Multiplicity of Nodal Solutions for a Class of p-Laplacian Equations in \mathbb{R}^{N}

Yan-Hong Chen*
School of Mathematics and Computer Sciences
Fujian Normal University, Fuzhou, 350007, PR China

(Communicated by Irena Lasiecka)

Abstract

We consider a class of p-Laplacian equations in \mathbb{R}^{N}. By carefully analyzing the compactness of the Palais-Smale sequences and constructing Nehari manifolds, we prove that for every positive integer $m \geq 2$, there exists a nodal solution with at least $2 m$ nodal domains.

AMS Subject Classification: 35J05, 35J20, 35J60
Keywords: p-Laplacian equation, nodal solution, Nehari manifold

1 Introduction

In this article, we consider the following p-Laplacian equation in the entire space

$$
\left\{\begin{array}{l}
-\Delta_{p} u+(\lambda a(x)+1)|u|^{p-2} u=f(x, u), \quad x \in \mathbb{R}^{N} \\
u(x) \rightarrow 0, \quad|x| \rightarrow \infty
\end{array}\right.
$$

where $\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian operator with $p \geq 2$. We assume $\lambda \geq 0$, $N>p$, moreover, a and f satisfy the following conditions:
$\left(\mathrm{a}_{1}\right) a \in C\left(\mathbb{R}^{N}, \mathbb{R}\right), a(x) \geq 0, \Omega:=$ int $a^{-1}(0)$ is non-empty and has smooth boundary, $\bar{\Omega}=$ $a^{-1}(0)$.
(a_{2}) There exists $M_{0}>0$ such that

$$
\operatorname{mes}\left(\left\{x \in \mathbb{R}^{N}: a(x) \leq M_{0}\right\}\right)<\infty
$$

here mes (\cdot) denotes the Lebesgue measure on \mathbb{R}^{N}.

[^0](a_{3}) a is radially symmetric with respect to the first two coordinates, that is to say, if $\left(x_{1}, x_{2}, z_{3}, \cdots, z_{N}\right) \in \mathbb{R}^{N},\left(y_{1}, y_{2}, z_{3}, \cdots, z_{N}\right) \in \mathbb{R}^{N}$ and $\left|\left(x_{1}, x_{2}\right)\right|=\left|\left(y_{1}, y_{2}\right)\right|$, then
$$
a\left(x_{1}, x_{2}, z_{3}, \cdots, z_{N}\right)=a\left(y_{1}, y_{2}, z_{3}, \cdots, z_{N}\right) .
$$
($\left.\mathrm{f}_{1}\right) f \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}\right)$ and when $t \rightarrow 0, f(x, t)=o\left(|t|^{p-1}\right)$ uniformly in x.
$\left(\mathrm{f}_{2}\right)$ There are constants $a_{1}>0, a_{2}>0$ and $p<q<p^{*}:=\frac{N p}{N-p}$ such that
$$
|f(x, t)| \leq a_{1}\left(1+|t|^{q-1}\right), \quad\left|f_{t}(x, t)\right| \leq a_{2}\left(1+|t|^{q-2}\right)
$$
for every $x \in \mathbb{R}^{N}, t \in \mathbb{R}$.
(f_{3}) There exists $\mu>p$ such that for every $x \in \mathbb{R}^{N}, t \in \mathbb{R} \backslash\{0\}$,
$$
0<\mu F(x, t):=\mu \int_{0}^{t} f(x, s) d s \leq t f(x, t)
$$
(f_{4}) f is radially symmetric with respect to the first two coordinates, that is to say, if $\left(x_{1}, x_{2}, z_{3}, \cdots, z_{N}\right) \in \mathbb{R}^{N},\left(y_{1}, y_{2}, z_{3}, \cdots, z_{N}\right) \in \mathbb{R}^{N}$ and $\left|\left(x_{1}, x_{2}\right)\right|=\left|\left(y_{1}, y_{2}\right)\right|$, then
$$
f\left(x_{1}, x_{2}, z_{3}, \cdots, z_{N}\right)=f\left(y_{1}, y_{2}, z_{3}, \cdots, z_{N}\right) .
$$
(f5) $f(x, t)=-f(x,-t)$ for every $x \in \mathbb{R}^{N}, t \in \mathbb{R}$.
Under these assumptions, we have the following theorem.
Theorem 1.1. Suppose $\left(a_{1}\right)-\left(a_{3}\right)$ and $\left(f_{1}\right)-\left(f_{5}\right)$ hold. For any given integer $m>0$, there is $\Lambda_{m}>0$ such that problem $\left(P_{\lambda}\right)$ has a nodal solution with at least $2 m$ nodal domains for all $\lambda \geq \Lambda_{m}$.

For $p=2,\left(P_{\lambda}\right)$ turns into a Schrödinger equation of the form

$$
-\Delta u+(\lambda a(x)+1) u=f(x, u), \quad u \in H^{1}\left(\mathbb{R}^{N}\right),
$$

which has been studied extensively. In [3], Bartsch and Wang showed that (S_{λ}) has a positive and a negative solution. If f is odd, they proved that $\left(S_{\mathcal{\lambda}}\right)$ possesses $k(k \in \mathbb{N})$ pairs of nontrivial solutions. Moreover, Bartsch and Wang studied the general problem

$$
-\Delta u+b(x) u=f(x, u), \quad x \in \mathbb{R}^{N} .
$$

When f is odd, they got some existence and multiplicity results.
If $f(x, u)=|u|^{q-2} u$, Bartsch and Wang showed that $\left(S_{\lambda}\right)$ possesses multiple positive solutions in [4]. In [8], Furtado proved the existence and multiplicity of solutions with exactly two nodal domains for $\left(P_{\lambda}\right)$, he also studied the concentration behavior of these solutions as $\lambda \rightarrow \infty$.

To prove Theorem 1.1, we will use the Nehari manifold technique. By a group constructing method from [12], we consider a minimizing problem on a group-action invariant Nehari manifold and get a nodal solution with at least $2 m$ nodal domains when λ is large enough.

The paper is organized as follows. In Section 2, we give some preparation and analyze the compactness of Palais-Smale sequences. In Section 3, we prove Theorem 1.1. In the following, C will denote different constants in different places and $\|\cdot\|_{q}$ is the usual norm in $L^{q}\left(\mathbb{R}^{N}\right)$.

2 Preliminaries and compactness of Palais-Smale sequences

Let $W^{1, p}\left(\mathbb{R}^{N}\right)$ be the usual space endowed with the norm

$$
\|u\|_{W^{1, p}\left(\mathbb{R}^{N}\right)}=\left(\int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+|u|^{p}\right) d x\right)^{\frac{1}{p}}
$$

In the rest of this paper, we will use E_{λ} denote the space

$$
E:=\left\{u \in W^{1, p}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} a(x)|u|^{p} d x<\infty\right\}
$$

with norm

$$
\|u\|_{\lambda}=\left(\int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+(\lambda a(x)+1)|u|^{p}\right) d x\right)^{\frac{1}{p}}, \lambda \geq 0
$$

Condition $\left(\mathrm{a}_{1}\right)$ and the Sobolev theorem imply that the embedding $E_{\lambda} \hookrightarrow L_{l o c}^{q}\left(\mathbb{R}^{N}\right)$ is compact for all $p \leq q<p^{*}$. Define a functional $\Phi_{\lambda}: E_{\lambda} \rightarrow \mathbb{R}$ as follow

$$
\Phi_{\lambda}(u)=\frac{1}{p} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+(\lambda a(x)+1)|u|^{p}\right) d x-\int_{\mathbb{R}^{N}} F(x, u) d x=\frac{1}{p}\|u\|_{\lambda}^{p}-\int_{\mathbb{R}^{N}} F(x, u) d x .
$$

It is obvious that critical points of Φ_{λ} correspond to solutions of $\left(P_{\lambda}\right)$. By $\left(f_{1}\right)$ and $\left(f_{2}\right)$, $\Phi_{\lambda} \in C^{1}\left(E_{\lambda}, \mathbb{R}\right)$ for all $\lambda \geq 0$.

