C Commniectionsin \mathbf{M}

Arcwise Connectedness of Efficient Sets

Ivan Ginchev*
Department of Mathematics
Technical University Varna
Varna 9010, Bulgaria

(Communicated by Toka Diagana)

Abstract

Let E be a topological vector space and C a pointed closed convex cone. For a set Q in E we prove arcwise connectedness of the efficient point set $\operatorname{Max}(Q \mid C)$ between any two points of a closed set $M \subset \operatorname{Max}(Q \mid C)$ with a compact closed convex hull and having certain additional property. An application to a class of non-convex in general sets is given. The method generalizes the one from [6] concerning compact convex sets and allows also for such sets to obtain a more general result.

AMS Subject Classification: 90C29.
Keywords: vector optimization, efficient sets, arcwise connectedness.

1 Introduction

In this paper E denotes a real Hausdorff topological vector space (abbreviated TVS), C is a pointed closed convex cone in E and $Q \subset E$ is a given set. The efficient point set of Q with respect to C is defined by $\operatorname{Max}(Q \mid C)=\{x \in Q \mid(x+C) \cap Q=\{x\}\}$. The purpose of this paper is to investigate the arcwise connectedness of $\operatorname{Max}(Q \mid C)$ between fixed two points $x_{0}, x_{1} \in \operatorname{Max}(Q \mid C)$. In Makarov, Rachkovski, Song [6] this problem is considered for convex compact sets with closed efficient point set $\operatorname{Max}(Q \mid C)$. The practical aspect of the problem is to derive some nice property (arcwise connectedness) of the solutions of multicriterial decision problems. The criteria in such problems arising in practice satisfy often some generalized concavity property, say quasi-concavity seems to be a natural condition if the criteria are interpreted as utility functions. The solutions then are the points of the efficient set for sets being usually not convex, but such for which the following condition is more appropriate.

Property 1.1. For arbitrary two points $x_{0}, x_{1} \in Q$ there exists an element $a=a\left(x_{0}, x_{1}\right) \in E$ such that $(x+C) \cap Q \neq \emptyset$ for arbitrary $x \in\left[x_{0}, a\right] \cup\left[a, x_{1}\right]$.

[^0]Here we use the notation $\left[y_{0}, y_{1}\right]=\left\{y=(1-t) y_{0}+t y_{1} \mid 0 \leq t \leq 1\right\}$ for the segment with end points $y_{0}, y_{1} \in E$. Each convex set satisfies Property 1.1 with $a\left(x_{0}, x_{1}\right)=\frac{1}{2}\left(x_{0}+x_{1}\right)$. It seems that Property 1.1 is satisfied in the case int $C \neq \emptyset$ by the so called simply-shaded sets considered in the paper of Benoist, Popovici [1]. They use simply-shaded sets to prove contractibility of the efficient point set in the case of three-criterial decision problem with criteria being semistrictly quasi-concave on a convex compact subset of a TVS. The cited paper refines an earlier result of Daniilidis, Hadjisavvas, Schaible [2]. Let us underline that recently the topological and in particular the connectedness properties of the efficient point set have been intensively studied. The few cited papers give further references.

Here we generalize the approach of Makarov, Rachkovski, Song [6] in a way making it possible for applications also for classes of non-convex sets. In Section 2 we formulate the main result and the precise properties assumed for the cone and the considered sets. We give also some auxiliary matter. In Section 3 we prove the main result and obtain a similar result for a particular case under simplified assumptions. In Section 4 we apply the method to a class of sets in R^{n}. In Section 5 we compare for convex sets the results with those of [6].

2 Preliminaries

The following proposition states the existence of efficient points in compact sets.
Proposition 2.1. Let $Q \subset E$ be a compact set in a TVS. Then each nonempty section $(x+$ $C) \cap Q, x \in E$, contains points from $\operatorname{Max}(Q \mid C)$.

Proof The conclusion is a particular case of Theorem 3.3 in Luc [5, page 46] in view of Lemma 3.5 also there [5, page 47]. This result follows also straightforward from the Zorn Lemma.

Proposition 2.1 assures that for a compact set in a TVS Property 1.1 is true for all $x_{0}, x_{1} \in$ Q if it is assumed only for all $x_{0}, x_{1} \in \operatorname{Max}(Q \mid C)$. For this reason making more precise the assumptions for Q we put conditions similar to those of Property 1.1 only to points x_{0}, x_{1} from $\operatorname{Max}(Q \mid C)$ or a subset of $\operatorname{Max}(Q \mid C)$. In this paper we restrict the considerations to sets $Q \subset E$ obeying the following property.
Property 2.2. The set M is a subset of $\operatorname{Max}(Q \mid C)$ such that for any unordered pair $x_{0}, x_{1} \in M$ an element $a\left(x_{0}, x_{1}\right) \in E$ and a nonempty set $\Gamma\left(x_{0}, x_{1}\right) \subset M$ can be chosen satisfying:
1^{0}. For arbitrary $x \in\left[x_{0}, a\left(x_{0}, x_{1}\right)\right] \cup\left[a\left(x_{0}, x_{1}\right), x_{1}\right]$ it holds $(x+C) \cap M \neq \emptyset$.
$2^{0} . \Gamma\left(x_{0}, x_{1}\right) \subset\left(a\left(x_{0}, x_{1}\right)+C\right) \cap M$ and for $\hat{x} \in \Gamma\left(x_{0}, x_{1}\right)$ it holds

$$
a\left(x_{0}, \hat{x}\right) \in \frac{1}{2}\left(x_{0}+a\left(x_{0}, x_{1}\right)\right)+C
$$

(and by symmetry $\left.a\left(\hat{x}, x_{1}\right) \in \frac{1}{2}\left(a\left(x_{0}, x_{1}\right)+x_{1}\right)+C\right)$.
Saying above that x_{0}, x_{1} is unordered pair we mean that an interchanging of x_{0} and x_{1} does not affect $a\left(x_{0}, x_{1}\right)$ (otherwise one can think of a as of a symmetric function of its arguments).

For the closed convex cone C we impose the following property.

Property 2.3. For arbitrary set $K \subset C$ the condition $0 \in \mathrm{clconv} K$ implies that $0 \in \mathrm{cl} K$.
Recall that the convex cone C is said to be pointed if zero is an extreme point for C, that is there does not exist a segment $\left[x_{0}, x_{1}\right]$ with $x_{0}, x_{1} \in C \backslash\{0\}$ such that $0 \in\left[x_{0}, x_{1}\right]$.

Proposition 2.4. If the cone C in a Hausdorff TVS has Property 2.3 then it is pointed.
Proof Assume that a segment $\left[x_{0}, x_{1}\right]$ exists with $x_{0}, x_{1} \in C \backslash\{0\}$ such that $0 \in\left[x_{0}, x_{1}\right]$. Then for the set $K=\left\{x_{0}, x_{1}\right\}$ we get $0 \in \operatorname{cl} \operatorname{conv} K$ while $0 \notin \mathrm{cl} K$.

Proposition 2.4 shows that Property 2.3 is a strengthening of the property that C is pointed. The following proposition shows that for finite dimensional spaces both concepts are equivalent.

Proposition 2.5. If E is finite dimensional, then each pointed closed convex cone C has Property 2.3.

Proof We prove the following more general statement: If C is a pointed closed convex cone with a bounded base in a Banach space then $K \subset C$ and $0 \notin w$-cl K implies $0 \notin \mathrm{clconv} K$. Here $w-\mathrm{cl} K$ is the weak closure of K. For the definition and properties of the cone bases see e.g. [3].

Obviously, this statement implies our proposition, since in finite dimensional spaces the strong and weak topologies coincide. We base the proof on Proposition 2 and Theorem 1 in [7] which says that for a closed convex pointed cone C in a Banach space, $0 \notin \mathrm{clconv}(C \backslash$ $B(0, \epsilon))$ for any $\epsilon>0$ is equivalent to that C has a bounded base. Suppose that $0 \notin w-\mathrm{cl} K$. Then there exists a weak neighborhood U of 0 such that $U \cap w-\mathrm{cl} K=\emptyset$. Since every weak neighborhood U of 0 must contain a ball $B(0, \epsilon)$, it follows that $K \subset C \backslash B(0, \epsilon)$ and that clconv $K \subset \operatorname{clconv}(C \backslash B(0, \epsilon))$. Since C has a bounded base, we have $0 \notin \operatorname{clconv}(C \backslash B(0, \epsilon))$ This implies that $0 \notin$ clconv K.

We investigate the arcwise connectedness of $\operatorname{Max}(Q \mid C)$ between two points $x_{0}, x_{1} \in$ $\operatorname{Max}(Q \mid C)$. Recall that $\operatorname{Max}(Q \mid C)$ is arcwise connected between x_{0} and x_{1} if there exists a continuous function $f:[0,1] \rightarrow \operatorname{Max}(Q \mid C)$ such that $f(0)=x_{0}$ and $f(1)=x_{1}$. Our main result is the following.

Theorem 2.6. Suppose that Q is a set in the real Hausdorff TVS E and C is a closed convex cone in E possessing Property 2.3. Assume that a closed set $M \subset \operatorname{Max}(Q \mid C)$ obeying Property 2.2 exists and such that $\mathrm{cl} \operatorname{conv} M$ is compact. Then $\operatorname{Max}(Q \mid C)$ is arcwise connected between any points $x_{0}, x_{1} \in M, x_{0} \neq x_{1}$. Moreover, there exists an arc between x_{0} and x_{1} contained entirely in M.

Assuming that Property 2.2 holds and x_{0}, x_{1} are fixed points in M we construct a sequence of functions $f_{n}:[0,1] \rightarrow E$, whose description is given below.

Put $T_{n}=\left\{m / 2^{n} \mid m=0,1, \ldots 2^{n}\right\}$ for $n=0,1, \ldots$. We introduce inductively the points $c(t) \in M, t \in T$, where $T=\bigcup_{n} T_{n}$ and the functions $f_{n}:[0,1] \rightarrow E$ as follows.

For $n=0$ we define $c(0)=x_{0}, c(1)=x_{1}$ and

$$
\begin{array}{ll}
f_{0}(t)=\frac{1 / 2-t}{1 / 2} c(0)+\frac{t-0}{1 / 2} a(c(0), c(1)), & 0 \leq t \leq 1 / 2, \\
f_{0}(t)=\frac{1-t}{1 / 2} a(c(0), c(1))+\frac{t-1 / 2}{1 / 2} c(1), & 1 / 2 \leq t \leq 1 .
\end{array}
$$

Obviously $f_{0}(0)=c(0)=x_{0} \in M, f_{0}(1)=c(1)=x_{1} \in M$ and $f(1 / 2)=a(c(0), c(1))=a\left(x_{0}, x_{1}\right)$.
Take some $n=1,2, \ldots$ and assume that $c(t), t \in T_{n-1}$, and $f_{n-1}:[0,1] \rightarrow E$ have been defined. Assume that they obey the properties that $f_{n-1}(t)=c(t) \in M$ for $t \in T_{n-1}$ and $f_{n-1}(t)=a\left(c\left(t-1 / 2^{n}\right), c\left(t+1 / 2^{n}\right)\right)$ for $t \in T_{n} \backslash T_{n-1}$. Observe here that for $t \in T_{n} \backslash T_{n-1}$ it holds $t=m / 2^{n}, m=1,3, \ldots, 2^{n}-1$, and both $t-1 / 2^{n}=(m-1) / 2^{n}$ and $t+1 / 2^{n}=(m+1) / 2^{n}$ belong to T_{n-1}. Define first $c(t) \in M$ for $t \in T_{n} \backslash T_{n-1}$ putting $c(t)$ to be arbitrary point from $\Gamma\left(c\left(t-1 / 2^{n}\right), c\left(t+1 / 2^{n}\right)\right)$. Now define f_{n} to be piecewise linear on the consecutive intervals $\left[(m-1) / 2^{n},(2 m-1) / 2^{n+1}\right]$ and $\left[(2 m-1) / 2^{n+1}, m / 2^{n}\right], m=1,2, \ldots, 2^{n}$, putting

$$
\begin{array}{cl}
f_{n}(t)=\frac{(2 m-1) / 2^{2+1}-t}{1 / 2^{n+1}} c\left(\frac{m-1}{2^{n}}\right)+\frac{t-(m-1) / 2^{n}}{1 / 2^{n+1}} a\left(c\left(\frac{m-1}{2^{n}}\right), c\left(\frac{m}{2^{n}}\right)\right), & \frac{m-1}{2^{n}} \leq t \leq \frac{2 m-1}{2^{n+1}}, \\
f_{n}(t)=\frac{m / 2^{n}-t}{1 / 2^{n+1}} a\left(c\left(\frac{m-1}{2^{n}}\right), c\left(\frac{m}{2^{n}}\right)\right)+\frac{t-(2 m-1) / 2^{n+1}}{1 / 2^{n+1}} c\left(\frac{m}{2^{n}}\right), & \frac{2 m-1}{2^{n+1}} \leq t \leq \frac{m}{2^{n}}
\end{array}
$$

