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Abstract

We consider a class of p-Laplacian equations in RN . By carefully analyzing the com-
pactness of the Palais-Smale sequences and constructing Nehari manifolds, we prove
that for every positive integer m≥ 2, there exists a nodal solution with at least 2m nodal
domains.
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1 Introduction

In this article, we consider the following p-Laplacian equation in the entire space
−∆pu+ (λa(x)+1)|u|p−2u = f (x,u), x ∈ RN ,

u(x)→ 0, |x| → ∞,
(Pλ)

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator with p ≥ 2. We assume λ ≥ 0,
N > p, moreover, a and f satisfy the following conditions:

(a1) a ∈ C(RN ,R), a(x) ≥ 0, Ω := int a−1(0) is non-empty and has smooth boundary, Ω̄ =
a−1(0).

(a2) There exists M0 > 0 such that

mes({x ∈ RN : a(x) ≤ M0}) <∞,

here mes(·) denotes the Lebesgue measure on RN .

∗E-mail address: cyh1801@163.com
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(a3) a is radially symmetric with respect to the first two coordinates, that is to say, if
(x1, x2,z3, · · · ,zN) ∈ RN , (y1,y2,z3, · · · ,zN) ∈ RN and |(x1, x2)| = |(y1,y2)|, then

a(x1, x2,z3, · · · ,zN) = a(y1,y2,z3, · · · ,zN).

(f1) f ∈ C1(RN ,R) and when t→ 0, f (x, t) = o(|t|p−1) uniformly in x.

(f2) There are constants a1 > 0, a2 > 0 and p < q < p∗ := N p
N−p such that∣∣∣ f (x, t)

∣∣∣ ≤ a1(1+ |t|q−1),
∣∣∣ ft(x, t)

∣∣∣ ≤ a2(1+ |t|q−2)

for every x ∈ RN , t ∈ R.

(f3) There exists µ > p such that for every x ∈ RN , t ∈ R\{0},

0 < µF(x, t) := µ
∫ t

0
f (x, s)ds ≤ t f (x, t).

(f4) f is radially symmetric with respect to the first two coordinates, that is to say, if
(x1, x2,z3, · · · ,zN) ∈ RN , (y1,y2,z3, · · · ,zN) ∈ RN and |(x1, x2)| = |(y1,y2)|, then

f (x1, x2,z3, · · · ,zN) = f (y1,y2,z3, · · · ,zN).

(f5) f (x, t) = − f (x,−t) for every x ∈ RN , t ∈ R.

Under these assumptions, we have the following theorem.

Theorem 1.1. Suppose (a1)-(a3) and (f1)-(f5) hold. For any given integer m > 0, there is
Λm > 0 such that problem (Pλ) has a nodal solution with at least 2m nodal domains for all
λ ≥ Λm.

For p = 2, (Pλ) turns into a Schrödinger equation of the form

−∆u+(λa(x)+1)u= f (x,u), u ∈H1(RN), (S λ)

which has been studied extensively. In [3], Bartsch and Wang showed that (S λ) has a
positive and a negative solution. If f is odd, they proved that (S λ) possesses k(k ∈ N) pairs
of nontrivial solutions. Moreover, Bartsch and Wang studied the general problem

−∆u+b(x)u = f (x,u), x ∈ RN .

When f is odd, they got some existence and multiplicity results.
If f (x,u) = |u|q−2u, Bartsch and Wang showed that (S λ) possesses multiple positive

solutions in [4]. In [8], Furtado proved the existence and multiplicity of solutions with
exactly two nodal domains for (Pλ), he also studied the concentration behavior of these
solutions as λ→∞.

To prove Theorem 1.1, we will use the Nehari manifold technique. By a group con-
structing method from [12], we consider a minimizing problem on a group-action invariant
Nehari manifold and get a nodal solution with at least 2m nodal domains when λ is large
enough.

The paper is organized as follows. In Section 2, we give some preparation and analyze
the compactness of Palais-Smale sequences. In Section 3, we prove Theorem 1.1. In the
following, C will denote different constants in different places and ‖ · ‖q is the usual norm
in Lq(RN).
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2 Preliminaries and compactness of Palais-Smale sequences

Let W1,p(RN) be the usual space endowed with the norm

‖ u ‖W1,p(RN )=

(∫
RN

(|∇u|p+ |u|p)dx
) 1

p

.

In the rest of this paper, we will use Eλ denote the space

E := {u ∈W1,p(RN) :
∫
RN

a(x)|u|pdx <∞}

with norm

‖ u ‖λ=
(∫
RN

(|∇u|p+ (λa(x)+1)|u|p)dx
) 1

p

, λ ≥ 0.

