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Abstract

In the paper we consider the class of nonlinealimensional control systems that can be mapped to linear ones by
change of variables and an additive change of contdinearizable systems). We show that foffatiently small

initial points the transferring to the origin is possible by means of bang-bang controls with no more-thaoints

of switching. Moreover in some cases such a transferring is extremal in the sense of time optimality. These results are
based on technique of the power Markov min-problem. An algorithm of searching the mentioned above bang-bang
controls is also given.
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1 Introduction

One of the main tasks and the final goal of the control theory is a direct construction of control functions solving
particular control problems. This construction is &idult problem especially if we consider nonlinear systems. One

of the important approaches allowing us to solve such a problem for some class of nonlinear systems is based on tl
mapping of the systems to linear ones (linearization). This approach was originated by V.I. Korobov [1] for the class of
triangular systems. We cite here the following remarkable linearization theorem from [1].

Theorem 1.1.[1] Consider a triangular system of the form

X

fi(Xl,...,Xj+1), i=1,...,n—1, (1 1)
Xn '

fa(X1,.. ., Xn, U)
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and suppose that _ _
fi(X1,....X1) €CTTIR*Y), i=1,...,n=1,  fa(Xq,..., % U) € CHR™Y (1.2)

and
yﬁfi(xl ..... Xi+1) > (13)

0%iy1

s i=dnol, |y

for any x,..., %, U € R wherea > 0. Then there exist a change of variables £(x) € C3(R") and a change of the
control v= g(x, u) € C1(R™?) reducing the systeifi.1)to the linear form

Z=2%z,, i=1....n-1, Zn = V. (1.4)

The concept of mappability considered in Korobov’s theorem (by means of a change of variables andveentrol
g(x,u)) is called the feedback linearization. A further progress in the study of this problem was achieved in the works
[2], [3], [4] for the class ofC*-smooth nonlinear systems. It was shown that a system

x=f(x,u), xeR", ueRr?
is locally feedback linearizable if and only if it is of the form
x = f(x u) = a(x) +b(x)y(x u),

a(x), b(x) € C* (U(0)) and besides the vector fieldéx), b(x) as well as their Lie brackets satisfy some conditions of
involutivity.

In our recent work [5] the conditions of feedback linearizability were generalized to the c@$esofooth nonlinear
systems. We note that all the mentioned results are a direct development of the above-cited theorem.

Let us observe that feedback linearizability of a nonlinear system allows us to reduce various control problems fo
this system to the similar problems for a linear system, which are much more investigated.

First of all, this concerns problems without restrictions on control, whei®l. But in the case when some restric-
tion is requiredu € Q c RY, the substitution of the contrel= g(x, u) does not allow us to check it for the initial system
using the solutions of the linearized system. Moreover, in the case when theo$giossible controls is discrete (for
example, finite), feedback linearizability becomes absolutely unusable. In this case it is natural to use linearizability by
change of variables only, without change of control (pure linearizability). But the set of pure linearizable systems is
rather poor (see [6], [7]). In the work [8] it was proposed to consider linearizability with a special, so-called additive,
change of the control

v =u+ h(X).

This type of linearizability (further we call i-linearizability) is equivalent to mappability of systems to the systems of
the form:

{ Zi:Zi+1a|:1""’n_l’ (15)

Zn=9g(@+u, 90)=0,

by a change of variables= F(x). The subclass of\-linearizable triangular systems is described in [8]. In the case of
general nonlinear systems of cl&@sthe problem ofA-linearizability is solved in [5].

It is well known that in the theory of linear systems an important role is played by bang-bang controls, i.e., by
controls switching between twoftirent states. In particular, for the system (1.4), whose control constraint is of the
form

V() <1

and the number of switchings is at most(), bang-bang controls realize the time-optimal transfer from a point to the
origin by virtue of the system. Of course, this fact is extended to pure linearizable systems. The main goal of the presel
paper is to show that for aA-linearizable system linearizable by an additive change of variables the transfer from a
point to the origin by means of bang-bang controls is also possible and in some cases can be optimal.
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The paper is organized as follows. In Section 2 we recall the results of [5], [8] on the description of the class of
nonlinearA-linearizable systems or, equivalently, of the class of systems mappable to systems of the form (1.5) by the
change of variables only.