If a sequence $\left(u_{n}\right) \subset E_{\lambda}$ satisfies that $\Phi_{\lambda}\left(u_{n}\right) \rightarrow c$ for some $c \in \mathbb{R}$ and $\Phi_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, then $\left(u_{n}\right)$ is a $(P S)_{c}$-sequence of Φ_{λ}. We say Φ_{λ} satisfies the $(P S)_{c}$-condition if any $(P S)_{c}$-sequence of Φ_{λ} has a convergent subsequence.

For the space E_{λ}, we have the following proposition.
Proposition 2.1. E_{λ} is a reflexive Banach space.
Proof. Condition $\left(\mathrm{a}_{1}\right)$ and $\lambda \geq 0$ imply that the function

$$
\lambda a+1: \mathbb{R}^{N} \rightarrow \mathbb{R}: x \mapsto \lambda a(x)+1
$$

is positive and measurable. According to Theorem 1.29 ([11]), it holds that

$$
\varphi(X)=\int_{X}(\lambda a+1) d x, \quad X \in \mathfrak{B}
$$

is a measure on \mathfrak{B} which is the family of Borel sets in \mathbb{R}^{N} and

$$
\int_{\mathbb{R}^{N}} g d \varphi=\int_{\mathbb{R}^{N}} g(\lambda a+1) d x
$$

for every measurable g on \mathbb{R}^{N} with range in $[0, \infty]$.
For the measure φ, we define a space

$$
L^{p}(\varphi):=\left\{u \mid u \text { is a measurable function on } \mathbb{R}^{N} \text { and } \int_{\mathbb{R}^{N}}|u|^{p} d \varphi<\infty\right\}
$$

with norm

$$
\|u\|_{L^{p}(\varphi)}=\left(\int_{\mathbb{R}^{N}}|u|^{p} d \varphi\right)^{\frac{1}{p}}=\left(\int_{\mathbb{R}^{N}}(\lambda a+1)|u|^{p} d x\right)^{\frac{1}{p}}
$$

By Theorem 3.11 in [11], $L^{p}(\varphi)$ is a Banach space. Moreover, by Example 11.3 in [7], $L^{p}(\varphi)$ is reflexive for all $1<p<\infty$.

Assume $\left(u_{n}\right) \subset E_{\lambda}$ is a Cauchy sequence, that is to say $\left\|u_{n}-u_{m}\right\|_{\lambda} \rightarrow 0$ as $m, n \rightarrow \infty$. Then $\left\|\nabla u_{n}-\nabla u_{m}\right\|_{L^{p}\left(\mathbb{R}^{N}\right)} \rightarrow 0$ and $\left\|u_{n}-u_{m}\right\|_{L^{p}(\varphi)} \rightarrow 0$. Since $L^{p}\left(\mathbb{R}^{N}\right)$ and $L^{p}(\varphi)$ are complete, there exist u and v such that

$$
\begin{aligned}
\nabla u_{n} & \rightarrow u \in L^{p}\left(\mathbb{R}^{N}\right), \\
u_{n} & \rightarrow v \in L^{p}(\varphi)
\end{aligned}
$$

Since $L^{p}(\varphi) \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$,

$$
u_{n} \rightarrow v \in L^{p}\left(\mathbb{R}^{N}\right) .
$$

From the proof of the fact that $W^{1, p}\left(\mathbb{R}^{N}\right)$ is Banach space, we have $u=\nabla v$. So $v \in E_{\lambda}$ and $\left\|u_{n}-v\right\|_{\lambda} \rightarrow 0$. This proves that E_{λ} is complete.

Define

$$
T: E_{\lambda} \rightarrow L^{p}\left(\mathbb{R}^{N}\right) \times L^{p}(\varphi): u \mapsto(|\nabla u|, u)
$$

here $\|\cdot\|_{L^{p}\left(\mathbb{R}^{N}\right) \times L^{p}(\varphi)}:=\|\cdot\|_{L^{p}\left(\mathbb{R}^{N}\right)}+\|\cdot\|_{L^{p}(\varphi)}$. Then $\|\cdot\|_{E_{\lambda}}$ and $\|\cdot\|_{L^{p}\left(\mathbb{R}^{N}\right) \times L^{p}(\varphi)}$ are equivalent norms, so E_{λ} is equivalent to $T\left(E_{\lambda}\right)$ which is a closed subspace of $L^{p}\left(\mathbb{R}^{N}\right) \times L^{p}(\varphi)$. From Pettis theorem, $T\left(E_{\lambda}\right)$ is reflexive and so E_{λ} is reflexive.

The following proposition is the main conclusion of this section.
Proposition 2.2. Suppose $\left(a_{1}\right)-\left(a_{2}\right)$ and $\left(f_{1}\right)-\left(f_{3}\right)$ hold. Then for any $c \neq 0$ there exists $\Lambda_{c}>0$ such that Φ_{λ} satisfies the $(P S)_{c}$-condition for all $\lambda \geq \Lambda_{c}$.

The proof of Proposition 2.2 consists of a series of lemmas which occupy the rest of this section. The thoughts of proof for these lemmas are inspired by Lemma 2.3-2.5 in [4].

Lemma 2.3. Let K_{λ} be the set of critical points of Φ_{λ}. Then there exists $\sigma>0$ (independent of $\lambda \geq 0$) such that $\|u\|_{\lambda} \geq\|u\|_{W^{1, p}\left(\mathbb{R}^{N}\right)} \geq \sigma$ for all $u \in K_{\lambda} \backslash\{0\}$.

Proof. For any $\epsilon>0$, by $\left(\mathrm{f}_{1}\right)$, there exists $t \in[0,1]$, if $|u|<t$, then $|f(x, u)|<\epsilon|u|^{p-1}$, if $t<|u|<1$, by (f_{2}),

$$
f(x, u)<a_{1}\left(1+|u|^{q-1}\right)<2 a_{1}=t^{q-1} \frac{2 a_{1}}{t^{q-1}}<A_{\epsilon}|u|^{q-1}
$$

if $|u| \geq 1$, by $\left(f_{2}\right)$,

$$
f(x, u)<a_{1}\left(1+|u|^{q-1}\right)<2 a_{1}|u|^{q-1} .
$$

Thus, for any $\epsilon>0$, there exists $A_{\epsilon}>0$ such that

$$
\begin{equation*}
f(x, u) \leq \epsilon|u|^{p-1}+A_{\epsilon}|u|^{q-1}, \quad \forall x \in \mathbb{R}^{\mathbb{N}}, u \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

Choose $\epsilon=1 / 2$, then for $u \in K_{\lambda} \backslash\{0\}$,

$$
\begin{aligned}
0 & =\left\langle\Phi_{\lambda}^{\prime}(u), u\right\rangle \\
& =\int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+(\lambda a(x)+1)|u|^{p}\right) d x-\int_{\mathbb{R}^{N}} f(x, u) u d x \\
& \geq\|u\|_{\lambda}^{p}-\frac{1}{2} \int_{\mathbb{R}^{N}}|u|^{p} d x-C \int_{\mathbb{R}^{N}}|u|^{q} d x \\
& \geq \frac{1}{2}\|u\|_{\lambda}^{p}-C\|u\|_{q}^{q} \\
& \geq \frac{1}{2}\|u\|_{W^{1}, p\left(\mathbb{R}^{N}\right)}^{p}-C\|u\|_{W^{1, p}\left(\mathbb{R}^{N}\right)}^{q}
\end{aligned}
$$

where $C>0$ is independent of λ. Hence there exists $\sigma>0$ such that $\|u\|_{W^{1, p}\left(\mathbb{R}^{N}\right)} \geq \sigma$.
Lemma 2.4. There exists $c_{0}>0$ (independent of λ) such that if $\left(u_{n}\right)$ is a $(P S)_{c}$-sequence of Φ_{λ} then

$$
\limsup _{n \rightarrow \infty}\left\|u_{n}\right\|_{\lambda}^{p} \leq \frac{\mu p c}{\mu-p}
$$