Obviously $f_{n}\left(\frac{m-1}{2^{n}}\right)=c\left(\frac{m-1}{2^{n}}\right) \in M, f_{n}\left(\frac{m}{2^{n}}\right)=c\left(\frac{m}{2^{n}}\right) \in M$ and $f_{n}\left(\frac{2 m-1}{2^{n+1}}\right)=a\left(c\left(\frac{m-1}{2^{n}}\right), c\left(\frac{m}{2^{n}}\right)\right)$.
Lemma 2.7. The defined sequence of functions $f_{n}:[0,1] \rightarrow E$ has the properties:
1^{0}. For $t \in T_{n}$ all the values $f_{k}(t), k \geq n$, coincide, are equal to $c(t)$ and belong to M.
2^{0}. The sequence $\left\{f_{n}(t)+C\right\}_{n}$ is a monotone decreasing sequence of closed sets in E.
Proof Conclusion 1^{0} is obvious by the definition of $c(t)$ and $f_{n}(t)$. The closedness is also obvious. We prove now the monotonicity, which means that $f_{n-1}(t)+C \supset f_{n}(t)+C$. In order to prove this inclusion it suffices to show that $f_{n}(t) \in f_{n-1}(t)+C$ for $\frac{m-1}{2^{n-1}} \leq t \leq$ $\frac{m}{2^{n-1}}, m=1,2, \ldots 2^{n-1}$. We confine to the case $\frac{m-1}{2^{n-1}} \leq t \leq \frac{2 m-1}{2^{n}}$ (the case $\frac{2 m-1}{2^{n}} \leq t \leq \frac{m}{2^{n-1}}$ is similar). Then $f_{n}\left(\frac{m-1}{2^{n-1}}\right)=f_{n-1}\left(\frac{m-1}{2^{n-1}}\right)=c\left(\frac{m-1}{2^{n-1}}\right)$ and $c\left(\frac{2 m-1}{2^{n}}\right)=f_{n}\left(\frac{2 m-1}{2^{n}}\right) \in f_{n-1}\left(\frac{2 m-1}{2^{n}}\right)+C=$ $a\left(c\left(\frac{m-1}{2^{n-1}}\right), c\left(\frac{m}{2^{n-1}}\right)\right)+C$. These equalities and inclusions follow from the definition of f_{n-1} and f_{n}. Now Property 2.2 implies that

$$
\begin{aligned}
f_{n}\left(\frac{4 m-3}{2^{n+1}}\right) & =a\left(c\left(\frac{m-1}{2^{n-1}}\right), c\left(\frac{m}{2^{n-1}}\right)\right) \in \frac{1}{2}\left(c\left(\frac{m-1}{2^{n-1}}\right)+a\left(c\left(\frac{m-1}{2^{n-1}}\right), c\left(\frac{m}{2^{n-1}}\right)\right)\right)+C \\
& =\frac{1}{2} f_{n-1}\left(\frac{m-1}{2^{n-1}}\right)+\frac{1}{2} f_{n-1}\left(\frac{2 m-1}{2^{n}}\right)+C=f_{n-1}\left(\frac{4 m-3}{2^{n+1}}\right)+C .
\end{aligned}
$$

Therefore the inclusion $f_{n}(t) \in f_{n-1}+C$ is established for t equal to $\frac{m-1}{2^{n-1}}=\frac{4 m-4}{2^{n+1}}, \frac{4 m-3}{2^{n+1}}$ and $\frac{2 m-1}{2^{n}}=\frac{4 m-2}{2^{n+1}}$. The piecewise linearity of both f_{n-1} and f_{n} on the intervals $\left[\frac{m-1}{2^{n-1}}, \frac{4 m-3}{2^{n+1}}\right]$ and $\left[\frac{4 m-3}{2^{n+1}}, \frac{2 m-1}{2^{n}}\right]$ implies this inclusion for the whole interval $\left[\frac{m-1}{2^{n-1}}, \frac{2 m-1}{2^{n}}\right]$.

Introduce a more convenient representation for the functions f_{n}. For $t=\frac{m}{2^{n+1}} \in T_{n+1}$, $n=0,1, \ldots$, we write $b_{n}\left(\frac{m}{2^{n+1}}\right)=c\left(\frac{m}{2^{n+1}}\right)$ in case of an even $m=0,2, \ldots, 2^{n+1}$ and $b_{n}\left(\frac{m}{2^{n+1}}\right)=$ $a\left(c\left(\frac{m-1}{2^{n+1}}\right), c\left(\frac{m+1}{2^{n+1}}\right)\right)$ in case of an odd $m=1,3, \ldots, 2^{n+1}-1$. For given $t \in[0,1]$ denote also by $t_{n}^{-}=\max \left([0, t] \cap T_{n}\right)$ and $t_{n}^{+}=\min \left([t, 1] \cap T_{n}\right)$ (we use this notation also in the sequel). Obviously $t_{n}^{-} \leq t \leq t_{n}^{+}$and both sequences $\left\{t_{n}^{-}\right\}_{n}$ and $\left\{t_{n}^{+}\right\}_{n}$ converge to t. Now the function f_{n} can be represented as follows:

$$
\begin{aligned}
& f_{n}(t)=b_{n}(t) \quad \text { if } \quad t_{n+1}^{-}=t_{n+1}^{+}=t, \\
& f_{n}(t)=\frac{t-t_{n+1}^{-}}{t_{n+1}^{+}-t_{n+1}^{-}} b_{n}\left(t_{n+1}^{-}\right)+\frac{t_{n+1}^{+}-t}{t_{n+1}^{+}-t_{n+1}^{-}} b_{n}\left(t_{n+1}^{+}\right) \quad \text { if } \quad t_{n+1}^{-} \neq t_{n+1}^{+}
\end{aligned}
$$

The sequence f_{n} can be useful in studying the arcwise connectedness of $\operatorname{Max}(Q \mid C)$ between the points x_{0} and x_{1} using the following idea. If the sequence f_{n} converges to a
continuous function f whose values are in $\operatorname{Max}(Q \mid C)$ then $\operatorname{Max}(Q \mid C)$ is arcwise connected between x_{0} and x_{1}. We use this approach in Section 3 for the proof of Theorem 3.3, while for the proof of Theorem 2.6 we find more convenient the sequence of functions $g_{n}:[0,1] \rightarrow E$ described below. The construction of the functions f_{n} and g_{n} is illustrated on Figure 1.

Figure 1. Construction of the sequences f_{n} and g_{n}.

Define the points $e_{n}(t), t \in T_{n+1}, n=0,1, \ldots$, as follows: If $n=0$ put $e_{0}(t)=b_{0}(t)$ for $t \in T_{1}=\{0,1 / 2,1\}$. If $n \geq 1$ put $e_{n}(t)=b_{n}(t)$ for $n \in T_{n}$ (and hence $\left.e_{n}(t)=c(t)\right)$ and $e_{n}(t)=\frac{1}{2}\left(e_{n-1}\left(t-1 / 2^{n+1}\right)+e_{n-1}\left(t+1 / 2^{n+1}\right)\right)$ for $t \in T_{n+1} \backslash T_{n}$.

Define now the functions $g_{n}:[0,1] \rightarrow E$ putting

$$
\begin{aligned}
& g_{n}(t)=e_{n}(t) \quad \text { if } \quad t_{n+1}^{-}=t_{n+1}^{+}=t, \\
& g_{n}(t)=\frac{t-t_{n+1}^{-}}{t_{n+1}^{+} t_{n+1}^{-}} e_{n}\left(t_{n+1}^{-}\right)+\frac{t_{n+1}^{+}-t}{t_{n+1}^{+}-t_{n+1}^{-}} e_{n}\left(t_{n+1}^{+}\right) \quad \text { if } \quad t_{n+1}^{-} \neq t_{n+1}^{+}
\end{aligned}
$$

The next lemma resembles Lemma 2.7 and shows that the functions g_{n} obey properties similar to those of f_{n}.

Lemma 2.8. The functions $g_{n}:[0,1] \rightarrow E$ have the properties:
1^{0}. It holds $f_{n}(t) \in g_{n}(t)+C$ for all $t \in[0,1]$ and nonnegative integers n.
2^{0}. For $t \in T_{n}$ all the values $g_{k}(t), k \geq n$, coincide, are equal to $c(t)$ and belong to M.
3^{0}. The sequence $\left\{g_{n}(t)+C\right\}_{n}$ is a monotone decreasing sequence of closed sets in E.
Proof Case 1^{0} is a result of the assumptions in Property 2.2 and the other conclusions follow straightforward similarly to Lemma 2.7.

Let $t \in[0,1]$ We define for n nonnegative integer the sets $C_{n}(t)=\left\{c(t) \mid t_{n}^{-} \leq t \leq t_{n}^{+}\right\}$, $C(t)=\bigcap_{n} \mathrm{cl} C_{n}(t)$. The sets $\left\{C_{n}(t)\right\}_{n}$ form obviously a decreasing sequence of nonempty sets and they all are contained in M. Under the assumption that M is compact (which is the case if as in Theorem $2.6 M$ is closed and clconv M is compact) the sets $\mathrm{cl}_{n}(t)$ are compact and decreasing in n, therefore their intersection $C(t)$ is not empty. Define also $E_{n}(t)=\left\{e_{k}(s) \mid s \in\left[t_{n}^{-}, t_{n}^{+}\right] \cap T_{k+1}, k=n, n+1, \ldots\right\}$ and $E_{0}=E_{0}(t), t \in[0,1]$, where obviously $E_{0}(t)$ does not depend on t, since $t_{0}^{-}=0, t_{0}^{+}=1$.

For a given n denote $\hat{E}_{n}=E_{0} \backslash \bigcup_{t \in[0,1]} E_{n}(t)$ (actually in this definition we may use $t \in T_{n+1} \backslash T_{n}$ instead of $t \in[0,1]$ in the union). The set \hat{E}_{n} is obviously finite.

Lemma 2.9. Let $n \geq 1$ be fixed. If cl conv M is compact then for each neighbourhood U of zero in E there exists a number m_{0} independent on t such that $E_{n+m}(t) \subset \operatorname{conv} C_{n}(t)+U$ for all $t \in[0,1]$ and all $m \geq m_{0}$.

Proof We prove the lemma in three steps.
Step 1 Let $n \geq 1$ be fixed and m be nonnegative integer. Then the elements $e_{n+m}(s)$ from $E_{n}(t)$ can be expressed as convex combinations $e_{n+m}(s)=(1-\beta) c+\beta \hat{e}$, where $c \in \operatorname{conv} C_{n}(t)$, $\hat{e} \in \hat{E}_{n}$ and $0 \leq \beta \leq 1 / 2^{m+1}$.

