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Abstract

We introduce new definitions of semi-continuity for multifunctions, combining the topo-

logical and the ordered structure of a Banach space induced by a closed convex cone. We

prove two types Nash equilibrium theorems for multifunctions using scalarization and the

Ky Fan’s inequality. As corollaries we obtain saddle point theorems for convex-concave

multifunctions, which can be considered as generalization to the vector-valued set-valued

case of the Von Neumann minimax theorem.
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1 Introduction and notions of convexity of multifunctions

Minimax problems and their related extensions have been subject to extensive research of many

mathematicians and scientists. For a recent development in this area we refer to [5]. The theory

of vector optimization has been intensively developed in recent years, as currently the interest

is focused on vector valued multifunctions. Important parts of this theory are the minimax

problems and saddle point problems, which have their specific features with respect to the real-

valued case. For a development of such vector-valued problems we refer to [2], [8], [9], [10],

[11], [12] and references therein. The vector-valued, set-valued case proposes more possibilities

for definitions of saddle points. In this paper we prove two types Nash equilibrium theorems

for vector-valued multifunctions using scalarization and Ky Fan’s inequality. As a corollary we

obtain two types saddle point theorems for convex-concave multifunctions (with respect to a

specified definition). An advantage in our saddle point theorems with respect to the existing

ones in the literature (see [3], [4]) is that our conditions are explicit.

Let E be topological vector space, Z be a Banach space and C ⊂ Z be a closed convex cone

with nonempty interior.

Definition 1.1. The multifunction F : E ⊃ X → 2Z , where X is a convex nonempty subset, is

called C-convex, if for every x,y ∈ X,λ ∈ [0,1],u ∈ λF(x)+ (1−λ)F(y) there exists v ∈ F(λx+

(1−λ)y) such that u− v ∈C. If F is (−C)-convex, then F is called C-concave.

Let k0 ∈ intC be fixed. Define the functions

hC(x) = in f {t ∈R : x ∈ tk0−C},

ϕC(x) = inf hC(F(x)),

ψC(x) = suphC(F(x)).

It is easy to see that hC is continuous and sublinear (see [6], [7]).

Lemma 1.2. Let the multifunction F : E ⊃ X→ 2Z be C-convex. Then the function ϕC is convex.

Proof. Let x1, x2 ∈ X. By definition of ϕC and hC, for every ε > 0 there exist zi ∈ F(xi), ti ∈

R, i = 1,2 such that

zi − tik
0 ∈ −C (1)

and

ti < ϕC(xi)+ε. (2)

By definition of C-convex multifunction,

∃v ∈ F(λx1 + (1−λ)x2) : λz1+ (1−λ)z2 ∈ v+C. (3)

By (1) we have

−C 3 λ(z1− t1k0)+ (1−λ)(z2 − t2k0) = λz1+ (1−λ)z2 − (λt1+ (1−λ)t2)k0. (4)
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By (3) and (4) we have

v ∈ λz1+ (1−λ)z2 −C

⊂ (λt1+ (1−λ)t2)k0−C−C

= (λt1+ (1−λ)t2)k0−C.

Hence

hC(v) ≤ λt1+ (1−λ)t2

< λϕC(x1)+ (1−λ)ϕC (x2)+2ε.

Therefore

ϕC(λx1+ (1−λ)x2) := inf
z∈F(λx1+(1−λ)x2)

hC(z) ≤ λϕC(x1)+ (1−λ)ϕC (x2)+2ε.

Since ε > 0 is arbitrarily small, we obtain

ϕC(λx1+ (1−λ)x2) ≤ λϕC(x1)+ (1−λ)ϕC (x2).

The proof of the next lemma is similar to that one of Lemma 1.2 and is omitted.

Lemma 1.3. Let F : E ⊃ X→ 2Z be (−C)-convex. Then the function ψC(x) is concave.

2 Notions of semicontinuity for multifunctions

Here we give some definitions of semicontinuity for multifunctions motivated from the scalar

case. Let us first remind the classical definitions of lower semi-continuity and upper semi-

continuity of multi-valued mappings, and of real valued functions.

