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Abstract

A relation between double Dirichlet averages and multivariate complex B-splines is
presented. Based on this relationship, a formula for the computation of certain mo-
ments of multivariate complex B-splines is derived. In addition, an infinite-dimensional
analogue of the Lauricella function FB is defined and a relation to the moments of mul-
tivariate complex B-splines is presented.
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1 Introduction

Recently, a generalization of Schoenberg’s polynomial splines to complex orders z with
Rez > 1 was introduced in [7]. These so-called complex B-splines Bz : R→ C are defined
in the Fourier domain by

F (Bz)(ω) =: B̂z(ω) :=
∫
R

Bz(t)e−iωt dt =
(
1− e−iω

iω

)z

, (1.1)

for Rez> 1. HereF denotes the Fourier-Plancherel transform. At the origin, there exists the

continuous continuation B̂z(0) = 1. Note that since
{

1− e−iω

iω

∣∣∣∣ ω ∈ R}∩{y ∈ R | y < 0} = ∅,

complex B-splines reside on the main branch of the complex logarithm and are thus well-
defined.
∗E-mail address: massopust@ma.tum.de
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Complex B-splines possess several interesting basic properties, which are discussed in
[7]. In the following, we summarize the most important ones for our purposes.

Fourier inversion of (1.1) shows that complex B-splines are piecewise polynomials of
complex degree. More precisely, the following result holds. (See [7] for the proof.)

Proposition 1.1. Complex B-splines have a time-domain representation of the form

Bz(t) =
1
Γ(z)

∞∑
k=0

(−1)k
( z
k

)
(t− k)z−1

+ , (1.2)

where the above sum exists pointwise for all t ∈ R and in L2(R)-norm. Here,

tz
+ =

{
tz = ez ln t, if t > 0,

0, if t ≤ 0,

is the complex-valued truncated power function, and Γ : C \ Z−0 → C denotes the Euler
Gamma function, where Z−0 := {n ∈ Z | n ≤ 0}.

Remark 1.2. For real z > 0, the function z 7→
(
1− e−iω

iω

)z

and its time domain representation

(1.2) were already investigated in [26] in connection with fractional powers of operators
and later also in [24] in the context of extending Schoenberg’s polynomial splines to real
orders. In the former, a proof that this function is in L1(0,∞) was given using arguments
from summability theory (cf. Lemma 2 in [26]), and in the latter the same result was
shown but with a different proof. In addition, it was proved in [24] that for real z > 0,

z 7→
(
1− e−iω

iω

)z

is in L2(R) for z > 1/2 (using our notation). (Cf. Theorem 3.2 in [24].)

Equation (1.2) shows that Bz has, in general, non-compact support contained in [0,∞).
It was also shown in [7] that complex B-splines are elements of L1(R)∩ L2(R) and, due
to their decay in frequency domain induced by the polynomial ωz in the denominator of
(1.1), belong to the Sobolev spaces Wr

2(R) (with respect to the L2-Norm and with weight
(1+ |x|2)r) for r < Rez− 1

2 . The smoothness of their Fourier transform yields a fast decay in
time domain:

Bz(x) = O(x−m), for N 3 m < Rez+1, as x→∞. (1.3)

Remark 1.3. Prior to [7], the asymptotic behavior (1.3) of the function z 7→
(
1− e−iω

iω

)z

for

real z > 1 was already shown in [2], (Proposition 3.1), to be of order O(x−z−1), as x→∞.
The same estimate was proven later in [24], (Theorem 3.1), for real z > 0. As we are
more interested in the approximation-theoretic aspects of complex B-splines, we restrict
our attention to the case Rez > 1, which yields continuous functions.