Obviously, it suffices to consider only $s \in T_{n+m+1} \backslash T_{n+m}$ (if $s \in T_{n+m}$ then $e_{n+m}(s) \in$ $\left.C_{n}(t)\right)$. The proof is done by induction. We skip it giving only the first two steps which outline the idea. The main difficulty in the inductive step is just choosing a convenient notation.

For $m=0$ if $t_{n}^{-}=t_{n}^{+}=t$ then $e_{n}(t)=c_{n}(t) \in C_{n}(t)$. It holds also $t_{n+m}^{-}=t_{n+m}^{+}=t$ and $e_{n+m}(t)=c_{n}(t) \in C_{n}(t)$ for all m and our conclusion is true with $\beta=0$. If $t_{n}^{-} \neq t_{n}^{+}$then $t_{n}^{+}-t_{n}^{-}=1 / 2^{n}$ and $s_{n}^{0}=\frac{1}{2}\left(t_{n}^{-}+t_{n}^{+}\right)$is the unique number in $\left[t_{n}^{-}, t_{n}^{+}\right]$from $T_{n+1} \backslash T_{n}$. By definition we have $e_{n}\left(s_{n}^{0}\right)=\frac{1}{2}\left(e_{n-1}\left(s_{n}^{0}-1 / 2^{n}\right)+e_{n-1}\left(s_{n}^{0}+1 / 2^{n}\right)\right)=\frac{1}{2} c_{1}+\frac{1}{2} \hat{e}$ for some $c_{1} \in C_{n}(t)$ and $\hat{e} \in \hat{E}_{n}$.

For $m=1$ there are two numbers in $\left[t_{n}^{-}, t_{n}^{+}\right]$from $T_{n+2} \backslash T_{n+1}$, namely $s_{n+1}^{0}=\frac{1}{2}\left(t_{n}^{-}+s_{n}^{0}\right)$ and $s_{n+1}^{1}=\frac{1}{2}\left(s_{n}^{0}+t_{n}^{+}\right)$. Take one of them, say s_{n+1}^{0}. Then $e_{n+1}\left(s_{n+1}^{0}\right)=\frac{1}{2} c_{2}+\frac{1}{2} e_{n}\left(s_{n}^{0}\right)=$ $\frac{3}{4}\left(\frac{2}{3} c_{2}+\frac{1}{3} c_{1}\right)+\frac{1}{4} \hat{e}=\frac{3}{4} c+\frac{1}{4} \hat{e}$, where $c \in \operatorname{conv} C_{n}(t)$ and $\hat{e} \in \hat{E}_{n}(t)$.

Step 2 Let $n \geq 1$ be fixed and m be nonnegative integer and $t \in[0,1]$ be arbitrary. Then $E_{n+m}(t) \subset \operatorname{conv} C_{n}(t)+\left[0,1 / 2^{m+1}\right] \cdot\left(\hat{E}_{n}-\operatorname{conv} M\right)$.

This is an immediate consequence of Step 1 , since an element $e \in E_{n+m}(t)$ is of the form $e=e_{n+k}(s)$ with $k \geq m$ and therefore $e=(1-\beta) c+\beta \hat{e}=c+\beta(\hat{e}-c)$ with $c \in \operatorname{conv} C_{n}(t) \subset$ $\operatorname{conv} M, \hat{e} \in \hat{E}_{n}$ and $0 \leq \beta \leq 1 / 2^{k+1} \leq 1 / 2^{m+1}$.

Step 3 It holds $E_{n+m}(t) \subset \operatorname{conv} C_{n}(t)+U$ for some m and all $t \in[0,1]$.
Actually this step proves the lemma, since the sets $\left\{E_{n+m}(t)\right\}_{m}$ form a decreasing sequence of sets. The set $\hat{E}_{n}-$ clconv M is compact, since \hat{E}_{n} is finite and clconv M is compact. Therefore there exists m, such that $\beta\left(\hat{E}_{n}-\right.$ cl conv $\left.M\right) \subset U$ for all $\beta \in\left[0,1 / 2^{m+1}\right]$. For such an m accordingly to the previous step our conclusion holds.

Now for $t \in[0,1]$ we define the sets $\mathcal{G}_{n}(t)=\bigcup\left\{g_{k}(s) \mid t_{n}^{-} \leq s \leq t_{n}^{+}, k \geq n\right\} \cup \operatorname{clconv} C(t)$. We put also $\mathcal{G}=\mathcal{G}_{0}(t)$ for in this case $\mathcal{G}_{0}(t)$ does not depend on $t \in[0,1]$.

Lemma 2.10. Let $n \geq 1$ be fixed. If cl conv M is compact then for each neighbourhood U of zero in E there exists a number m_{0} independent on t such that $\mathcal{G}_{n+m}(t) \subset \operatorname{conv} C_{n}(t)+U$ for all $t \in[0,1]$ and all $m \geq m_{0}$. Further the sets $\mathcal{G}_{n}(t)$ are compact.

Proof Take a neighbourhood V of zero in E satisfying $V+V \subset U$ and $\alpha V \subset V$ for $|\alpha| \leq 1$ (existence of such neighbourhoods is well known, see e.g. Theorem 5.1 in Kelley, Namioka [4, page 34]). According to Lemma 2.9 there exists a number m_{0} independent on t such that $E_{n+m_{0}}(t) \subset \operatorname{conv} C_{n}(t)+V$. Take $s \in\left[t_{n}^{-}, t_{n}^{+}\right]$and consider $g_{k}(s), k \geq n+m_{0}$. If $s_{k}^{-}=s_{k}^{+}$then $g_{k}(s) \in C_{k}(s) \subset C_{n}(t) \subset \operatorname{conv} C_{n}(t)+U$. If $s_{k}^{-} \neq s_{k}^{+}$then by definition for $\beta=\left(s-s_{k}^{-}\right) /\left(s_{k}^{+}-s_{k}^{-}\right) \in[0,1]$ it holds $g_{k}(s) \in(1-\beta) e_{k}\left(s_{k}^{-}\right)+\beta e\left(s_{k}^{+}\right)$. From the choice of k we have $g_{k}(s) \in(1-\beta)\left(\operatorname{conv} C_{n}(t)+V\right)+\beta\left(\operatorname{conv} C_{n}(t)+V\right)=\left((1-\beta) \operatorname{conv} C_{n}(t)+\beta \operatorname{conv} C_{n}(t)\right)+$ $((1-\beta) V+\beta V) \subset \operatorname{conv} C_{n}(t)+(V+V) \subset \operatorname{conv} C_{n}(t)+U$.

To prove the compactness of $\mathcal{G}_{n}(t)$ take an arbitrary open covering of $\mathcal{G}_{n}(t)$. Since clconv $C(t)$ is compact, a finite number of the sets in the covering covers cl conv $C(t)$ and hence their union contains a set of the type cl conv $C(t)+U$, where U is a neighbourhood of zero in E. Let $V+V \subset U$ for some neighbourhood of zero and take n_{0} such that conv $C_{n_{0}}(s) \subset$ clconv $C_{n_{0}}(s) \subset$ clconv $C(t)+V$. The possibility of such a choice holds, since for each k the sets $\bigcup\left\{\operatorname{clconv} C_{k}(s) \mid s \in\left[t_{n}^{-}, t_{n}^{+}\right]\right\} \subset \mathrm{clconv} M$ are compact (actually this union is finite) and their intersection is clconv $C(t)$. Now according to the proved part of this lemma we can find m_{0} such that $\mathcal{G}_{n_{0}+m_{0}}(s) \subset C_{n_{0}}(t)+V \subset \operatorname{clconv} C(t)+V+V \subset$ clconv $C(t)+U$ for all $s \in\left[t_{n}^{-}, t_{n}^{+}\right]$. Therefore the set $\mathcal{G}_{n}(t) \backslash(\operatorname{clconv} C(t)+U)$ can have a nonempty intersection only with the functions $g_{k}(s), t_{n}^{-} \leq s \leq t_{n}^{+}$, with $k \leq n_{0}+m_{0}$. The union of the images of finitely many continuous functions defined on a compact interval is a compact set, that is it can be covered by a finitely many of the sets of the given covering. Thus, we have shown that $\mathcal{G}_{n}(t)$ admits a finite subcovering, therefore it is compact.

Further we need a property of the least points of sets derived in Proposition 2.11 below. Recall that if G is a subset of E then the point $x \in G$ is said to be the least element of G with respect to C if $G \subset x+C$.

Proposition 2.11. Let $G_{0} \supset G_{1} \supset \ldots$ be a decreasing sequence of compact subsets in the real Hausdorff TVS Let $x_{n} \in G_{n}$ be the least element of G_{n} with respect to the pointed closed cone C. Then the intersection $G=\bigcap_{n} G_{n}$ is not empty and the sequence x_{n} is convergent to the unique least element x of G.

Proof This proposition constitutes Lemma 2.3 in Makarov, Rachkovski, Song [6]. For the sake of self-containment we adduce its short proof. The nonemptiness of G is a consequence of the compactness (hence closedness for E is Hausdorff) of the sets in the decreasing sequence. Further the sequence $\left\{x_{n}\right\}$ has an adherent point $x \in G$. Suppose that there exists $z \in G$ such that $z \notin x+C$. Since $x+C$ is closed, there exists a neighbourhood U of zero in E such that $(z-U) \cap(x+C)=\emptyset$. Hence $z \notin x+U+C$. Take nonnegative integer n such that $x_{n} \in x+U$. Then $x_{n}+C \subset x+U+C$ and therefore $z \notin x_{n}+C$. On the other hand we have $z \in G \subset G_{n} \subset x_{n}+C$. This contradiction asserts that $G \subset x+C$. Hence x is the least element of G. Since C is pointed, the set G has x as the unique least element.

With the help of the introduced above sequence of functions g_{n} we define the sequence of set-valued functions $G_{n}:[0,1] \rightarrow \mathcal{G}$. The set $\mathcal{G}=\mathcal{G}_{0}(t)$ is compact according to Lemma
2.10. We put $G_{n}(t)=\left(g_{n}(t)+C\right) \cap \mathcal{G}$. We define further the set-valued function $G:[0,1] \rightarrow \mathcal{G}$ putting $G(t)=\bigcap_{n} G_{n}(t)$. According to Lemma 2.8 the sequence $\left\{G_{n}(t)\right\}$ is a decreasing sequence of compact subsets of \mathcal{G}. Since $g_{n}(t)$ is the least point of $G_{n}(t)$, from Proposition 2.11 the sequence $g_{n}(t)$ converges to the unique least point of $G(t)$ which we denote by $g(t)$. From the definition of G we get $G(t)=(g(t)+C) \cap \mathcal{G}$. The function $g:[0,1] \rightarrow \mathcal{G}$ satisfies $g(t)=\lim _{n} g_{n}(t)$.

In order to check arcwise connectedness of $M \subset \operatorname{Max}(Q \mid C)$ we will show that g : $[0,1] \rightarrow \mathcal{G}$ is continuous and has values in M. Let us first see some properties of G_{n}. Recall that the graph of the set-valued function $\Phi:[0,1] \rightarrow E$ is the set $\operatorname{graph} \Phi=\{(t, \phi) \mid$ $t \in[0,1], \phi \in \Phi(t)\}$. The set-valued function $\Phi:[0,1] \rightarrow E$ is said to be closed if its graph is closed in the product space $[0,1] \times E$.