Condition (a1) and the Sobolev theorem imply that the embedding Eλ ↪→ Lq
loc(RN) is com-

pact for all p ≤ q < p∗. Define a functional Φλ : Eλ→ R as follow

Φλ(u) =
1
p

∫
RN

(|∇u|p+ (λa(x)+1)|u|p)dx−
∫
RN

F(x,u)dx =
1
p
‖ u ‖pλ −

∫
RN

F(x,u)dx.

It is obvious that critical points of Φλ correspond to solutions of (Pλ). By (f1) and (f2),
Φλ ∈ C

1(Eλ,R) for all λ ≥ 0.
If a sequence (un) ⊂ Eλ satisfies that Φλ(un)→ c for some c ∈ R and Φ′λ(un)→ 0 as

n→∞, then (un) is a (PS )c-sequence of Φλ. We say Φλ satisfies the (PS )c-condition if any
(PS )c-sequence of Φλ has a convergent subsequence.

For the space Eλ, we have the following proposition.

Proposition 2.1. Eλ is a reflexive Banach space.

Proof. Condition (a1) and λ ≥ 0 imply that the function

λa+1 : RN → R : x 7→ λa(x)+1

is positive and measurable. According to Theorem 1.29 ([11]), it holds that

ϕ(X) =
∫

X
(λa+1)dx, X ∈B

is a measure on B which is the family of Borel sets in RN and∫
RN

gdϕ =
∫
RN

g(λa+1)dx

for every measurable g on RN with range in [0,∞].
For the measure ϕ, we define a space

Lp(ϕ) :=
{
u | u is a measurable f unction on RN and

∫
RN
|u|pdϕ <∞

}
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with norm

‖ u ‖Lp(ϕ)=

(∫
RN
|u|pdϕ

) 1
p

=

(∫
RN

(λa+1)|u|pdx
) 1

p

.

By Theorem 3.11 in [11], Lp(ϕ) is a Banach space. Moreover, by Example 11.3 in [7],
Lp(ϕ) is reflexive for all 1 < p <∞.

Assume (un) ⊂ Eλ is a Cauchy sequence, that is to say ‖ un − um ‖λ→ 0 as m,n→∞.
Then ‖ ∇un−∇um ‖Lp(RN )→ 0 and ‖ un−um ‖Lp(ϕ)→ 0. Since Lp(RN) and Lp(ϕ) are complete,
there exist u and v such that

∇un→ u ∈ Lp(RN),

un→ v ∈ Lp(ϕ).

Since Lp(ϕ) ↪→ Lp(RN),
un→ v ∈ Lp(RN).

From the proof of the fact that W1,p(RN) is Banach space, we have u = ∇v. So v ∈ Eλ and
‖ un− v ‖λ→ 0. This proves that Eλ is complete.

Define
T : Eλ→ Lp(RN)×Lp(ϕ) : u 7→ (|∇u|,u),

here ‖ · ‖Lp(RN )×Lp(ϕ):=‖ · ‖Lp(RN ) + ‖ · ‖Lp(ϕ) . Then ‖ · ‖Eλ and ‖ · ‖Lp(RN )×Lp(ϕ) are equivalent
norms, so Eλ is equivalent to T (Eλ) which is a closed subspace of Lp(RN)× Lp(ϕ). From
Pettis theorem, T (Eλ) is reflexive and so Eλ is reflexive. �

The following proposition is the main conclusion of this section.

Proposition 2.2. Suppose (a1)-(a2) and (f1)-(f3) hold. Then for any c, 0 there existsΛc > 0
such that Φλ satisfies the (PS )c-condition for all λ ≥ Λc.

The proof of Proposition 2.2 consists of a series of lemmas which occupy the rest of
this section. The thoughts of proof for these lemmas are inspired by Lemma 2.3-2.5 in [4].

Lemma 2.3. Let Kλ be the set of critical points of Φλ. Then there exists σ > 0(independent
of λ ≥ 0) such that ‖ u ‖λ≥‖ u ‖W1,p(RN )≥ σ for all u ∈ Kλ \ {0}.

Proof. For any ε > 0, by (f1), there exists t ∈ [0,1], if |u| < t, then | f (x,u)| < ε|u|p−1, if
t < |u| < 1, by (f2),

f (x,u) < a1(1+ |u|q−1) < 2a1 = tq−1 2a1

tq−1 < Aε |u|q−1,

if |u| ≥ 1, by (f2),
f (x,u) < a1(1+ |u|q−1) < 2a1|u|q−1.