and if $c \neq 0$, then $c \geq c_{0}$.
Proof. First we claim that if $\left(u_{n}\right)$ is a $(P S)_{c}$-sequence of Φ_{λ} then $\left(u_{n}\right)$ is bounded. In fact,

$$
\begin{aligned}
& c+o(1)+\left\|u_{n}\right\|_{\lambda} \cdot o(1) \\
& =\Phi_{\lambda}\left(u_{n}\right)-\frac{1}{\mu} \Phi_{\lambda}^{\prime}\left(u_{n}\right) u_{n} \\
& =\left(\frac{1}{p}-\frac{1}{\mu}\right) \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p}+(\lambda a(x)+1)\left|u_{n}\right|^{p}\right) d x-\int_{\mathbb{R}^{N}}\left(F\left(x, u_{n}\right)-\frac{1}{\mu} f\left(x, u_{n}\right) u_{n}\right) d x \\
& \geq\left(\frac{1}{p}-\frac{1}{\mu}\right) \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p}+(\lambda a(x)+1)\left|u_{n}\right|^{p}\right) d x \\
& =\frac{\mu-p}{\mu p}\left\|u_{n}\right\|_{\lambda}^{p}
\end{aligned}
$$

which implies that $\left(u_{n}\right)$ is bounded. By $\left(\mathrm{f}_{3}\right)$ we have

$$
\begin{aligned}
c & =\limsup _{n \rightarrow \infty}\left(\Phi_{\lambda}\left(u_{n}\right)-\frac{1}{\mu} \Phi_{\lambda}^{\prime}\left(u_{n}\right) u_{n}\right) \\
& =\limsup _{n \rightarrow \infty}\left(\left(\frac{1}{p}-\frac{1}{\mu}\right) \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p}+(\lambda a(x)+1)\left|u_{n}\right|^{p}\right) d x-\int_{\mathbb{R}^{N}}\left(F\left(x, u_{n}\right)-\frac{1}{\mu} f\left(x, u_{n}\right) u_{n}\right) d x\right) \\
& \geq \limsup _{n \rightarrow \infty}\left(\frac{1}{p}-\frac{1}{\mu}\right) \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p}+(\lambda a(x)+1)\left|u_{n}\right|^{p}\right) d x \\
& =\frac{\mu-p}{\mu p} \limsup _{n \rightarrow \infty}\left\|u_{n}\right\|_{\lambda}^{p} .
\end{aligned}
$$

According to (2.1), choosing $\epsilon=1 / 2$, then

$$
\begin{aligned}
\left\langle\Phi_{\lambda}^{\prime}(u), u\right\rangle & =\int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+(\lambda a(x)+1)|u|^{p}\right) d x-\int_{\mathbb{R}^{N}} f(x, u) u d x \\
& \geq \frac{1}{2}\|u\|_{\lambda}^{p}-C\|u\|_{\lambda}^{q} .
\end{aligned}
$$

So there exists $\sigma_{1}>0$ such that for all $\|u\|_{\lambda}<\sigma_{1}$

$$
\begin{equation*}
\frac{1}{4}\|u\|_{\lambda}^{p}<\left\langle\Phi_{\lambda}^{\prime}(u), u\right\rangle \tag{2.2}
\end{equation*}
$$

Set $c_{0}=\sigma_{1}^{p}(\mu-p) / \mu p$. If $c<c_{0}$, then

$$
\limsup _{n \rightarrow \infty}\left\|u_{n}\right\|_{\lambda}^{p} \leq \frac{\mu p c}{\mu-p}<\sigma_{1}^{p}
$$

Thus $\left\|u_{n}\right\|_{\lambda}<\sigma_{1}$ for n large enough. By (2.2),

$$
\frac{1}{4}\left\|u_{n}\right\|_{\lambda}^{p}<\left\langle\Phi_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=o(1)\left\|u_{n}\right\|_{\lambda}
$$

Then $\left\|u_{n}\right\|_{\lambda} \rightarrow 0$ as $n \rightarrow \infty$. Hence $\Phi_{\lambda}\left(u_{n}\right) \rightarrow 0$, i.e., $c=0$
Lemma 2.5. There exists $\delta_{0}>0$ such that any $(P S)_{c}$-sequence $\left(u_{n}\right)$ of Φ_{λ} satisfies

$$
\liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{q}^{q} \geq \delta_{0} c
$$

Proof. The proof is similar to Lemma 5.1 of [3]. For any u, by $\left(f_{3}\right)$ and (2.1), we have

$$
\begin{aligned}
\frac{1}{p} f(x, u) u-F(x, u) & \leq \frac{1}{p} f(x, u) u \\
& \leq \frac{\epsilon}{p}|u|^{p}+\frac{A_{\epsilon}}{p}|u|^{q}
\end{aligned}
$$

If $\left(u_{n}\right)$ is a $(P S)_{c}$-sequence of Φ_{λ}, then

$$
\begin{aligned}
c & =\lim _{n \rightarrow \infty}\left(\Phi_{\lambda}\left(u_{n}\right)-\frac{1}{p} \Phi_{\lambda}^{\prime}\left(u_{n}\right) u_{n}\right) \\
& =\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\frac{1}{p} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) d x \\
& \leq \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\frac{\epsilon}{p}\left|u_{n}\right|^{p}+\frac{A_{\epsilon}}{p}\left|u_{n}\right|^{q}\right) d x \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{\epsilon}{p}\left\|u_{n}\right\|_{\lambda}^{p}+\frac{A_{\epsilon}}{p} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{q} d x\right)
\end{aligned}
$$

By Lemma 2.4 it holds that

$$
\begin{aligned}
c & \leq \frac{\epsilon}{p} \cdot \frac{\mu p c}{\mu-p}+\frac{A_{\epsilon}}{p} \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{q} d x \\
& \leq \frac{\mu \epsilon c}{\mu-p}+\frac{A_{\epsilon}}{p} \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{q} d x .
\end{aligned}
$$

That is to say,

$$
c-\frac{\mu \epsilon c}{\mu-p} \leq \frac{A_{\epsilon}}{p} \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{v}}\left|u_{n}\right|^{q} d x
$$

Then $\delta_{0}=\left(1-\frac{\mu \epsilon}{\mu-p}\right) \cdot \frac{p}{A_{\epsilon}}$ is the required constant.

Lemma 2.6. For any $\epsilon>0$ there exists $\Lambda_{\epsilon}>0, R_{\epsilon}>0$ such that if $\left(u_{n}\right)$ is a $(P S)_{c}$-sequence of Φ_{λ} and $\lambda \geq \Lambda_{\epsilon}$ then

$$
\limsup _{n \rightarrow \infty}\left\|\left.u_{n}\right|_{B_{R_{\epsilon}}^{c}}\right\|_{q}^{q} \leq \epsilon
$$

where $B_{R_{\epsilon}}^{c}=\left\{x \in \mathbb{R}^{N}:|x| \geq R_{\epsilon}\right\}$.
Proof. For $R>0$, we set

$$
\begin{aligned}
& A(R):=\left\{x \in \mathbb{R}^{N}:|x|>R, a(x) \geq M_{0}\right\}, \\
& B(R):=\left\{x \in \mathbb{R}^{N}:|x|>R, a(x)<M_{0}\right\} .
\end{aligned}
$$

According to Lemma 2.4,

$$
\begin{aligned}
\int_{A(R)}\left|u_{n}\right|^{p} d x & \leq \frac{1}{\lambda M_{0}+1} \int_{\mathbb{R}^{N}}(\lambda a(x)+1)\left|u_{n}\right|^{p} d x \\
& \leq \frac{1}{\lambda M_{0}+1} \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p}+(\lambda a(x)+1)\left|u_{n}\right|^{p}\right) d x \\
& \leq \frac{1}{\lambda M_{0}+1}\left(\frac{\mu p c}{\mu-p}\right) \rightarrow 0, \quad \text { as } \lambda \rightarrow \infty .
\end{aligned}
$$