Lemma 2.12. The set-valued functions $G_{n}:[0,1] \rightarrow E$ and $G:[0,1] \rightarrow E$ are closed.
Proof The graph of G_{n} is the finite union graph $G_{n}=\bigcup\left\{\operatorname{graph} G_{n, m} \mid m=1, \ldots 2^{n+1}\right\}$ where $G_{n, m}$ is the restriction of G_{n} on the interval $\left[(m-1) / 2^{n+1}, m / 2^{n+1}\right]$. Therefore the closedness of G_{n} follows by the closedness of $G_{n, m}$ defined by $G_{n, m}(t)=\left(g_{n, m}(t)+C\right) \cap \mathcal{G}$ with

$$
g_{n, m}(t)=g_{n}(t)=\frac{t-(m-1) / 2^{n+1}}{1 / 2^{n+1}} e\left(\frac{m-1}{2^{n+1}}\right)+\frac{m / 2^{n+1}-t}{1 / 2^{n+1}} e\left(\frac{m}{2^{n+1}}\right), \quad \frac{m-1}{2^{n+1}} \leq t \leq \frac{m}{2^{n+1}} .
$$

Let $\left(t_{k}, y_{k}\right) \rightarrow\left(t_{0}, y_{0}\right)$ and $\left(t_{k}, y_{k}\right) \in \operatorname{graph} G_{n, m}$. This means that $(m-1) / 2^{n+1} \leq t_{k} \leq$ $m / 2^{n+1}, y_{k}-g_{n, m}\left(t_{k}\right) \in C, y_{k} \in \mathcal{G}$. Since C and \mathcal{G} are closed and $g_{n, m}$ continuous, we get the same conditions with $\left(t_{k}, y_{k}\right)$ replaced by $\left(t_{0}, y_{0}\right)$. Therefore $G_{n, m}$ is closed. The closedness of graph G follows from the representation graph $G=\bigcap_{n} \operatorname{graph} G_{n}$.

Lemma 2.13. It holds $C(t) \subset G(t) \subset \bigcap_{k} \mathcal{G}_{k}(t) \subset \operatorname{clconv} C(t) \subset g(t)+C$.
Proof First we prove $G(t) \subset \bigcap_{k} \mathcal{G}_{k}(t) \subset c l \operatorname{conv} C(t)$. Fix a nonnegative integer n. Let U be a neighbourhood of zero in E and V be a neighbourhood of zero such that $V+V \subset U$. Choose now according to Lemma 2.10 the nonnegative integer m_{0} such that $\mathcal{G}_{n+m}(s) \subset$ $\operatorname{conv} C_{n}(t)+V$ for all $s \in\left[t_{n}^{-}, t_{n}^{+}\right]$and all $m \geq m_{0}$. Similarly as in the proof of Lemma 2.10 we show that eventually diminishing m_{0} we will have conv $C_{n}(t) \subset \operatorname{clconv} C(t)+V$. Therefore for $k \geq n+m_{0}$ we have $\mathcal{G}_{k}(t) \subset \operatorname{conv} C_{n}(t)+V \subset \operatorname{clconv} C(t)+V+V \subset c l \operatorname{conv} C(t)+U$. Since $G_{k}(t) \subset \mathcal{G}_{k}(t)$ we get $G(t) \subset \bigcap_{k} \mathcal{G}_{k}(t) \subset \operatorname{clconv} C(t)+U$. Since this is true for arbitrary neighbourhood U of zero and E is Hausdorff and cl conv $C(t)$ is closed we get $G(t) \subset \operatorname{clconv} C(t)$.

Now we prove $C(t) \subset G(t) \subset g(t)+C$, whence immediately it follows clconv $C(t) \subset$ cl conv $(g(t)+C)=g(t)+C$. Let $c \in C(t)=\bigcap_{n} \operatorname{cl} C_{n}(t)$. For each neighbourhood U of zero in E and each $k \in N$, where N is the set of nonnegative integers, choose an element $c(k, U) \in C_{k}(t) \cap(c+U)$, which is possible from $c \in \operatorname{cl} C_{k}(t)$. Now $c(k, U) \in C_{k}(t)$ means that $c(k, U)=c(s(k, U))$ for some $s(k, U) \in\left[t_{k}^{-}, t_{k}^{+}\right] \cap T$. Let $s(k, U) \in T_{r}$ with $r \geq k$. Then $c(s(k, U))=g_{r}(s(k, U)) \in\left(g_{k}(s(k, U))+C\right) \cap \mathcal{G}=G_{k}(s(k, U))$. We consider $s(k, U)$ as a net over the directed set $N \times \mathcal{U}$, where \mathcal{U} is a base of neighbourhoods of zero in E (we define $\left(k_{1}, U_{1}\right)<\left(k_{2}, U_{2}\right)$ if $k_{1}<k_{2}$ and $\left.U_{1} \supset U_{2}\right)$. Let n be fixed. Then for $k>n$ and $U \in \mathcal{U}$ we have $c(s(k, U)) \in G_{k}(s(k, U)) \subset G_{n}(s(k, U))$. Thus $s(k, U) \rightarrow t, c(s(k, U)) \rightarrow c$ and $c(s(k, U)) \in G_{n}(s(k, U)), k \geq n$. Since G_{n} is closed we have $c \in G_{n}(t)$ for each n. Therefore $c \in \bigcap_{n} G_{n}(t)=G(t)$.

3 Main Result

In the previous section we formulated our main result as Theorem 2.6. Here we give the proof.

Proof of Theorem 2.6 Fix the points $x_{0}, x_{1} \in M, x_{0} \neq x_{1}$, and construct the functions $g_{n}, g:[0,1] \rightarrow \mathcal{G}$ and the set-valued functions $G_{n}, G:[0,1] \rightarrow \mathcal{G}$ as in the previous section with $c(0)=x_{0}, c(1)=x_{1}$ and $c(t) \in M$ for $t \in T$. Recall the properties $G_{n}(t)=\left(g_{n}(t)+C\right) \cap \mathcal{G}$, $g(t)=\lim _{n} g_{n}(t) \in G(t), G(t)=\bigcap_{n} G_{n}(t)=(g(t)+C) \cap \mathcal{G} \subset \operatorname{clconv} C(t)$. We use here also the other notations introduced in the previous section.

We do the proof in several steps.
Step 1 There exists a sequence of nonnegative integers $n_{i} \rightarrow \infty$ and a sequence of numbers $s_{i} \rightarrow t, s_{i} \in\left[t_{n_{i}}^{-}, t_{n_{i}}^{-}\right]$and $s_{i} \in T_{n_{i}+1}$, such that $g(t)=\lim _{i} e_{n_{i}}\left(s_{i}\right)$.

For $t \in T=\cup T_{n}$ this is obviously true, since then $G_{i}(t)=\{c(t)\}$ and $s_{i}=t$ for all sufficiently large i. Suppose now that $t \in[0,1] \backslash T$. Then for each nonnegative integer n it holds $g_{n}(t)=\left(1-\beta_{n}\right) e_{n}^{-}+\beta_{n} e_{n}^{+}$with $\beta_{n}=\left(t-t_{n+1}^{-}\right) /\left(t_{n+1}^{+}-t_{n+1}^{-}\right), e_{n}^{-}=e_{n}\left(t_{n+1}^{-}\right), e_{n}^{+}=e_{n}\left(t_{n+1}^{+}\right)$. The triple ($\beta_{n}, e_{n}^{-}, e_{n}^{+}$) belongs to the compact set $[0,1] \times \mathcal{G} \times \mathcal{G}$. Therefore there exists a subsequence $n=n_{i}$ such that $\beta_{n_{i}} \rightarrow \beta \in[0,1], e_{n_{i}}^{-} \rightarrow u^{-} \in \mathcal{G}, e_{n_{i}}^{+} \rightarrow u^{+} \in \mathcal{G}$. For $k \geq n$ we have $\left(t_{k+1}^{-}, e_{k}^{-}\right)=\left(t_{k+1}^{-}, g_{k}\left(t_{k+1}^{-}\right)\right) \in \operatorname{graph} G_{k} \in \operatorname{graph} G_{n}$ and similarly $\left(t_{k+1}^{+}, e_{k}^{+}\right)=\left(t_{k+1}^{+}, g_{k}\left(t_{k+1}^{+}\right)\right) \in$ graph G_{n}. Further $\left(t_{k+1}^{-}, e_{k}^{-}\right) \rightarrow\left(t, u^{-}\right)$and $\left(t_{k+1}^{+}, e_{k}^{+}\right) \rightarrow\left(t, u^{+}\right)$. Since graph G_{n} is closed, therefore (t, u^{-}) and $\left(t, u^{+}\right)$belong to graph G_{n} for each nonnegative integer n. In other words $u^{-}, u^{+} \in G_{n}(t)$ for all n, whence $u^{-}, u^{+} \in \bigcap_{n} G_{n}(t)=G(t)$. Accounting that $g(t)=\lim _{n} g_{n}(t)=$ $\lim _{i} g_{n_{i}}(t)=(1-\beta) u^{-}+\beta u^{+}$we get $u^{-}, u^{+} \in G(t) \subset g(t)+C=(1-\beta) u^{-}+\beta u^{+}+C$. These inclusions imply that $g(t)$ is either u^{-}or u^{+}. Indeed, if $\beta=0$ then $g(t)=u^{-}$and if $\beta=1$ then $g(t)=u^{+}$. Let now $0<\beta<1$. Then $u^{-} \in(1-\beta) u^{-}+\beta u^{+}+C$ implies $u^{-}-u^{+} \in C$. Similarly $u^{+} \in(1-\beta) u^{-}+\beta u^{+}+C$ implies $u^{+}-u^{-} \in C$. Since according to Proposition 2.4 the cone is pointed, we get $u^{-}=u^{+}$, whence also $g(t)=u^{-}=u^{+}$. Since $u^{-}=\lim _{i} e_{n_{i}}^{-}=\lim _{i} g_{n_{i}}\left(t_{n_{i}+1}^{-}\right)$ and $u^{+}=\lim _{i} e_{n_{i}}^{+}=\lim _{i} g_{n_{i}}\left(t_{n_{i}+1}^{+}\right)$we have shown actually that there exists a sequence of nonnegative integers $n_{i} \rightarrow \infty$ and a sequence of numbers $s_{i} \rightarrow t, s_{i} \in\left[t_{n_{i}+1}^{-}, t_{n_{i}+1}^{-}\right]$such that $g(t)=\lim _{i} e_{n_{i}}\left(s_{i}\right)$.

