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Abstract

In the paper we consider the class of nonlinearn-dimensional control systems that can be mapped to linear ones by
change of variables and an additive change of control (A-linearizable systems). We show that for sufficiently small
initial points the transferring to the origin is possible by means of bang-bang controls with no more thann−1 points
of switching. Moreover in some cases such a transferring is extremal in the sense of time optimality. These results are
based on technique of the power Markov min-problem. An algorithm of searching the mentioned above bang-bang
controls is also given.
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1 Introduction

One of the main tasks and the final goal of the control theory is a direct construction of control functions solving
particular control problems. This construction is a difficult problem especially if we consider nonlinear systems. One
of the important approaches allowing us to solve such a problem for some class of nonlinear systems is based on the
mapping of the systems to linear ones (linearization). This approach was originated by V.I. Korobov [1] for the class of
triangular systems. We cite here the following remarkable linearization theorem from [1].

Theorem 1.1. [1] Consider a triangular system of the form

ẋi = fi(x1, . . . , xi+1), i = 1, . . . ,n−1,
ẋn = fn(x1, . . . , xn,u)

(1.1)
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and suppose that
fi(x1, . . . , xi+1) ∈Cn−i+1(Ri+1), i = 1, . . . ,n−1, fn(x1, . . . , xn,u) ∈C1(Rn+1) (1.2)

and ∣∣∣∣
∂ fi (x1,...,xi+1)

∂xi+1

∣∣∣∣ ≥ α, i = 1, . . . ,n−1,
∣∣∣∣
∂ fn(x1,...,xn,u)

∂u

∣∣∣∣ ≥ α (1.3)

for any x1, . . . , xn,u ∈ R whereα > 0. Then there exist a change of variables z= F(x) ∈ C2(Rn) and a change of the
control v= g(x,u) ∈C1(Rn+1) reducing the system(1.1) to the linear form

żi = zi+1, i = 1, . . . ,n−1, żn = v. (1.4)

The concept of mappability considered in Korobov’s theorem (by means of a change of variables and controlv =
g(x,u)) is called the feedback linearization. A further progress in the study of this problem was achieved in the works
[2], [3], [4] for the class ofC∞-smooth nonlinear systems. It was shown that a system

ẋ= f (x,u), x ∈ Rn, u ∈ R1

is locally feedback linearizable if and only if it is of the form

ẋ= f (x,u) = a(x)+b(x)ψ(x,u),

a(x), b(x) ∈ C∞ (U(0)) and besides the vector fieldsa(x), b(x) as well as their Lie brackets satisfy some conditions of
involutivity.

In our recent work [5] the conditions of feedback linearizability were generalized to the case ofC1-smooth nonlinear
systems. We note that all the mentioned results are a direct development of the above-cited theorem.

Let us observe that feedback linearizability of a nonlinear system allows us to reduce various control problems for
this system to the similar problems for a linear system, which are much more investigated.

First of all, this concerns problems without restrictions on control, whenu ∈ R1. But in the case when some restric-
tion is required,u ∈Ω ⊂ R1, the substitution of the controlv= g(x,u) does not allow us to check it for the initial system
using the solutions of the linearized system. Moreover, in the case when the setΩ of possible controls is discrete (for
example, finite), feedback linearizability becomes absolutely unusable. In this case it is natural to use linearizability by
change of variables only, without change of control (pure linearizability). But the set of pure linearizable systems is
rather poor (see [6], [7]). In the work [8] it was proposed to consider linearizability with a special, so-called additive,
change of the control

v= u+h(x).

This type of linearizability (further we call itA-linearizability) is equivalent to mappability of systems to the systems of
the form: {

żi = zi+1, i = 1, . . . ,n−1,
żn = g(z)+u, g(0)= 0,

(1.5)

by a change of variablesz= F(x). The subclass ofA-linearizable triangular systems is described in [8]. In the case of
general nonlinear systems of classC1 the problem ofA-linearizability is solved in [5].

It is well known that in the theory of linear systems an important role is played by bang-bang controls, i.e., by
controls switching between two different states. In particular, for the system (1.4), whose control constraint is of the
form

|v(t)| ≤ 1

and the number of switchings is at most (n−1), bang-bang controls realize the time-optimal transfer from a point to the
origin by virtue of the system. Of course, this fact is extended to pure linearizable systems. The main goal of the present
paper is to show that for anA-linearizable system linearizable by an additive change of variables the transfer from a
point to the origin by means of bang-bang controls is also possible and in some cases can be optimal.
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The paper is organized as follows. In Section 2 we recall the results of [5], [8] on the description of the class of
nonlinearA-linearizable systems or, equivalently, of the class of systems mappable to systems of the form (1.5) by the
change of variables only.