Choosing s, s^{\prime} such that $p s<p^{*}, 1 / s+1 / s^{\prime}=1$. Applying Hölder inequality and (a_{2}), we have

$$
\begin{aligned}
\int_{B(R)}\left|u_{n}\right|^{p} d x & \leq\left(\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p s} d x\right)^{1 / s}\left(\int_{B(R)} d x\right)^{1 / s^{\prime}} \\
& \leq C\left\|u_{n}\right\|_{\lambda}^{p} \cdot(\operatorname{mes}(B(R)))^{1 / s^{\prime}} \rightarrow 0, \quad \text { as } R \rightarrow \infty
\end{aligned}
$$

Setting $\theta=\frac{N(q-p)}{p q}$, the Gagliardo-Nirenberg inequality yields

$$
\begin{aligned}
\int_{B_{R}^{c}}\left|u_{n}\right|^{q} d x & \leq C\left\|\nabla u_{n}\left|B_{R}^{c}\left\|_{p}^{\theta q} \cdot\right\| u_{n}\right| B_{R}^{c}\right\|_{p}^{(1-\theta) q} \\
& \leq C\left\|u_{n}\right\|_{\lambda}^{\theta q}\left(\int_{A(R)}\left|u_{n}\right|^{p} d x+\int_{B(R)}\left|u_{n}\right|^{p} d x\right)^{(1-\theta) q / p} \\
& \leq C\left(\frac{\mu p c}{\mu-p}\right)^{\theta q / p}\left(\int_{A(R)}\left|u_{n}\right|^{p} d x+\int_{B(R)}\left|u_{n}\right|^{p} d x\right)^{(1-\theta) q / p} .
\end{aligned}
$$

The first summand on the right can be arbitrarily small if λ is large. The second summand on the right will be arbitrarily small if R is large by $\left(\mathrm{a}_{2}\right)$. This completes the proof.

The next two results will overcome the lack of Hilbertian structure.
Lemma 2.7. (Lemma 3 of [1]) Set $M \geq 1, p \geq 2$ and $A(y)=\left.|y|\right|^{p-2} y, y \in \mathbb{R}^{M}$. Consider a sequence of vector functions $\eta_{n}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ such that $\left(\eta_{n}\right) \subset\left(L^{p}\left(\mathbb{R}^{N}\right)\right)^{M}$ and $\eta_{n}(x) \rightarrow 0$ for a.e. $x \in \mathbb{R}^{N}$. Then, if there exists $M>0$ such that

$$
\int_{\mathbb{R}^{N}}\left|\eta_{n}\right|^{p} d x \leq M \quad \text { for all } n \in \mathbb{N},
$$

then we have

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|A\left(\eta_{n}\right)+A(\vartheta)-A\left(\eta_{n}+\vartheta\right)\right|^{\frac{p}{p-1}} d x=0
$$

for each $\vartheta \in\left(L^{p}\left(\mathbb{R}^{N}\right)\right)^{M}$.
Remark 2.8. From the proof of the Lemma 2.7, we can conclude that if

$$
\int_{\mathbb{R}^{N}}(\lambda a(x)+1)\left|\eta_{n}\right|^{p} d x \leq M \quad \text { for all } n \in \mathbb{N}
$$

then for each $\vartheta \in\left(L^{p}(\varphi)\right)^{M}$,

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}(\lambda a(x)+1)\left|A\left(\eta_{n}\right)+A(\vartheta)-A\left(\eta_{n}+\vartheta\right)\right|^{\frac{p}{p-1}} d x=0
$$

Lemma 2.9. Let $\left(u_{n}\right)$ be a $(P S)_{c}$-sequence of Φ_{λ}, then, up to a sequence, $u_{n} \rightharpoonup u$ in E_{λ} and u is a weak solution of $\left(P_{\lambda}\right)$. Moreover, $u_{n}^{1}=u_{n}-u$ is a $(P S)_{c^{\prime}}$-sequence of Φ_{λ}, here $c^{\prime}=c-\Phi_{\lambda}(u)$.

Proof. First, $\left(u_{n}\right)$ is bounded in E_{λ} by Lemma 2.4, hence there is a subsequence of $\left(u_{n}\right)$ such that

$$
\begin{align*}
& u_{n} \rightharpoonup u \in E_{\lambda}, \quad \text { as } n \rightarrow \infty, \\
& u_{n} \rightarrow u \in L_{l o c}^{q}\left(\mathbb{R}^{N}\right), \quad p \leq q<p^{*}, \tag{2.3}\\
& u_{n}(x) \rightarrow u(x) \quad \text { a.e. } x \in \mathbb{R}^{N} .
\end{align*}
$$

We claim that

$$
\begin{equation*}
\nabla u_{n}(x) \rightarrow \nabla u(x) \quad \text { a.e. } x \in \mathbb{R}^{N} . \tag{2.4}
\end{equation*}
$$

In fact, define $P_{n}: \mathbb{R}^{N} \rightarrow R$ as follow

$$
\begin{equation*}
P_{n}(x)=\left(\left|\nabla u_{n}(x)\right|^{p-2} \nabla u_{n}(x)-|\nabla u(x)|^{p-2} \nabla u(x)\right) \nabla\left(u_{n}(x)-u(x)\right) \tag{2.5}
\end{equation*}
$$

and $K \subset \mathbb{R}^{N}$ is a compact subset. For any given $\epsilon>0$, set

$$
K_{\epsilon}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, K) \leq \epsilon\right\}
$$

Choose a cut-off function $\psi \in C^{\infty}\left(\mathbb{R}^{N}\right)$ such that $0 \leq \psi \leq 1, \psi \equiv 1$ in K and $\psi \equiv 0$ in $\mathbb{R}^{N} \backslash K_{\epsilon}$, then by the definition of P_{n} we have

$$
\begin{align*}
0 \leq \int_{K} P_{n} d x \leq & \int_{\mathbb{R}^{N}} P_{n} \psi d x \\
= & \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{p} \psi d x-\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{p-2}\left(\nabla u_{n} \cdot \nabla u\right) \psi d x \tag{2.6}\\
& +\int_{\mathbb{R}^{N}}|\nabla u|^{p-2}\left(\nabla u \cdot \nabla\left(u-u_{n}\right)\right) \psi d x .
\end{align*}
$$

Since $\left(\psi u_{n}\right)$ is bounded in E_{λ} and $\Phi_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$, it holds that

$$
\lim _{n \rightarrow \infty}\left\langle\Phi_{\lambda}^{\prime}\left(u_{n}\right), \psi u_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle\Phi_{\lambda}^{\prime}\left(u_{n}\right), \psi u\right\rangle=0
$$

That is to say,

$$
\begin{align*}
o(1)= & \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p} \psi+\left|\nabla u_{n}\right|^{p-2}\left(\nabla u_{n} \cdot \nabla \psi\right) u_{n}+(\lambda a(x)+1)\left|u_{n}\right|^{p} \psi\right) d x \tag{2.7}\\
& -\int_{\mathbb{R}^{N}} f\left(x, u_{n}\right) \psi u_{n} d x
\end{align*}
$$

and

$$
\begin{align*}
o(1)= & \int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p-2}\left(\nabla u_{n} \cdot \nabla \psi\right) u+\left|\nabla u_{n}\right|^{p-2}\left(\nabla u_{n} \cdot \nabla u\right) \psi\right) d x \\
& +\int_{\mathbb{R}^{N}}(\lambda a(x)+1)\left|u_{n}\right|^{p-2} u_{n} u \psi d x-\int_{\mathbb{R}^{N}} f\left(x, u_{n}\right) \psi u d x . \tag{2.8}
\end{align*}
$$

Up to a subsequence, we can assume that $\psi u_{n} \rightharpoonup \psi u$ in E_{λ}, so

$$
\lim _{n \rightarrow \infty}\left\langle\Phi_{\lambda}^{\prime}(u), \psi u-\psi u_{n}\right\rangle=0
$$