Step 2 It holds $g(t) \in M$.
This is the most difficult part of the proof. Like in the proof of Step 1 we may confine to $t \in[0,1] \backslash T$. We divide this step into several substeps.
$\mathbf{1}^{0}$. In Step 1 it was shown that there exists a sequence of numbers of nonnegative integers $n_{i} \rightarrow \infty$ and a sequence $s_{i} \in\left[t_{n_{i}}^{-}, t_{n_{i}}^{+}\right], s_{i} \in T_{n_{i}}$, such that $g(t)=\lim _{i} e_{n_{i}}\left(s_{i}\right)$. Taking if needed a subsequence we may assume that $s_{i} \in T_{n_{i}+1} \backslash T_{n_{i}}$. Indeed, if such a subsequence does not exists, then for all sufficiently large i it holds $e_{n_{i}}\left(s_{i}\right)=c\left(s_{i}\right) \in M$ and consequently $g(t) \in M$ by the closedness of M.
$\mathbf{2}^{0}$. We reformulate the proved in Step 1 as follows. If $t \in[0,1] \backslash T$ there is a strictly increasing sequence of different nonnegative integers $\left\{v^{0}\right\}$, which we consider as a directed set (more detailed written as $\left\{v^{0}\right\}=\left\{v_{1}^{0}, v_{2}^{0}, \ldots\right\}$ with $v_{1}^{0}<\nu_{2}^{0}<\ldots, v_{k}^{0} \rightarrow \infty$), and a net $\left\{s_{v^{0}}^{0}, v^{0} \in\left\{v^{0}\right\}\right\}$, such that for $v^{0} \in\left\{v^{0}\right\}$ it holds
a. $s_{\nu^{0}}^{0} \in T_{\nu^{0}+1} \backslash T_{\nu^{0}}, s_{\nu^{0}}^{0} \in\left[t_{\nu^{0}}^{-}, t_{\nu^{0}}^{+}\right]$,
b. $e_{\nu}\left(s_{\nu^{0}}^{0}\right) \rightarrow g(t)$.
$\mathbf{3}^{0}$. For any $\nu^{0} \in\left\{\nu^{0}\right\}, \nu^{0} \geq 1$, we have

$$
\begin{equation*}
e_{\nu^{0}}\left(s_{\nu^{0}}^{0}\right)=\frac{1}{2} e_{\nu^{0}-1}\left(s_{\nu^{0}-1}^{0}-\frac{1}{2^{2^{00+1}}}\right)+\frac{1}{2} e_{\nu^{0}-1}\left(s_{\nu^{0}-1}^{0}+\frac{1}{2^{2^{0}+1}}\right)=\frac{1}{2} c\left(\bar{s}_{\nu^{0}}^{0}\right)+\frac{1}{2} e_{\nu^{0}-1}\left(s_{\nu^{0}}^{1}\right), \tag{3.1}
\end{equation*}
$$

where $\bar{s}_{\nu^{0}}^{0}=s_{\nu^{0}}^{0} \pm \frac{1}{2^{2^{0}+1}} \in T_{\nu^{0}-1}, s_{\nu^{0}}^{1}=s_{\nu^{0}}^{0} \mp \frac{1}{2^{0,0}+1} \in T_{\nu^{0}} \backslash T_{\nu^{0}-1}$. It is true also that $\bar{s}_{\nu^{0}}^{0} \in$ $\left[t_{\nu^{0}-1}^{-}, t_{\nu^{0}-1}^{+}\right], s_{\nu^{0}}^{1} \in\left[t_{\nu^{0}-1}^{-}, t_{\nu^{0}-1}^{+}\right]$. Actually accounting $t_{\nu^{0}}^{+}-t_{\nu^{0}}^{-}=\frac{1}{2^{v_{0}}}$ the conditions $s_{\nu^{0}}^{0} \in$ $\left[t_{\nu^{0}}^{-}, t_{\nu^{0}}^{+}\right], s_{\nu^{0}}^{0} \in T_{\nu^{0}+1} \backslash T_{\nu^{0}}$ determine $s_{\nu^{0}}^{0}$ uniquely, namely $s_{\nu^{0}}^{0}=\frac{1}{2}\left(t_{\nu^{0}}^{-}+t_{\nu^{0}}^{+}\right)$. We have now that $s_{\nu^{0}}^{0} \pm \frac{1}{2^{0^{0}+1}}$ is either $t_{\nu^{0}}^{-}$or $t_{\nu^{0}}^{+}$. Both these numbers are contained in the interval $\left[t_{\nu^{0}-1}^{-}, t_{\nu^{0}-1}^{+}\right]$.

It holds $c\left(\bar{s}_{v^{0}}^{0}\right) \in M$ and M is compact. Therefore there exists a subsequence $\left\{v^{1}\right\} \subset\left\{v^{0}\right\}$ such that the net $\left\{c\left(\bar{s}_{v^{1}}^{0}\right), v^{1} \in\left\{v^{1}\right\}\right\}$ is convergent $c\left(\bar{s}_{v^{1}}^{0}\right) \rightarrow c^{1}$ and $c^{1} \in M$. From (3.1) we get that the sequence $e_{\nu^{1}-1}\left(s_{v^{1}}^{1}\right)$ is also convergent. Let $e_{\nu^{1}-1}\left(s_{v^{1}}^{1}\right) \rightarrow e^{1}$, where $e^{1} \in \mathcal{G}$. The equalities (3.1) restricted to the sequence $\left\{v^{1}\right\}$ are

$$
\begin{equation*}
e_{v^{1}}\left(s_{v^{1}}^{0}\right)=\frac{1}{2} c\left(\bar{s}_{v^{1}}^{0}\right)+\frac{1}{2} e_{v^{1}-1}\left(s_{v^{1}}^{1}\right), \quad v^{1} \in\left\{v^{1}\right\} . \tag{3.2}
\end{equation*}
$$

A passing to a limit in (3.2) gives $g(t)=\frac{1}{2} c^{1}+\frac{1}{2} e^{1}$.
Resume now the above considerations. For the sequence $\left\{v^{1}\right\} \subset\left\{v^{0}\right\}$ written as $\left\{v^{1}\right\}=$ $\left\{v_{1}^{1}, v_{2}^{1}, \ldots\right\}$ with $1 \leq v_{1}^{1}<v_{2}^{1}<\ldots, v_{k}^{1} \rightarrow \infty$, considered as a directed set, there exist nets $\bar{s}_{v^{1}}^{0}$ and $s_{v^{1}}^{1}$ of numbers satisfying for $v^{1} \in\left\{v^{1}\right\}$ the conditions:
a. $s_{v^{1}}^{1} \in T_{v^{1}} \backslash T_{v^{1}-1}, s_{v^{1}}^{1} \in\left[t_{v^{1}-1}^{-}, t_{v^{1}-1}^{+}\right]$(true also for $v^{1} \in\left\{v^{0}\right\}$),
b. $\bar{s}_{v^{1}}^{0} \in T_{\nu^{0}-1}, \bar{s}_{v^{1}}^{0} \in\left[t_{v^{1}-1}^{-}, t_{v^{1}-1}^{+}\right]$(true also for $v^{1} \in\left\{v^{0}\right\}$),
c. $c\left(\bar{s}_{v^{1}}^{0}\right) \rightarrow c^{1} \in M, e_{v^{1}-1}\left(s_{v^{1}}^{1}\right) \rightarrow e^{1} \in \mathcal{G}$,
d. $\frac{1}{2} c\left(\bar{s}_{v^{1}}^{0}\right)+\frac{1}{2} e_{v^{1}-1}\left(s_{v^{1}}^{1}\right) \rightarrow g(t)$ and accounting the limit in the left hand side $\frac{1}{2} c^{1}+\frac{1}{2} e^{1}=$ $g(t)$,
e. $c^{1} \in G(t)$ and in particular $c^{1} \in g(t)+C$.

Actually only point \mathbf{e} has not been shown so far and now we prove it. For $v^{1} \in\left\{v^{1}\right\}$ we have $\bar{s}_{v^{1}}^{0} \in\left[t_{v^{1}-1}^{-}, t_{v^{1}-1}^{+}\right]$, whence $\bar{s}_{v^{1}}^{0} \rightarrow t$. It holds also $c\left(\vec{s}_{v^{1}}^{0}\right)=e_{v^{1}-1}\left(\bar{s}_{v^{1}}^{0}\right)=g_{v^{1}-1}\left(\bar{s}_{v^{1}}^{0}\right) \in$ $G_{v^{1}-1}\left(\bar{s}_{v^{1}}^{0}\right)$. Since $\left\{G_{v^{1}-1}(t)\right\}$ is a monotone decreasing sequence, then by fixing $v_{*}^{1} \in\left\{v^{1}\right\}$ we get $c\left(\bar{s}_{v^{1}}^{0}\right)=g_{v^{1}-1}\left(\bar{s}_{v^{1}}^{0}\right) \in G_{v_{*}^{1}-1}\left(\bar{s}_{v^{1}}^{0}\right)$ for $v_{1} \geq v_{*}^{1}$ and $c\left(\bar{s}_{v^{1}}^{0}\right)=g_{v^{1}-1}\left(\bar{s}_{v^{1}}^{0}\right) \rightarrow c^{1}$. Since $G_{v_{*}^{1}-1}$ is closed, we get $c^{1} \in G_{v_{*}^{1}-1}(t)$ for each $v_{*}^{1} \in\left\{v^{1}\right\}$. Therefore $c^{1} \in \bigcap\left\{G_{v^{1}-1}(t) \mid v_{1} \in\left\{v^{1}\right\}\right\}=$ $G(t)=(g(t)+C) \cap \mathcal{G}$, in particular $c^{1} \in g(t)+C$.
$\mathbf{4}^{0}$. From (3.2) we see that for $v^{1} \in\left\{v^{1}\right\}, v^{1} \geq 2$, it holds

$$
\begin{gather*}
e_{v^{1}}\left(s_{v^{1}}^{0}\right)=\frac{1}{2} c\left(\bar{s}_{v^{1}}^{0}\right)+\frac{1}{4} e_{v^{1}-2}\left(s_{v^{1}}^{1}-\frac{1}{2^{1^{1}}}\right)+\frac{1}{4} e_{v^{1}-2}\left(s_{v^{1}}^{1}+\frac{1}{2^{11}}\right) \\
=\frac{1}{2} c\left(\bar{s}_{v^{1}}^{0}\right)+\frac{1}{4} c\left(\bar{s}_{v^{1}}^{1}\right)+\frac{1}{4} e_{v^{1}-2}\left(s_{v^{1}}^{2}\right),
\end{gather*}
$$

where $\bar{s}_{v^{1}}^{1}=s_{v^{1}}^{1} \pm \frac{1}{2^{r^{1}}} \in T_{v^{1}-2}, s_{v^{1}}^{2}=s_{v^{1}}^{1} \mp \frac{1}{2^{v^{1}}} \in T_{v^{1}-1} \backslash T_{v^{1}-2}$. It is true also $\bar{s}_{v^{1}}^{1} \in\left[t_{v^{1}-2}^{-}, t_{v^{1}-2}^{+}\right]$, $s_{v^{1}}^{2} \in\left[t_{v^{1}-2}^{-}, t_{v^{1}-2}^{+}\right]$. Actually accounting $t_{v^{1}-1}^{+}-t_{v^{1}-1}^{-}=\frac{1}{2^{v_{1}-1}}$ the conditions $s_{v^{1}}^{1} \in\left[t_{v^{1}-1}^{-}, t_{v^{1}-1}^{+}\right]$, $s_{v^{1}}^{1} \in T_{\nu^{1}} \backslash T_{v^{1}-1}$ determine $s_{v^{1}}^{1}$ uniquely, namely $s_{v^{1}}^{1}=\frac{1}{2}\left(t_{v^{1}-1}^{-}+t_{v^{1}-1}^{+}\right)$. We have now that $s_{v^{1}}^{1} \pm \frac{1}{2^{1}}$ is either $t_{v^{1}-1}^{-}$or $t_{v^{1}-1}^{+}$. Both these numbers are contained in the interval $\left[t_{v^{1}-2}^{-}, t_{v^{1}-2}^{+}\right]$.