In Section 3 we consider the question on the existence of piecewise constant controlsu = ±1 with at mostn− 1
points of switching (further we call themn-bang-bang controls) realizing a transfer of the initial pointz0 to 0 by virtue
of system (1.5). We show that such a control exists for any sufficiently smallz0 under the Lipschitz condition on
the functiong(z) in a neighborhood of the origin. Combining this result with the result of Section 2, we prove the
existence ofn-bang-bang controls realizing steering to 0 forA-linearizable systems. We also discuss the possibility for
the obtained controls to be time-optimal.

In Section 4 we propose a numerical algorithm for searchingn-bang-bang controls based on successive solving of
power Markov min-problem [9] and also give an example.

2 A-linearizable Systems

In this section we recall the results from [5], [8] where the conditions for a nonlinear system to beA-linearizable are
given.

Given a vector functionF =
(
Fi(x)

)n

i=1
∈C1(Rn), let Fx =

(
∂Fi/∂xj

)n

i, j=1
.

Definition 2.1. [5] We say that a nonlinear system of the form

ẋ= f (x,u), x ∈ Q⊂ Rn, u ∈ R, (2.1)

where f (x,u) ∈C1(Q×R), is locallyA-linearizable in the domainQ if there exist a change of variables

z= F(x) ∈C2(Q), detFx(x) , 0, x ∈ Q, (2.2)

and a change of control

v= u+h(x), h(x) ∈C1(Q), (2.3)

which reduce system (2.1) to the form

ż= A0z+b0v, (2.4)

where

A0 =




0 1 . . . 0
. . . . . . . . . . . .

0 . . . . . . 1
0 . . . . . . 0



, b0 =




0
. . .

0
1



.

The following theorem givesA-linearizability conditions for the class of triangular systems. Denote byQk the
projection ofQ×R1 onRk, i.e. Qk = {(y1, . . . ,yk) : (y1, . . . ,yn+1) ∈ Q×R1}, k= 1, . . . ,n.

Theorem 2.2. [8] System(1.1)with functions fk ∈Cn−k+1(Qk+1), k= 1, . . . ,n, is locally A-linearizable in the domain Q
if and only if for any x∈ Q and u∈ R1 the following equality holds:

∂ fn(x1, . . . , xn,u)
∂u

∙
∂ fn−1(x1, . . . , xn)

∂xn
∙ . . . ∙

∂ f1(x1, x2)
∂x2

= c(x1),

where the function c(x1) is n times differentiable and|c(x1)| ≥ α > 0 in Q1.
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Consider the problem in a general form. Suppose that system (1.1) isA-linearizable. Then

ż= Fx(x) f (x,u) = A0F(x)+b0(u+h(x)), (2.5)

which implies the equalityf (x,u) = a(x)+b(x)u, i.e., system (1.1) is of the form

ẋ= a(x)+b(x)u, (2.6)

wherea(x),b(x) ∈C1(Q).
Given vector functionsa = (ai(x))n

i=1, b = (bi(x))n
i=1 of the classC1(Rn), let [a,b] denote the Lie bracket [a,b] =

axb−bxa, whereax =
(
∂ai/∂xj

)n

i, j=1
andbx =

(
∂bi/∂xj

)n

i, j=1
. Let La denote the Lie derivative along the vector fielda(x),

(Lab)(x) = (bxa)(x) for any vector functionb(x).
The conditions ofA-linearizability are given in the following

Theorem 2.3. [5] Nonlinear system(2.1) is locally A-linearizable in the domain Q if and only if it satisfies the following
conditions.

1) The system is affine (linear by control), i.e. of the form(2.6).
2) There exists a set of scalar continuous in Q functionsμi j (x), i = 1, . . . ,n− 1, j = 0,1, . . . , i − 1, such that the

vector-functions defined by

χ0(x) = b(x), χk(x) =
[
a(x),χk−1(x)

]
+

k−1∑

j=0

μk j(x)χ j(x), k= 1, . . . ,n−1, (2.7)

exist and belong to the class C1(Q); vector functionsχ0(x), . . . ,χn−1(x) are linearly independent in the domain Q, and
the set{χ0(x), . . . ,χn−2(x)} satisfies the involutivity condition

[
χi(x),χ j(x)

]
= χi

xχ
j −χ j

xχ
i =

n−2∑

k=0

λ
i, j
k (x)χk(x), i, j = 0, . . . ,n−2,

whereλi, j
k (x) are certain continuous functions.