That is

$$
\begin{align*}
o(1)= & \int_{\mathbb{R}^{N}}|\nabla u|^{p-2} \nabla u \cdot \nabla\left(u-u_{n}\right) \psi d x+\int_{\mathbb{R}^{N}}|\nabla u|^{p-2} \nabla u \cdot \nabla \psi\left(u-u_{n}\right) d x \tag{2.9}\\
& +\int_{\mathbb{R}^{N}}(\lambda a(x)+1)|u|^{p-2} u\left(u-u_{n}\right) \psi d x-\int_{\mathbb{R}^{N}} f(x, u) \psi\left(u-u_{n}\right) d x
\end{align*}
$$

By (2.6)-(2.9) and the fact that $\psi \equiv 0$ in $\mathbb{R}^{N} \backslash K_{\epsilon}$, we have

$$
\begin{align*}
0 \leq & \int_{K} P_{n} d x \\
\leq & \int_{K_{\epsilon}} f\left(x, u_{n}\right) \psi u_{n} d x-\int_{K_{\epsilon}}\left|\nabla u_{n}\right|^{p-2}\left(\nabla u_{n} \cdot \nabla \psi\right) u_{n} d x-\int_{K_{\epsilon}}(\lambda a(x)+1)\left|u_{n}\right|^{p} \psi d x \\
& +\int_{K_{\epsilon}}\left|\nabla u_{n}\right|^{p-2}\left(\nabla u_{n} \cdot \nabla \psi\right) u d x+\int_{K_{\epsilon}}(\lambda a(x)+1)\left|u_{n}\right|^{p-2} u_{n} u \psi d x-\int_{K_{\epsilon}} f\left(x, u_{n}\right) \psi u d x \\
& -\int_{\mathbb{R}^{N}}|\nabla u|^{p-2}(\nabla u \cdot \nabla \psi)\left(u-u_{n}\right) d x-\int_{K_{\epsilon}}(\lambda a(x)+1)|u|^{p-2} u\left(u-u_{n}\right) \psi d x \\
& +\int_{K_{\epsilon}} f(x, u) \psi\left(u-u_{n}\right) d x+o(1) \\
= & \int_{K_{\epsilon}}\left|\nabla u_{n}\right|^{p-2}\left(\nabla u_{n} \cdot \nabla \psi\right)\left(u-u_{n}\right) d x-\int_{\mathbb{R}^{N}}|\nabla u|^{p-2}(\nabla u \cdot \nabla \psi)\left(u-u_{n}\right) d x \\
& +\int_{K_{\epsilon}}(\lambda a(x)+1)\left(\left|u_{n}\right|^{p-2} u_{n} u-\left|u_{n}\right|^{p}\right) \psi d x+\int_{K_{\epsilon}}(\lambda a(x)+1)\left(|u|^{p-2} u u_{n}-|u|^{p}\right) \psi d x \\
& +\int_{K_{\epsilon}} f\left(x, u_{n}\right) \psi\left(u_{n}-u\right) d x+\int_{K_{\epsilon}} f(x, u) \psi\left(u-u_{n}\right) d x+o(1) \\
:= & A_{1}+A_{2}+A_{3}+A_{4}+A_{5}+A_{6}+o(1), \quad a s n \rightarrow \infty, \tag{2.10}
\end{align*}
$$

where

$$
\begin{aligned}
& A_{1}=\int_{K_{\epsilon}}\left|\nabla u_{n}\right|^{p-2}\left(\nabla u_{n} \cdot \nabla \psi\right)\left(u-u_{n}\right) d x \\
& A_{2}=\int_{K_{\epsilon}}|\nabla u|^{p-2}(\nabla u \cdot \nabla \psi)\left(u-u_{n}\right) d x \\
& A_{3}=\int_{K_{\epsilon}}(\lambda a(x)+1)\left(\left|u_{n}\right|^{p-2} u_{n} u-\left|u_{n}\right|^{p}\right) \psi d x \\
& A_{4}=\int_{K_{\epsilon}}(\lambda a(x)+1)\left(|u|^{p-2} u u_{n}-|u|^{p}\right) \psi d x \\
& A_{5}=\int_{K_{\epsilon}} f\left(x, u_{n}\right) \psi\left(u_{n}-u\right) d x \\
& A_{6}=\int_{K_{\epsilon}} f(x, u) \psi\left(u-u_{n}\right) d x .
\end{aligned}
$$

Since $\left(u_{n}\right)$ is bounded in E_{λ}, thus $u_{n} \rightarrow u \in L^{p}\left(K_{\epsilon}\right)$. So we have

$$
\begin{aligned}
\left|A_{1}\right| & \leq|\nabla \psi|_{\infty} \int_{K_{\epsilon}}\left|\nabla u_{n}\right|^{p-1}\left|u_{n}-u\right| d x \\
& \leq|\nabla \psi|_{\infty}\left\|u_{n}\right\|_{\lambda}^{p-1}\left\|u_{n}-u\right\|_{p, K_{\epsilon}} \\
& =o(1), \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

In the same way, $\lim _{n \rightarrow \infty} A_{2}=0$. The Hölder inequality, $a(x) \psi$ is bounded in K_{ϵ} and $u_{n} \rightarrow u$ in $L^{p}\left(K_{\epsilon}\right)$ imply that

$$
\begin{aligned}
\left|A_{3}\right| & =\left.\left|\int_{K_{\epsilon}}(\lambda a(x)+1) \psi\right| u_{n}\right|^{p-2} u_{n}\left(u-u_{n}\right) d x \mid \\
& \leq C\left(\int_{K_{\epsilon}}\left|u_{n}\right|^{p} d x\right)^{(p-1) / p}\left(\int_{K_{\epsilon}}\left|u-u_{n}\right|^{p} d x\right)^{1 / p} \\
& \leq C\left\|u_{n}\right\|_{\lambda}^{p-1}\left\|u_{n}-u\right\|_{p, K_{\epsilon}} \\
& =o(1), \quad \operatorname{as} n \rightarrow \infty .
\end{aligned}
$$

Similarly, $\lim _{n \rightarrow \infty} A_{4}=0$. As for A_{5},

$$
\begin{aligned}
\left|A_{5}\right| & \leq\left(\int_{K_{\epsilon}}\left|f\left(x, u_{n}\right)\right|^{q /(q-1)} d x\right)^{(q-1) / q}\left(\int_{K_{\epsilon}}\left|u_{n}-u\right|^{q} d x\right)^{1 / q} \\
& \leq C\left(\int_{K_{\epsilon}}\left(1+u_{n}^{q-1}\right)^{q /(q-1)} d x\right)^{(q-1) / q}\left(\int_{K_{\epsilon}}\left|u_{n}-u\right|^{q} d x\right)^{1 / q} \\
& \leq C\left(\int_{K_{\epsilon}}\left(1+\left|u_{n}\right|^{q}\right) d x\right)^{(q-1) / q}\left(\int_{K_{\epsilon}}\left|u_{n}-u\right|^{q} d x\right)^{1 / q} \\
& \leq\left(C+C\left\|u_{n}\right\|_{\lambda}^{q-1}\right)\left\|u_{n}-u\right\|_{q, K_{\epsilon}} \\
& =o(1), \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Similarly, $\lim _{n \rightarrow \infty} A_{6}=0$. Therefore, we can rewrite (2.10) as

$$
0 \leq \int_{K}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u\right) \cdot \nabla\left(u_{n}-u\right) d x \rightarrow 0, \quad \text { as } n \rightarrow \infty .
$$

Using the fact that $\left(|a|^{p-2} a-|b|^{p-2} b\right)(a-b) \geq C_{p}|a-b|^{p}$ for every $a, b \in \mathbb{R}^{N}([13]$, p.210 $)$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{K}\left|\nabla u_{n}-\nabla u\right|^{p} d x=0 \tag{2.11}
\end{equation*}
$$

Since K is arbitrary, (2.4) holds.
For any $\omega \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, we set $K=\operatorname{supp}(\omega)$. From the proof of (2.11), it holds that $\nabla u_{n} \rightarrow$ ∇u and $u_{n} \rightarrow u$ in $L^{p}(K)$. Thus