It holds $c\left(\bar{s}_{v^{1}}\right) \in M$ and M is compact. Therefore there exists a subsequence $\left\{v^{2}\right\} \subset\left\{v^{1}\right\}$ considered as a directed set, such that the net $\left\{c\left(\bar{s}_{v^{2}}^{1}\right), v^{2} \in\left\{v^{2}\right\}\right\}$ is convergent $c\left(\bar{s}_{v^{2}}^{1}\right) \rightarrow c^{2}$ and $c^{2} \in M$. From (3.3) we get that the sequence $e_{v^{2}-2}\left(s_{v^{2}}^{2}\right)$ is also convergent. Let $e_{v^{2}-2}\left(s_{v^{2}}^{2}\right) \rightarrow$ e^{2}, where $e^{2} \in \mathcal{G}$. The equalities (3.3) restricted to the sequence $\left\{v^{2}\right\}$ are

$$
\begin{equation*}
\left.e_{v^{2}}\left(s_{v^{2}}^{0}\right)=\frac{1}{2} c\left(\bar{s}_{v^{2}}^{0}\right)+\frac{1}{4} c c \bar{s}_{v^{2}}^{1}\right)+\frac{1}{4} e_{v^{2}-2}\left(s_{v^{2}}^{2}\right), \quad v^{2} \in\left\{v^{2}\right\} . \tag{3.4}
\end{equation*}
$$

A passing to a limit in (3.4) gives $g(t)=\frac{1}{2} c^{1}+\frac{1}{4} c^{2}+\frac{1}{4} e^{2}$.
Resume now the above considerations. For the sequence $\left\{v^{2}\right\} \subset\left\{v^{1}\right\}$ written as $\left\{v^{2}\right\}=$ $\left\{v_{1}^{2}, v_{2}^{2}, \ldots\right\}$ with $2 \leq v_{1}^{2}<v_{2}^{2}<\ldots, v_{k}^{2} \rightarrow \infty$, considered as a directed set, there exist nets $\bar{s}_{v^{2}}^{1}$ and $s_{v^{2}}^{2}$ of numbers satisfying for $v^{2} \in\left\{v^{2}\right\}$ the conditions:
a. $s_{v^{2}}^{2} \in T_{v^{2}-1} \backslash T_{v^{2}-2}, s_{v^{2}}^{2} \in\left[t_{v^{2}-2}^{-}, t_{v^{2}-2}^{+}\right]$(true also for $v^{2} \in\left\{v^{1}\right\}$),
b. $\bar{s}_{v^{2}}^{1} \in T_{v^{2}-2}, \bar{s}_{v^{2}}^{1} \in\left[t_{v^{2}-2}^{-}, t_{v^{2}-2}^{+}\right]$(true also for $\left.v^{2} \in\left\{v^{1}\right\}\right)$,
c. $c\left(\bar{s}_{v^{2}}^{1}\right) \rightarrow c^{2} \in M, e_{v^{2}-2}\left(s_{v^{2}}^{2}\right) \rightarrow e^{2} \in \mathcal{G}$,
d. $\frac{1}{2} c\left(\bar{s}_{v^{2}}^{0}\right)+\frac{1}{4} c\left(\bar{s}_{v^{2}}^{1}\right)+\frac{1}{4} e_{v^{2}-2}\left(s_{v^{2}}^{2}\right) \rightarrow g(t)$ and $\frac{1}{2} c^{1}+\frac{1}{4} c^{2}+\frac{1}{4} e^{2}=g(t)$,
e. $c^{2} \in G(t)$ and in particular $c^{2} \in g(t)+C$.

Point \mathbf{e} is derived quite similarly as in $\mathbf{2}^{0}$.
$\mathbf{5}^{0}$. The steps described in $\mathbf{3}^{0}$ and $\mathbf{4}^{0}$ can be continued by an obvious induction. Skipping the details we refer the final result. In the m-th step some sequence $\left\{\nu^{m}\right\} \subset\left\{\nu^{m-1}\right\}$ is defined. Here $\left\{v^{m}\right\}=\left\{v_{1}^{m}, v_{2}^{m}, \ldots\right\}, m \leq v_{1}^{m}<v_{2}^{m}<\ldots, v_{k}^{m} \rightarrow \infty$, is considered as a directed set. To the already defined in the previous points nets of numbers we add the nets of numbers $\left\{s_{v^{m-1}}^{m}, v^{m-1} \in\left\{v^{m-1}\right\}\right.$, such that now the following conditions are satisfied for $v^{m} \in\left\{v^{m}\right\}$.
a. $s_{v^{m}}^{m} \in T_{\nu^{m}+1-m} \backslash T_{\nu^{m}-m}, s_{v^{m}}^{m} \in\left[t_{v^{m}-m}^{-}, t_{v^{m}-m}^{+}\right]$(true also for $v^{m} \in\left\{v^{m-1}\right\}$),
b. $\bar{s}_{v^{m}}^{m-1} \in T_{\nu^{m}-m}, \bar{s}_{v^{m}}^{m-1} \in\left[t_{v^{m}-m}^{-}, t_{v^{m}-m}^{+}\right]$(true also for $v^{m} \in\left\{v^{m-1}\right\}$),
c. $c\left(\bar{s}_{v^{m}}^{m-1}\right) \rightarrow c^{m} \in M, e_{v^{m}-m}\left(s_{v^{m}}^{m}\right) \rightarrow e^{m} \in \mathcal{G}$,
d. $\frac{1}{2} c\left(\bar{s}_{\nu^{m}}^{0}\right)+\frac{1}{4} c\left(\bar{s}_{\nu^{m}}^{1}\right)+\cdots+\frac{1}{2^{m}} c\left(\bar{s}_{\nu^{m}}^{m-1}\right)+\frac{1}{2^{m}} e_{\nu^{m}-m}\left(s_{\nu^{m}}^{m}\right) \rightarrow g(t)$ and passing to a limits we get

$$
\begin{equation*}
\frac{1}{2} c^{1}+\frac{1}{4} c^{2}+\cdots \frac{1}{2^{m}} c^{m}+\frac{1}{2^{m}} e^{m}=g(t) \tag{3.5}
\end{equation*}
$$

e. $c^{1}, c^{2}, \ldots, c^{m} \in G(t)$ and in particular $c^{1}, c^{2}, \ldots, c^{m} \in g(t)+C$.
$\mathbf{6}^{0}$. Take the set $K=\left\{c^{m}-g(t) \mid m=1,2, \ldots\right\}$. We prove now that $0 \in \mathrm{clconv} K$.
Rewrite (3.5) with some obvious recasting

$$
\sum_{\mu=1}^{m} \frac{1}{2^{\mu}}\left(c^{\mu}-g(t)\right)+\frac{1}{2^{m}}\left(c^{m}-g(t)\right)=\frac{1}{2^{m}} c^{m}-\frac{1}{2^{m}} g(t)-\frac{1}{2^{m}} e^{m} \in \frac{1}{2^{m}}(M-\mathcal{G}-\mathcal{G}) .
$$

The set $M-\mathcal{G}-\mathcal{G}$ is compact and $1 / 2^{m} \rightarrow 0$ as $m \rightarrow \infty$. Therefore for arbitrary neighbourhood U of zero there exists an integer m such that $\frac{1}{2^{m}}(M-\mathcal{G}-\mathcal{G}) \subset U$ and consequently the convex combination of the elements of K in the left hand side of the above formula also belongs to U. Therefore $0 \in \operatorname{cl} \operatorname{conv} K$.
7^{0}. Now we prove that $g(t) \in M$.
Since $c^{m} \in g(t)+C, m=1,2, \ldots$, the set $K=\left\{c^{m}-g(t) \mid m=1,2, \ldots\right\}$ is contained in C. We have proved that $0 \in \operatorname{clconv} K$. According to Property $2.30 \in \operatorname{cl} K$. From $0=\lim _{i}\left(c^{m_{i}}-g(t)\right)$ we get $g(t)=\lim _{i} c^{m_{i}}$. However $c^{m_{i}} \in M$ and M is closed. Therefore $g(t) \in M$.

Step 3 Define the set-valued function $\hat{G}:[0,1] \rightarrow \mathcal{G}$ by $\hat{G}(t)=G(t) \cap M$. Then \hat{G} is closed and with a compact graph. It holds $g(t) \in \hat{G}(t)$, moreover \hat{G} is single-valued and $\hat{G}(t)=\{g(t)\}$.

The closedness of \hat{G} follows from graph $\hat{G}=\operatorname{graph} G \cap([0,1] \times M)$, where both graph G and $[0,1] \times M$ are closed sets. Obviously, the graph is compact as a closed subset of the compact set $[0,1] \times \mathcal{G}$. The inclusion $g(t) \in \hat{G}(t)=G(t) \cap M$ is true since by definition $g(t) \in G(t)(g(t)$ is defined as the least element of $G(t))$ and in Step 2 we have proved $g(t) \in$ M. The equality $\hat{G}(t)=\{g(t)\}$ (which in particular means single-valuedness) follows by $g(t) \in \hat{G}(t)=G(t) \cap M \subset(g(t)+C) \cap \operatorname{Max}(Q \mid C)=\{g(t)\}$, the last equality is implied by $g(t) \in$ $M \subset \operatorname{Max}(Q \mid C)$.

Step 4 The function g is continuous. The set $\operatorname{Max}(Q \mid C)$ is arcwise connected between the points $x_{0}, x_{1} \in M$. Moreover, there exists an arc connecting x_{0} and x_{1} which is entirely contained in M.

Now we have $\hat{G}(t)=\{g(t)\}$ and the graph of \hat{G} is closed and compact. Therefore g is continuous as a function having a closed and compact graph. Further $g:[0,1] \rightarrow E$ is an arc connecting x_{0} and x_{1} and contained entirely in $M \subset \operatorname{Max}(Q \mid C)$.

We put as open the following problem.
Problem 3.1. Is the conclusion of Theorem 2.6 true replacing in the assumptions Property 2.3 by "C pointed"?

We will show that in the special case $a\left(x_{0}, x_{1}\right)=\frac{1}{2}\left(x_{0}+x_{1}\right)$ the answer is "yes". For this purpose we need to change the construction. Instead of working in the set \mathcal{G} defined by the functions g_{n} we will work in a set \mathcal{F} defined in a similar way by the functions f_{n}. Instead of the sets of points $E_{n}(t)$ we consider the sets $B_{n}(t)=\left\{b_{k}(s) \mid s \in\left[t_{n}^{-}, t_{n}^{+}\right] \cap T_{k+1}, k \geq n\right\}$. We put also $\hat{B}_{n}=B_{0}(t) \backslash \bigcap_{t \in[0,1]} B_{n}(t)$. Now for each integers n and $m \geq 0$ it holds

$$
b_{n+m}(s) \in \operatorname{conv} C_{n+m}(s) \subset \operatorname{conv} C_{n}(t)
$$

(compare with the result of Lemma 2.9), where $s \in T_{n+m+1}$. This is true, since $b_{n+m}(s)=$ $c_{n+m}(s)$ for $s \in T_{n+m}$ and

$$
b_{n+m}(s)=\frac{1}{2} c_{n+m}\left(s-1 / 2^{n+m+1}\right)+\frac{1}{2} c_{n+m}\left(s+1 / 2^{n+m+1}\right)
$$

for $s \in T_{n+m+1} \backslash T_{n+m}$.
Now for $t \in[0,1]$ we define the sets $\mathcal{F}_{n}(t)=\bigcup\left\{f_{k}(s) \mid t_{n}^{-} \leq s \leq t_{n}^{+}, k \geq n\right\} \cup \operatorname{clconv} C(t)$. We put also $\mathcal{F}=\mathcal{F}_{0}(t)$ for in this case $\mathcal{F}_{0}(t)$ does not depend on $t \in[0,1]$.

Lemma 3.2. All the sets $\mathcal{F}_{n}(t)$ are compact.

Proof Take an arbitrary open covering of $\mathcal{F}_{n}(t)$. Since clconv $C(t)$ is compact, a finite number of the sets from the covering cover clconv $C(t)$ and their union contains a set of the type clconv $C(t)+U$, where U is a neighbourhood of zero in E. Then there is n_{0} such that $C_{n_{0}}(s) \subset \operatorname{clconv} C_{n_{0}}(s) \subset \operatorname{clconv} C(t)+U$ (the possibility of such a choice is explained in the proof of Lemma 2.10). Since $b_{n_{0}}(s) \in \operatorname{conv}\left(c\left(s_{n_{0}}^{-}\right), c\left(s_{n_{0}}^{+}\right)\right)$we get $\mathcal{F}_{n_{0}}(s) \subset c l \operatorname{conv} C(t)+U$. Therefore in $\mathcal{F}_{n}(t) \backslash \bigcup\left\{\mathcal{F}_{n_{0}}(s) \mid s \in\left[t_{n}^{-}, t_{n}^{+}\right]\right\}$there remain only finitely many functions $f_{k}(s)$, $t_{n}^{-} \leq s \leq t_{n}^{+}$. The union of the images of finitely many continuous functions defined on a compact interval is a compact set, that is it is contained in the union of finitely many of the sets of the given covering. Thus, we have shown that $\mathcal{F}_{n}(t)$ admits a finite subcovering, therefore it is compact.