3) Among the solutions of the system of partial differential equations

ϕx(x)χ j(x) = 0, j = 0, . . . ,n−2

there exists a solutionϕ(x) such that the functions Li−1
a ϕ(x), i = 1, . . . ,n (where L0aϕ = ϕ, Li

aϕ = (Li−1
a ϕ)xa(x)), belong to

the class C2(Q) and the following equality holds

ϕx(x)χn−1(x) = c(ϕ(x)), x ∈ Q,

whereχ0(x), . . . ,χn−1(x) are defined by(2.7)and c(τ) belongs to the class Cn and c(τ) , 0, τ ∈ ϕ(Q).
Under conditions 1)-3) the change of variables z= F(x) and the control v= u+h(x) realizing the mapping can be

found by the formulas
zi = Fi(x) = Li−1

a ϕ̃(x), i = 1, . . . ,n,

h(x) = Ln
aϕ̃(x),

whereϕ̃(x) = Φ(ϕ(x)) and

Φ(t) = (−1)n−1
∫

1
c(t)

dt ∈Cn+1(ϕ(Q)).

Remark2.4. In the case when vector fieldsa(x), b(x) are inCn(Q) one can putχi(x) = adi
a(x) b(x), i = 1, . . . ,n−1, where

ad0
a(x) b(x) = b(x), adi

a(x) b(x) =
[
a(x),adi−1

a(x) b(x)
]
, i ≥ 1.
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Remark2.5. If the nonlinear system in Theorem 2.2 has the triangular form (1.1) then the functionϕ(x) can be chosen
asϕ(x) = x1.

Note thatA-linearizability is equivalent to the local mappability (in a neighborhood of an arbitrary pointx) of system
(2.1) to a system of the form

ż= A0z+b0(u+g(z)), (2.8)

by means of a change of variables (2.2) only.

Remark2.6. One can observe that if 0∈ intQ and f (0,0)= 0 then the mappingF(x) can be chosen in such a way that
F(0)= 0 andg(0)= 0. Indeed, from (2.5) we have

0= Fx(0) f (0,0)= A0F(0)+b0g(F(0)).

This yields
A0F(0)= 0, g(F(0))= 0.

If we put now
F1(x) = F(x)−F(0)

and consider the change of variables
z= F1(x)

then we obtain the required properties.

3 Existence ofn-Bang-bang Controls

In this section we consider a system of the form

ż= Az+b(u+g(z)), |u| ≤ 1, (3.1)

whereA is an (n×n)-matrix,b∈Rn, g(x) satisfies the Lipschitz condition with a constantL in the ball{z:‖ z‖≤ γ}, γ > 0,
andg(0)= 0. We also assume that the pairA,b satisfies the Kalman condition:

rank(b,Ab, . . . ,An−1b) = n.

Our goal is to prove the existence ofn-bang-bang controls transferring an initial pointz0 from a certain neighborhood
of the origin to 0 by virtue of system (3.1). Assume that the controlu(t) transfers a pointz0, ‖z0‖ ≤ γ to 0 for the time
θ ≥ 0 along the trajectoryz(t), t ∈ [0, θ] of (3.1) . Then

z0+

θ∫

0

e−Atb(u(t)+g(z(t)))dt= 0. (3.2)

Let G be the Kalman matrix
G = (b,Ab, . . . ,An−1b)

and`(t) be the vector with coordinates

`k(t) = (−1)k−1 tk−1

(k−1)!
, k= 1, . . . ,n.

Then
e−Atb= G`(t)+R(t), (3.3)
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where

R(t) =
∞∑

i=n

1
i!

Aib(−t)i = ō(tn−1), t→ 0.

Since rankG = n, equality (3.2) can be rewritten as

ξ = −G−1z0−G−1

θ∫

0

R(t)(u(t)+g(z(t)))dt−η,

where the coordinatesξk,ηk, of the vectorsξ andη satisfy the relations

θ∫

0

(−1)k−1

(k−1)!
tk−1u(t)dt= ξk, k= 1, . . . ,n; |u(t)| ≤ 1, θ→min, (3.4)

and
θ∫

0

(−1)k−1

(k−1)!
tk−1g(z(t))dt= ηk, k= 1, . . . ,n. (3.5)

Relations (3.4) pose the Markov power (−1,1) moment problem. If we consider this problem on the minimal
possible interval (Markov min-problem, see [9])

θ∫

0

(−1)k−1

(k−1)!
tk−1u(t)dt= ξk, k= 1, . . . ,n; |u(t)| ≤ 1, θ→min, (3.6)

then the solution (θξ,uξ(t)) exists, is unique, anduξ(t) is n-bang-bang.
Following [9] we introduce operatorsD andP defined as:

D : Rn→ R×L∞[0,∞), D(ξ) = (θξ, ûξ(t)),

where the pair (θξ,uξ(t)) is the solution of min-problem (3.6)

ûξ(t)) =





u(t), t ∈ [0, θξ],

0, t > θξ,

and

P : R×L∞[0,∞)→ Rn, P(y,w(t)) = −G−1

y∫

0

R(t)w(t)dt.