In Section 3 we consider the question on the existence of piecewise constant coairalls with at mostn— 1
points of switching (further we call thembang-bang controls) realizing a transfer of the initial pathto 0 by virtue
of system (1.5). We show that such a control exists for arfiiciently smallz’ under the Lipschitz condition on
the functiong(2) in a neighborhood of the origin. Combining this result with the result of Section 2, we prove the
existence ofi-bang-bang controls realizing steering to 0 felinearizable systems. We also discuss the possibility for
the obtained controls to be time-optimal.

In Section 4 we propose a numerical algorithm for searchigng-bang controls based on successive solving of
power Markov min-problem [9] and also give an example.

2 A-linearizable Systems

In this section we recall the results from [5], [8] where the conditions for a nonlinear systemAdifearizable are
given.
Given a vector functiofF = (Fi(x))in:1 e CL(RM), let Fy = ((‘)Fi/axj)inj:l.
Definition 2.1. [5] We say that a nonlinear system of the form
x=f(x,u), xeQcR", ueR, (2.1)

wheref(x,u) € CL(QxR), is locally A-linearizable in the domaif if there exist a change of variables

z=F(x) e C?(Q), detFy(x)#0, xeQ, (2.2)
and a change of control
v=u+h(x), h(x)eCY(Q), (2.3)
which reduce system (2.1) to the form
Z= Agz+bgv, (2.4)
where
O 1 ... 0 0
Po=l g . 1| Pl
o ... ... O 1

The following theorem give#\-linearizability conditions for the class of triangular systems. Denot&pyhe
projection ofQx R onRX, i.e. Qu = {(Y1,....¥i) : (Y1....,¥ne1) € Qx R}, k=1,....n.

Theorem 2.2.[8] Systen{1.1)with functions § € C"**1(Q,1), k= 1,...,n, is locally A-linearizable in the domain Q
if and only if for any xe Q and ue R* the following equality holds:

Ofn(Xt,. ., X, W) Ifn-a(xa,...%0)  Ifalxa,%e) _
ou OXn 0Xo

C(X1),

where the function(x;) is n times dfferentiable andc(x;)| > a > 0in Q.
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Consider the problem in a general form. Suppose that system (Ad)risarizable. Then
Z=Fx(X) f(x,u) = AgF(X) + bo(u+ h(x)), (2.5)
which implies the equalityf (x,u) = a(x) + b(X)u, i.e., system (1.1) is of the form
x = a(x) + b(xX)u, (2.6)

wherea(x),b(x) € C}(Q).

Given vector functions = (a(x));,, b= (bi(x))[, of the classCY(R"), let [a,b] denote the Lie brackeg[b] =
ab - bya, wherea, = (aai /an):j. L andby = (é‘bi/axj) .- LetLa denote the Lie derivative along the vector field),
(Lab)(x) = (bxa)(x) for any vector functiorb(x).

The conditions ofA-linearizability are given in the following

n
= ij=

Theorem 2.3.[5] Nonlinear syster(2.1)is locally A-linearizable in the domain Q if and only if it satisfies the following
conditions.

1) The system isféne (linear by control), i.e. of the forif2.6).

2) There exists a set of scalar continuous in Q functionéx), i =1,...,n-1, j=0,1,...,i -1, such that the
vector-functions defined by

k-1
K =b, ¥ = [a A TX]+ > (X, k=1,...,n-1, (2.7)
j=0

exist and belong to the classi(@®); vector functiong%(x),...,x"1(x) are linearly independent in the domain Q, and
the set{y°(x),...,x"?(X)} satisfies the involutivity condition

n-2
x| = =k’ = D A0 (), i.j=0,....n-2
k=0

where/l:(’j(x) are certain continuous functions.
3) Among the solutions of the system of partigldéential equations

ox( /(¥ =0, j=0,...,n-2
there exists a solutiop(x) such that the functionsitle(x), i = 1,...,n (Where By = ¢, LLp = (L 1p)xa(x)), belong to
the class &(Q) and the following equality holds

exO" () = c(@(¥), x€Q,

wherey?(x),...,x"1(x) are defined by2.7)and r) belongs to the classGand 7) # 0, T € ¢(Q).
Under conditions 1)-3) the change of variables E(X) and the control \= u+ h(x) realizing the mapping can be
found by the formulas
z=F(x) =L, i=1,...,n

h(x) = LIZ(x).
whereg(X) = ®(¢(x)) and L
o) = (1) f 55 4tECT Q).