We define a sequence of set-valued functions $F_{n}:[0,1] \rightarrow \mathcal{F}$. The set $\mathcal{F}=\mathcal{F}_{0}(t)$ is compact according to Lemma 3.2. We put $F_{n}(t)=\left(f_{n}(t)+C\right) \cap \mathcal{F}$. We define further the setvalued function $F:[0,1] \rightarrow \mathcal{F}$ putting $F(t)=\bigcap_{n} F_{n}(t)$. The sequence $\left\{F_{n}(t)\right\}$ is a decreasing sequence of compact subsets of \mathcal{F}. Since $f_{n}(t)$ is the least point of $F_{n}(t)$, according to Proposition 2.11 the sequence $f_{n}(t)$ converges to the unique least point of $F(t)$ which we denote by $f(t)$. From the definition of F we get $F(t)=(f(t)+C) \cap \mathcal{F}$. The function f : $[0,1] \rightarrow \mathcal{F}$ satisfies $f(t)=\lim _{n} f_{n}(t)$.

Theorem 3.3. Suppose that Q is a set in the real Hausdorff TVS E and C is a pointed closed convex cone in E. Assume that there exists a closed set $M \subset \operatorname{Max}(Q \mid C)$ obeying Property 2.2 with $a\left(x_{0}, x_{1}\right)=\frac{1}{2}\left(x_{0}+x_{1}\right)$ such that clconv M is compact. Then $\operatorname{Max}(Q \mid C)$ is arcwise connected between any points $x_{0}, x_{1} \in M, x_{0} \neq x_{1}$. Moreover, there exists an arc between x_{0} and x_{1} contained entirely in M.

Proof We do the proof in four steps following the same scheme as in the proof of Theorem 2.6.

Step 1 For each there exists a sequence of nonnegative integers $n_{i} \rightarrow \infty$ and a sequence of numbers $s_{i} \rightarrow t, s_{i} \in\left[t_{n_{i}}^{-}, t_{n_{i}}^{-}\right]$and $s_{i} \in T_{n_{i}+1}$ such that $f(t)=\lim _{i} b_{n_{i}}\left(s_{i}\right)$.

This step is a repeating of Step 1 from the proof of Theorem 2.6 by obvious replacements of $e_{n}(s)$ by $b_{n}(s), g$ by f etc. Turn attention that in the proof of Step 1 in Theorem 2.6 Property 2.3 has not been used. We have used only that C is pointed.

Step 2 It holds $f(t) \in M$.
In Step 1 it is shown that there exists a sequence of nonnegative integers $n_{i} \rightarrow \infty$ and a sequence $s_{i} \in\left[t_{n_{i}}^{-}, t_{n_{i}}^{+}\right]$with $s_{i} \in T_{n_{i}+1}$, such that $f(t)=\lim _{i} b_{n_{i}}\left(s_{i}\right)$. Now either $s_{i} \in T_{n_{i}}$ and then $b_{n_{i}}\left(s_{i}\right)=c\left(s_{i}\right)$ or $s_{i} \in T_{n_{i}+1} \backslash T_{n_{i}}$ and then $b_{n_{i}}\left(s_{i}\right)=\frac{1}{2} c\left(s_{i}-1 / 2^{n_{i}+1}\right)+\frac{1}{2} c\left(s_{i}+1 / 2^{n_{i}+1}\right)$, where $s_{i} \pm 1 / 2^{n_{i}+1} \in T_{n_{i}}$.

In each case there is a sequence $\beta_{i} \in[0,1]$ and sequences $s_{i}^{\prime}, s_{i}^{\prime \prime} \in T_{n_{i}}$ such that $b_{n_{i}}\left(s_{i}\right)=$ $\left(1-\beta_{i}\right) c\left(s_{i}^{\prime}\right)+\beta_{i} c\left(s_{i}^{\prime \prime}\right)$. Using the compactness of $[0,1] \times \mathcal{F} \times \mathcal{F}$ we see that there exists a subsequence (denote it again n_{i}), such that $\beta_{i} \rightarrow \beta, c\left(s_{i}^{\prime}\right) \rightarrow c^{\prime}, c\left(s_{i}^{\prime \prime}\right) \rightarrow c^{\prime \prime}$ and $s_{i}^{\prime} \rightarrow t$, $s_{i}^{\prime \prime} \rightarrow t$. Now using the closedness of F_{n} and F (obtained in quite a similar way as the closedness of G_{n} and G in Lemma 2.12) we get $c^{\prime}, c^{\prime \prime} \in F(t) \subset f(t)+C$ and $(1-\beta) c^{\prime}+\beta c^{\prime \prime} \in$ $F(t) \subset f(t)+C$. On the other hand $f(t)=\lim _{i} b_{n_{i}}\left(s_{i}\right)$ implies $(1-\beta) c^{\prime}+\beta c^{\prime \prime}=f(t)$. We assert that either $c^{\prime}=f(t)$ or $c^{\prime \prime}=f(t)$. This is obvious if $\beta=0$ or $\beta=1$. Let $0<\beta<1$. Then $c^{\prime} \in(1-\beta) c^{\prime}+\beta c^{\prime \prime}+C$ implies $c^{\prime}-c^{\prime \prime} \in C$. Similarly $c^{\prime \prime} \in(1-\beta) c^{\prime}+\beta c^{\prime \prime}+C$ implies $c^{\prime \prime}-c^{\prime} \in C$. Since C is pointed, $c^{\prime}=c^{\prime \prime}=f(t)$.

Step 3 Define the set-valued function $\hat{F}:[0,1] \rightarrow \mathcal{F}$ by $\hat{F}(t)=F(t) \cap M$. Then \hat{F} is closed and with a compact graph. It holds $f(t) \in \hat{F}(t)$, moreover \hat{F} is single-valued and $\hat{F}(t)=\{f(t)\}$.

Step 4 The function f is continuous. The set $\operatorname{Max}(Q \mid C)$ is arcwise connected between the points $x_{0}, x_{1} \in M$. Moreover, there exists an arc connecting x_{0} and x_{1} which is entirely contained in M.

The proofs of Step 3 and Step 4 are identical up to obvious replacements to those in Theorem 2.6.

The following example shows that arcwise connectedness in the conclusion of Theorem 2.6 cannot be replaced by contractibility.

Example 3.4. Let $E=R^{3}, C=R_{+}^{3}$ and $Q=\left[a^{1}, a^{2}\right] \cup\left[a^{2}, a^{3}\right] \cup\left[a^{3}, a^{1}\right]$, where $a^{1}=(1,0,0)$, $a^{2}=(0,1,0), a^{3}=(0,0,1)$. Obviously $\operatorname{Max}(Q \mid C)=Q$ is arcwise connected but not contractible. Let $M=\left[a^{2}, a^{3}\right] \cup\left[a^{3}, a^{1}\right]$. For $x^{0}, x^{1} \in M$ consider the cases: Case $1, x^{0}$ and x^{1} are both in either $\left[a^{2}, a^{3}\right]$ or $\left[a^{3}, a^{1}\right]$; Case $2, x^{0}$ and x^{1} belong to different segments $\left[a^{2}, a^{3}\right]$ and $\left[a^{3}, a^{1}\right]$. Put

$$
a\left(x^{0}, x^{1}\right)=\left\{\begin{array}{cc}
\frac{1}{2}\left(x^{0}+x^{1}\right) & \text { if Case } 1, \\
x^{1}+\frac{1}{2}\left(\left\|x^{1}-a^{3}\right\|+\left\|a^{3}-x^{0}\right\|\right) \frac{a^{3}-x^{1}}{\left\|a^{3}-x^{1}\right\|} & \text { if Case 2 and }\left\|a^{3}-x^{1}\right\| \geq\left\|a^{3}-x^{0}\right\| \\
x^{0}+\frac{1}{2}\left(\left\|x^{1}-a^{3}\right\|+\left\|a^{3}-x^{0}\right\|\right) \frac{a^{3}-x^{0}}{\left\|a^{3}-x^{0}\right\|} & \text { if Case 2 and }\left\|a^{3}-x^{1}\right\|<\left\|a^{3}-x^{0}\right\| .
\end{array}\right.
$$

Then Property 2.2 holds for all $x^{0}, x^{1} \in M$ with $\Gamma\left(x^{0}, x^{1}\right)=\left(a\left(x^{0}, x^{1}\right)+C\right) \cap M$ and therefore the arcwise connectedness between any two such points can be established by means of Theorem 2.6. By obvious cyclic permutations when defining M the arcwise connectedness can be established between any two points $x^{0}, x^{1} \in \operatorname{Max}(Q \mid C)$.

4 Application

The next theorem is an application of Theorem 2.6 to establish arcwise connectedness of the efficient set for a class of in general nonconvex sets.

Theorem 4.1. Let $E=R^{n}$ and $C=R_{+}^{n}$. Assume that for the set $Q \subset E$ there exists a compact set $M \subset \operatorname{Max}(Q \mid C)$ such that for all $x^{0}, x^{1} \in M$ it holds $\left(\frac{1}{2}\left(x^{0}+x^{1}\right)+C\right) \cap M \neq \emptyset$. Then $\operatorname{Max}(Q \mid C)$ is arcwise connected between any points $x^{0}, x^{1} \in M$. Moreover, there exists an arc between x^{0} and x^{1} contained entirely in M.

Proof It is natural to look for a proof based on Theorem 3.3 with $a\left(x^{0}, x^{1}\right)=\frac{1}{2}\left(x^{0}+x^{1}\right)$. With such a choice point 2^{0} in Property 2.2 if not wrong is at least not easy to be checked. So, we will apply Theorem 2.6 choosing another definition for $a\left(x^{0}, x^{1}\right)$.

We agree that if $x \in E$ then the coordinate of x will be written with lower indices, that is we write e.g. $x=\left(x_{1}, \ldots, x_{n}\right)$. Now $x^{0}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right), x^{1}=\left(x_{1}^{1}, \ldots, x_{n}^{1}\right)$ etc. For two points $x^{1}, x^{2} \in M$ we define $a=a\left(x^{0}, x^{1}\right)$ putting for the coordinates $a_{i}=\min \left(x_{i}^{0}, x_{i}^{1}\right), i=1, \ldots n$. We put also $\Gamma\left(x^{0}, x^{1}\right)=\left(\frac{1}{2}\left(x^{0}+x^{1}\right)+C\right) \cap M$. With such a choice we see that Property 2.2 is satisfied by checking separately conditions 1^{0} and 2^{0}.