Along with these operators we consider operatorsP1 andP2 given by

P1 : R×L∞[0,∞)→ Rn, P1(y,w(t)) = −G−1
y∫

0

R(t)g(z(t))dt,

P2 : R×L∞[0,∞)→ Rn, P2(y,w(t)) = −η,

where components of vectorη are given by formula (3.5) in whichθ = y andz(t) is the solution of the Cauchy problem

ż= Az+b(w(t)+g(z)), z(0)= z0. (3.7)
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The domain of the operatorsP1,P2 is the set of the pairs (y,w(t)) such that the solution of the Cauchy problem (3.7) is
uniquely defined on the interval [0,y].

With the notation introduced above the existence of ann-bang-bang control transferringz0 to 0 by virtue of system
(3.1) is equivalent to the existence of a fixed point of the operator

Fz0 : Rn→ Rn, Fz0(ξ) = −G−1z0+ (P+P1+P2)∗D(ξ),

where∗ means a composition. Moreover, ifξ0 is a fixed point ofFz0 then such ann-bang-bang controlu(t), t ∈ [0, θ]
can be chosen as

u(t) = û(t), t ∈ [0, θ], where (θ, û(t)) = D(ξ0).

Now we prove

Theorem 3.1. There exists a neighborhood of the origin U such that for any z0 ∈ U the operator Fz0 has at least one
fixed point.

Proof. Denote byUδ, δ > 0, the parallelepiped of the form

Uδ =
{
ξ ∈ Rn : |ξk| ≤ δ

k/k!, k= 1, . . . ,n
}
.

Let C = sup
ξ∈U1

θξ > 0, where (θξ,uξ) = D(ξ). Then sup
ξ∈Uδ

θξ = Cδ. Let us chooseδ0 > 0 so small that for any initial point

z0 ∈ Uδ0 and for any measurable functionu(t) such that|u(t)| ≤ 1 the solution of the Cauchy problem

ż= Az+b(u+g(z)), z(0)= z0 (3.8)

exists on the interval [0,Cδ0]. Then for everyz0 ∈ Uδ0 the operatorFz0 is defined.
Next we choose a numberδ1 : 0< δ1 ≤min{δ0,1/C} such that fort ∈ [0,Cδ1] the following estimates hold

1. |Rk(t)/tn−1| ≤ 1/(4q‖G−1‖(n−1)!), k= 1, . . . ,n;

2. ‖z(t)‖ ≤ 1/(4qL) and therefore|g(z(t))| ≤ 1/(4q),

whereRk(t) arek-th entry of the vector functionR(t), q = max{Cn,1} andz(t) is a solution of (3.8) with an arbitrary
initial statez0 such that 4G−1z0 ∈ Uδ1.

Then forz0 ∈U = {z : 4G−1z∈Uδ1} and for anyξ ∈Uδ1 the components of the vectorsP∗D(ξ), P1∗D(ξ), P2∗D(ξ)
satisfy the following estimates:

|(P∗D(ξ))k| ≤Cnδn
1/(4qn!) ≤ δk

1/(4k!),

|(P1 ∗D(ξ))k| ≤Cnδn
1/(16q2n!) ≤ δk

1/(4k!),

|(P2 ∗D(ξ))k| ≤Ckδk
1/(4qk!) ≤ δk

1/(4k!),

k= 1, 2, . . . ,n.

ThereforeFz0(ξ) ∈ Uδ1, i.e. for z0 ∈ U the operatorFz0 maps the parallelepipedUδ1 to itself. Let us prove that this
operator is continuous. Continuity of the operatorP∗D is established in [9, 10]. So we need to prove the continuity of
P1 ∗D, P2 ∗D. Let ξm→ ξ asm→∞, D(ξ) = (θξ, ûξ(t)), D(ξm) = (θξm, ûξm(t)).

Then [10]θξm→ θξ and mesEm→ 0 asm→∞, whereEm =
{
t ∈ [0, θξ] : ûξm(t) , ûξ(t)

}
. Let z(t), zm(t) be solutions

of the Cauchy problem (3.8) with the controlsu(t) = uξ(t) andu(t) = uξm(t), respectively. Then the following estimate
holds:

‖zm(t)−z(t)‖ ≤ 2‖b‖mesEm+M

t∫

0

‖zm(s)−z(s)‖ds, t ∈ [0,min{θξ,θξm}], M = ‖A‖+L‖b‖.
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Then applying the Gronwall-Bellman Lemma we conclude that the sequencezm(t) uniformly converges toz(t)
on every interval [0, τ̂], 0 < τ̂ < θξ. As a consequence,g(zm(t)) uniformly converges tog(z(t)), t ∈ [0, τ̂]. This gives
Pi ∗D(ξm)→ Pi ∗D(ξ), i = 1,2. The continuity is proved. Thus, for anyz∈ U the operatorFz is a continuous operator
transferring the convex compact setUδ1 to itself. We complete the proof by applying the Schauder Theorem. �

Corollary 3.2. For any vector z0 from a neighborhood of the origin there exists an n-bang-bang control transferring z0

to 0 by virtue of system(3.1)