Thus, for any ε > 0, there exists Aε > 0 such that

f (x,u) ≤ ε |u|p−1+Aε |u|q−1, ∀x ∈ RN,u ∈ R. (2.1)
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Choose ε = 1/2, then for u ∈ Kλ\{0},

0 = 〈Φ′λ(u),u〉

=

∫
RN

(
|∇u|p+ (λa(x)+1)|u|p

)
dx−

∫
RN

f (x,u)udx

≥ ‖ u ‖pλ −
1
2

∫
RN
|u|pdx− C

∫
RN
|u|qdx

≥
1
2
‖ u ‖pλ −C ‖ u ‖qq

≥
1
2
‖ u ‖p

W1,p(RN )
−C ‖ u ‖q

W1,p(RN )

where C > 0 is independent of λ. Hence there exists σ > 0 such that ‖ u ‖W1,p(RN )≥ σ. �

Lemma 2.4. There exists c0 > 0 (independent of λ) such that if (un) is a (PS )c-sequence of
Φλ then

limsup
n→∞

‖ un ‖
p
λ
≤
µpc
µ− p

and if c , 0, then c ≥ c0.

Proof. First we claim that if (un) is a (PS )c-sequence of Φλ then (un) is bounded. In fact,

c+o(1)+ ‖ un ‖λ ·o(1)

= Φλ(un)−
1
µ
Φ′λ(un)un

= (
1
p
−

1
µ

)
∫
RN

(
|∇un|

p+ (λa(x)+1)|un|
p)dx−

∫
RN

(
F(x,un)−

1
µ

f (x,un)un
)
dx

≥ (
1
p
−

1
µ

)
∫
RN

(
|∇un|

p+ (λa(x)+1)|un|
p)dx

=
µ− p
µp
‖ un ‖

p
λ

which implies that (un) is bounded. By (f3) we have

c = limsup
n→∞

(
Φλ(un)−

1
µ
Φ′λ(un)un

)
= limsup

n→∞

(
(
1
p
−

1
µ

)
∫
RN

(
|∇un|

p+ (λa(x)+1)|un|
p)dx−

∫
RN

(
F(x,un)−

1
µ

f (x,un)un
)
dx

)
≥ limsup

n→∞
(
1
p
−

1
µ

)
∫
RN

(
|∇un|

p+ (λa(x)+1)|un|
p)dx

=
µ− p
µp

limsup
n→∞

‖ un ‖
p
λ .

According to (2.1), choosing ε = 1/2, then

〈Φ′λ(u),u〉 =
∫
RN

(
|∇u|p+ (λa(x)+1)|u|p

)
dx−

∫
RN

f (x,u)udx

≥
1
2
‖ u ‖pλ −C ‖ u ‖qλ .
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So there exists σ1 > 0 such that for all ‖ u ‖λ< σ1

1
4
‖ u ‖pλ< 〈Φ

′
λ(u),u〉. (2.2)

Set c0 = σ
p
1 (µ− p)/µp. If c < c0, then

limsup
n→∞

‖ un ‖
p
λ≤

µpc
µ− p

< σ
p
1 .

Thus ‖ un ‖λ< σ1 for n large enough. By (2.2),

1
4
‖ un ‖

p
λ< 〈Φ

′
λ(un),un〉 = o(1) ‖ un ‖λ .

Then ‖ un ‖λ→ 0 as n→∞. Hence Φλ(un)→ 0, i.e., c = 0 �

Lemma 2.5. There exists δ0 > 0 such that any (PS )c-sequence (un) of Φλ satisfies

liminf
n→∞

‖ un ‖
q
q≥ δ0c.

Proof. The proof is similar to Lemma 5.1 of [3]. For any u, by (f3) and (2.1), we have

1
p

f (x,u)u−F(x,u) ≤
1
p

f (x,u)u

≤
ε

p
|u|p+

Aε
p
|u|q.

If (un) is a (PS )c-sequence of Φλ, then

c = lim
n→∞

(Φλ(un)−
1
p
Φ′λ(un)un)

= lim
n→∞

∫
RN

(1
p

f (x,un)un−F(x,un)
)
dx

≤ lim
n→∞

∫
RN

( ε
p
|un|

p+
Aε
p
|un|

q)dx

≤ lim
n→∞

(
ε

p
‖ un ‖

p
λ +

Aε
p

∫
RN
|un|

qdx
)
.

By Lemma 2.4 it holds that

c ≤
ε

p
·
µpc
µ− p

+
Aε
p

lim
n→∞

∫
RN
|un|

qdx

≤
µεc
µ− p

+
Aε
p

lim
n→∞

∫
RN
|un|

qdx.

That is to say,

c−
µεc
µ− p

≤
Aε
p

lim
n→∞

∫
RN
|un|

qdx.

Then δ0 = (1− µε
µ−p ) · p

Aε
is the required constant. �
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Lemma 2.6. For any ε > 0 there exists Λε > 0, Rε > 0 such that if (un) is a (PS )c-sequence
of Φλ and λ ≥ Λε then

limsup
n→∞

‖ un |Bc
Rε
‖

q
q≤ ε

where Bc
Rε
= {x ∈ RN : |x| ≥ Rε}.