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \omega d x & =\lim _{n \rightarrow \infty} \int_{K}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \omega d x \\
& =\int_{K}|\nabla u|^{p-2} \nabla u \omega d x \\
& =\int_{\mathbb{R}^{N}}|\nabla u|^{p-2} \nabla u \omega d x
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}(\lambda a(x)+1)\left|u_{n}\right|^{p-2} u_{n} \omega d x & =\lim _{n \rightarrow \infty} \int_{K}(\lambda a(x)+1)\left|u_{n}\right|^{p-2} u_{n} \omega d x \\
& =\int_{K}(\lambda a(x)+1)|u|^{p-2} u \omega d x \\
& =\int_{\mathbb{R}^{N}}(\lambda a(x)+1)|u|^{p-2} u \omega d x .
\end{aligned}
$$

By $\left(f_{2}\right)$ we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} f\left(x, u_{n}\right) \omega d x & =\lim _{n \rightarrow \infty} \int_{K} f\left(x, u_{n}\right) \omega d x \\
& =\int_{K} f(x, u) \omega d x \\
& =\int_{\mathbb{R}^{N}} f(x, u) \omega d x .
\end{aligned}
$$

Hence

$$
\left\langle\Phi_{\lambda}^{\prime}(u), \omega\right\rangle=\lim _{n \rightarrow \infty}\left\langle\Phi_{\lambda}^{\prime}\left(u_{n}\right), \omega\right\rangle, \quad \forall \omega \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) .
$$

Since $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is dense in E_{λ}, for any $\omega \in E_{\lambda}$, we have

$$
\begin{equation*}
\left\langle\Phi_{\lambda}^{\prime}(u), \omega\right\rangle=\lim _{n \rightarrow \infty}\left\langle\Phi_{\lambda}^{\prime}\left(u_{n}\right), \omega\right\rangle=0 \tag{2.12}
\end{equation*}
$$

i.e., $\Phi_{\lambda}^{\prime}(u)=0$. Therefore u is a weak solution of $\left(P_{\lambda}\right)$.

Next we consider the new sequence $u_{n}^{1}=u_{n}-u$ and we will show that

$$
\begin{equation*}
\Phi_{\lambda}\left(u_{n}^{1}\right) \rightarrow c-\Phi_{\lambda}(u), \quad \text { as } n \rightarrow \infty \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{\lambda}^{\prime}\left(u_{n}^{1}\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{2.14}
\end{equation*}
$$

We observe that

$$
\begin{align*}
\Phi_{\lambda}\left(u_{n}^{1}\right)= & \Phi_{\lambda}\left(u_{n}\right)-\Phi_{\lambda}(u)+\frac{1}{p} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}-\left|\nabla u_{n}\right|^{p}+\left|\nabla u_{n}^{1}\right|^{p}\right) d x \\
& +\frac{1}{p} \int_{\mathbb{R}^{N}}(\lambda a(x)+1)\left(|u|^{p}-\left|u_{n}\right|^{p}+\left|u_{n}^{1}\right|^{p}\right) d x \tag{2.15}\\
& +\int_{\mathbb{R}^{N}}\left(F\left(x, u_{n}^{1}+u\right)-F\left(x, u_{n}^{1}\right)-F(x, u)\right) d x .
\end{align*}
$$

According to Brézis-Lieb Lemma ([14], Lemma 1.32), we can rewrite (2.15) as

$$
\begin{equation*}
\Phi_{\lambda}\left(u_{n}^{1}\right)=\Phi_{\lambda}\left(u_{n}\right)-\Phi_{\lambda}(u)+\int_{\mathbb{R}^{N}}\left(F\left(x, u_{n}^{1}+u\right)-F\left(x, u_{n}^{1}\right)-F(x, u)\right) d x+o(1) \tag{2.16}
\end{equation*}
$$

For any $\epsilon>0$, choose $R(\epsilon)>0$ such that

$$
\begin{equation*}
\int_{B_{R(\epsilon)}^{c}}|u|^{p} d x \leq \epsilon, \int_{B_{R(\epsilon)}^{c}}|u|^{q} d x \leq \epsilon \tag{2.17}
\end{equation*}
$$

where $B_{R(\epsilon)}^{c}=\left\{x \in \mathbb{R}^{N}:|x| \geq R(\epsilon)\right\}$. By $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{3}\right)$, we have

$$
\begin{aligned}
& \int_{B_{R(\epsilon)}^{c}}\left|F\left(x, u_{n}^{1}+u\right)-F\left(x, u_{n}^{1}\right)\right| d x \\
& \leq \int_{B_{R(\epsilon)}^{c}}\left|f\left(x, u_{n}^{1}+\xi u\right)\right| \cdot|u| d x \\
& \leq C \int_{B_{R(\epsilon)}^{c}}\left(\left(\left|u_{n}^{1}\right|+|u|\right)^{p-1}+\left(\left|u_{n}^{1}\right|+|u|\right)^{q-1}\right) \cdot|u| d x \\
& \leq C \int_{B_{R(\epsilon)}^{c}}\left(\left|u_{n}^{1}\right|^{p-1}+|u|^{p-1}+\left(\left|u_{n}^{1}\right|+|u|\right)^{q-1}\right) \cdot|u| d x \\
& \leq C\left\|u_{n}^{1}\right\|_{L^{p}\left(B_{R(\epsilon)}^{c}\right)}^{p-1} \cdot\|u\|_{L^{p}\left(B_{R(\epsilon)}^{c}\right)}+C\|u\|_{L^{p}\left(B_{R(\epsilon)}^{c}\right)}^{p} \\
& \quad+C\left(\int_{B_{R(\epsilon)}^{c}}\left(\left|u_{n}^{1}\right|+|u|\right)^{q} d x\right)^{(q-1) / q}\left(\int_{B_{R(\epsilon)}^{c}}|u|^{q} d x\right)^{1 / q} \\
& =O(\epsilon)
\end{aligned}
$$

By (2.1) and (f_{3}),

$$
\int_{B_{R(\epsilon)}^{c}} F(x, u) d x \leq C \int_{B_{R(\epsilon)}^{c}}\left(|u|^{p}+|u|^{q}\right) d x=O(\epsilon)
$$

Since ϵ is arbitrary, we obtain (2.13).
For any $\omega \in E_{\lambda}$, it holds that

$$
\left\langle\Phi_{\lambda}^{\prime}\left(u_{n}^{1}\right), \omega\right\rangle=\left\langle\Phi_{\lambda}^{\prime}\left(u_{n}\right), \omega\right\rangle-\left\langle\Phi_{\lambda}^{\prime}(u), \omega\right\rangle-\int_{\mathbb{R}^{N}}\left(f\left(x, u_{n}^{1}\right)-f\left(x, u_{n}\right)+f(x, u)\right) \omega d x+A+B
$$

where

$$
\begin{aligned}
A & :=\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}^{1}\right|^{p-2} \nabla u_{n}^{1}+|\nabla u|^{p-2} \nabla u-\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\right) \nabla \omega d x, \\
B & :=\int_{\mathbb{R}^{N}}(\lambda a(x)+1)\left(\left|u_{n}^{1}\right|^{p-2} u_{n}^{1}+|u|^{p-2} u-\left|u_{n}\right|^{p-2} u_{n}\right) \omega d x .
\end{aligned}
$$