Now let us consider the question on the extremal property ofn-bang-bang controls, i.e. on the property to satisfy
a necessary condition of the time optimality given by the Pontryagin Maximum Principle. In our case, if a control
u(t), |u(t)| ≤ 1 transferring the pointz0 to 0 for the timeθ, by virtue of system (3.1), is time optimal then it has the form

u(t) = sign〈ψ(t), b〉, t ∈ [0, θ], (3.9)

whereψ(t) is a nonzero solution of the conjugate system:

ψ̇ = −

(

A+b
d
dz

g(z(t))

)∗
ψ, (3.10)

z(t) is the solution of the Cauchy problem

ż= Az+b(u(t)+g(z)), z(0)= z0

(below we assume that the functiong(z) is continuously differentiable). LetΦ(t), (Φ(0)= I ) be the fundamental matrix
of the system

ẏ=

(

A+b
d
dz

g(z(t))

)

y.

Then a general solution of system (3.10) has the formψ(t) = Φ−1∗(t)ψ0, ψ0 ∈ Rn. Hence, condition (3.9) can be written
as

u(t) = sign〈ψ0,Φ−1(t)b〉, t ∈ [0, θ], ψ0 , 0. (3.11)

Let us assume that the components of the vectorΦ−1(t)b form a Chebyshev system (T-system) on the interval [0, θ].
Then sign〈ψ0,Φ−1(t)b〉 runs over the set of alln-bang-bang controls on [0, θ] while the vectorψ0 runs over the space
Rn\{0}. Thus, if ann-bang-bang controlu(t) transfersz0 to 0 and the components of the vectorΦ−1(t)b form aT-system
on [0, θ], thenu(t) satisfies necessary conditions of time optimality.

Let us express the matrixΦ(t) via the matrix exponentialeAt. We have

Φ(t) = eAt(I +K(t)), t ∈ [0, θ],

whereK(t) is the solution of the matrix Cauchy problem

K̇(t) = e−Atb
d
dz

g(z(t))eAt(I +K(t)), K(0)= 0.

For a sufficiently smallθ > 0 one can write

Φ−1(t) =
∞∑

m=0

(−1)mKm(t)e−At. (3.12)

Let us denote byϕi(t), qi(t), i = 1, . . . ,n the components of vectorsΦ−1(t)b, e−Atb, respectively, and letKm(t)=
(
km

i j (t)
)n

i, j=1
,

m= 1,2, . . . . Then (3.12) yields

ϕi(t) = qi(t)+
∞∑

m=1

(−1)m
n∑

j=1

km
i j (t)qj(t), i = 1, . . . ,n. (3.13)

We summarize our arguments as the following
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Statement 3.3.Let an n-bang-bang control u(t) transfer a point z0 (from a small enough neighborhood of the origin)
to 0 for the timeθ by virtue of system(3.1). Let functionsϕi(t), i = 1, . . . ,n given by formula(3.13)form a T-system on
the interval[0, θ]. Then the control u(t) is extremal in the sense of time optimality.

4 Bang-bang Controls for A-linearizable Systems

Let us assume that system (2.1) is locallyA-linearizable in the domainQ and 0∈ intQ is a stationary point, i.e.f (0,0)=
0. Then there exists some neighborhood of the originQ′ ⊂ Q in which (2.1) is mapped to a system of the form (2.5) by
means of an invertible mappingz= F(x) ∈ C2(Q′) and moreover (see Remark 2.4)F(0)= 0 andg(0)= 0. This means
that F(Q′) is also a neighborhood of the origin and one can use the results of Section 3 for the system (2.5). Namely,
combining Theorems 2.3 and 3.1 we obtain

Theorem 4.1. Let system(2.1) satisfy all assumptions of Theorem2.3. Then for some neighborhood of the origin
Q′′ ⊂ Q the following property holds: for any x0 ∈ Q′′ there exists an n-bang-bang control u(t) transferring x0 to 0 by
virtue of system(2.1).

Consider now the time-optimal problem forA-linearizable system (see (2.1), (2.6))

ẋ= f (x,u) = a(x)+b(x)u, a(0)= 0, |u| ≤ 1,

x(0)= x0 ∈ Q′, x(θ) = 0, θ→min.

It is obvious that the optimal control for this problem is the same as in the time-optimal problem for system (2.5)

ż= A0z+b0(u+g(z)) = A0z+b0

(
u+h(F−1(z)

)
, |u| ≤ 1,

z(0)= z0 = F(x0), z(θ) = 0, θ→min,

whereF(x), h(x) are given in Theorem 2.3. Thus, the analysis of time optimality forA-linearizable systems is reduced
to the case of systems of the form (2.5).

It is well known [9] that if a functiong(z) is linear thenn-bang-bang controls transferringz0 to 0 are time optimal
for sufficiently smallz0. Hence in the case of linearg(z) there exists a neighborhood of the origin̄Q such that the
time-optimal transferring fromx0 ∈ Q̄ to 0 by virtue of the initial system is realized byn-bang-bang controls.