Remark2.4. In the case when vector field$x), b(x) are inC"(Q) one can pu'(x) = ada(x) b(x),i=1,...,n—-1, where
ad), b(x) =b(x). ad,,b(x) = [a(x).ad}b(x)].i> L.
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Remark2.5. If the nonlinear system in Theorem 2.2 has the triangular form (1.1) then the fuggtipnan be chosen
ase(X) = xq.

Note thatA-linearizability is equivalent to the local mappability (in a neighborhood of an arbitrary gpaitsystem
(2.1) to a system of the form
Z= Aoz+ bp(u+9(2), (2.8)

by means of a change of variables (2.2) only.

Remark2.6. One can observe that if®intQ and f(0,0) = 0 then the mapping (x) can be chosen in such a way that
F(0) = 0 andg(0) = 0. Indeed, from (2.5) we have

0=Fx(0)f(0,0) = AoF(0) + bog(F(0)).

This yields
AoF(0)=0, g(F(0))=0.

If we put now
F1(X) = F(x)—F(0)

and consider the change of variables

z=F1(%)
then we obtain the required properties.
3 Existence ofn-Bang-bang Controls
In this section we consider a system of the form
z=Az+b(u+9(2), u<1l, (3.1

whereA s an fixn)-matrix,b € R", g(x) satisfies the Lipschitz condition with a constarit the ball{z:|| z||< y}, y > 0,
andg(0) = 0. We also assume that the pAib satisfies the Kalman condition:

rank,Ab,...,A"b) = n.

Our goal is to prove the existencerebang-bang controls transferring an initial paififrom a certain neighborhood
of the origin to 0 by virtue of system (3.1). Assume that the coniftltransfers a point®, ||| <y to 0 for the time
0 > 0 along the trajectory(t), t € [0,6] of (3.1) . Then

%
2+ f e Ab(u(t) + g(z(t))) dt = 0. (3.2)
0

Let G be the Kalman matrix
G=(b,Ab,...,A"b)

and/(t) be the vector with coordinates
tk—l

be(t) = (—1)k—1(k_1)! , k=1,...n.

Then
e Ab = Ge(t) + R(1), (3.3)
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where .
R(t) = Z .Eu Ab(-t) =o(t™), t—o0.
i=n °

Since raniG = n, equality (3.2) can be rewritten as

9
f= -Gl G f RO)(UCE) + g(z(t))dt— 1.
0

where the coordinate&, nk, of the vectors andn satisfy the relations

(1K
1) tludt=&, k=1,....n, Juit) <l 6— min, (3.4)
0
and
%
G A
) troz(t)dt=m. k=1,....n (3.5)
0

Relations (3.4) pose the Markov powerl(1) moment problem. If we consider this problem on the minimal
possible interval (Markov min-problem, see [9])

6 (G _ .
f k=11 udt=&, k=1,....m (ut)<1, 6- min, (3.6)
0

then the solutioné, ug(t)) exists, is unique, andk(t) is n-bang-bang.
Following [9] we introduce operatoid andP defined as:
D: Rn — RX LOO[O,OO), D(f) = (Qg,ﬁg(t)),
where the paird;, Ug(t)) is the solution of min-problem (3.6)

u(t), te[0,6:],

Ue,f(t))={ 0 t>6,

and y
P: RXLa[0,00) > R",  P(y,w(t)) = -G f R(t)w(t)dt.
0
Along with these operators we consider operarandP, given by
y
P1: RXLe[0,00) = R",  Py(y,w() = -G [R(t)g(z()dt,
0

Py: Rx LOO[O,OO) - Rn, Pz(y,W(t)) =-n,
where components of vectgrare given by formula (3.5) in which=y andz(t) is the solution of the Cauchy problem

7= Az+bW({) +9(2), z0)=2. (3.7)
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The domain of the operatoB, P, is the set of the pairg/(w(t)) such that the solution of the Cauchy problem (3.7) is
uniquely defined on the interval [{.