Condition $\mathbf{1}^{0}$. We will show that $(x+C) \cap M \neq \emptyset$ for arbitrary point $x \in\left[x^{0}, a\left(x^{0}, x^{1}\right)\right]$ (similar is the case $x \in\left[a\left(x^{0}, x^{1}\right), x^{1}\right]$. For this purpose we construct inductively a sequence of points $\hat{x}^{1}, \hat{x}^{2}, \ldots$, such that $\hat{x}^{1} \in\left(\frac{1}{2}\left(x^{0}+x^{1}\right)+C\right) \cap M$ and if \hat{x}^{k} is already constructed we choose $\hat{x}^{k+1} \in\left(\frac{1}{2}\left(x^{0}+x^{k}\right)+C\right) \cap M$. We prove by induction that

$$
\hat{x}^{k} \in(1-\beta) a\left(x^{0}, x^{1}\right)+\beta x^{0}+C, \quad 0 \leq \beta \leq 1-\frac{1}{2^{k}} .
$$

This inclusion is equivalent to

$$
\begin{equation*}
\hat{x}_{i}^{k} \in(1-\beta) \min \left(x_{i}^{0}, x_{i}^{1}\right)+\beta x_{i}^{0}+C, \quad i=1, \ldots, n, \quad 0 \leq \beta \leq 1-\frac{1}{2^{k}} . \tag{4.1}
\end{equation*}
$$

The inequality (4.1) gives

$$
\begin{gather*}
\hat{x}_{i}^{k}-x_{i}^{0} \geq 0 \quad \text { if } \quad \min \left(x_{i}^{0}, x_{i}^{1}\right)=x_{i}^{0}, \tag{4.2}\\
\hat{x}_{i}^{k}-\left((1-\beta) x_{i}^{1}+\beta x_{i}^{0}\right) \geq 0 \quad \text { if } \quad \min \left(x_{i}^{0}, x_{i}^{1}\right)=x_{i}^{1} . \tag{4.3}
\end{gather*}
$$

We provide separate inductive proofs for the two cases.
Case 1. It holds $\min \left(x_{i}^{0}, x_{i}^{1}\right)=x_{i}^{0}$. Then we prove (4.2).
For $k=1$ we have

$$
\hat{x}_{i}^{1}-x_{i}^{0} \geq \frac{1}{2}\left(x_{i}^{0}+x_{i}^{1}\right)-x_{i}^{0}=\frac{1}{2}\left(x_{i}^{1}-x_{i}^{0}\right) \geq 0 .
$$

If (4.2) is true for some k then

$$
\hat{x}_{i}^{k+1}-x_{i}^{0} \geq \frac{1}{2}\left(x_{i}^{0}+\hat{x}_{i}^{k}\right)-x_{i}^{0}=\frac{1}{2}\left(\hat{x}_{i}^{k}-x_{i}^{0}\right) \geq 0 .
$$

Case 2. It holds $\min \left(x_{i}^{0}, x_{i}^{1}\right)=x_{i}^{1}$. Then we prove (4.3) for $0 \leq \beta \leq 1-1 / 2^{k}$.
We have

$$
(1-\beta) x_{i}^{1}+\beta x_{i}^{0}=x_{i}^{1}+\beta\left(x_{i}^{0}-x_{i}^{1}\right) \leq x_{i}^{1}+\left(1-\frac{1}{2^{k}}\right)\left(x_{i}^{0}-x_{i}^{1}\right) .
$$

Therefore (4.3) is true for each $\beta \in\left[0,1-1 / 2^{k}\right]$ if it is true for $\beta=1-1 / 2^{k}$. In this case transforms into (4.3) inequality (4.4) which we prove by induction

$$
\begin{equation*}
\hat{x}_{i}^{k}-\frac{1}{2^{k}} x_{i}^{1}-\left(1-\frac{1}{2^{k}}\right) x_{i}^{0} \geq 0 . \tag{4.4}
\end{equation*}
$$

For $k=1$ (4.4) transforms into

$$
\hat{x}_{i}^{1}-\frac{1}{2} x_{i}^{1}-\frac{1}{2} x_{i}^{0} \geq 0
$$

which is true from the choice of \hat{x}^{1}.
Assume now that (4.4) holds for some k. We prove it for $k+1$. Then

$$
\begin{gathered}
\hat{x}_{i}^{k+1}-\frac{1}{2^{k+1}} x_{i}^{1}-\left(1-\frac{1}{2^{k+1}}\right) x_{i}^{0} \geq \frac{1}{2}\left(x_{i}^{0}+\hat{x}_{i}^{k}\right)-\frac{1}{2^{k+1}} x_{i}^{1}-\left(1-\frac{1}{2^{k+1}}\right) x_{i}^{0} \\
=\frac{1}{2}\left(\hat{x}_{i}^{k}-\frac{1}{2^{k}} x_{i}^{1}-\left(1-\frac{1}{2^{k}}\right) x_{i}^{0}\right) \geq 0
\end{gathered}
$$

If $x=x^{0}$, then $x^{0} \in(x+C) \cap M$. We prove now that $(x+C) \cap M \neq \emptyset$ for $x \in\left[x^{0}, a\left(x^{0}, x^{1}\right)\right]$, $x \neq x^{0}$. Then $x=(1-\beta) a\left(x^{0}, x^{1}\right)+\beta x^{0}$ for some β with $0 \leq \beta \leq 1-1 / 2^{k}$. We have proved that $\hat{x}^{k} \in x+C$ and since $\hat{x}^{k} \in M$, therefore $\hat{x}^{k} \in(x+C) \cap M$.

Condition 2^{0}. We prove first that $\Gamma\left(x^{0}, x^{1}\right) \subset\left(a\left(x^{0}, x^{1}\right)+C\right) \cap M$. Since by definition $\Gamma\left(x^{0}, x^{1}\right) \subset M$ it remains to show $\frac{1}{2}\left(x^{0}+x^{1}\right) \in a\left(x^{0}, x^{1}\right)+C$ which follows by the nonnegativeness of the coordinates

$$
\left(\frac{1}{2}\left(x^{0}+x^{1}\right)-a\left(x^{0}, x^{1}\right)\right)_{i}=\frac{1}{2}\left(x_{i}^{0}+x_{i}^{1}\right)-\min \left(x_{i}^{0}, x_{i}^{1}\right)=\frac{1}{2}\left(\max \left(x_{i}^{0}, x_{i}^{1}\right)-\min \left(x_{i}^{0}, x_{i}^{1}\right)\right) \geq 0 .
$$

Now we prove that for $\hat{x} \in \Gamma\left(x^{0}, x^{1}\right)$ it holds $a\left(x^{0}, \hat{x}\right) \in \frac{1}{2}\left(x^{0}+a\left(x^{0}, x^{1}\right)\right)+C$ (similarly $\left.a\left(\hat{x}, x^{1}\right) \in \frac{1}{2}\left(a\left(x^{0}, x^{1}\right)+x^{1}\right)+C\right)$. From $\hat{x} \in \Gamma\left(x^{0}, x^{1}\right)$ we have $\hat{x} \in \frac{1}{2}\left(x^{0}+x^{1}\right)+C$ and therefore $\hat{x}_{i} \geq \frac{1}{2}\left(x_{i}^{0}+x_{i}^{1}\right), i=1, \ldots n$. To prove the above inclusion we must check that

$$
\min \left(x_{i}^{0}, \hat{x}_{i}\right) \geq \frac{1}{2}\left(x_{i}^{0}+\min \left(x_{i}^{0}, x_{i}^{1}\right)\right), \quad i=1, \ldots, n .
$$

If the minimum on the left hand side is x_{i}^{0} we get the equivalent inequality $x_{i}^{0} \geq \min \left(x_{i}^{0}, x_{i}^{1}\right)$ which is obviously true. If the minimum is \hat{x}_{i} we get the equivalent inequality

$$
\hat{x}_{i} \geq \frac{1}{2}\left(x_{i}^{0}+\min \left(x_{i}^{0}, x_{i}^{1}\right)\right)
$$

which is implied by $\hat{x}_{i} \geq \frac{1}{2}\left(x_{i}^{0}+x_{i}^{1}\right) \geq \frac{1}{2}\left(x_{i}^{0}+\min \left(x_{i}^{0}, x_{i}^{1}\right)\right)$.
Thus Property 2.2 is satisfied. The cone $C=R_{+}^{n}$ is a pointed cone in R^{n} and according to Proposition 2.5 has also Property 2.3. Since $M \subset R^{n}$ is compact then M is closed and cl conv M is compact. Therefore the hypotheses of Theorem 2.6 are satisfied, whence we get the desired arcwise connectedness.

5 Convex Sets

The following theorem is a straightforward application to convex sets of Theorem 3.3.
Theorem 5.1. Suppose that Q is a convex set in the real Hausdorff TVS E and C is a pointed closed convex cone in E. Assume that there exists a closed set $M \subset \operatorname{Max}(Q \mid C)$ with cl conv M compact, such that $\left(a\left(x_{0}, x_{1}\right)+C\right) \cap M \neq \emptyset$ for $a\left(x_{0}, x_{1}\right)=\frac{1}{2}\left(x_{0}+x_{1}\right)$ and all $x_{1}, x_{2} \in M$. Then $\operatorname{Max}(Q \mid C)$ is arcwise connected between any points $x_{0}, x_{1} \in M, x_{0} \neq x_{1}$. Moreover, there exists an arc between x_{0} and x_{1} contained entirely in M.

Proof Obviously Property 2.2 has place. Therefore the conclusion follows directly from Theorem 3.3.

Corollary 5.2 (Makarov, Rachkovski, Song [6]). Let C be a pointed closed convex cone and Q be a compact and convex set in the real Hausdorff TVS E. If the set Max $(Q \mid C)$ is closed, then it is arcwise connected.

Proof We put $M=\operatorname{Max}(Q \mid C)$ and $a\left(x_{0}, x_{1}\right)=\frac{1}{2}\left(x_{0}+x_{1}\right)$ for $x_{0}, x_{1} \in \operatorname{Max}(Q \mid C)$. The inclusion cl conv $M \subset$ clconv $Q=Q$ implies that cl conv M is compact. From the convexity of Q we have $a\left(x_{0}, x_{1}\right)=\frac{1}{2}\left(x_{0}+x_{1}\right) \in Q$ and from Proposition $2.1\left(a\left(x_{0}, x_{1}\right)+C\right) \cap M \neq \emptyset$. Therefore the conclusion follows directly from Theorem 5.1.

Example 5.3 (Makarov, Rachkovski, Song [6]). Consider the space $E=R^{3}$. Let $Q=$ $\operatorname{conv}\left(\left\{(x, y, z) \in R^{3} \mid x^{2}+y^{2} \leq 1, z=0\right\} \cup\{b\}\right)$ with $b=(1,0,1)$ and $C=\left\{(x, y, z) \in R^{3} \mid x=\right.$ $y=0, z \geq 0\}$. Obviously, $\operatorname{Max}(Q \mid C)$ is arcwise connected, but not closed.

Since $\operatorname{Max}(Q \mid C)$ in Example 5.3 is not closed, its arcwise connectedness cannot be established by means of Corollary 5.2. We show now that the arcwise connectedness between any points $x^{\prime}, x^{\prime \prime} \in \operatorname{Max}(Q \mid C)$ can be established by means of Theorem 5.1. For this purpose we take the set $M=\left(\operatorname{conv}\left\{x^{\prime}, x^{\prime \prime}, b\right\}+C\right) \cap \operatorname{Max}(Q \mid C)$ and put $a\left(x_{0}, x_{1}\right)=\frac{1}{2}\left(x_{0}+x_{1}\right)$ and $\Gamma\left(x_{0}, x_{1}\right)=\left(a\left(x_{0}, x_{1}\right)+C\right) \cap M$ for $x_{0}, x_{1} \in \operatorname{Max}(Q \mid C)$. With such a choice the hypotheses of Theorem 5.1 are satisfied and therefore $\operatorname{Max}(Q \mid C)$ is arcwise connected between x^{\prime} and $x^{\prime \prime}$.

References

[1] J. Benoist and N. Popovici, The contractibility of the efficient frontier of threedimensional simply-shaded sets, J. Optim. Theory Appl. 111 (2001), pp. 81-116.
[2] A. Daniilidis, N. Hadjisavvas and S. Schaible, Connectedness of the efficient set for three-objective quasiconcave maximization problems, J. Optim. Theory Appl. 93 (1997), pp. 517-524.
[3] G. Jameson, Ordered linear spaces, Lect. Notes in Math. 141, Springer, Berlin, 1970.
[4] J. L. Kelley and I. Namioka, Linear topological spaces, D. Van Nostrand Company, New York, 1963.
[5] D. T. Luc, Theory of vector optimization, Lect. Notes in Econ. Math. Systems 319, Springer, Berlin, 1989.
[6] E. K. Makarov, N. N. Rachkovski and W. Song, Arcwise connectedness of closed efficient sets, J. Math. Anal. Appl. 247 (2000), pp. 377-383.
[7] W. Song, Characterizations of some remarkable classes of cones, J. Math. Anal. Appl. 279 (2003), pp. 308-316.

[^0]: *E-mail address: vechnig @ yahoo.com

