
Communications in Mathematical Analysis
Volume 12, Number 2, pp. 26–33 (2012)
ISSN 1938-9787

www.math-res-pub.org/cma

T S  C  S  J
P

Ricardo Abreu Blaya∗

Facultad de Informática y Matemáticas
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Abstract

Let γ be a non-rectifiable closed Jordan curve in C, which is merely assumed to be
d-summable (1 < d < 2) in the sense of Harrison and Norton [7]. We are interested in
the so-called jump problem over γ, which is that of finding an analytic function in C
having a prescribed jump across the curve.

The goal of this note is to show that the sufficient solvability condition of the jump

problem given by ν >
d
2

, being the jump function defined in γ and satisfying a Hölder
condition with exponent ν, 0 < ν ≤ 1, cannot be weakened on the whole class of d-
summable curves.
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1 Introduction

Let γ be a closed Jordan curve in C and suppose that there is given a continuous function
f on γ. The jump problem determined by the pair (γ, f ) consists in finding a function Φ(z)
with the following properties:

• Φ(z) is analytic for z ∈ C \γ,

• The usual continuous limit values Φ+(t) and Φ−(t) of the desired function Φ from the
plus and minus side of γ are related for t ∈ γ by the boundary condition:

Φ+(t)−Φ−(t) = f (t). (1.1)

• Φ(z) tends to 0 as z→∞.

During the last decades, several attempts were made on the non-trivial question concerning
the minimal restrictions on the pair (γ, f ) for solving the jump problem (1.1). The interest
in this problem is based on its theoretical importance and the implications for applications
in many branches of contemporary mathematics and physics.

The solution of (1.1) over smooth curves, when f satisfies a Hölder condition with ex-
ponent ν ∈ (0,1] is obviously related to the boundary properties of the Cauchy type integral

Φ(z) =
1

2πi

∫
γ

f (τ)
τ− z

dτ. (1.2)

The major point established is that this solution is uniquely determined precisely by (1.2),
which is clear after using the Plemelj-Sokhotskii formula. For a deeper discussion of this
area of complex analysis we refer the reader to the classical Gakhov’s monograph [5].

Subsequent developments put the study of the above-mentioned close connection in the
context of non-smooth rectifiable curves. This was essentially worked out in the 1979’s by
Dynkin [3] and Salimov [11]. Since then, (1.2) has boundary values from both side of γ if
f satisfies a Hölder condition with exponent ν ∈ ( 1

2 ,1] which establishes simultaneously the
solvability of the jump problem. Moreover, the bound for the Hölder exponent cannot be
improved on the whole class of rectifiable curves.

In [8] (see also [9]), Kats proved that the jump problem on non-rectifiable curves is
solvable whenever f satisfies a Hölder condition with exponent ν such that

ν >
dimγ

2
, (1.3)

where dimγ denotes the upper metric dimension of γ. Moreover, assumption (1.3) cannot
be relaxed on the class of curves of fixed upper metric dimension.

In [1, 10] solvability conditions of the jump problem, but needing a new dimensional
metric characteristic and some possible formulation of curvilinear Cauchy integration, was
reexamined and extended. The main result here shows that the solvability condition with
upper metric dimension replaced by the new one is weaker than (1.3). As an application,
solvability conditions of the Riemann boundary value problem are derived under weaker
restrictions on the boundary. Besides the complex case the consideration can be extended
to the framework of hyperanalytic functions theory (see [6] for the standard work here).
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Inspired by the results in [8], recently the jump problem has been studied in case of
d-summable (1 < d < 2) curves (to be defined later), but regarding the solution to be a
hyperanalytic function. In particular, it is proved by Theorem 1 in [2] that if

ν >
d
2
, (1.4)

then the jump problem is solvable for any d-summable curve and any f satisfying the Hölder
condition with exponent ν.

What is still lacking is the sharpness of (1.4) on the class of d-summable curves and it
is the question we shall be concerned in this work. For this to be proved, it is worth noting
that the curve constructed by Kats [8] cannot be used, since it is not d-summable with d
being its upper metric dimension.

Before turning our attention to showing an example which leads the sharpness of con-
dition (1.4), we would like to briefly recapitulate the minimal technical information will be
needed.