With the notation introduced above the existence ofidrang-bang control transferriraj to 0 by virtue of system
(3.1) is equivalent to the existence of a fixed point of the operator

Fo: R"SR", Fp@é)=-G 2+ (P+P1+Py)«D(&),

wherex means a composition. Moreover&t is a fixed point ofF 0 then such am-bang-bang contrai(t), t € [0,6]
can be chosen as
ut) =Tt), te[0,6], where @.T(t))=D().

Now we prove

Theorem 3.1. There exists a neighborhood of the origin U such that for dhy @ the operator K has at least one
fixed point.

Proof. Denote byUs, § > 0, the parallelepiped of the form
Us={¢eR": |ad <6*/KI, k=1,...n}.
LetC = supb; > 0, where ¢, u;) = D(¢). Then su@; = Cé. Let us chooség > 0 so small that for any initial point

el el
2’ € U, and for any measurable functiot) such thatu(t)| < 1 the solution of the Cauchy problem

z=Az+bu+9(2), z0)=2 (3.8)

exists on the interval [@so]. Then for every? € Us, the operatoF , is defined.
Next we choose a numbéy : 0 < 61 < min{dg, 1/C} such that fott € [0,C6d1] the following estimates hold

1. IRt/ < 1/(40IGHI(n-1)1), k=1,...,n;
2. |z(t)l| < 1/(4qL) and thereforég(z(t))| < 1/(4q),

whereRy(t) arek-th entry of the vector functioR(t), g = maxC", 1} andz(t) is a solution of (3.8) with an arbitrary
initial statez’ such that 612 € Uy, .

Then for e U = {z: 4G~1ze Uy, } and for any¢ € U, the components of the vectdps: D(£), Py * D(¢), P2+ D(€)
satisfy the following estimates:

(P D(&))l < C"67/(4qnt) < 6k /(4K1),
(P D(&)l < C"61/(1602n!) < 6%/(4kl), k=1, 2,....n.
P2+ D(€))kl < CXs%/(4gkl) < &% /(4KY),

ThereforeF o(&) € Us,, i.e. for 2 € U the operatoF, maps the parallelepiped;, to itself. Let us prove that this
operator is continuous. Continuity of the opera®orD is established in [9, 10]. So we need to prove the continuity of
P1#D, PaxD. Letém — £ asm— oo, D(€) = (g, Ug(t)), D(ém) = (6g,n» g,y (1))-

Then [10];;, — 6; and me&y — 0 asm — oo, whereEm = {t € [0,6] : Tg,) # Te(t)}. Let Z(t), zn(t) be solutions
of the Cauchy problem (3.8) with the contral@) = ug(t) andu(t) = ug,(t), respectively. Then the following estimate
holds:

t
||Zm(t)_z(t)”52||b||meSEm+Mf”Zm(S)_Z(S)HdS t € [0, min{6,, 0,31, M = [IAll+ LIlbll.
0
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Then applying the Gronwall-Bellman Lemma we conclude that the sequagieuniformly converges ta(t)
on every interval [0r], 0 < 7 < 6:. As a consequence(zqy(t)) uniformly converges t@(z(t)), t € [0,7]. This gives
Pi « D(ém) — Py« D(€), 1 = 1,2. The continuity is proved. Thus, for amme U the operatoF; is a continuous operator
transferring the convex compact &, to itself. We complete the proof by applying the Schauder Theorem. o

Corollary 3.2. For any vector 2 from a neighborhood of the origin there exists an n-bang-bang control transferifing z
to O by virtue of syster(B3.1)