If Rez,Rez1,Rez2 > 1, then the convolution relation Bz1 ∗Bz2 = Bz1+z2 and the recursion
relation

Bz(x) =
x

z−1
Bz−1(x)+

z− x
z−1

Bz−1(x−1)

hold. Complex B-splines are scaling functions and generate multiresolution analyses of
L2(R) and wavelets. Furthermore, they relate difference and differential operators. For
more details and proofs, we refer the interested reader to [7, 9, 8, 10, 16].
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Unlike the classical cardinal B-splines, complex B-splines Bz possess an additional
modulation and phase factor in the frequency domain:

B̂z(ω) = B̂Rez(ω)ei Imz ln |Ω(ω)| e− ImzargΩ(ω),

where Ω(ω) := (1− e−iω)/(iω). The existence of these two factors allows the extraction
of additional information from sampled data and the manipulation of images. Phase in-
formation (ei Imz ln |Ω(ω)|) and an adjustable smoothness parameter, namely Rez, are already
built into their definition. Thus, they define a continuous family, with respect to smooth-
ness, of approximation spaces, and allow to incorporate phase information for single band
frequency analysis [7, 10].

In [8] and [16], some further properties of complex B-splines were investigated. In
particular, connections between complex derivatives of Riemann-Liouville or Weyl type
and Dirichlet averages were exhibited. Whereas in [8] the emphasis was on univariate
complex B-splines and their applications to statistical processes, multivariate complex B-
splines were defined in [16] using a well-known geometric formula for classical multivariate
B-splines [11, 17]. It was also shown that Dirichlet averages are especially well-suited to
explore the properties of multivariate complex B-splines. Using Dirichlet averages, several
classical multivariate B-spline identities were generalized to the complex setting. There also
exist interesting relationships between complex B-splines, Dirichlet averages and difference
operators, several of which are highlighted in [9].

In this paper, which is based on a short communiction [15], we present a generaliza-
tion of some results found in [5, 19] to complex B-splines. For this purpose, the concept
of double Dirichlet average [3] needs to be introduced and its definition extended via pro-
jective limits to an infinite-dimensional setting suitable for complex B-splines. Moments
of complex B-splines are defined and a formula for their computation in terms of a spe-
cial double Dirichlet average presented. Extending the representation of a Lauricella FB

function by Carlson’s R-hypergeometric function [3] to the infinite-dimensional setting, we
define an infinite-dimensional analogue F∞B of FB and present an identity relating F∞B to the
moments of multivariate complex B-splines.

2 Complex B-Splines

Let n ∈ N and let 4n denote the standard n-simplex in Rn+1:

4n :=
{

u :=(u0, . . . ,un) ∈ Rn+1

∣∣∣∣∣∣ u j ≥ 0; j = 0,1, . . . ,n;
n∑

j=0

u j = 1
}
.

Note, that the set 4n
0 := {u ∈ Rn | u j ≥ 0; j = 1, . . . ,n;

∑n
j=1 u j ≤ 1}, can be identified via the

bijection

4n
0→4

n, (u1, . . . ,un) 7→

1− n∑
i=1

ui,u1, . . . ,un

 ,
with 4n. When convenient, we will employ this identification.
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The extension of 4n to infinite dimensions is done via projective limits. The resulting
infinite-dimensional standard simplex is given by

4∞ :=

u := (u j) j∈(R+0 )N0

∣∣∣∣∣∣ ∞∑
j=0

u j = 1

 ,
and endowed with the topology of pointwise convergence, i.e., the weak∗-topology. We
denote by µb = lim

←−−
µn

b the projective limit of Dirichlet measures µn
b on the n-dimensional

standard simplex 4n with density

Γ(b0) · · ·Γ(bn)
Γ(b0+ · · ·+bn)

ub0−1
0 ub1−1

1 · · ·ubn−1
n , (2.1)

where b0, . . . ,bn ∈ C with Reb j > 0, j = 0,1, . . . ,n. Note that by the Kolmogorov Extension
Theorem (see, for instance, [23]), this measure µb exists.

Below, we will use the following notation: R+ := {x ∈ R | x > 0}, R+0 := {x ∈ R | x ≥ 0},
and C+ := {z ∈ C | Rez > 0}.