2 Upper metric dimension and d-summable sets in R2

The upper metric dimension of a compact set E ⊂ R2 is equal to

dimE := limsup
ε→0

log NE(ε)
− logε

, (2.1)

where NE(ε) stands for the least number of ε-balls needed to cover E. This can be found
in [4]. Note that the limit in (2.1) remains unchanged if NE(ε) is replaced by the number
mk(E) of k-cubes, with 2−k ≤ ε < 2−k+1, intersecting E. For completeness we recall that a
cube Q ⊂ R2 is called a k-cube if it is of the form

[l12−k, (l1+1)2−k]× [l22−k, (l2+1)2−k]

where k and l1, l2 are integers.
One can therefore also write dimE as

dimE := limsup
k→∞

logmk(E)
k log2

.

The set E is said to be d-summable if the improper integral

δ∫
0

NE(t)td−1dt

converges, for some δ > 0.
As we have mentioned, this geometric notion was introduced in [7], who showed that

any d-summable set E has upper metric dimension dimE ≤ d. Moreover, the assumption
dimE < d implies the d-summability of E.
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3 Example

Fix β > 1 and set Mn = 2θ(nβ), where θ(p) denotes the integer part of the number p. The
sequence of points {a j

n}
Mn
j=0 with a0

n = 2−n+1, a1
n = 2−n+1 − 2−n

Mn
, . . . , yields the division of the

interval In = [2−n,2−n+1] into Mn equal parts.
Let us consider

T (n) = ((ln2(β−1)n−1) log2 n−
2

ln2
)

1
n2 log3

2 n
, n ≥ θ(

6β
β−1

(β+1)2)+1

and put
T∗(n) = 2θ(log2 T (n)).

Define the set En
∗ to consist of all the vertical intervals

[a j
n,a

j
n+ i2−nT∗(n)], j = 1, . . . ,Mn−1,

the intervals of the real axis given by

[a2 j
n ,a

2 j−1
n ], j = 1, . . . ,

Mn

2
,

as well as all the horizontal intervals

[a2 j+1
n + i2−nT∗(n),a2 j

n + i2−nT∗(n)], j = 1, . . . ,
Mn

2
−1.

Define E∗ =
⋃∞

n=n0
En
∗, where n0 = θ(

6β
β−1

(β+1)2)+1.

Proposition 3.1. The upper metric dimension of E∗ equals
2β

1+β
. Moreover, E∗ is

2β
1+β

-

summable.

Sketch of the Proof.
The procedure is to give a lower and upper estimate for mk(E∗). For this purpose we set

ρn =
2−n

Mn
(the distance between two consecutive vertical intervals of E∗). By construction

we have ∑
2−k<ρn,k>n

2k−n+θ(log2 T (n))+θ(nβ) 6 mk(E∗) 6
∑

2−k<ρn,k>n

2k−n+θ(log2 T (n))+θ(nβ)+

+2
∑

2−k<ρn,k>n

2k−n+
∑

2−k<ρn,k>n

22k−2n+θ(log2 T (n))+2θ(β−1)+2.

Let
S 1 =

∑
2−k<ρn,k>n

2k−n+θ(log2 T (n))+θ(nβ).

Then we have

S 1 ≤ 2k
∑

2−k>ρn,k>n

2(β−1)nT (n) = 2k
Pk∑

n=n0

2(β−1)nT1(n),
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where Pk is the integer positive number defined by the condition

k
β+1

−1 < Pk 6
k
β+1

Consequently, a short computation shows that

S 1 ≤ c1
2(β−1) k

β+1 2k

k
(β+1) log2

2
k
β+1

≤ c2
2

2β
β+1 k

k log2
2 k

Here and subsequently, c1,c2, . . . denote generic positive constants.
On the other hand

S 1 >
∑

2−k<ρn,k>n

2k−n+log2 T (n)−1+nβ−1 = 2k−2
Pk∑

n=n0

2(β−1)nT (n) >

≥ c32k 2(β−1)Pk

Pk log2
2 Pk
> c4

2( 2β
β+1 )k

k log2
2 k
.