Now let us consider the question on the extremal property-leing-bang controls, i.e. on the property to satisfy
a necessary condition of the time optimality given by the Pontryagin Maximum Principle. In our case, if a control
u(t), Ju(t)| < 1 transferring the poird® to 0 for the timey, by virtue of system (3.1), is time optimal then it has the form

u(t) = signiu(t), by, te 0,6, (3.9)

wherey(t) is a nonzero solution of the conjugate system:

: d *
v=- (A+ bd—zg(z(t))) v, (3.10)
Z(t) is the solution of the Cauchy problem
7= Az+b(u(t) +g9(2), z0)=2

(below we assume that the functig(e) is continuously dierentiable). Letb(t), (®(0) = I) be the fundamental matrix
of the system

i=(A+bat))

Then a general solution of system (3.10) has the fotth= @~ (t)y°, y® € R". Hence, condition (3.9) can be written
as
u(t) = signw®, @ ()b, te[0,6], y°=0. (3.11)

Let us assume that the components of the vebtd(t)b form a Chebyshev systeriii {system) on the interval [6].
Then sigry®, ®1(t)b) runs over the set of ali-bang-bang controls on [@] while the vectory° runs over the space
R™{0}. Thus, if ann-bang-bang contral(t) transfers? to 0 and the components of the vector!(t)b form aT-system
on [0,4], thenu(t) satisfies necessary conditions of time optimality.

Let us express the matrik(t) via the matrix exponentia@. We have

o(t) = M +K(t), te[0,6],

whereK(t) is the solution of the matrix Cauchy problem
K(t) = e—AtdeZ a(z()eM(1 +K(1), K(0)=0.
For a stificiently smallg > 0 one can write

() = i(—l)me(t)e‘A‘. (3.12)
m=0

Let us denote by;(t), gi(t), i = 1,...,nthe components of vectods ()b, eAh, respectively, and let™(t) = (I{}“(t))
m=1,2,.... Then (3.12) yields

n
i,j=1"

s =a)+ ) D" ) KM@ i=1..n (3.13)
m=1

=1

We summarize our arguments as the following
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Statement 3.3.Let an n-bang-bang control(t) transfer a point 2 (from a small enough neighborhood of the origin)
to O for the timed by virtue of systern(3.1). Let functionsp;(t), i = 1,...,n given by formuld3.13)form a T-system on
the interval[0,d]. Then the control (1) is extremal in the sense of time optimality.

4 Bang-bang Controls for A-linearizable Systems

Let us assume that system (2.1) is loc#ljinearizable in the domai and Oc int Q is a stationary point, i.ef (0,0) =

0. Then there exists some neighborhood of the or@irc Q in which (2.1) is mapped to a system of the form (2.5) by
means of an invertible mappirg= F(x) € C?(Q’) and moreover (see Remark 2R{0) = 0 andg(0) = 0. This means
thatF(Q’) is also a neighborhood of the origin and one can use the results of Section 3 for the system (2.5). Namely
combining Theorems 2.3 and 3.1 we obtain

Theorem 4.1. Let systen(2.1) satisfy all assumptions of TheorelrB. Then for some neighborhood of the origin
Q” c Q the following property holds: for any’x Q” there exists an n-bang-bang contrdtutransferring ¥ to 0 by
virtue of systen(2.1).

Consider now the time-optimal problem fAflinearizable system (see (2.1), (2.6))
x=f(xu)=a(X)+b(x)u, a0)=0, u<1,
x(0)=x0eQ, x©®) =0, 6- min.
It is obvious that the optimal control for this problem is the same as in the time-optimal problem for system (2.5)

7= Aoz+bo(u+9(2)) = Aoz+bo (u+h(F1(2). Iu<1,
20)=2=F(x), z6) =0, 6— min,

whereF(x), h(x) are given in Theorem 2.3. Thus, the analysis of time optimalityAitinearizable systems is reduced
to the case of systems of the form (2.5).

It is well known [9] that if a functiong(2) is linear them-bang-bang controls transferriagjto 0 are time optimal
for sufficiently smallz’. Hence in the case of line@(2) there exists a neighborhood of the origihsuch that the
time-optimal transferring from® € Q to 0 by virtue of the initial system is realized bybang-bang controls.