Definition 2.1 ([8]). Given a weight vector b ∈ (C+)N0 and an increasing knot sequence
τ := {τk}k ∈ RN0 with the property that limk→∞

k
√
τk ≤ %, for some % ∈ [0,e), a complex B-

spline Bz(• | b;τ) of order z, Rez > 1, with weight vector b and knot sequence τ is a function
satisfying ∫

R
Bz(t | b;τ)g(z)(t)dt =

∫
4∞

g(z)(τ ·u)dµb(u) (2.2)

for all g ∈ S(R).

Remark 2.2. We may assume, without loss of generality, that the knot sequence τ is such
that τ0 = 0.

Here, S(R) denotes the space of Schwartz functions on R, and

τ ·u =
∑
k∈N0

τkuk, for u = {uk}k∈N0 ∈ 4
∞.

In addition, we use the Weyl or Riemann-Liouville fractional derivative [13, 18, 22] of
complex order z, Rez > 0, Wz : S(R+0 )→S(R+0 ), defined by

(Wz f )(x) :=
(−1)n

Γ(ν)
dn

dxn

∫ ∞

0
(t− x)ν−1

+ f (t)dt,

with n= dReze, and ν= n−z. Here,S(R+0 ) denotes the space of Schwartz functions restricted
to R+0 , and d · e : R→ Z, x 7→min{n ∈ Z | n ≥ x}, the ceiling function.

The inverse operator of Wz, is the Weyl integral of complex order z, given by

W−z f =
1
Γ(z)

∫ ∞

•

(t−•)z−1
+ f (t)dt.

To simplify notation, we write f (z) for Wz f and f (−z) for W−z f .
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Remark 2.3. Note that both Wz and W−z are linear operators mapping S(R+0 ) into itself
[18, 22]. As the space Cω(R+0 ) of real-analytic functions on R+0 is dense inD(R+0 ), the space
of compactly supported C∞-functions on R+0 , (see, for instance, [20], p. 780) , (2.2) holds
for all g ∈ S(R+0 ) sinceD(R+0 ) is dense in S(R+0 ). Moreover, since S(R+0 ) is dense in L2(R+0 ),
we deduce that Bz(• | b, τ) ∈ L2(R+0 ).

Remark 2.4. For finite τ = {τ0, τ1, . . . , τn} ∈ (R+0 )n+1 and finite b = {b0,b1, . . . ,bn} ∈ (R+)n,
n ∈ N, and z := n ∈ N, Eq. (2.2) defines also Dirichlet splines. (Cf. [6], where these splines
were first introduced.) Recall that a Dirichlet spline Dn(• |b;τ) of order n is that function
for which the equality ∫

R
g(n)(t) Dn(t|b;τ)dt =

∫
4n

g(n)(τ ·u)dµb(u), (2.3)

holds for all g ∈Cn(R). Hence, (2.3) also holds for g ∈ S(R).

To define a multivariate analogue of univariate complex B-splines, we proceed as fol-
lows. Let λ ∈ Rs \ {0}, s ∈ N, be a direction, and let g : R→ C be a function. The ridge
function gλ corresponding to g is defined as the function Rs→ C with

gλ(x) := g(〈λ, x〉), for all x ∈ Rs.

We denote the canonical inner product in Rs by 〈•,•〉 and the norm induced by it by ‖ • ‖.

Definition 2.5 ([16]). Let τ = {τn}n∈N0 ∈ (Rs)N0 be a sequence of knots in Rs with the prop-
erty that

∃% ∈ [0,e) : limsup
n→∞

n
√
‖τn‖ ≤ %. (2.4)

The multivariate complex B-spline Bz(• | b, τ) : Rs → C of order z, Rez > 1, with weight
vector b ∈ (C+)N0 and knot sequence τ is defined by means of the identity∫

Rs
g(〈λ, x〉)Bz(x | b, τ)dx =

∫
R

g(t)Bz(t | b,λτ)dt, (2.5)

where g ∈ S(R), and where λ ∈ Rs \ {0} such that λτ := {〈λ,τn〉}n∈N0 is separated, i.e., there
exists a δ > 0, so that inf{|〈λ,τn〉− 〈λ,τm〉| | m,n ∈ N0} ≥ δ.