Proof. For R > 0, we set

A(R) := {x ∈ RN : |x| > R,a(x) ≥ M0},

B(R) := {x ∈ RN : |x| > R,a(x) < M0}.

According to Lemma 2.4,∫
A(R)
|un|

pdx ≤
1

λM0+1

∫
RN

(λa(x)+1)|un|
pdx

≤
1

λM0+1

∫
RN

(
|∇un|

p+ (λa(x)+1)|un|
p)dx

≤
1

λM0+1
( µpc
µ− p

)
→ 0, as λ→∞.

Choosing s, s′ such that ps < p∗,1/s+ 1/s′ = 1. Applying Hölder inequality and (a2), we
have ∫

B(R)
|un|

pdx ≤

(∫
RN
|un|

psdx
)1/s (∫

B(R)
dx

)1/s′

≤ C ‖ un ‖
p
λ ·

(
mes(B(R))

)1/s′
→ 0, as R→∞.

Setting θ = N(q−p)
pq , the Gagliardo-Nirenberg inequality yields∫

Bc
R

|un|
qdx ≤ C ‖ ∇un|Bc

R
‖
θq
p · ‖ un|Bc

R
‖

(1−θ)q
p

≤ C ‖ un ‖
θq
λ

(∫
A(R)
|un|

pdx+
∫

B(R)
|un|

pdx
)(1−θ)q/p

≤ C
( µpc
µ− p

)θq/p
(∫

A(R)
|un|

pdx+
∫

B(R)
|un|

pdx
)(1−θ)q/p

.

The first summand on the right can be arbitrarily small if λ is large. The second summand
on the right will be arbitrarily small if R is large by (a2). This completes the proof. �

The next two results will overcome the lack of Hilbertian structure.

Lemma 2.7. (Lemma 3 of [1]) Set M ≥ 1, p ≥ 2 and A(y) = |y|p−2y, y ∈ RM. Consider a
sequence of vector functions ηn : RN → RM such that (ηn) ⊂

(
Lp(RN)

)M and ηn(x)→ 0 for
a.e. x ∈ RN . Then, if there exists M > 0 such that∫

RN
|ηn|

pdx ≤ M f or all n ∈ N,
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then we have

lim
n→∞

∫
RN

∣∣∣A(ηn)+A(ϑ)−A(ηn+ϑ)
∣∣∣ p

p−1 dx = 0

for each ϑ ∈
(
Lp(RN)

)M.

Remark 2.8. From the proof of the Lemma 2.7, we can conclude that if∫
RN

(λa(x)+1)|ηn|
pdx ≤ M f or all n ∈ N,

then for each ϑ ∈
(
Lp(ϕ)

)M,

lim
n→∞

∫
RN

(λa(x)+1)
∣∣∣A(ηn)+A(ϑ)−A(ηn+ϑ)

∣∣∣ p
p−1 dx = 0.

Lemma 2.9. Let (un) be a (PS )c-sequence of Φλ, then, up to a sequence, un ⇀ u in Eλ

and u is a weak solution of (Pλ). Moreover, u1
n = un − u is a (PS )c′-sequence of Φλ, here

c′ = c−Φλ(u).

Proof. First, (un) is bounded in Eλ by Lemma 2.4, hence there is a subsequence of (un)
such that

un ⇀ u ∈ Eλ, as n→∞,
un→ u ∈ Lq

loc(RN), p ≤ q < p∗,
un(x)→ u(x) a.e. x ∈ RN .

(2.3)

We claim that
∇un(x)→∇u(x) a.e. x ∈ RN . (2.4)

In fact, define Pn : RN → R as follow

Pn(x) =
(
|∇un(x)|p−2∇un(x)− |∇u(x)|p−2∇u(x)

)
∇
(
un(x)−u(x)

)
(2.5)

and K ⊂ RN is a compact subset. For any given ε > 0, set

Kε = {x ∈ RN : dist(x,K) ≤ ε}.

Choose a cut-off function ψ ∈C∞(RN) such that 0 ≤ ψ ≤ 1, ψ ≡ 1 in K and ψ ≡ 0 in RN \Kε ,
then by the definition of Pn we have

0 ≤
∫

K
Pndx ≤

∫
RN

Pnψdx

=

∫
RN
|∇un|

pψdx−
∫
RN
|∇un|

p−2(∇un · ∇u)ψdx

+

∫
RN
|∇u|p−2(∇u · ∇(u−un)

)
ψdx.

