} \Phi_{f}(t ; m, M)
\end{align*}
$$

for any $t \in(m, M)$.
Since

$$
\begin{align*}
& \frac{|f(m)|^{2}(M-\langle A x, x\rangle)+|f(M)|^{2}\left(\langle A x, x\rangle-m 1_{H}\right)}{M-m} \tag{3.12}\\
& -\left|f\left(\frac{(M-\langle A x, x\rangle) m+(\langle A x, x\rangle-m) M}{M-m}\right)\right|^{2} \\
& =\Lambda_{f}(\langle A x, x\rangle ; m, M)
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$, then by (3.6) and (3.11) we have the following inequality

$$
\begin{align*}
0 & \leq\|f(A) x\|^{2}-|f(\langle A x, x\rangle)|^{2} \tag{3.13}\\
& \leq \frac{(M-\langle A x, x\rangle)(\langle A x, x\rangle-m)}{M-m} \Phi_{f}(\langle A x, x\rangle ; m, M) \\
& \leq\left\{\begin{array}{l}
\frac{(M-\langle A x, x\rangle)(\langle A x, x\rangle-m)}{M-m} \sup _{t \in(m, M)} \Phi_{f}(t ; m, M) \\
\frac{1}{4}(M-m) \Phi_{f}(\langle A x, x\rangle ; m, M) .
\end{array}\right.
\end{align*}
$$

The first branch holds for any $x \in H$ with $\|x\|=1$. The second branch holds if $\langle A x, x\rangle \neq m, M$, $x \in H$ with $\|x\|=1$.

Example 3.5. If we apply the second inequality from (3.9) for the square-convex function $f(t)=t^{r}$ with $r \in\left[\frac{1}{2}, 1\right]$ on $[m, M]$ with $0 \leq m \leq M$, then for any selfadjoint operator A with $S p(A) \subseteq[m, M]$ we get:

$$
\begin{align*}
0 & \leq\left\|A^{r} x\right\|^{2}-\langle A x, x\rangle^{2 r} \tag{3.14}\\
& \leq \frac{1}{4}(M-m)\left[\frac{M^{2 r}-\langle A x, x\rangle^{2 r}}{M-\langle A x, x\rangle}-\frac{\langle A x, x\rangle^{2 r}-m^{2 r}}{\langle A x, x\rangle-m}\right]
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$ and $\langle A x, x\rangle \neq m, M$.

4 More Reverses for Differentiable Functions

In order to prove another reverse of the Jensen's inequality, we need the following Grüss type result obtained in [3]. For the sake of completeness, we give here a simple proof.

Lemma 4.1. Let A be a selfadjoint operator with $S p(A) \subseteq[m, M]$ for some real numbers $m<M$. If $h, g:[m, M] \longrightarrow \mathbb{R}$ are continuous with $\delta:=\min _{t \in[m, M]} g(t)$ and $\Delta:=\max _{t \in[m, M]} g(t)$, then

$$
\begin{align*}
& |\langle h(A) g(A) x, x\rangle-\langle h(A) x, x\rangle\langle g(A) x, x\rangle| \tag{4.1}\\
& \leq \frac{1}{2}(\Delta-\delta)\langle | h(A)-\langle h(A) x, x\rangle \cdot 1_{H}|x, x\rangle \\
& \leq \frac{1}{2}(\Delta-\delta)\left[\|h(A) x\|^{2}-\langle h(A) x, x\rangle^{2}\right]^{1 / 2}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Proof. Since $\delta:=\min _{t \in[m, M]} g(t)$ and $\Delta:=\max _{t \in[m, M]} g(t)$, we have

$$
\begin{equation*}
\left|g(t)-\frac{\Delta+\delta}{2}\right| \leq \frac{1}{2}(\Delta-\delta), \tag{4.2}
\end{equation*}
$$

for any $t \in[m, M]$ and for any $x \in H$ with $\|x\|=1$.
If we multiply the inequality (4.2) with $|h(t)-\langle h(A) x, x\rangle|$ we get

$$
\begin{align*}
& \left|h(t) g(t)-\langle h(A) x, x\rangle g(t)-\frac{\Delta+\delta}{2} h(t)+\frac{\Delta+\delta}{2}\langle h(A) x, x\rangle\right| \tag{4.3}\\
& \leq \frac{1}{2}(\Delta-\delta)|h(t)-\langle h(A) x, x\rangle|,
\end{align*}
$$