By Hölder inequality and Lemma 2.7, set $\eta_{n}=\nabla u_{n}^{1}$ and $\vartheta=\nabla u$, we have

$$
\begin{aligned}
|A| & \leq\left(\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}^{1}\right|^{p-2} \nabla u_{n}^{1}+|\nabla u|^{p-2} \nabla u-\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\right)^{\frac{p}{p-1}} d x\right)^{\frac{p-1}{p}}\|\nabla \omega\|_{p} \\
& \leq o(1)\|\omega\|_{\lambda}, \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Choose $\eta_{n}=u_{n}^{1}$ and $\vartheta=u$, by Hölder inequality and Remark 2.8, it holds that

$$
\begin{aligned}
|B| & \leq\left(\int_{\mathbb{R}^{N}}(\lambda a(x)+1)\left(\left|u_{n}^{1}\right|^{p-2} u_{n}^{1}+|u|^{p-2} u-\left|u_{n}\right|^{p-2} u_{n}\right)^{\frac{p}{p-1}} d x\right)^{\frac{p-1}{p}}\left(\int_{\mathbb{R}^{N}}(\lambda a(x)+1)|\omega|^{p} d x\right)^{\frac{1}{p}} \\
& \leq o(1)\|\omega\|_{\lambda}, \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore, in order to obtain (2.14), by (2.12) we only need to show

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(f\left(x, u_{n}^{1}\right)-f\left(x, u_{n}\right)+f(x, u)\right) \omega d x=0 \tag{2.18}
\end{equation*}
$$

For any $\epsilon>0$, choose $R(\epsilon)>0$ such that

$$
\left(\int_{B_{R(\epsilon)}^{c}}|u|^{p} d x\right)^{1 / p} \leq \epsilon, \quad\left(\int_{B_{R(\epsilon)}^{c}}|u|^{q} d x\right)^{1 / q} \leq \epsilon
$$

Thus

$$
\begin{aligned}
\int_{B_{R(\epsilon)}^{c}}|f(x, u) \omega| d x & \leq C \int_{B_{R(\epsilon)}^{c}}\left(|u|^{p-1}+|u|^{q-1}\right)|\omega| d x \\
& \leq C \cdot \epsilon^{p-1} \cdot\|\omega\|_{\lambda}+C \cdot \epsilon^{q-1} \cdot\|\omega\|_{\lambda}
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{B_{R(\epsilon)}^{c}}\left|f\left(x, u_{n}^{1}\right)-f\left(x, u_{n}^{1}+u\right)\right| \cdot|\omega| d x \\
& \leq \int_{B_{R(\epsilon)}^{c}}\left|f_{t}\left(x, u_{n}^{1}+\xi u\right)\right| \cdot|u| \cdot|\omega| d x \\
& \leq C \int_{B_{R(\epsilon)}^{c}}\left(\left(\left|u_{n}^{1}\right|+|u|\right)^{p-2}+\left(\left|u_{n}^{1}\right|+|u|\right)^{q-2}\right) \cdot|u| \cdot|\omega| d x \\
& \leq C \int_{B_{R(\epsilon)}^{c}}\left(\left|u_{n}^{1}\right|^{p-2}+|u|^{p-2}+\left|u_{n}^{1}\right|^{q-2}+|u|^{q-2}\right) \cdot|u| \cdot|\omega| d x \\
& \leq C\left\|u_{n}^{1}\right\|_{L^{p}\left(B_{R(\epsilon)}^{c}\right.}^{p-2} \cdot\|u\|_{L^{p}\left(B_{R(\epsilon)}^{c}\right)}^{p} \cdot\|\omega\|_{\lambda}+C\|u\|_{L^{p}\left(B_{R(\epsilon)}^{c}\right.}^{p-1} \cdot\|\omega\|_{\lambda} \\
& \quad+C\left\|u_{n}^{1}\right\|_{L^{q}\left(B_{R(\epsilon)}^{c}\right)}^{q-2} \cdot\|u\|_{L^{q}\left(B_{R(\epsilon)}^{c}\right)}^{c} \cdot\|\omega\|_{\lambda}+C\|u\|_{L^{q}\left(B_{R(\epsilon)}^{c}\right)}^{q-1} \cdot\|\omega\|_{\lambda} \\
& \leq C \cdot \epsilon \cdot\|\omega\|_{\lambda}+C \cdot \epsilon^{p-1} \cdot\|\omega\|_{\lambda}+C \cdot \epsilon^{q-1} \cdot\|\omega\|_{\lambda} .
\end{aligned}
$$

By Lebesgue's Dominated Convergence Theorem, it holds that

$$
\lim _{n \rightarrow \infty} \int_{B_{R(\epsilon)}}\left(f\left(x, u_{n}^{1}\right)-f\left(x, u_{n}\right)+f(x, u)\right) \omega d x=0 .
$$

Since ϵ is arbitrary, we obtain (2.18). This completes the proof.
Proof of Proposition 2.2 Choose $0<\epsilon<\delta_{0} c_{0} / 2$, here $c_{0}>0$ is given by Lemma 2.4 and $\delta_{0}>0$ is given by Lemma 2.5. According to Lemma 2.6, we choose $\Lambda_{\epsilon}>0$ and $R_{\epsilon}>0$, then $\Lambda_{c}=\Lambda_{\epsilon}$ is required. Considering a $(P S)_{c}$-sequence $\left(u_{n}\right)$ of Φ_{λ} where $\lambda \geq \Lambda_{c}$ and $c \neq 0$. By Lemma 2.9, $u_{n}^{1}=u_{n}-u$ is a $(P S)_{c^{\prime}}$-sequence of Φ_{λ} where $c^{\prime}=c-\Phi_{\lambda}(u)$.

Assume $c^{\prime} \neq 0$, then by Lemma 2.4, we have $c^{\prime} \geq c_{0}>0$. By Lemma 2.5,

$$
\liminf _{n \rightarrow \infty}\left\|u_{n}^{1}\right\|_{q}^{q} \geq \delta_{0} c^{\prime} \geq \delta_{0} c_{0} .
$$

Lemma 2.6 implies that

$$
\underset{n \rightarrow \infty}{\limsup }\left\|u_{n}^{1} \mid B_{R(\epsilon)}^{c}\right\|_{q}^{q} \leq \epsilon<\frac{\delta_{0} c_{0}}{2} .
$$

Assume that $u_{n}^{1} \rightharpoonup u^{1} \in E_{\lambda}$. By the definition of $u_{n}^{1}, u^{1}=0$. Then

$$
\begin{aligned}
\delta_{0} c_{0} & \leq \liminf _{n \rightarrow \infty}\left\|u_{n}^{1}\right\|_{q}^{q} \\
& \leq \limsup _{n \rightarrow \infty}\left\|u_{n}^{1}\right\|_{q}^{q} \\
& <\limsup _{n \rightarrow \infty}\left\|\left.u_{n}^{1}\left|B_{R(\epsilon)}^{c} \|_{q}^{q}+\lim _{n \rightarrow \infty} \int_{B_{R(\epsilon)}}\right| u_{n}^{1}\right|^{q} d x\right. \\
& \leq \frac{\delta_{0} c_{0}}{2},
\end{aligned}
$$

a contradiction. Therefore the assumption does not hold and so $c^{\prime}=0$.
From the proof of Lemma 2.4, we have $u_{n}^{1} \rightarrow 0$, i.e., $u_{n} \rightarrow u$. This completes the proof of Proposition 2.2.