(2.6)

Since (ψun) is bounded in Eλ and Φ′λ(un)→ 0, it holds that

lim
n→∞
〈Φ′λ(un),ψun〉 = lim

n→∞
〈Φ′λ(un),ψu〉 = 0.
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That is to say,

o(1) =
∫
RN

(
|∇un|

pψ+ |∇un|
p−2(∇un · ∇ψ)un+ (λa(x)+1)|un|

pψ
)
dx

−

∫
RN

f (x,un)ψundx,
(2.7)

and

o(1) =
∫
RN

(
|∇un|

p−2(∇un · ∇ψ)u+ |∇un|
p−2(∇un · ∇u)ψ

)
dx

+

∫
RN

(λa(x)+1)|un|
p−2unuψdx−

∫
RN

f (x,un)ψudx.
(2.8)

Up to a subsequence, we can assume that ψun ⇀ψu in Eλ , so

lim
n→∞
〈Φ′λ(u),ψu−ψun〉 = 0.

That is

o(1) =
∫
RN
|∇u|p−2∇u · ∇(u−un)ψdx+

∫
RN
|∇u|p−2∇u · ∇ψ(u−un)dx

+

∫
RN

(λa(x)+1)|u|p−2u(u−un)ψdx−
∫
RN

f (x,u)ψ(u−un)dx.
(2.9)

By (2.6)-(2.9) and the fact that ψ ≡ 0 in RN \Kε , we have

0 ≤

∫
K

Pndx

≤

∫
Kε

f (x,un)ψundx−
∫

Kε

|∇un|
p−2(∇un · ∇ψ)undx−

∫
Kε

(λa(x)+1)|un|
pψdx

+

∫
Kε

|∇un|
p−2(∇un · ∇ψ)udx+

∫
Kε

(λa(x)+1)|un|
p−2unuψdx−

∫
Kε

f (x,un)ψudx

−

∫
RN
|∇u|p−2(∇u · ∇ψ)(u−un)dx−

∫
Kε

(λa(x)+1)|u|p−2u(u−un)ψdx

+

∫
Kε

f (x,u)ψ(u−un)dx+o(1)

=

∫
Kε

|∇un|
p−2(∇un · ∇ψ)(u−un)dx−

∫
RN
|∇u|p−2(∇u · ∇ψ)(u−un)dx

+

∫
Kε

(λa(x)+1)(|un|
p−2unu− |un|

p)ψdx+
∫

Kε

(λa(x)+1)(|u|p−2uun− |u|p)ψdx

+

∫
Kε

f (x,un)ψ(un−u)dx+
∫

Kε

f (x,u)ψ(u−un)dx+o(1)

:= A1+A2+A3+A4+A5+A6+o(1), as n→∞,
(2.10)
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where

A1 =

∫
Kε

|∇un|
p−2(∇un · ∇ψ)(u−un)dx,

A2 =

∫
Kε

|∇u|p−2(∇u · ∇ψ)(u−un)dx,

A3 =

∫
Kε

(λa(x)+1)(|un|
p−2unu− |un|

p)ψdx,

A4 =

∫
Kε

(λa(x)+1)(|u|p−2uun− |u|p)ψdx,

A5 =

∫
Kε

f (x,un)ψ(un−u)dx,

A6 =

∫
Kε

f (x,u)ψ(u−un)dx.

Since (un) is bounded in Eλ, thus un→ u ∈ Lp(Kε). So we have

|A1| ≤ |∇ψ|∞

∫
Kε

|∇un|
p−1|un−u|dx

≤ |∇ψ|∞ ‖ un ‖
p−1
λ ‖ un−u ‖p,Kε

= o(1), as n→∞.

In the same way, limn→∞A2 = 0. The Hölder inequality, a(x)ψ is bounded in Kε and un→ u
in Lp(Kε) imply that

|A3| =

∣∣∣∣∣∣
∫

Kε

(λa(x)+1)ψ|un|
p−2un(u−un)dx

∣∣∣∣∣∣
≤ C

(∫
Kε

|un|
pdx

)(p−1)/p (∫
Kε

|u−un|
pdx

)1/p

≤ C ‖ un ‖
p−1
λ ‖ un−u ‖p,Kε

= o(1), as n→∞.

Similarly, limn→∞A4 = 0. As for A5,

|A5| ≤

(∫
Kε

| f (x,un)|q/(q−1)dx
)(q−1)/q (∫

Kε

|un−u|qdx
)1/q

≤ C
(∫

Kε

(1+uq−1
n )q/(q−1)dx

)(q−1)/q (∫
Kε

|un−u|qdx
)1/q

≤ C
(∫

Kε

(1+ |un|
q)dx

)(q−1)/q (∫
Kε

|un−u|qdx
)1/q

≤
(
C+C ‖ un ‖

q−1
λ

)
‖ un−u ‖q,Kε

= o(1), as n→∞.
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Similarly, limn→∞A6 = 0. Therefore, we can rewrite (2.10) as

0 ≤
∫

K
(|∇un|

p−2∇un− |∇u|p−2∇u) · ∇(un−u)dx→ 0, as n→∞.