If X and Y are topological spaces, the multi-valued mapping F : X→ 2Y is called upper semi-

continuous at the point x0 ∈ X, iff for any open set V ⊃ F(x0) there exists an open set U 3 x0 such

that F(x) ⊂ V for every x ∈ U. The multi-valued mapping F is called lower semi-continuous at

x0 ∈ X, if for every open set V in Y with V ∩F(x0) , ∅, there exists an open set U 3 x0 such that

F(x)∩V , ∅ for every x ∈ U.

The real valued function f : X→R is called upper semi-continuous (lower semi-continuous)

at x0, if for every ε > 0 there exists an open set U 3 x0 such that f (x)− f (x0)< ε ( f (x0)− f (x)< ε)

for every x ∈U.

Definition 2.1. We shall say that the multifunction F : E → 2Z is C-lower semi-continuous at

x0, if for every y ∈ F(x0) and every open V 3 0 there exists an open U 3 x0 such that (y+V +C)∩

F(x) = ∅ for every x ∈U.
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When Z is the real line, Z = R, and the cone C is the the cone of all non-negative real

numbers, the above definition coincides with the classical definition of lower semi-continuity of

real-valued functions.

When the cone C consists only of the zero element of the space E, the above definition

reduces to the notion of lower semi-continuity of multi-valued mappings.

Definition 2.2. The multifunction F : E → 2Z will be called (C,k0)−-upper semi-continuous at

x0, if for every ε > 0 there exists an open U 3 x0 such that

[(ϕC(x0)−ε)k0 −C]∩F(x) = ∅ ∀x ∈U.

In particular, every upper semi-continuous multi-valued mapping is (C,k0)−-upper semi-

continuous (and this is the motivation of this notion).

When Z is the real line, Z = R, and the cone C is the the cone of all non-negative real

numbers, the above definition coincides with the classical definition of lower semi-continuity of

real-valued functions.

Figure 1. Geometric visualization of (C,k0)−-upper semicontinuity (left) and (C,k0)+-upper

semicontinuity (right).

Definition 2.3. The multifunction F : E → 2Z will be called (C,k0)+-upper semi-continuous at

x0, if for every ε > 0 there exists an open U 3 x0 such that

F(x) ⊂ (ψC(x0)+ε)k0 − intC ∀x ∈U.

In particular, every upper semi-continuous multi-valued mapping is (C,k0)−-upper semi-

continuous.

Geometric visualizations of (C,k0)−-upper semicontinuity and (C,k0)+-upper semicontinuity

are shown in Figure 1.
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When Z is the real line, Z = R, and the cone C is the the cone of all non-negative real

numbers, the above definition coincides with the classical definition of upper semi-continuity of

real-valued functions.

It is easy to see that the notion of (C,k0)−-upper semi-continuity coincides with the notion

of (E \C,k0 )+-upper semi-continuity and therefore, the notion of (C,k0)+-upper semi-continuity

coincides with the notion of (E \C,k0)−-upper semi-continuity.

Lemma 2.4. If F is (−C)-lower semi-continuous, then ϕC is upper semi-continuous.

Proof. Let x0 ∈ E,ε > 0 be fixed and y0 ∈ F(x0) be such that

hC(y0) < inf hC(F(x0))+ε.

By continuity of hC , there exists an open V 3 0 such that

hC(v) < ε ∀v ∈ V.

By definition of (−C)-lower semi-continuity, there exists an open U 3 x0 such that

F(x)∩ (y0 +V −C) , ∅ ∀x ∈U.

Let y ∈ F(x)∩ (y0 +V −C). Then y = y0+ v− c for some v ∈ V,c ∈C and we can write

ϕC(x) = inf
y′∈F(x)

hC(y′)

≤ hC(y)

≤ hC(y0)+hC(v)+hC (−c) (by sublinearity of hC and since hC(−c) ≤ 0)

≤ ϕC(x0)+2ε.

Lemma 2.5. If F is (C,k0)−-upper semi-continuous, then ϕC is lower semi-continuous.

Proof. Let x0 ∈ E,y ∈ F(x0) and x ∈U, where U is given by the definition of (C,k0)−-upper

semicontinuity of F at x0. Let z ∈ F(x). Then by definition of (C,k0)−-upper semicontinuity,

z < (ϕC(x0)−ε)k0 −C. Now by definition of the function hC,

ϕC(x0)−ε < hC(z)

and since this is valid for every z ∈ F(x), we have

ϕC(x0)−ε ≤ ϕC(x),

which proves the lemma.