for any $t \in[m, M]$ and for any $x \in H$ with $\|x\|=1$.
Now, if we apply the property (P) for the inequality (4.3) and a selfadjoint operator B with $S p(B) \subset[m, M]$, then we get the following inequality of interest in itself:

$$
\begin{align*}
& \mid\langle h(B) g(B) y, y\rangle-\langle h(A) x, x\rangle\langle g(B) y, y\rangle \tag{4.4}\\
& \left.-\frac{\Delta+\delta}{2}\langle h(B) y, y\rangle+\frac{\Delta+\delta}{2}\langle h(A) x, x\rangle \right\rvert\, \\
& \leq \frac{1}{2}(\Delta-\delta)\langle | h(B)-\langle h(A) x, x\rangle \cdot 1_{H}|y, y\rangle
\end{align*}
$$

for any $x, y \in H$ with $\|x\|=\|y\|=1$.
If we choose in (4.4) $y=x$ and $B=A$, then we deduce the first inequality in (4.1).
Now, by the Schwarz inequality in H we have

$$
\begin{aligned}
\langle | h(A)-\langle h(A) x, x\rangle \cdot 1_{H}|x, x\rangle & \leq\left\|h(A)-\langle h(A) x, x\rangle \cdot 1_{H} \mid x\right\| \\
& =\|h(A) x-\langle h(A) x, x\rangle \cdot x\| \\
& =\left[\|h(A) x\|^{2}-\langle h(A) x, x\rangle^{2}\right]^{1 / 2}
\end{aligned}
$$

for any $x \in H$ with $\|x\|=1$, and the second part of (4.1) is also proved.
For other related results see [1] and [2].
Before we state the next result, we say that the function $f: I \rightarrow \mathbb{C}$ is square differentiable on I if the function $|f|^{2}$ is differentiable on I. It is clear that, if f is differentiable on I then it is square differentiable on I and

$$
\begin{aligned}
\frac{d\left(|f|^{2}\right)}{d t} & =2 \operatorname{Re}\left(\bar{f} \cdot \frac{d f}{d t}\right)=2 \operatorname{Re}\left(f \cdot \frac{d \bar{f}}{d t}\right) \\
& =2\left[\operatorname{Re}(f) \operatorname{Re}\left(\frac{d f}{d t}\right)+\operatorname{Im}(f) \operatorname{Im}\left(\frac{d f}{d t}\right)\right]
\end{aligned}
$$

For a real function $g:[m, M] \rightarrow \mathbb{R}$ and two distinct points $\alpha, \beta \in[m, M]$ we recall that the divided difference of g in these points is defined by

$$
[\alpha, \beta ; g]:=\frac{g(\beta)-g(\alpha)}{\beta-\alpha}
$$

With these preparations we can state and prove another reverse of the Jensen inequality.
Theorem 4.2. Let I be an interval and $f: I \rightarrow \mathbb{C}$ be a square-convex, square differentiable function on I (the interior of I). If A is a selfadjoint operator on the Hilbert space H with $S p(A) \subseteq[m, M] \subset I$, then

$$
\begin{align*}
0 & \leq\|f(A) x\|^{2}-|f(\langle A x, x\rangle)|^{2} \tag{4.5}\\
& \leq \frac{1}{2}\left(\left[\langle A x, x\rangle, M,|f|^{2}\right]-\left[m,\langle A x, x\rangle,|f|^{2}\right]\right)\langle | A-\langle A x, x\rangle \cdot 1_{H}|x, x\rangle \\
& \leq \frac{1}{2}\left(\left[\langle A x, x\rangle, M,|f|^{2}\right]-\left[m,\langle A x, x\rangle,|f|^{2}\right]\right)\left[\|A x\|^{2}-\langle A x, x\rangle^{2}\right]^{1 / 2} \\
& \leq \frac{1}{4}(M-m)\left(\left[\langle A x, x\rangle, M,|f|^{2}\right]-\left[m,\langle A x, x\rangle,|f|^{2}\right]\right)
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$ and $\langle A x, x\rangle \neq m, M$.
We also have