Using the fact that (|a|p−2a−|b|p−2b)(a−b) ≥Cp|a−b|p for every a,b ∈ RN([13], p.210), we
obtain

lim
n→∞

∫
K
|∇un−∇u|pdx = 0. (2.11)

Since K is arbitrary, (2.4) holds.
For any ω ∈C∞0 (RN), we set K = supp(ω). From the proof of (2.11), it holds that ∇un→

∇u and un→ u in Lp(K). Thus

lim
n→∞

∫
RN
|∇un|

p−2∇unωdx = lim
n→∞

∫
K
|∇un|

p−2∇unωdx

=

∫
K
|∇u|p−2∇uωdx

=

∫
RN
|∇u|p−2∇uωdx,

and

lim
n→∞

∫
RN

(λa(x)+1)|un|
p−2unωdx = lim

n→∞

∫
K

(λa(x)+1)|un|
p−2unωdx

=

∫
K

(λa(x)+1)|u|p−2uωdx

=

∫
RN

(λa(x)+1)|u|p−2uωdx.

By (f2) we have

lim
n→∞

∫
RN

f (x,un)ωdx = lim
n→∞

∫
K

f (x,un)ωdx

=

∫
K

f (x,u)ωdx

=

∫
RN

f (x,u)ωdx.

Hence
〈Φ′λ(u),ω〉 = lim

n→∞
〈Φ′λ(un),ω〉, ∀ω ∈C∞0 (RN).

Since C∞0 (RN) is dense in Eλ, for any ω ∈ Eλ, we have

〈Φ′λ(u),ω〉 = lim
n→∞
〈Φ′λ(un),ω〉 = 0, (2.12)

i.e., Φ′λ(u) = 0. Therefore u is a weak solution of (Pλ).
Next we consider the new sequence u1

n = un−u and we will show that

Φλ(u1
n)→ c−Φλ(u), as n→∞, (2.13)
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and
Φ′λ(u1

n)→ 0, as n→∞. (2.14)

We observe that

Φλ(u1
n) = Φλ(un)−Φλ(u)+

1
p

∫
RN

(|∇u|p− |∇un|
p+ |∇u1

n|
p)dx

+
1
p

∫
RN

(λa(x)+1)(|u|p− |un|
p+ |u1

n|
p)dx

+

∫
RN

(
F(x,u1

n+u)−F(x,u1
n)−F(x,u)

)
dx.

(2.15)

According to Brézis-Lieb Lemma ([14], Lemma 1.32), we can rewrite (2.15) as

Φλ(u1
n) = Φλ(un)−Φλ(u)+

∫
RN

(
F(x,u1

n+u)−F(x,u1
n)−F(x,u)

)
dx+o(1). (2.16)

For any ε > 0, choose R(ε) > 0 such that∫
Bc

R(ε)

|u|pdx ≤ ε,
∫

Bc
R(ε)

|u|qdx ≤ ε, (2.17)

where Bc
R(ε) = {x ∈ R

N : |x| ≥ R(ε)}. By (f1)-(f3), we have∫
Bc

R(ε)

∣∣∣F(x,u1
n+u)−F(x,u1

n)
∣∣∣dx

≤

∫
Bc

R(ε)

∣∣∣ f (x,u1
n+ ξu)

∣∣∣ · |u|dx

≤C
∫

Bc
R(ε)

(
(|u1

n|+ |u|)
p−1+ (|u1

n|+ |u|)
q−1

)
· |u|dx

≤C
∫

Bc
R(ε)

(
|u1

n|
p−1+ |u|p−1+ (|u1

n|+ |u|)
q−1

)
· |u|dx

≤C ‖ u1
n ‖

p−1
Lp(Bc

R(ε))
· ‖ u ‖Lp(Bc

R(ε)) +C ‖ u ‖pLp(Bc
R(ε))

+C

∫
Bc

R(ε)

(|u1
n|+ |u|)

qdx

(q−1)/q ∫
Bc

R(ε)

|u|qdx

1/q

= O(ε).

By (2.1) and (f3), ∫
Bc

R(ε)

F(x,u)dx ≤ C
∫

Bc
R(ε)

(|u|p+ |u|q)dx = O(ε).

Since ε is arbitrary, we obtain (2.13).
For any ω ∈ Eλ, it holds that

〈Φ′λ(u1
n),ω〉 = 〈Φ′λ(un),ω〉− 〈Φ′λ(u),ω〉−

∫
RN

(
f (x,u1

n)− f (x,un)+ f (x,u)
)
ωdx+A+B
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where

A :=
∫
RN

(∣∣∣∇u1
n

∣∣∣p−2
∇u1

n+ |∇u|p−2∇u− |∇un|
p−2∇un

)
∇ωdx,

B :=
∫
RN

(λa(x)+1)(
∣∣∣u1

n

∣∣∣p−2
u1

n+ |u|
p−2u− |un|

p−2un)ωdx.