Lemma 2.6. If F is C-lower semi-continuous, then ψC is lower semi-continuous.

Proof. Similar to that one of Lemma 2.4.

Lemma 2.7. If F is (C,k0)+-upper semi-continuous, then ψC is upper semi-continuous.

Proof. Similar to that one of Lemma 2.5.
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3 Saddle points via Nash equilibrium.

In this section we prove two types Nash equilibrium theorems and two types of saddle point

theorems. The proofs are based on scalarization via Lemmas 2.4,..., 2.7, and on the Ky Fan

inequality.

Recall that the point x0 ∈ X, where X ⊂ E is a compact convex non-empty subset, is called

a solution of the quasi-variational inequality (F, f ,X) [1] for a given multi-valued mapping F :

X→ X and a given function f : X×X→ R, iff

x ∈ F(x) and sup
y∈F(x)

f (x,y) ≤ 0.

The famous Ky Fan inequality (see, for instance, [1], Theorem 6.3.5) is a particular case of the

quasi-variational inequality when F is the constant mapping F(x) = X for every x ∈ X.

Let E1,E2 be topological vector spaces, Z be a Banach space, X ⊂ E1,Y ⊂ E2 be convex

compact nonempty subsets and Ci ⊂ Z be closed convex cones with nonempty interiors, k0
i
∈

intCi, i = 1,2.

Theorem 3.1. (Nash equilibrium I). Let the multifunctions Fi : X ×Y → 2Z be (Ci,k
0
i
)−-upper

semi-continuous. Assume that F1(.,y) is C1-convex for every y ∈ Y, F1(x, .) is −C1-lower semi-

continuous for every x ∈ X, F2(x, .) is C2-convex for every x ∈ X and F2(.,y) is −C2-lower semi-

continuous for every y ∈ Y. Then there exists a Nash equilibrium of type I, (x0,y0) ∈ X×Y, which

means

F1(x,y0)∩ [inf hC1
(F1(x0,y0))k0

1 − intC1] = ∅ ∀x ∈ X, (5)

F2(x0,y)∩ [inf hC2
(F2(x0,y0))k0

2 − intC2] = ∅ ∀y ∈ Y. (6)

Proof. Define

f (x,y, x,y) = inf hC1
(F1(x,y))− inf hC1

(F1(x,y))+ inf hC2
(F2(x,y))− inf hC2

(F2(x,y))

By Lemma 1.2, f (x,y, ., .) is concave for every x ∈ X,y ∈ Y and by Lemmas 2.4, 2.5, f (., ., x,y) is

lower semi-continuous for every x ∈ X,y ∈ Y. By Ky Fan’s inequality (see [1], Theorem 6.3.5)

there exists (x0,y0) ∈ X ×Y such that

sup
(x,y)∈X×Y

f (x0,y0, x,y) ≤ 0

Putting y = y0 we obtain

inf hC1
(F1(x0,y0)) ≤ inf hC1

(F1(x,y0)) ∀x ∈ X, (7)

and putting x = x0 we obtain

inf hC2
(F2(x0,y0)) ≤ inf hC2

(F2(x0,y)) ∀y ∈ Y. (8)

Now (7) implies

F1(x,y0)∩ [inf hC1
(F1(x0,y0))k0

1 − intC1] = ∅
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and (8) implies

F2(x0,y)∩ [inf hC2
(F2(x0,y0))k0

2 − intC2] = ∅,

which finishes the proof.

Theorem 3.2. (Nash equilibrium II). Let the multifunctions Fi : X ×Y → 2Z be (Ci ,k
0
i
)+-upper

semi-continuous. Assume that F1(.,y) is C1-concave for every y ∈ Y, F1(x, .) is C1-lower semi-

continuous for every x ∈ X, F2(x, .) is C2-concave for every x ∈ X and F2(.,y) is C2-lower semi-

continuous for every y ∈ Y. Then there exists a Nash equilibrium of type II, (x0,y0) ∈ X × Y,

which means

F1(x,y0) ⊂ suphC1
(F1(x0,y0))k0

1 −C1 ∀x ∈ X,

F2(x0,y) ⊂ suphC2
(F2(x0,y0))k0

2 −C2 ∀y ∈ Y.

Proof. Define

f (x,y, x,y) = −suphC1
(F1(x,y))+ sup hC1

(F1(x,y))− sup hC2
(F2(x,y))+ sup hC2

(F2(x,y)).