$$
\begin{align*}
0 & \leq\|f(A) x\|^{2}-|f(\langle A x, x\rangle)|^{2} \tag{4.6}\\
& \leq \frac{1}{2}\left(\left[\langle A x, x\rangle, M,|f|^{2}\right]-\left[m,\langle A x, x\rangle,|f|^{2}\right]\right)\langle | A-\langle A x, x\rangle \cdot 1_{H}|x, x\rangle \\
& \leq \frac{1}{2}\left(\frac{d\left(|f|^{2}\right)(M)}{d t}-\frac{d\left(|f|^{2}\right)(m)}{d t}\right)\langle | A-\langle A x, x\rangle \cdot 1_{H}|x, x\rangle \\
& \leq \frac{1}{2}\left(\frac{d\left(|f|^{2}\right)(M)}{d t}-\frac{d\left(|f|^{2}\right)(m)}{d t}\right)\left[\|A x\|^{2}-\langle A x, x\rangle^{2}\right]^{1 / 2} \\
& \leq \frac{1}{4}(M-m)\left(\frac{d\left(|f|^{2}\right)(M)}{d t}-\frac{d\left(|f|^{2}\right)(m)}{d t}\right)
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$ and $\langle A x, x\rangle \neq m, M$.
Proof. Let $x \in H$ with $\|x\|=1$ and define the function $\delta_{x}:[m, M] \rightarrow \mathbb{R}$ by

$$
\delta_{x}(t):=\left\{\begin{array}{cc}
\frac{|f|^{2}(t)-|f|^{2}(\langle A x, x\rangle)}{t-\langle A x, x\rangle} & t \neq\langle A x, x\rangle \\
\frac{d\left(|f|^{2}\right)(\langle A x, x\rangle)}{d t} & t=\langle A x, x\rangle
\end{array}\right.
$$

Since the function f is a square-convex, square differentiable function on I, then the function is continuous and monotonic on $[m, M]$.

Therefore we have that

$$
\begin{align*}
\frac{d\left(|f|^{2}\right)(m)}{d t} & \leq \frac{|f|^{2}(m)-|f|^{2}(\langle A x, x\rangle)}{m-\langle A x, x\rangle} \leq \delta_{x}(t) \tag{4.7}\\
& \leq \frac{|f|^{2}(M)-|f|^{2}(\langle A x, x\rangle)}{M-\langle A x, x\rangle} \leq \frac{d\left(|f|^{2}\right)(M)}{d t}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$ and $\langle A x, x\rangle \neq m, M$.
Applying the Grüss type result (4.1) for the functions $h_{x}(t)=t-\langle A x, x\rangle$ and $g_{x}(t)=$ $\delta_{x}(t), t \in[m, M]$ we have that

$$
\begin{align*}
& \left|\left\langle h_{x}(A) g_{x}(A) x, x\right\rangle-\left\langle h_{x}(A) x, x\right\rangle\left\langle g_{x}(A) x, x\right\rangle\right| \tag{4.8}\\
& \leq \frac{1}{2}\left(\left[\langle A x, x\rangle, M,|f|^{2}\right]-\left[m,\langle A x, x\rangle,|f|^{2}\right]\right) \\
& \times\langle | h_{x}(A)-\left\langle h_{x}(A) x, x\right\rangle \cdot 1_{H}|x, x\rangle \\
& \leq \frac{1}{2}\left(\left[\langle A x, x\rangle, M,|f|^{2}\right]-\left[m,\langle A x, x\rangle,|f|^{2}\right]\right) \\
& \times\left[\left\|h_{x}(A) x\right\|^{2}-\left\langle h_{x}(A) x, x\right\rangle^{2}\right]^{1 / 2}
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$ and $\langle A x, x\rangle \neq m, M$.

Since

$$
\begin{gathered}
\left\langle h_{x}(A) g_{x}(A) x, x\right\rangle=\|f(A) x\|^{2}-|f(\langle A x, x\rangle)|^{2}, \\
\left\langle h_{x}(A) x, x\right\rangle=0, h_{x}(A)-\left\langle h_{x}(A) x, x\right\rangle \cdot 1_{H}=A-\langle A x, x\rangle \cdot 1_{H}
\end{gathered}
$$

and

$$
\left\|h_{x}(A) x\right\|^{2}=\|A x\|^{2}-\langle A x, x\rangle^{2}
$$

then by (4.8) we deduce the second and the third inequality in (4.5).
The last part follows from the fact that

$$
\|A x\|^{2}-\langle A x, x\rangle^{2} \leq \frac{1}{4}(M-m)^{2},
$$

for any $x \in H$ with $\|x\|=1$.
The inequality follows by (4.7) and the theorem is proved.
Example 4.3. If we apply the second inequality from (3.9) for the square-convex function $f(t)=t^{r}$ with $r \in\left[\frac{1}{2}, 1\right]$ on $[m, M]$ with $0 \leq m \leq M$, then for any selfadjoint operator A with $S p(A) \subseteq[m, M]$ we get the following refinement of (3.14):