In the general case the question on possible optimality ofn-bang-bang controls can be analyzed by using State-
ment 3.3. Below we give one more case where the extremality ofn-bang-bang controls is established directly.

Example 4.2.Let in system (2.5) functiong have the special formg(z) = g(zn). In this case system (3.10) takes the form

ψ̇1 = 0, ψ̇k = −ψk−1, k= 2, . . . ,n−1; ψ̇n = −ψn−1−g′(zn)ψn

and the optimal control (3.9) is

u(t) = sign〈ψ(t),b0〉 = signψn(t), t ∈ [0, θ].

Let us show that for any nontrivial solutionψ(t)= (ψ1(t), . . . ,ψn(t)) functionψn(t) has no more than (n−1) real zeros.
Indeed,

ψn(t) = e−g′(zn(t))
(
ψ0

n−

t∫

0

eg′(zn(τ))ψn−1(τ)dτ
)
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andψn−1(t) =
n−2∑

k=0

ckt
k. If ψn−1(t) ≡ 0 thenψ0

n , 0 andψn(t) has no real zeros. Letψn−1(t) . 0. We observe that all real

zeros ofψn(t) are also zeros of the function

ϕ(t) = ψ0
n−

t∫

0

eg′(zn(τ))ψn−1(τ)dτ.

But the derivative ofϕ is
ϕ′(t) = eg′(zn(t))ψn−1(t)

and hence it has no more than (n−2) real zeros. Thereforeϕ(t) has no more than (n−1) zeros. Finally,ψn(t) has no
more than (n−1) zeros, henceu(t) is n-bang-bang.

This means that anyn-bang-bang control realizing transferring fromz0 to 0 is extremal.

Finally we give a numerical algorithm of construction of ann-bang-bang control for system (2.8) (and, therefore for
A-linearizable system (2.1)). The algorithm is based on solving power Markov min-problem [9], [10]. The constructive
analytic solution of this problem was first given in [11]. A development of the topic can be found in [12], [13].

Algorithm. Let a controlu(t) transfer the pointz0 from some neighborhood of the origin to 0 by virtue of the system
(2.5) for the timeθ. Then

z0+

θ∫

0

e−A0τb0

(
u(τ)+g(z(τ))

)
dτ = 0. (4.1)

Let us denote

`(τ) = e−A0τb0 =




(−1)n τn−1

(n−1)!
∙ ∙ ∙
−τ
1



,

then

−z0 =

θ∫

0

`(τ)u(τ)dτ+

θ∫

0

`(τ)g(z(τ))dτ. (4.2)

We denote

r1(θ,u(∙)) =

θ∫

0

`(τ)g(z(τ))dτ

and rewrite equation (4.2) as

−z0 =

θ∫

0

`(τ)u(τ)dτ+ r1(θ,u(∙)). (4.3)

Let us consider the following method of successive approximations for findingθ andu(t). On the first step we
omit the reminder in the equation (4.3) and find the optimal timeθ and the controlu(t) as a solution of the Markov
min-problem

−z0 =

θ∫

0

`(τ)u(τ)dτ, |u(t)| ≤ 1, θ→min.
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In scalar form the moment equalities are as follows:

(−1)k(k−1)!z0
n−k+1 =

θ∫

0

τk−1u(τ)dτ, k= 1, . . . ,n. (4.4)

It is well known [11] that this problem has the unique solutionθ1, u1(t), and, moreover, the controlu1(t) is n-bang-bang.
Once we knowθ1, u1(t), we put

r1(θ1,u1(∙)) =

θ1∫

0

`(τ)g(z(1)(τ))dτ, (4.5)

wherez(1)(τ) is the solution of the following Cauchy problem:

ż(1)(t) = A0z(1)(t)+b0(g(z(1)(t))+u1(t)), z(1)(0)= z0.

Using the equality (4.5), we rewrite (4.2) as follows

−z0 =

θ∫

0

`(τ)u(τ)dτ+ r1(θ1,u1(∙))+
( θ∫

0

`(τ)g(z(τ))dτ− r1(θ1,u1(∙))
)
=

θ∫

0

`(τ)u(τ)dτ+ r1(θ1,u1(∙))+ r2(θ,u(∙)),

where

r2(θ,u(∙)) =

θ∫

0

`(τ)g(z(τ))dτ− r1(θ1,u1).

Now we solve min-problem

−z0− r1(θ1,u1(∙)) =

θ∫

0

`(τ)u(τ)dτ. (4.6)

Let θ2 andu2(t) be a solution of this problem. Let us findz(2)(t) as the solution of the Cauchy problem

ż(2)(t) = A0z(2)(t)+b0(g(z(2)(t))+u2(t)), z(2)(0)= z0,

and put

r2(θ2,u2(∙)) =

θ2∫

0

`(τ)g(z(2)(τ))dτ− r1(θ1,u1(∙)).