By Lemma 1.3, f (x,y, ., .) is concave for every x ∈ X,y ∈ Y and by Lemmas 2.6, 2.7, f (., ., x,y) is

lower semi-continuous for every x ∈ X,y ∈ Y. By Ky Fan’s inequality (see [A-E, Theorem 6.3.5])

there exists (x0,y0) ∈ X×Y such that

sup
(x,y)∈X×Y

f (x0,y0, x,y) ≤ 0

Putting y = y0 we obtain

suphC1
(F1(x,y0)) ≤ suphC1

(F1(x0,y0)) ∀x ∈ X, (9)

and putting x = x0 we obtain

suphC2
(F2(x0,y)) ≤ suphC2

(F2(x0,y0)) ∀y ∈ Y (10)

Now (9) implies

F1(x,y0) ⊂ suphC1
(F1(x0,y0))k0

1 −C1

and (10) implies

F2(x0,y) ⊂ suphC2
(F2(x0,y0))k0

2 −C2 ,

which finishes the proof.

Remark 3.3. Here we considered the case of two multifunctions. The general case of finitely

many multifunctions is considered analogically.

In the special case when F1 = −F2 and C1 = C2 = C,k0
1
= k0

2
= k0, we obtain the following

saddle point theorems.
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Theorem 3.4. (Saddle point theorem I). Suppose that the multifunction F : X ×Y → 2Z have

compact images and is (C,k0)−-upper semi-continuous and (−C,−k0)−-upper semi-continuous,

F(.,y),y ∈ Y is C-convex and C-upper semi-continuous, F(x, .), x ∈ X is C-concave and (−C)-

lower semi-continuous. Then there exists a saddle point (x0,y0) ∈ X×Y of type I, namely there

exist z1,z2 ∈ F(x0,y0), such that

(z1− intC)∩F(x,y0 ) = ∅ ∀x ∈ X, (11)

(z2+ intC)∩F(x0 ,y) = ∅ ∀y ∈ Y. (12)

Proof. We apply Theorem 3.1 and obtain a Nash equilibrium of type I, (x0,y0) ∈ X ×Y. By

continuity of hC, there exists points z1,z2 ∈ F(x0,y0) such that

inf hC(F(x0,y0) = hC(z1) (13)

and

inf h−C(F(x0,y0) = h−C(z2).

By definition of hC , (13) implies z1 ∈ hC(z1)k0−C, whence

z1− intC ⊂ hC(z1)k0 −C− intC = hC(z1)k0− intC.

Now (5) implies (11).

Analogically we prove (12).

Geometric visualizations of multifunction Nash equilibrium I, when F1 = −F2 = F,C1 =

C2 =C,k0
1
= k0

2
= k0 and multifunction saddle point I are shown in Figure 2.

Figure 2. Geometric visualization of multifunction Nash equilibrium I, when F1 =−F2 = F,C1 =

C2 =C,k0
1
= k0

2
= k0 (left) and multifunction saddle point I (right).
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Theorem 3.5. (Saddle point theorem II). Suppose that the multifunction F : X ×Y → 2Z have

compact images and is (C,k0)+-upper semi-continuous and (−C,−k0)+-upper semi-continuous,

F(.,y),y ∈ Y is C-concave and (−C)-lower semi-continuous, F(x, .), x ∈ X is C-convex and C-

lower semi-continuous. Then there exists a saddle point (x0,y0) ∈ X ×Y, i.e. there exist z1,z2 ∈

F(x0,y0), such that satisfying (11) and (12).

The proof is similar to those of Theorem 3.4, applying Theorem 3.2.

Geometric visualizations of multifunction Nash equilibrium II, when F1 = −F2 = F,C1 =

C2 =C,k0
1
= k0

2
= k0 and multifunction saddle point II are shown in Figure 3.

Figure 3. Geometric visualization of multifunction Nash equilibrium II, when F1 = −F2 =

F,C1 =C2 =C,k0
1
= k0

2
= k0 (left) and multifunction saddle point II (right).

Remark 3.6. When Z is the real line, Z = R, and the cone C is the the cone of all non-negative

real numbers, the above saddle point theorem reduces to the classical Von Neumann minimax

theorem [1]. When F is upper semi-continuous, the assumptions (and the conclusions) of the

above two saddle point theorems coincide.
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