Remark 2.6. Since ridge functions are dense in L2(Rs) (see, for instance, [21]), we conclude
that Bz(• | b, τ) ∈ L2((R+0 )s). Moreover, it follows from the Hermite-Genocchi formula for
the univariate complex B-splines Bz(• |b,λτ) and (2.5), that

Bz( x |b, τ) = 0, when x < [τ],

where [τ] denotes the convex hull of τ.

3 Dirichlet Averages

Let Ω be a non-empty open convex set in Cs, s ∈ N, and let b ∈ (C+)N0 . Let f ∈ S(Ω) :=
S(Ω,C), the Schwartz space of complex-valued functions on Ω, be a measurable function.
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For τ ∈ ΩN0 ⊂ (Cs)N0 and u ∈ 4∞, define τ · u to be the bilinear mapping (τ,u) 7→
∞∑

i=1

uiτ
i.

The infinite sum exists if there exists a % ∈ [0,e) so that

limsup
n→∞

n
√
‖τn‖ ≤ %. (3.1)

Here, ‖ • ‖ now denotes the canonical Euclidean norm on Cs. (See also [8].)

Definition 3.1. Let f : Ω ⊂ Cs → C be a measurable function. The Dirichlet average F :
(C+)N0 ×ΩN0 → C over 4∞ is defined by

F(b;τ) :=
∫
4∞

f (τ ·u)dµb(u),

where µb = lim
←−−
µn

b is the projective limit of Dirichlet measures on the n-dimensional standard
simplex 4n.

We remark that the Dirichlet average is holomorphic in b ∈ (C+)N0 when f ∈ C(Ω,C)
for every fixed τ ∈ ΩN0 . (See [4] for the finite-dimensional case and [16] for the infinite-
dimensional setting.)

Definition 3.2. [3] Let f :Ω ⊂C→C be continuous. Let b ∈ (C+)k+1 and β ∈ (C+)κ+1. Sup-
pose that for fixed k,κ ∈ N, X ∈ C(k+1)×(κ+1), and that the convex hull [X] of X is contained
in Ω. Then the double Dirichlet average of f is defined by

F (b; X;β) :=
∫
4k

∫
4κ

f (u ·Xv)dµk
b(u)dνκβ(v),

where u ·Xv :=
k∑

i=0

κ∑
j=0

uiXi jv j and
k∑

i=0

ui = 1 =
κ∑

j=0

v j.

We remark that F (b; X;β) is holomorphic on Ω in the elements of b, β, and X ([3]).
We again use projective limits to extend the notion of double Dirichlet average to an

infinite-dimenional setting. To this end, let u,v ∈ 4∞ and let µb = lim
←−−
µn

b and νβ = lim
←−−
νnβ be

the projective limits of Dirichlet measures µn
b and νnβ of the form (2.1) on the n-dimensional

standard simplex, where b,β ∈ (C+)N0 .

Now suppose that X ∈ CN0×N0 is a infinite matrix with the property that
∞∑

i=0

∞∑
j=0

|Xi j|

converges. Let

u ·Xv :=
∞∑

i=0

∞∑
j=0

uiXi jv j.

Here, we have
∞∑

i=0

ui = 1 =
∞∑
j=0

v j.

Suppose that Ω ⊂ C contains the convex hull [X] of X and that f :Ω→ C is continuous.
The double Dirichlet average of f over 4∞ is then given by

F (b; X;β) :=
∫
4∞

∫
4∞

f (u ·Xv)dµb(u)dνβ(v). (3.2)
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(In order to ease notation, we use the same symbol for the (double) Dirichlet average over
4∞ and its finite-dimensional projections 4n.) It is easy to show that

F (b; X;β) =
∫
4∞

F(β;uX)dµb(u), (3.3)

where uX := {〈u,X j〉} j∈N0 , with X j denoting the j-column of X. We note that F (b; X;β) is
holomorphic in the elements of b, β, and X over 4∞.