In the general case the question on possible optimality-lwhng-bang controls can be analyzed by using State-
ment 3.3. Below we give one more case where the extremalitybaing-bang controls is established directly.

Example 4.2. Let in system (2.5) functiog have the special form(z) = g(z,). In this case system (3.10) takes the form

lr}/]. = 07 ‘J/k = _l)l’k—li k: 2"' ., N— 11 ’l’n = _l//n—l_g,(zn)l//n

and the optimal control (3.9) is
u(t) = sign(y(t), bo) = signyn(t), t<[0,6].

Let us show that for any nontrivial solutigr(t) = (¥1(t), ..., y¥n(t)) functiony,(t) has no more tham¢ 1) real zeros.

Indeed,
t

Un(®) :e—g'(zq(t))(d,g_ f eg/(zn(r»%_l(ﬂdT)

0
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n-2
andyn_1(t) = cht". If yn_1(t) = 0 theny? # 0 andyy(t) has no real zeros. Let, 1(t) # 0. We observe that all real

k=0
zeros ofy(t) are also zeros of the function
t
o) =R~ [ Sy sy
0

But the derivative ofp is
¢'(t) = &7 @Oy 1 ()

and hence it has no more tham<2) real zeros. Thereforg(t) has no more tham( 1) zeros. Finallyyy(t) has no
more than §— 1) zeros, hencs(t) is n-bang-bang.
This means that any-bang-bang control realizing transferring frafhto 0 is extremal.

Finally we give a numerical algorithm of construction ofrabang-bang control for system (2.8) (and, therefore for
A-linearizable system (2.1)). The algorithm is based on solving power Markov min-problem [9], [10]. The constructive
analytic solution of this problem was first given in [11]. A development of the topic can be found in [12], [13].

Algorithm. Let a controlu(t) transfer the point® from some neighborhood of the origin to 0 by virtue of the system
(2.5) for the times. Then

%
yais f e "o (u(r) + g(z(7))) dr = 0. (4.1)
0
Let us denote .
1y
{(r) = e Py = o ,
-7
1
then
% 0
-P= (u(r)dr+ | £(r)g(z(7)) dr. (4.2)
J o |
We denote

%
ra(0.u0) = [ Aot dr
0
and rewrite equation (4.2) as
2
L= f £(7)u(t) dr +r1(6, u(-)). (4.3)
0

Let us consider the following method of successive approximations for firtlengd u(t). On the first step we
omit the reminder in the equation (4.3) and find the optimal téhand the controli(t) as a solution of the Markov
min-problem

6
A= f (@u@E) dr, u®I<1, 60— min.
0
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In scalar form the moment equalities are as follows:

[
D*k-1)'2 1 = f *lur)dr, k=1,....n. (4.4)
0

Itis well known [11] that this problem has the unique solutienu; (t), and, moreover, the controi(t) is n-bang-bang.

Once we knowd,, up(t), we put
01

160 U ()) = f (D)) dr. (4.5)

0

wherez)(7) is the solution of the following Cauchy problem:
Z0(t) = Aoz (1) + bo(g(ZV () + us(t),  ZV(0)=2.

Using the equality (4.5), we rewrite (4.2) as follows

0 0

%]
—ZO=ff(T)U(T)dT+r1(91,U1('))+(f5(T)Q(Z(T))dT—f1(91,U1(')))=ff(T)U(T)dT+r1(91,U1('))+|’2(9,U(')),
0

0 0

where

6
ro(0.u() = [ e)gtar) dr-ra(os.w).
0
Now we solve min-problem

2]
2 —r1(61,n (") = f £(7)u(7) dr. (4.6)
0

Let 6, andus(t) be a solution of this problem. Let us fiz#)(t) as the solution of the Cauchy problem
29(t) = AZP(t) + bo(g(ZP () + (1),  22(0) =2,

and put
02
r2(62, Uz(")) = f (0)9(Z? (7)) dr - r1 (61, ua())-
0
We rewrite equality (4.2) as