We rewrite equality (4.2) as

−z0 =

θ∫

0

`(τ)u(τ)dτ+ r1(θ1,u1(∙))+ r2(θ2,u2(∙))+ r3(θ,u(∙)),

where

r3(θ,u(∙)) =

θ∫

0

`(τ)g(z(τ))dτ− r1(θ1,u1(∙))− r2(θ2,u2(∙)).
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Further, we solve the min-problem

−z0− r1(θ1,u1(∙))− r2(θ2,u2(∙)) =

θ∫

0

`(τ)u(τ)dτ (4.7)

and findθ3 andu3(t). We put

r3(θ3,u3(∙)) =

θ3∫

0

`(τ)g(z(3)(τ))dτ− r1(θ1,u1(∙))− r2(θ2,u2(∙)),

and so on. This iterative procedure may be written as follows. Letr1(θ1,u1(∙)), . . ., rm(θm,um(∙)) be found, then we find
θm+1 andum+1(t) as the solution of the min-problem

−z0−
m∑

i=1

ri(θi ,ui(∙)) =

θ∫

0

`(τ)u(τ)dτ (4.8)

and put

rm+1(θm+1,um+1(∙)) =

θm+1∫

0

`(τ)g(z(m+1)(τ))dτ−
m∑

i=1

ri(θi ,ui(∙)),

wherez(m+1)(t) is the solution of the Cauchy problem

ż(m+1)(t) = A0z(m+1)(t)+b0

(
g(z(m+1)(t))+um+1(t)

)
, z(m+1)(0)= z0.

Realizing this algorithm, on each step we solve the Cauchy problem of the form

ż(t) = A0z(t)+b0(g(z(t))+ ũ(t)), z(0)= z0, t ∈ [0, θ̃], (4.9)

whereθ̃ andũ(t) are given, and calculate

θ̃∫

0

`(τ)g(z(τ)) dτ. Let us show that the value of this integral depends only on

the value of the solution of the Cauchy problem at the final time momentθ̃. Indeed, letz(t) be the solution of (4.9), then

z(̃θ) = eA0θ̃



z0+

θ̃∫

0

`(τ)g(z(τ))dτ+

θ̃∫

0

`(τ)̃u(τ)dτ



.

Therefore,
θ̃∫

0

`(τ)g(z(τ))dτ = e−A0θ̃z(̃θ)−z0−

θ̃∫

0

`(τ)̃u(τ)dτ.

Thus,

rm+1(θm+1,um+1(∙)) = e−A0θm+1z(m+1)(θm+1)−z0−

θm+1∫

0

`(τ)um+1(τ)dτ−
m∑

i=1

ri(θi ,ui(∙)).

However, sinceθm+1 andum+1(t) are the solutions of min-problem (4.8), the last equality may be written as

rm+1(θm+1,um+1(∙)) = e−A0θm+1z(m+1)(θm+1).
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Finally, the iterative procedure has the following form: under knownz(1)(θ1), . . ., z(m)(θm) to findθm+1 andum+1(t) as the
solution of the min-problem

−
(
z0+

m∑

i=1

e−A0θi z(i)(θi)
)
=

θm+1∫

0

`(τ)um+1(τ)dτ, m= 1,2, . . . , (4.10)

and then to findz(m+1)(θm+1) as the solution of the Cauchy problem

ż(m+1)(t) = A0z(m+1)(t)+b0

(
g(z(m+1)(t))+um+1(t)

)
, z(m+1)(0)= z0, t ∈ [0, θm+1].

In the present paper we do not discuss the convergence of the proposed algorithm. In [10] it is proved, that an
equivalent algorithm for a linear system of the form (2.8) converges. In our forthcoming work we are going to prove
the convergence for systems (2.8) with analytic functiong(z).

Example 4.3. Let us consider the nonlinear control system

ż1 = z2, ż2 = z3, ż3 = u+z2
3

and find ann-bang-bang control transferring the pointz0 = (0,0,0.1) to the origin. Using the proposed algorithm, we
find k, θk and a controluk(t) such that‖z(k)(θ)‖ < 10−10. On the first step, solving the min-problem of the form

−2z0 =

θ∫

0

τ2u(τ)dτ, z0
2 =

θ∫

0

τu(τ)dτ, −z0
3 =

θ∫

0

u(τ)dτ,

we obtain thatθ1 = 0.4390312689049587, the controlu1 has two switchings t(1)
1 = 0.1995057194364092,t(1)

2 =

0.36902135388888835 andu1(θ−0)= −1. Solving the Cauchy problem

ż(1)
1 = z(1)

2 , ż(1)
2 = z(1)

3 , ż(1)
3 = u1(t)+ (z(1)

3 )2, z(1)(0)= z0,

we have‖z(1)(θ1)‖ = 0.0012586396145635088,

z(1)(θ1) =




0.000048262522943310304
0.00030995420364153217
0.0012189228030817488



, z0+e−A0θ1z(1)(θ1) =




0.000029655679191781402
−0.00022519102129263703

0.10121892280308176



.