For z ∈ C+, we define

F (z)(b; X;β) :=
∫
4∞

∫
4∞

f (z)(u ·Xv)dµb(u)dνβ(v).

(See also [16] for the case of a single Dirichlet average.)

4 Double Dirichlet Averages and Complex B-Splines

Assume now that the matrix X is real-valued and of the form Xi j = 0, for i ≥ s and all j ∈N0,
some s ∈ N. In other words, X ∈ Rs×N0 .

Theorem 4.1. Suppose that β ∈ (R+)∞ and that z ∈C with Rez> 1. Let b := (b0,b1, . . . ,bs−1)

∈Rs be such that
s−1∑
i=0

bi <−N0. Assume that f ∈S(R+0 ). Further assume that uX is separated

for all u ∈ 4s−1. Then

F (z)(b; X;β) =
∫
Rs

Bz(x | β,uX) F(z)(b; x)dx.

Proof. We prove the formula first for b ∈ (R+)s. To this end, we identify u= (u0,u1, . . . ,us−1,

0,0, . . .) ∈ 4∞ with (u0,u1, . . . ,us−1) ∈ 4s−1. By the Hermite-Genocchi formula for complex
B-splines (see [8] and to some extend [16]), we have that

F(z)(β;uX) =
∫
4∞

f (z)(u′ ·uX)dµβ(u′) =
∫
R

f (z)(t)Bz(t | β,uX)dt.

Substituting this expression into (3.3) and using (2.5) yields

F (z)(b;X;β) =
∫
4∞

∫
Rs

f (z)(〈u, x〉)Bz(x | β,uX)dxdµb(u).

Interchanging the order of integration, which is justified by the Lebesgue Dominated Con-
vergence Theorem, proves the statement for b ∈ (R+)s. To obtain the general case b ∈ Rs,
we note that by Theorem 6.3-7 in [4], the Dirichlet average F can be holomorphically con-

tinued in the b-parameters provided that
s−1∑
i=0

bi < −N0. �

Remark 4.2. Theorem 4.1 extends Theorem 6.1 in [19] to complex B-splines and the 4∞-
setting.
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5 Moments of Complex B-Splines

Following [4], we define the R-hypergeometric function Ra(b;τ) : (R+)s×Ωs→ C by

Ra(b;τ) :=
∫
4s−1

(τ ·u)adµs−1
b (u), (5.1)

where Ω := H, H a half-plane in C \ {0}, if a ∈ C \N, and Ω := C, if a ∈ N. It can be shown
(see [4]) that R−a, a ∈ C+, has a holomorphic continuation in τ to C0, where C0 := {ζ ∈
C | −π < argζ < π}.

Taking in the definition of the double Dirichlet average (3.2) for f the real-valued

function t 7→ t−c, where c :=
s−1∑
i=0

bi, the resulting double Dirichlet average is denoted by

R−c(b; X;β) and generalizes power functions. The corresponding single Dirichlet average
R−c(b; x), where x = (x0, . . . , xs−1), is given by

R−c(b; x) =
s−1∏
i=0

x−bi
i , x < [X]. (5.2)

(See [4], (6.6-5).)

Definition 5.1. Let p = (p0, p1, . . . , ps−1) ∈Rs, s ∈N, be a multi-index with the property that

pi < −
1
2 , for all i = 1, . . . , s. The moment Mp(β; X;z) :=Mp((Bz(• | β,X)) of order p :=

s∑
i=1

pi

of the complex B-spline Bz(• | β,X) is defined by

Mp(β; X;z) :=
∫
Rs

xp Bz(x | β,X)dx. (5.3)

Note that since Bz(• | β,X) ∈ L2((R+)s) and Bz(• | β,X) = 0, for x < [X], an easy appli-
cation of the Cauchy-Schwartz inequality shows that the above integral exists provided the
multi-index p satisfies the afore-mentioned condition on its components.