0
P f E)UR) dr +11(01,Us()) + T (62, Ua()) + F3(6.UC).
0

where

0
ra(6,u()) = f £()9(z7)) dr —r1(61, us(-)) — ra2(62, u2()).-
0
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Further, we solve the min-problem
6
2 () - el te) = [ eute) o @.7)
0
and findd; andus(t). We put
03
ra0a.ta() = [ €I dr = (01, 030)) a0l
0

and so on. This iterative procedure may be written as followsri(ét,usi()), ..., rm(fm, um(-)) be found, then we find
Om+1 @andum,1(t) as the solution of the min-problem

m 0
2= ) n.ut) = [ e dr (4.8)
i=1 0
and put
Om+1 m
s Urna) = [ €O V) - Y ri@u ()
0 i=1

whereZ™1)(t) is the solution of the Cauchy problem
A™D(t) = AZ™ (1) + bo (9(Z™ V() + Umea (),  Z™P(0) =2
Realizing this algorithm, on each step we solve the Cauchy problem of the form

2(t) = Aoz(t) + bo(g((t)) + T(Y),  Z0) =2, te[0,6], (4.9)

(%
whereg andU(t) are given, and calculatf{’(r)g(z(r)) dr. Let us show that the value of this integral depends only on

0
the value of the solution of the Cauchy problem at the final time momenteed, let(t) be the solution of (4.9), then

0

9
2(5) = erg 2+ f £(T)o(z(r)) dr+ f (T)u(r)dr .
0

0

Therefore,

0 ]

f 0(1)g(z(r)) dr = e A¥2(@) — 2 - f £(7)U(7) d.
0 0

Thus,

Ome1

m
(et (Bme 1, Ums 1 (1)) = €720 M D g, 1) — 20— f (@)U () dr = > ri(6h, Ui()-
3 i=1
However, sinc®n,1 andum,1(t) are the solutions of min-problem (4.8), the last equality may be written as

rm+1(9m+1, Um+1(')) = e_AOHITMZ(rm—l)(gm+l)~
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Finally, the iterative procedure has the following form: under kn@d#.), ..., Z™ (6 to find .1 andum,1(t) as the
solution of the min-problem

Om+1

2+ Y @) - [ @ m=12... (4.10)
i=1

0
and then to find{™1(6,,,,.1) as the solution of the Cauchy problem
™) = AZ™ (1) + bo (9™ V() + Umea(t)).  Z™D(0)=2,  te[0,0m.a].

In the present paper we do not discuss the convergence of the proposed algorithm. In [10] it is proved, that al
equivalent algorithm for a linear system of the form (2.8) converges. In our forthcoming work we are going to prove
the convergence for systems (2.8) with analytic functi(e).

Example 4.3. Let us consider the nonlinear control system
21 =2, 22=23, 23 = U+Z§

and find am-bang-bang control transferring the poifit= (0,0,0.1) to the origin. Using the proposed algorithm, we
find k, 6 and a controli(t) such that|Z¥(6)|| < 10719, On the first step, solving the min-problem of the form

0

0 0
27 = f‘rzu(‘r) dr, ZgzofvTu(T) dr, —£=JU(T) dr,

0

we obtain thats; = 0.4390312689049587, the controf has two switchings t{? = 0.1995057194364092,t{" =
0.36902135388888835 an(6 — 0) = —1. Solving the Cauchy problem

-2(11) _ 2(21), -2(21) _ 2(31)’ -2(31) -+ (2(31))2, 2(1)(0) _ Zo’
we have|ZD(6,)|| = 0.0012586396145635088

0.00004826252294331030 0.00002965567919178140
ZY(6,) =| 0.00030995420364153217|, 2L+ 1A(g;)=| —0.00022519102129263703|.
0.0012189228030817488 0.10121892280308176

On the second step we solve min-problem (4.6) and obtair43a0.4402879856552574, the contrglt) has two
switchingst'?) = 0.2004299838427155, = 0.3699645152688034 ang(6 - 0) = —1. Solving the Cauchy problem