$$
\begin{align*}
0 & \leq\left\|A^{r} x\right\|^{2}-\langle A x, x\rangle^{2 r} \tag{4.9}\\
& \leq \frac{1}{2}\langle | A-\langle A x, x\rangle \cdot 1_{H}|x, x\rangle \\
& \times\left[\frac{M^{2 r}-\langle A x, x\rangle^{2 r}}{M-\langle A x, x\rangle}-\frac{\langle A x, x\rangle^{2 r}-m^{2 r}}{\langle A x, x\rangle-m}\right] \\
& \leq \frac{1}{2}\left(\|A x\|^{2}-\langle A x, x\rangle^{2}\right)^{1 / 2} \\
& \times\left[\frac{M^{2 r}-\langle A x, x\rangle^{2 r}}{M-\langle A x, x\rangle}-\frac{\langle A x, x\rangle^{2 r}-m^{2 r}}{\langle A x, x\rangle-m}\right] \\
& \leq \frac{1}{4}(M-m)\left[\frac{M^{2 r}-\langle A x, x\rangle^{2 r}}{M-\langle A x, x\rangle}-\frac{\langle A x, x\rangle^{2 r}-m^{2 r}}{\langle A x, x\rangle-m}\right],
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$ and $\langle A x, x\rangle \neq m, M$.
From (4.6) we also have:

$$
\begin{align*}
0 & \leq\left\|A^{r} x\right\|^{2}-\langle A x, x\rangle^{2 r} \tag{4.10}\\
& \leq \frac{1}{2}\langle | A-\langle A x, x\rangle \cdot 1_{H}|x, x\rangle \\
& \times\left[\frac{M^{2 r}-\langle A x, x\rangle^{2 r}}{M-\langle A x, x\rangle}-\frac{\langle A x, x\rangle^{2 r}-m^{2 r}}{\langle A x, x\rangle-m}\right] \\
& \leq r\left(M^{2 r-1}-m^{2 r-1}\right)\langle | A-\langle A x, x\rangle \cdot 1_{H}|x, x\rangle \\
& \leq r\left(M^{2 r-1}-m^{2 r-1}\right)\left[\|A x\|^{2}-\langle A x, x\rangle^{2}\right]^{1 / 2} \\
& \leq \frac{1}{2} r(M-m)\left(M^{2 r-1}-m^{2 r-1}\right),
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$ and $\langle A x, x\rangle \neq m, M$.

In the recent paper [4] we have obtained the following reverse of the Jensen inequality:

Lemma 4.4. Let I be an interval and $h: I \rightarrow \mathbb{R}$ be a convex and differentiable function on I whose derivative f^{\prime} is continuous on I. If A is a selfadjoint operators on the Hilbert space H with $S p(A) \subseteq[m, M] \subset I$, then

$$
\begin{equation*}
(0 \leq)\langle h(A) x, x\rangle-h(\langle A x, x\rangle) \leq\left\langle h^{\prime}(A) A x, x\right\rangle-\langle A x, x\rangle \cdot\left\langle h^{\prime}(A) x, x\right\rangle \tag{4.11}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.

Utilising this result we are able to provide a different reverse for the Jensen inequality (2.1).

Theorem 4.5. Let I be an interval and $f: I \rightarrow \mathbb{C}$ be a square-convex, square differentiable function on $\stackrel{\circ}{I}$ and with the derivative continuous on I. If A is a selfadjoint operator on the Hilbert space H with $S p(A) \subseteq[m, M] \subset I$, then

$$
\begin{align*}
& 0 \leq\|f(A) x\|^{2}-|f(\langle A x, x\rangle)|^{2} \tag{4.12}\\
& \leq\left\langle A \frac{d\left(|f|^{2}\right)(A)}{d t} x, x\right\rangle-\langle A x, x\rangle \cdot\left\langle\frac{d\left(|f|^{2}\right)(A)}{d t} x, x\right\rangle \\
& \leq\left\{\begin{aligned}
\frac{1}{2}\left(\frac{d\left(|f|^{2}\right)(M)}{d t}-\frac{d\left(|f|^{2}\right)(m)}{d t}\right)\langle | A-\langle A x, x\rangle \cdot 1_{H}|x, x\rangle \\
\frac{1}{2}(M-m)\langle | \frac{d\left(|f|^{2}\right)(A)}{d t}-\left\langle\frac{d\left(|f|^{2}\right)(A)}{d t} x, x\right\rangle \cdot 1_{H}|x, x\rangle
\end{aligned}\right. \\
& \leq\left\{\begin{array}{l}
\frac{1}{2}\left(\frac{d\left(|f|^{2}\right)(M)}{d t}-\frac{d\left(|f|^{2}\right)(m)}{d t}\right)\left(\|A x\|^{2}-\langle A x, x\rangle^{2}\right)^{1 / 2}
\end{array}\right. \\
& \frac{1}{2}(M-m)\left[\left\|\frac{d\left(|f|^{2}\right)(A)}{d t} x\right\|^{2}-\left\langle\frac{d\left(|f|^{2}\right)(A)}{d t} x, x\right\rangle^{2}\right]^{1 / 2} \\
& \leq \frac{1}{4}(M-m)\left(\frac{d\left(|f|^{2}\right)(M)}{d t}-\frac{d\left(|f|^{2}\right)(m)}{d t}\right),
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.