Using a result from [13], namely Property 2.5 (b), and requiring that Rez < Rec, we
substitute the function f := Γ(c−z)

Γ(c) (•)−(c−z) into (5.1) to obtain

R(z)
−(c−z)(b; x) = R−c(b; x) =

s−1∏
i=0

xbi
i .

The above considerations together with Theorem 4.1 immediately yield the next result.

Corollary 5.2. Suppose that β ∈ (R+)∞ and that z ∈Cwith Rez> 1. Let b := (b0,b1, . . . ,bs−1) ∈

(−∞,−1
2 )s be such that c :=

s−1∑
i=0

bi < −N0. Moreover, suppose that Rez < Rec. Then

M−c(β; X;z) =R(z)
−(c−z)(b; X;β). (5.4)

Remark 5.3. Corollary 5.2 extends Corollary 6.2 in [19] to the infinite dimensional case
and complex order setting.
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6 Complex B-splines and Lauricella Functions

We briefly review some properties of the Lauricella function FB, which are important for the
purposes of this section and the relationship to complex B-splines and Dirichlet averages.

The Lauricella function FB : Rn→ C (cf. [1, 14]) is defined by the infinite series

FB(α1, . . . ,αn,β1, . . . ,βn,γ; x1, . . . , xn) :=∑
m1,...,mn∈N0

(α1)m1 · · · (αn)mn(β1)m1 · · · (βn)mn

(γ+m1+ · · ·+mn)m1! · · ·mn!
xm1

1 · · · x
mn
n ,

where the parameters α1, . . . ,αn,β1, . . .βn and γ are elements of C, and (z)n is the Pochham-
mer symbol, given by

(z)n :=
Γ(z+n)
Γ(n)

, n ∈ N, z ∈ C \Z0.

The region of convergence for FB is the interior of the n-cube Wn := [−1,+1]n ⊂ Rn, n ∈ N.

Remark 6.1. For n := 2, the Lauricella function FB becomes the Appell function F2, and
for n := 1 Gauß’s hypergeometric 2F1 function.

Remark 6.2. There are three other Lauricella functions, FA, FC , and FD, defined in a similar
fashion and with different regions of convergence. For our intentions, however, in particu-
lar in light of Euler-type integral representations, we will deal exclusively with FB in this
article.

Remark 6.3. For a connection between Dirichlet averages, the Lauricella function FD, and
the generalized Mittag-Leffler function Eγα,δ, defined by

Eγα,δ(z) :=
∞∑

k=0

(γ)k

Γ(αk+δ)k!
zk,

we refer the interested reader to [12].

Using multi-index notation with α := (α1, . . . ,αn), β := (β1, . . . ,βn), v := (v1, . . . ,vn), and
x := (x1, . . . , xn), we can express the Euler-type integration representation of the Lauricella
function FB on the simplex 4n

0 found in [14] in the following form:

FB(α,β,γ; x) :=
1

B(α,γ− |α|)

∫
4n

0

vα−1(1− |v|)γ−|α|(1− vx)−βdv

=

∫
4n

0

(1− vx)−βdµn
(α,γ−|α|)(v). (6.1)

Here, we set vx := (v1x1, . . . ,vnxn) and denoted by B the n+1-dimensional Beta function:

B(α,γ− |α|) :=
Γ(α1) · · ·Γ(αn)Γ(γ−α1− · · ·αn)

Γ(γ)
.

As usual, |α| denotes the length of a multi-index α.
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Note that, following [3], but using a different matrix Z, which is more amenable to a
generalization to infinite dimensions, we may write (6.1) in the form∫

4n
0

(1− vx)−βdµn
(α,γ−|α|)(v) =R−γ(γ− |β|,β;Z;γ− |α|,α),

with

Z := Zn+1 :=



1 1 1 · · · 1
1 1− x1 1 · · · 1
...

...
. . .

. . .
...