On the second step we solve min-problem (4.6) and obtain thatθ2 = 0.4402879856552574, the controlu2(t) has two
switchingst(2)

1 = 0.2004299838427155,t(2)
2 = 0.3699645152688034 andu2(θ−0)= −1. Solving the Cauchy problem

ż(2)
1 = z(2)

2 , ż(2)
2 = z(2)

3 , ż(2)
3 = u2(t)+ (z(2)

3 )2, z(2)(0)= z0,

we have‖z(2)(θ2)‖ = 0.0001343033798545341,

z(2)(θ2) =




5.127351445259204×10−6

0.00013420467173401538
−4.6280911102543736×10−7



, z0+

2∑

i=1

e−A0θi z(i)(θi) =




−0.000024350532531642497
−0.00009078258026738536

0.10121845999397074



.

Let us give the results for the next steps.
Step 3: θ3 = 0.4384037935557613,t(3)

1 = 0.20043776078740605,t(3)
2 = 0.3690304275683015,u3(θ − 0) = −1;

‖z(3)(θ3)‖ = 0.0009325647933427833,

z(3)(θ3) =




−9.792500010265548×10−8

−1.5397800728669132×10−6

0.0009325635170166639



, z0+

3∑

i=1

e−A0θi z(i)(θi) =




0.00006584495625426516
−0.0005011617439320605

0.1021510235109874



.
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Step 4: θ4 = 0.4393448985461692,t(4)
1 = 0.20043626488760394,t(4)

2 = 0.36903320240519494,u4(θ − 0) = −1;
‖z(4)(θ4)‖ = 4.263169161312102×10−6,

z(4)(θ4) =




−7.2590783684969885×10−9

−2.1097266220377417×10−7

−4.257939541556036×10−6



, z0+

4∑

i=1

e−A0θi z(i)(θi) =




0.0000655194448057307
−0.0004995020125783636

0.10214676557144584



.

Step 5: θ5 = 0.4393436599430583,t(5)
1 = 0.20043626880368812,t(5)

2 = 0.3690347159894944,u6(θ − 0) = −1;
‖z(5)(θ5)‖ = 1.4946359520492283×10−6,

z(5)(θ5) =




4.013987086775414×10−11

1.2925790243183083×10−9

−1.4946353925912367×10−6



, z0+

5∑

i=1

e−A0θi z(i)(θi) =




0.00006537466766646282
−0.0004988440614156778

0.10214527093605325



.

Step 6: θ6 = 0.4393421462712416,t(6)
1 = 0.20043626867110573,t(6)

2 = 0.3690347063387003,u6(θ − 0) = −1;
‖z(6)(θ6)‖ = 9.421311485926116×10−9,

z(6)(θ6) =




−7.830901194625525×10−13

−2.3550444572138706×10−11

9.421282018821732×10−9



, z0+

6∑

i=1

e−A0θi z(i)(θi) =




0.00006537558648517041
−0.0004988482241323852

0.10214528035733526



.

Step 7: θ7 = 0.4393421560328203,t(7)
1 = 0.20043626867221803,t(7)

2 = 0.3690347065099603,u7(θ − 0) = −1;
‖z(7)(θ7)‖ = 1.7028474502025607×10−10,

z(7)(θ6) =




2.3586904919979293×10−12

1.3904432191117115×10−11

−1.696997281412649×10−10



, z0+

7∑

i=1

e−A0θi z(i)(θi) =




0.0000653755663572071
−0.0004988481356717085

0.10214528018763554



.

Step 8: θ8 = 0.43934215588800285,t(8)
1 = 0.20043626871864134,t(8)

2 = 0.3690347065688252,u8(θ−0)= −1;

z(8)(θ8) =




−2.1234430410059927×10−12

−7.045249222221441×10−12

−1.0134017695463914×10−11




and ‖z(8)(θ8)‖ = 1.2523692011686662×10−11.

Graphics of the components of the trajectoryz(8)(t) are presented on Fig. 1– 6.
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Figure 1. Graphic of thez(8)
1 (t) on the

segment [0, θ8].
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Figure 2. Graphic of thez(8)
2 (t) on the

segment [0, θ8].
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Figure 3. Graphic of thez(8)
3 (t) on the

segment [0, θ8].
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Figure 4. Graphic of thez(8)
1 (t) on the

segment [0.439, θ8].
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Figure 5. Graphic of thez(8)
2 (t) on the

segment [0.43933, θ8].
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Figure 6. Graphic of thez(8)
3 (t) on the

segment [0.439342155, θ8].
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