By Hölder inequality and Lemma 2.7, set ηn = ∇u1
n and ϑ = ∇u, we have

|A| ≤
(∫
RN

(∣∣∣∇u1
n

∣∣∣p−2
∇u1

n+ |∇u|p−2∇u− |∇un|
p−2∇un

) p
p−1 dx

) p−1
p

‖ ∇ω ‖p

≤ o(1) ‖ ω ‖λ, as n→∞.

Choose ηn = u1
n and ϑ = u, by Hölder inequality and Remark 2.8, it holds that

|B| ≤
(∫
RN

(λa(x)+1)
(∣∣∣u1

n

∣∣∣p−2
u1

n+ |u|
p−2u− |un|

p−2un
) p

p−1 dx
) p−1

p
(∫
RN

(λa(x)+1)|ω|pdx
) 1

p

≤ o(1) ‖ ω ‖λ, as n→∞.

Therefore, in order to obtain (2.14), by (2.12) we only need to show

lim
n→∞

∫
RN

(
f (x,u1

n)− f (x,un)+ f (x,u)
)
ωdx = 0. (2.18)

For any ε > 0, choose R(ε) > 0 such that∫
Bc

R(ε)

|u|pdx

1/p

≤ ε,

∫
Bc

R(ε)

|u|qdx

1/q

≤ ε.

Thus ∫
Bc

R(ε)

∣∣∣ f (x,u)ω
∣∣∣dx ≤ C

∫
Bc

R(ε)

(|u|p−1+ |u|q−1)|ω|dx

≤ C · ε p−1· ‖ ω ‖λ +C · εq−1· ‖ ω ‖λ,

and ∫
Bc

R(ε)

∣∣∣ f (x,u1
n)− f (x,u1

n+u)
∣∣∣ · |ω|dx

≤

∫
Bc

R(ε)

∣∣∣ ft(x,u1
n+ ξu)

∣∣∣ · |u| · |ω|dx

≤C
∫

Bc
R(ε)

(
(
∣∣∣u1

n

∣∣∣+ |u|)p−2+ (
∣∣∣u1

n

∣∣∣+ |u|)q−2
)
· |u| · |ω|dx

≤C
∫

Bc
R(ε)

(∣∣∣u1
n

∣∣∣p−2
+ |u|p−2+

∣∣∣u1
n

∣∣∣q−2
+ |u|q−2

)
· |u| · |ω|dx

≤C ‖ u1
n ‖

p−2
Lp(Bc

R(ε))
· ‖ u ‖Lp(Bc

R(ε)) · ‖ ω ‖λ +C ‖ u ‖p−1
Lp(Bc

R(ε))
· ‖ ω ‖λ

+C ‖ u1
n ‖

q−2
Lq(Bc

R(ε))
· ‖ u ‖Lq(Bc

R(ε)) · ‖ ω ‖λ +C ‖ u ‖q−1
Lq(Bc

R(ε))
· ‖ ω ‖λ

≤C · ε· ‖ ω ‖λ +C · ε p−1· ‖ ω ‖λ +C · εq−1· ‖ ω ‖λ .
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By Lebesgue’s Dominated Convergence Theorem, it holds that

lim
n→∞

∫
BR(ε)

(
f (x,u1

n)− f (x,un)+ f (x,u)
)
ωdx = 0.

Since ε is arbitrary, we obtain (2.18). This completes the proof. �

Proof of Proposition 2.2 Choose 0 < ε < δ0c0/2, here c0 > 0 is given by Lemma 2.4
and δ0 > 0 is given by Lemma 2.5. According to Lemma 2.6, we choose Λε > 0 and Rε > 0,
then Λc = Λε is required. Considering a (PS )c-sequence (un) of Φλ where λ ≥Λc and c , 0.
By Lemma 2.9, u1

n = un−u is a (PS )c′-sequence of Φλ where c′ = c−Φλ(u).
Assume c′ , 0, then by Lemma 2.4, we have c′ ≥ c0 > 0. By Lemma 2.5,

liminf
n→∞

‖ u1
n ‖

q
q≥ δ0c′ ≥ δ0c0.

Lemma 2.6 implies that

limsup
n→∞

‖ u1
n|Bc

R(ε)
‖

q
q≤ ε <

δ0c0

2
.