Proof. If we write the inequality (4.11) for $h=|f|^{2}$ we get

$$
\begin{align*}
& (0 \leq)\|f(A) x\|^{2}-|f(\langle A x, x\rangle)|^{2} \tag{4.13}\\
& \leq\left\langle A \frac{d\left(|f|^{2}\right)(A)}{d t} x, x\right\rangle-\langle A x, x\rangle \cdot\left\langle\frac{d\left(|f|^{2}\right)(A)}{d t} x, x\right\rangle
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.

Further, on making use of the Gruss' type inequality (4.1) we also have

$$
\left.\begin{array}{l}
\left\langle A \frac{d\left(|f|^{2}\right)(A)}{d t} x, x\right\rangle-\langle A x, x\rangle \cdot\left\langle\frac{d\left(|f|^{2}\right)(A)}{d t} x, x\right\rangle \tag{4.14}\\
\leq\left\{\begin{array}{l}
\frac{1}{2}\left(\frac{d\left(|f|^{2}\right)(M)}{d t}-\frac{d\left(\left.| | f\right|^{2}\right)(m)}{d t}\right)\langle | A-\langle A x, x\rangle \cdot 1_{H}|x, x\rangle \\
\frac{1}{2}(M-m)
\end{array}\langle | \frac{d\left(\mid f f^{2}\right)(A)}{d t}-\left\langle\frac{d\left(\mid f f^{2}\right)(A)}{d t} x, x\right\rangle \cdot 1_{H}|x, x\rangle\right.
\end{array}\right\} \begin{aligned}
& \frac{1}{2}\left(\frac{d\left(\mid f f^{2}\right)(M)}{d t}-\frac{d\left(|f|^{2}\right)(m)}{d t}\right)\left(\|A x\|^{2}-\langle A x, x\rangle^{2}\right)^{1 / 2} \\
& \leq\left\{\begin{array}{l}
\frac{1}{2}(M-m)\left[\left\|\frac{d\left(|f|^{2}\right)(A)}{d t} x\right\|^{2}-\left\langle\frac{d\left(|f|^{2}\right)(A)}{d t} x, x\right\rangle^{2}\right]^{1 / 2}
\end{array}\right. \\
& \leq \frac{1}{4}(M-m)\left(\frac{d\left(|f|^{2}\right)(M)}{d t}-\frac{d\left(|f|^{2}\right)(m)}{d t}\right)
\end{aligned}
$$

and the proof is completed.
Example 4.6. If we apply the second inequality from (4.12) for the square-convex function $f(t)=t^{r}$ with $r \in\left[\frac{1}{2}, 1\right]$ on $[m, M]$ with $0 \leq m \leq M$, then for any selfadjoint operator with $S p(A) \subseteq[m, M]$ we get

$$
\begin{align*}
0 & \leq\left\|A^{r} x\right\|^{2}-\langle A x, x\rangle^{2 r} \tag{4.15}\\
& \leq 2 r\left[\left\langle A^{2 r} x, x\right\rangle-\langle A x, x\rangle \cdot\left\langle A^{2 r-1} x, x\right\rangle\right] \\
& \leq r\left\{\begin{array}{l}
\left(M^{2 r-1}-m^{2 r-1}\right)\langle | A-\langle A x, x\rangle \cdot 1_{H}|x, x\rangle \\
(M-m)\langle | A^{2 r-1}-\left\langle A^{2 r-1} x, x\right\rangle \cdot 1_{H}|x, x\rangle
\end{array}\right. \\
& \leq r\left\{\begin{array}{l}
\left(M^{2 r-1}-m^{2 r-1}\right)\left(\|A x\|^{2}-\langle A x, x\rangle^{2}\right)^{1 / 2} \\
(M-m)\left[\left\|A^{2 r-1} x\right\|^{2}-\left\langle A^{2 r-1} x, x\right\rangle^{2}\right]^{1 / 2} \\
\end{array}\right. \\
& \leq \frac{1}{2} r(M-m)\left(M^{2 r-1}-m^{2 r-1}\right),
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Finally, we observe that the interested reader may obtain other similar results by considering the square-convex, square-differentiable functions $\varphi(t)=\ln (t+1), t \in[0, e-1]$ and $\varphi(t)=\cos t, t \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$. The details are omitted.