D=2 =20, L=u0+&). #0)=2,
we have|Z9(6,)|| = 0.0001343033798545341

5.127351445259204 1076 2 _ ~0.00002435053253164249
Z2(,)=| 0.00013420467173401538|, z°+Ze—A00iz(')(9i) =| -0.00009078258026738536].
~4.628091110254373610°7 = 0.10121845999397074

Let us give the results for the next steps.
Step 3: 63 = 0.4384037935557613 = 0.20043776078740608,” = 0.3690304275683015)5(0 - 0) = ~1;
123)(63)|| = 0.0009325647933427833

—9.7925000102655481078 3 _ 0.0000658449562542651
Z9(93) =| -1.539780072866913210° |, z°+Ze‘A°9iz(')(9i): —0.0005011617439320605 |.
0.0009325635170166639 = 0.1021510235109874
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Step 4: 6, = 0.4393448985461692'") = 0.20043626488760394." = 0.3690332024051949444(¢ - 0) = ~1;
124(64)|| = 4.26316916131210210°°,

—7.259078368496988610° 4 _ 0.000065519444805730
Z9(04) =| —2.109726622037741710°7 |, z°+Ze‘A°9‘z<')(9i)= —0.000499502012578363§.
—4.25793954155603610°° i-1 0.10214676557144584

Step 5: 65 = 0.4393436599430583) = 0.20043626880368812)) = 0.3690347159894944y5(6 - 0) = ~1;
1Z5)(65)|| = 1.49463595204922831075,

4.01398708677541410 11 5 _ 0.0000653746676664628
d@s)=| 1.292579024318308810°° |, z°+Ze‘A°9‘z(')(0i): —0.0004988440614156778 |.
~1.494635392591236710°° = 0.10214527093605325

Step 6: 65 = 0.4393421462712416%) = 0.20043626867110573%) = 0.36903470633870035(6 - 0) = ~1;
129)(66)|| = 9.42131148592611610°°,

~7.83090119462552510 13 6 _ 0.0000653755864851704
Z9(0) =| —2.355044457213870610° 11 |, z°+Ze‘A°9iz(')(9i)= -0.0004988482241323852 |.
9.42128201882173210°° = 0.10214528035733526

Step 7: 67 = 0.4393421560328203") = 0.20043626867221803," = 0.3690347065099603}(f - 0) = ~1;
127(67)|| = 1.70284745020256071071°,

2.358690491997929810 12 7 _ 0.000065375566357207
Z006)=| 1.390443219111711610°1% |, z°+Ze‘A°9iz(')(9i): —0.0004988481356717084.
-1.696997281412649101° i=1 0.10214528018763554

Step 8: 63 = 0.43934215588800288) = 0.20043626871864134) = 0.3690347065688252(0— 0) = —1;

—2.12344304100599271012
Z8(0g) =| -7.04524922222144% 10712 and [|Z®(6s)|| = 1.2523692011686662107 1.
~1.013401769546391410 11

Graphics of the components of the trajectdf)(t) are presented on Fig. 1- 6.

0.0008 © 0.005 . 0.1
0 %'
0.0006 0.0025 0.05 22w
0.0004
0y 02 g3

t
0 01 o 03 0Ag; 05 0

049, 05
.0002,
0.000 —0.0025 —-0.05
t
0 01 02 03 046 05 —~0.005 -01

Figure 1. Graphic of thé®(t) on the Figure 2. Graphic of the®)(t) on the Figure 3. Graphic of the®)(t) on the
segment [(Vg]. segment [(Vg]. segment [(Vg].
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2.x 10‘11[ "

4.x 10712 b, 8x10° )

. 0 | 0430332 0439336 6.x 10710 3
2.x 10722 22 -2x10 O 4% 10720
. -4.x 1071 & 2% 10-10
0 0.4391N\_ 04392  0.43936g —6.x 10-1 ¢
0 | 04393421552 04393421556 @

-2.x 10712 -8.x 10711 —2.x 10710

Figure 4. Graphic of the(lg)(t) on the Figure 5. Graphic of the(zs)(t) on the Figure 6. Graphic of the(ag)(t) on the
segment [139 6g]. segment [139336g]. segment [31393421550g].
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