1 1 1 1− xn−1 1
1 1 1 1 1− xn


∈ R(n+1)×(n+1). (6.2)

To obtain the above identity, we used that
n∑

i=0

vi = 1,

R−γ(b;Z;β) =
∫
4n

n∏
i=0

(iZv)−bidµn
β(v),

n∑
i=0

bi = γ =

n∑
i=0

βi,

and introduced the factor 1γ−|β| in front of (1− vx)−β. We chose the (immaterial) exponent
of 1 so that the multi-indices (γ−|β|,β) and (γ−|α|,α) have the same length, namely, γ, (See
also [3].), and denoted by iZ the (i+1)-st row of the matrix Z, i = 0,1, . . . ,n. Thus, we have

FB(α,β,γ; x) =R−γ(γ− |β|,β;Z;γ− |α|,α),

where Z ∈ R(n+1)×(n+1) is given by (6.2).
The form of the matrix Z now lends itself to an extension of the above concepts to

infinite dimensions. We define

Z∞ =



1 1 1 · · · 1 · · ·

1 1− x1 1 · · · 1 · · ·
...

...
. . .

. . .
... · · ·

1 1 1 1− xn−1 1 · · ·

1 1 1 1 1− xn · · ·
...

...
...

...
...

. . .


∈ R∞×∞, (6.3)

where |xn| < 1, for all n ∈ N, and note that the finite sections of Z∞ are of the form (6.2), so
that one may represent Z∞ as a projective limit of the matrices Zn+1 ∈ R(n+1)×(n+1), n ∈ N of
the form (6.2). Similarly, one has R∞×∞ = lim

←−−
R(n+1)×(n+1) in the sense of matrix rings.

As |xi| < 1, for all i ∈ N, and
∞∑
j=0

v j = 1, we obtain, using a computation in [25], the

convergence of the infinite product
∞∏

i=0

(iZ∞v)−bi for Rebi > 0. Thus, R−γ(b;Z;β) may be

extended to the infinite-dimensional simplex 4∞ by a projective limit procedure. For the
sake of notational simplicity, we denote this extension again by R−γ(b;Z;β).
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Note that this extension allows the definition of an infinite-dimensional Lauricelli func-
tion F∞B :

F∞B (α,β,γ; x) :=R−γ(γ− |β|,β;Z∞;γ− |α|,α), (6.4)

where Z ∈ R∞×∞ is given by (6.3). Here the parameters α,β are elements of C∞, the projec-
tive limit of Cn, and Reβ > 0, in the sense of multi-indices. We remark, that F∞B converges in

the interior of the infinite-dimensional cube W∞ :=
∞∏

n=1

[−1,1]n, endowed with the weak*-

topology, i.e., the topology of pointwise convergence.
Combining Eqns. (5.4) and (6.4), we obtain an identity between the moments of com-

plex B-splines and the infinite-dimensional Lauricella function F∞B , namely,

(F∞B )(z)(α,β,γ; x) =M−γ(γ− |α|,α;Z∞;γ− |β|,β), (6.5)

where the z-th fractional derivative of F∞B exists by the above identity (6.4).
Eqn. (6.5) is an extension of Corollary 6.4 in [19] to the infinite-dimensional setting

involving multivariate complex B-splines of order z, Rez > 1.

7 Summary

We employed the natural infinite-dimensional setting for multivariate complex B-splines to
extend the concept of double Dirichlet averages. As a result of this extension, we obtained
in the following results.

• The moments of multivariate complex B-splines were defined.

• A formula for the moments of multivariate complex B-splines in terms of double
Dirichlet averages associated with the infinite-dimensional analogue of Carlson’s hy-
pergeometric R-function was derived.

• Employing an Euler-type integral representation, an infinite-dimensional analogue of
Lauricella’s FB-function was obtained and related to the double Dirichlet average of
Carlson’s R-hypergeometric function on the infinite-dimensional simplex 4∞.

• An identity between the infinite-dimensional extension of Lauricella’s FB-function
and the moments of multivariate complex B-splines was presented.

The results presented in this article generalize those given in [19] to infinite dimensions and
splines of complex order.
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