Assume that u1
n ⇀ u1 ∈ Eλ. By the definition of u1

n, u1 = 0. Then

δ0c0 ≤ liminf
n→∞

‖ u1
n ‖

q
q

≤ limsup
n→∞

‖ u1
n ‖

q
q

< limsup
n→∞

‖ u1
n|Bc

R(ε)
‖

q
q + lim

n→∞

∫
BR(ε)

|u1
n|

qdx

≤
δ0c0

2
,

a contradiction. Therefore the assumption does not hold and so c′ = 0.
From the proof of Lemma 2.4, we have u1

n→ 0, i.e., un→ u. This completes the proof
of Proposition 2.2.

3 Proof of Theorem 1.1

In order to prove Theorem 1.1, we will consider a constrained minimizing problem on some
Nehari manifold. Inspired by [12], using the symmetrical assumption on a(x) and f (x, t),
this minimizing problem will be further constrained on a symmetrical Nehari manifold by
Palais principle of symmetric criticality([10]). Set

Nλ = {u ∈ Eλ\{0} : 〈Φ′λ(u),u〉 = 0} =
{
u ∈ Eλ\{0} :‖ u ‖pλ=

∫
RN

f (x,u)udx
}
.

Proof of Theorem 1.1 Denote x = (y,z)= (y1,y2,z3, · · · ,zN) ∈RN . Let O(2) be the group
of orthogonal transformations acting on R2 by (g,y) 7→ gy. For any integer m(m ≥ 2), define
a subgroup Gm of O(2)(see [12]) as follows. Gm is generated by α and β where α is the
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rotation in the y-plane by angle 2π
m and β is a reflection. If m = 2, β is a reflection in the line

y1 = 0, otherwise, β is a reflection in the line y2 = y1 tan π
m . Write ω = y1+ iy2, then

αω = ωe
2π
m i,

βω = ω̄e
2π
m i.

For all g ∈Gm, x ∈ RN , denote gx := (gy,z). Define the action of Gm on Eλ as

(gu)x := det(g)u(g−1x).

We claim thatΦλ is invariant under Gm. That is to sayΦλ◦g=Φλ for all g ∈Gm. Indeed,
by g ∈ O(2), conditions (a3), (f4), (f5) and the fact that Lebesgue measure is ivariant under
orthogonal transformation, we have

Φλ(gu) =
1
p

∫
RN

(
|∇(gu)(x)|p+ (λa(x)+1)|(gu)(x)|p

)
dx−

∫
RN

F
(
x, (gu)(x)

)
dx

=
1
p

∫
RN

(
|∇u(g−1x)|p+ (λa(x)+1)|u(g−1x)|p

)
dx−

∫
RN

F
(
x,det(g)u(g−1x)

)
dx

=
1
p

∫
RN

(
|∇u(g−1x)|p+ (λa(g−1x)+1)|u(g−1x)|p

)
dx−

∫
RN

F
(
g−1x,u(g−1x)

)
dx

=
1
p

∫
RN

(
|∇u(g−1x)|p+ (λa(g−1x)+1)|u(g−1x)|p

)
dg−1x−

∫
RN

F
(
g−1x,u(g−1x)

)
dg−1x

=
1
p

∫
RN

(
|∇u(x)|p+ (λa(x)+1)|u(x)|p

)
dx−

∫
RN

F
(
x,u(x)

)
dx = Φλ(u).

Set
V = {u ∈ Eλ : u(gx) = det(g)u(x),∀g ∈Gm}

and define
NGm
λ := {u ∈ Nλ : gu = u,∀g ∈Gm} = Nλ∩V.

Then for all u ∈ NGm
λ , we have

gu(x) = det(g)u(g−1x) = det(g)det(g−1)u(x) = u(x), ∀g ∈Gm.

By the definition of Nehari manifold Nλ, critical points of Φλ constrained on Nλ(see [14])
are critical points of Φλ. Moreover, by Palais principle of symmetric criticality([10]), we
only need to find critical points of Φλ restricted on NGm

λ .

Therefore, consider the following minimizing problem

CGm
λ = inf

u∈NGm
λ

Φλ(u).

By (f3) and the definition of Nλ, Φλ bounded from below on NGm
λ , so −∞ < CGm

λ < ∞.
Choose c = CGm

λ , let Λm := Λc be the corresponding constant given in Proposition 2.2. As-
sume λ ≥ Λm and (un) ⊂ NGm

λ is a minimizing sequence of Φλ. According to the Ekeland
variational principle (Theorem 8.5 in [14]), we can assume (un) is a (PS )c-sequence. By
Proposition 2.2, the infimum is achieved by some u ∈ NGm

λ , that is to say, Φλ(u) =CGm
λ .
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From the definition of V and the fact that det(β) = −1,

u(βx) = det(β)u(x) = −u(x).

So u will change sign when (y1,y2) cross perpendicularly the half lines y2 = ±y1 tan π j
m (y1 ≥

0), j = 1,2, ...,m. Hence u is a nodal solution with at least 2m nodal domains.
This completes the proof of Theorem 1.1
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