Acknowledgments

The author thanks the referees for their careful reading of the manuscript and insightful comments.

References

[1] S.S. Dragomir, Grüss' type inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint, RGMIA Res. Rep. Coll., 11(e) (2008), Art. 11. [ONLINE: http://rgmia.org/v11(E).php].
[2] S.S. Dragomir, Some new Grüss' type inequalities for functions of selfadjoint operators in Hilbert spaces, Sarajevo J. Math. 6(18), (2010), No. 1, pp. 89-107. Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 12. [ONLINE: http://rgmia.org/v11(E).php].
[3] S.S. Dragomir, New bounds for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces, Filomat 24(2010), No. 2, pp. 27-39.
[4] S.S. Dragomir, Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces, J. Ineq. \mathcal{E} Appl., Vol. 2010, Article ID 496821. 15 pp. Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 15. [ONLINE: http://rgmia.org/v11(E).php].
[5] S.S. Dragomir, Some Slater's type inequalities for convex functions of selfadjoint operators in Hilbert spaces, Rev. Un. Mat. Argentina, 52(2011), No.1, pp. 109-120. Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 7.
[6] S.S. Dragomir, Some inequalities for convex functions of selfadjoint operators in Hilbert spaces, Filomat 23(2009), No. 3, pp. 81-92. Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 10.
[7] S.S. Dragomir, Some Jensen’s type inequalities for twice differentiable functions of selfadjoint operators in Hilbert spaces, Filomat 23(2009), No. 3, pp. 211-222. Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 13.
[8] S.S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions, Appl. Math. Comp. 218(2011), 766-772. Preprint RGMIA Res. Rep. Coll., 13(2010), No. 1, Art. 7.
[9] S.S. Dragomir, Hermite-Hadamard's type inequalities for convex functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 13(2010), No. 2, Art 1.
[10] S.S. Dragomir, Some Jensen's type inequalities for log-convex functions of selfadjoint operators in Hilbert spaces, Bull. Malays. Math. Sci. Soc. 34(2011), No. 3., pp. 445454. Preprint RGMIA Res. Rep. Coll., 13(2010), Sup. Art. 2.
[11] S.S. Dragomir, New Jensen's type inequalities for differentiable log-convex functions of selfadjoint operators in Hilbert spaces, Sarajevo J. Math. 19(2011), No. 1, pp. 6780. Preprint RGMIA Res. Rep. Coll., 13(2010), Sup. Art. 2.
[12] S.S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74(3)(2006), pp. 471-476.
[13] S.S. Dragomir and N.M. Ionescu, Some converse of Jensen's inequality and applications. Rev. Anal. Numér. Théor. Approx. 23 (1994), no. 1, pp. 71-78. MR:1325895 (96c:26012).
[14] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[15] G. Helmberg, Introduction to Spectral Theory in Hilbert Space, John Wiley, New York, 1969.
[16] A. Matković, J. Pečarić and I. Perić, A variant of Jensen's inequality of Mercer's type for operators with applications. Linear Algebra Appl. 418 (2006), no. 2-3, pp. 551564.
[17] C.A. McCarthy, c_{p}, Israel J. Math., 5(1967), pp. 249-271.
[18] J. Mićić, Y. Seo, S.-E. Takahasi and M. Tominaga, Inequalities of Furuta and MondPečarić, Math. Ineq. Appl., 2(1999), pp. 83-111.
[19] B. Mond and J. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19(1993), pp. 405-420.
[20] B. Mond and J. Pečarić, On some operator inequalities, Indian J. Math., 35(1993), pp. 221-232.
[21] B. Mond and J. Pečarić, Classical inequalities for matrix functions, Utilitas Math., 46(1994), pp. 155-166.

[^0]: *E-mail address: Sever.Dragomir@vu.edu.au