Next ∑
2−k<ρn,k>n

2k−n 6 c5 ·2k
Pk∑

n=n0

2(β−1)nT (n) 6 c6
2

2β
β+1 k

k log2
2 k
,

∑
2−k>ρn,k>n

22k−2n+θ(log2 T (n)) 6 22k
∑

2−k>ρn,k>n

2−2nT (n) =

= 22k
k∑

n=Nk+1

2−2nT1(n) 6 c722k
k∑

n=Nk+1

2−2n ·
1

(Pk +1)2 log2
2(Pk +1)

≤

≤ c8 ·
2( 2β
β+1 )k

k log2
2 k
,

and finally

2θ(β−1)+2 < 2β =
2( 2β
β+1 )n0

n0 log2
2 n0
·
n0 log2

2 n0

2
2βn0
β+1

·2β 6 c8 ·
2

2βk
β+1

k log2
2 k
.

In view of the foregoing considerations we have

c9
2

2βk
β+1

k log2
2 k
6 mk(E∗) 6 c10

2
2βk
β+1

k log2
2 k

or equivalently

c11
t−

2β
1+β

ln 1
t ln2 ln 1

t

≤ NE∗(t) ≤ c12
t−

2β
1+β

ln 1
t ln2 ln 1

t

. (3.1)
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From the above it follows that

dimE∗ =
2β

1+β
− limsup

t→0

ln ln 1
t ln2 ln 1

t

ln 1
t

=
2β

1+β
.

On the other hand
1
3∫

0

NE∗(t)t
2β

1+β−1dt ≤C2

1
3∫

0

dt

t ln 1
t ln2 ln 1

t

< +∞,

which implies the
2β

1+β
-summability of E∗.

4 Sharpness of the solvability condition (1.4)

Theorem 4.1. For any pair of numbers ν and d subjected to the condition 0 < ν ≤
d
2
< 1 it

is possible to construct a d-summable curve γ∗ and a function f∗, which satisfies a Hölder
condition with exponent ν such that the jump problem is not solvable.

Proof:
Let β =

d
2−d

and consider the d-summable closed Jordan curve γ∗ = E∗ ∪ [0, n0 − i]∪
[n0− i, n0], the interior of which is denoted by Ω∗

We follow Kats [8] in constructing the function f∗. To do this, all the points a j
n, j =

0, . . . ,Mn, n = 1,2, . . . (from that of Section 3) are numbered in decreasing order as δ0 =
a0

1, δ1 = a1
1, . . . .

Denote by ∆k = δk − δk+1. Hence, ∆0 = · · · = ∆M1−1 = ρ1, ∆M1 = · · · = ∆M2−1 = ρ2, . . . ,
etc.

The series
∞∑
j=k

(−1) j∆νj

converges because the decreasing character of the sequence {∆k}
∞
k=0.

Define the function ϕ at the points δk as

ϕ(δk) =
∞∑
j=k

(−1) j∆νj

and extend it to the whole interval [0,2−n0+1] requiring to be linear on every intervals
[δk+1, δk] and ϕ(0) = 0.

Further we set ϕ(x+ iy) = ϕ(x) if z = x+ iy lies in Ω∗, and ϕ(z) = 0 for z ∈ C \ (Ω∗∪γ∗).
It can be directly proved that ϕ satisfies on [0,2−n0+1] the Hölder condition with expo-

nent ν and so on Ω∗∪γ∗.

Denote µ= (1+β)(1−ν)=
2(1− ν)

2−d
and m= θ(µ)−1. Now we define the desired function

to be f∗(z) = xmϕ(z), z = x+ iy.
An easy computation shows that f∗ has the following properties:
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a) ∂z f∗ is a bounded function away from zero and summable in the p-th power with
p > 1.

b) There exist constants α < 2 and c > 0 such that

|

∫
Ω∗

∂ξ f∗(ξ)

ξ− z
dξdξ| ≤ c|z|−α

c) There exist constants a and b > 0, such that

<(
∫
Ω∗

∂ξ f∗(ξ)

ξ+ x
dξdξ) ≥ b ln

1
x
+a, 0 < x ≤ 1.

Having disposed of this preliminary step, we can now follow in exactly similar way the
arguments apply in [8] to prove that there is not solution of the jump problem determined
by the pair (γ∗, f∗). The details are left to the reader.
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