3 Proof of Theorem 1.1

In order to prove Theorem 1.1, we will consider a constrained minimizing problem on some Nehari manifold. Inspired by [12], using the symmetrical assumption on $a(x)$ and $f(x, t)$, this minimizing problem will be further constrained on a symmetrical Nehari manifold by Palais principle of symmetric criticality([10]). Set

$$
N_{\lambda}=\left\{u \in E_{\lambda} \backslash\{0\}:\left\langle\Phi_{\lambda}^{\prime}(u), u\right\rangle=0\right\}=\left\{u \in E_{\lambda} \backslash\{0\}:\|u\|_{\lambda}^{p}=\int_{\mathbb{R}^{N}} f(x, u) u d x\right\} .
$$

Proof of Theorem 1.1 Denote $x=(y, z)=\left(y_{1}, y_{2}, z_{3}, \cdots, z_{N}\right) \in \mathbb{R}^{N}$. Let $O(2)$ be the group of orthogonal transformations acting on \mathbb{R}^{2} by $(g, y) \mapsto g y$. For any integer $m(m \geq 2)$, define a subgroup G_{m} of $O(2)$ (see [12]) as follows. G_{m} is generated by α and β where α is the
rotation in the y-plane by angle $\frac{2 \pi}{m}$ and β is a reflection. If $m=2, \beta$ is a reflection in the line $y_{1}=0$, otherwise, β is a reflection in the line $y_{2}=y_{1} \tan \frac{\pi}{m}$. Write $\omega=y_{1}+i y_{2}$, then

$$
\begin{aligned}
& \alpha \omega=\omega e^{\frac{2 \pi}{m} i} \\
& \beta \omega=\bar{\omega} e^{\frac{2 \pi}{m} i} .
\end{aligned}
$$

For all $g \in G_{m}, x \in \mathbb{R}^{N}$, denote $g x:=(g y, z)$. Define the action of G_{m} on E_{λ} as

$$
(g u) x:=\operatorname{det}(g) u\left(g^{-1} x\right) .
$$

We claim that Φ_{λ} is invariant under G_{m}. That is to say $\Phi_{\lambda} \circ g=\Phi_{\lambda}$ for all $g \in G_{m}$. Indeed, by $g \in O(2)$, conditions (a_{3}), $\left(\mathrm{f}_{4}\right),\left(\mathrm{f}_{5}\right)$ and the fact that Lebesgue measure is ivariant under orthogonal transformation, we have

$$
\begin{aligned}
\Phi_{\lambda}(g u) & =\frac{1}{p} \int_{\mathbb{R}^{N}}\left(|\nabla(g u)(x)|^{p}+(\lambda a(x)+1)|(g u)(x)|^{p}\right) d x-\int_{\mathbb{R}^{N}} F(x,(g u)(x)) d x \\
& =\frac{1}{p} \int_{\mathbb{R}^{N}}\left(\left|\nabla u\left(g^{-1} x\right)\right|^{p}+(\lambda a(x)+1)\left|u\left(g^{-1} x\right)\right|^{p}\right) d x-\int_{\mathbb{R}^{N}} F\left(x, \operatorname{det}(g) u\left(g^{-1} x\right)\right) d x \\
& =\frac{1}{p} \int_{\mathbb{R}^{N}}\left(\left|\nabla u\left(g^{-1} x\right)\right|^{p}+\left(\lambda a\left(g^{-1} x\right)+1\right)\left|u\left(g^{-1} x\right)\right|^{p}\right) d x-\int_{\mathbb{R}^{N}} F\left(g^{-1} x, u\left(g^{-1} x\right)\right) d x \\
& =\frac{1}{p} \int_{\mathbb{R}^{N}}\left(\left|\nabla u\left(g^{-1} x\right)\right|^{p}+\left(\lambda a\left(g^{-1} x\right)+1\right)\left|u\left(g^{-1} x\right)\right|^{p}\right) d g^{-1} x-\int_{\mathbb{R}^{N}} F\left(g^{-1} x, u\left(g^{-1} x\right)\right) d g^{-1} x \\
& =\frac{1}{p} \int_{\mathbb{R}^{N}}\left(|\nabla u(x)|^{p}+(\lambda a(x)+1)|u(x)|^{p}\right) d x-\int_{\mathbb{R}^{N}} F(x, u(x)) d x=\Phi_{\lambda}(u) .
\end{aligned}
$$

Set

$$
V=\left\{u \in E_{\lambda}: u(g x)=\operatorname{det}(g) u(x), \forall g \in G_{m}\right\}
$$

and define

$$
N_{\lambda}^{G_{m}}:=\left\{u \in N_{\lambda}: g u=u, \forall g \in G_{m}\right\}=N_{\lambda} \cap V .
$$

Then for all $u \in N_{\lambda}^{G_{m}}$, we have

$$
g u(x)=\operatorname{det}(g) u\left(g^{-1} x\right)=\operatorname{det}(g) \operatorname{det}\left(g^{-1}\right) u(x)=u(x), \quad \forall g \in G_{m} .
$$

By the definition of Nehari manifold N_{λ}, critical points of Φ_{λ} constrained on $N_{\lambda}($ see [14]) are critical points of Φ_{λ}. Moreover, by Palais principle of symmetric criticality([10]), we only need to find critical points of Φ_{λ} restricted on $N_{\lambda}^{G_{m}}$.

Therefore, consider the following minimizing problem

$$
C_{\lambda}^{G_{m}}=\inf _{u \in N_{\lambda}^{G_{m}}} \Phi_{\lambda}(u) .
$$

By (f_{3}) and the definition of $N_{\lambda}, \Phi_{\lambda}$ bounded from below on $N_{\lambda}^{G_{m}}$, so $-\infty<C_{\lambda}^{G_{m}}<\infty$. Choose $c=C_{\lambda}^{G_{m}}$, let $\Lambda_{m}:=\Lambda_{c}$ be the corresponding constant given in Proposition 2.2. Assume $\lambda \geq \Lambda_{m}$ and $\left(u_{n}\right) \subset N_{\lambda}^{G_{m}}$ is a minimizing sequence of Φ_{λ}. According to the Ekeland variational principle (Theorem 8.5 in [14]), we can assume $\left(u_{n}\right)$ is a $(P S)_{c}$-sequence. By Proposition 2.2, the infimum is achieved by some $u \in N_{\lambda}^{G_{m}}$, that is to say, $\Phi_{\lambda}(u)=C_{\lambda}^{G_{m}}$.

From the definition of V and the fact that $\operatorname{det}(\beta)=-1$,

$$
u(\beta x)=\operatorname{det}(\beta) u(x)=-u(x)
$$

So u will change sign when $\left(y_{1}, y_{2}\right)$ cross perpendicularly the half lines $y_{2}= \pm y_{1} \tan \frac{\pi j}{m}\left(y_{1} \geq\right.$ $0), j=1,2, \ldots, m$. Hence u is a nodal solution with at least $2 m$ nodal domains.

This completes the proof of Theorem 1.1

Acknowledgments

The author thanks the referee for careful reading of the manuscript and insightful comments.

References

[1] C.O. Alves, Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian. Nonlinear Anal. 51(2002), pp 1187-1206.
[2] T. Bartch, A. Pankov and Z.Q. Wang, Nonlinear Schrödinger equations with steep potential well. Communications in Contemporary Mathematics 3(2001), pp 549-569.
[3] T. Bartsch and Z.Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on \mathbb{R}^{N}. Comm. Partial Differential Equations 20(1995), pp 17251741.
[4] T. Bartsch and Z.Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation. Zeitschrift für Angewandte Mathematik und Physik 51(2000), pp 366-384.
[5] T. Bartsch, Z.Q. Wang and M. Willem, The Dirichlet problem for superlinear elliptic equations. Handbook of Differential Equations: Stationary Partial Differential Equations 2(2005), pp 1-55.
[6] C. Brouttelande, The best constant problem for a family of Gagliardo-Nirenberg inequalities on a compact Riemannian manifold. Proc. Edinburgh Math. Soc. 46(2003), pp 117-146.
[7] John B. Conway, A Course in Functional Analysis. Springer-Verlag 1985.
[8] M.F. Furtado, Multiple minimal nodal solutions for a quasilinear Schrödinger equation with symmetric potential. Journal of Mathematical Analysis and Applications 304(2005), pp 170-188.
[9] D. Fortunato and E. Jannelli, Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains. Proc. Roy. Soc. Edinburgh A 105(1987), pp 205213.
[10] R.S. Palais, The principle of symmetric criticality. Comm. Math. Phys. 69(1979), pp 19-30.
[11] W. Rudin, Real and Complex Analysis. McGraw-Hill 1970.
[12] A. Szulkin and S. Waliullah, Sign-changing and symmetry-breaking solutions to singular problems. Complex Variables and Elliptic Equations, First published on 02 February 2011, doi:10.1080/17476933.2010.504849.
[13] J.L. Vázquez, A strong Maximum Principle for some quasilinear elliptic qeuations. Appl. Math. Optim. 12(1984), pp 191-202.
[14] M. Willem, Minimax Theorems. Birkhäuser 1996.

[^0]: *E-mail address: cyh1801@163.com

