A Theorem on Global Regularity for Solutions of Degenerate Elliptic Equations

Albo Carlos Cavalheiro*
Department of Mathematics
State University of Londrina
Londrina, PR 86051-990, Brazil
(Communicated by Irena Lasiecka)

Abstract

In this article we establish the global regularity of weak solutions of the Dirichlet problem for a class of degenerate elliptic equations.

AMS Subject Classification: 35J70, 35J25.
Keywords: Degenerate elliptic equations, Weighted Sobolev spaces.

1 Introduction

Let L be a degenerate elliptic operator

$$
\begin{equation*}
L u=-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x) D_{i} u(x)\right)-\sum_{i=1}^{n} b_{i}(x) D_{i} u(x) \tag{1.1}
\end{equation*}
$$

where the coefficients $a_{i j}$ and b_{i} are measurable, real-valued functions defined on a bounded open set $\Omega \subset \mathbb{R}^{n}$, and whose coefficient matrix $A(x)=\left(a_{i j}(x)\right)$ is symmetric and satisfies the degenerate ellipticity condition

$$
\begin{equation*}
\lambda|\xi|^{2} \omega(x) \leq \sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2} \omega(x) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|b_{i}(x)\right| \leq C_{1} \omega(x), i=1,2 \ldots, n, \tag{1.3}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{n}$, and a.e. $x \in \Omega, C_{1}, \lambda$ and Λ are positive constants, and ω is a weight function (that is, ω is a nonnegative locally integrable function on \mathbb{R}^{n}).

[^0]The main purpose of this paper is to establish the global regularity of solutions of the equation $L u=g$ in $\Omega, u-\varphi \in W_{0}^{1,2}(\Omega, \omega)$ (see Theorem 3.6). Under appropriate smoothness conditions on the boundary $\partial \Omega$ the preceding interior regularity results (see Theorem 2.12) can be extended to all Ω. The global regularity in non-degenerate case (i.e. with $\omega(x) \equiv 1)$ have been studied by many authors (see e.g. [6], Theorem 8.12).

2 Definitions and basic results

Let ω be a locally integrable nonnegative function on \mathbb{R}^{n} and assume that $0<\omega<\infty$ almost everywhere. We say that ω belongs to the Muckenhoupt class $A_{p}, 1<p<\infty$, or that ω is an A_{p}-weight, if there is a constant $C=C_{p, \omega}$ such that

$$
\left(\frac{1}{|B|} \int_{B} \omega(x) d x\right)\left(\frac{1}{|B|} \int_{B} \omega^{1 /(1-p)}(x) d x\right)^{p-1} \leq C
$$

for all balls $B \subset \mathbb{R}^{n}$, where |.| denotes the n-dimensional Lebesgue measure in \mathbb{R}^{n}. If $1<$ $q \leq p$, then $A_{q} \subset A_{p}$ (see [4],[9] or [12] for more information about A_{p}-weights). The weight ω satisfies the doubling condition if $\omega(2 B) \leq C \omega(B)$, for all balls $B \subset \mathbb{R}^{n}$, where $\omega(B)=$ $\int_{B} \omega(x) d x$ and $2 B$ denotes the ball with the same center as B which is twice as large. If $\omega \in A_{p}$, then ω is doubling (see Corollary 15.7 in [9]).

Example 2.1. As an example of A_{p}-weight, the function $\omega(x)=|x|^{\alpha}, x \in \mathbb{R}^{n}$, is in A_{p} if and only if $-n<\alpha<n(p-1)$ (see Corollary 4.4, Chapter IX in [12]).

If $\omega \in A_{p}$, then $\left(\frac{|E|}{|B|}\right)^{p} \leq C \frac{\omega(E)}{\omega(B)}$, whenever B is a ball in \mathbb{R}^{n} and E is a measurable subset of B (see 15.5 strong doubling property in [9]). Therefore, if $\omega(E)=0$ then $|E|=0$.

Definition 2.2. Let ω be a weight, and let $\Omega \subset \mathbb{R}^{n}$ be open. For $0<p<\infty$ we define $L^{p}(\Omega, \omega)$ as the set of measurable functions f on Ω such that $\|f\|_{L^{p}(\Omega, \omega)}=\left(\int_{\Omega}|f(x)|^{p} \omega(x) d x\right)^{1 / p}<\infty$. If $\omega \in A_{p}, 1<p<\infty$, then $\omega^{-1 /(p-1)}$ is locally integrable and we have $L^{p}(\Omega, \omega) \subset L_{\text {loc }}^{1}(\Omega)$ for every open set Ω (see Remark 1.2.4 in [13]). It thus makes sense to talk about weak derivatives of functions in $L^{p}(\Omega, \omega)$.

Definition 2.3. Let $\Omega \subset \mathbb{R}^{n}$ be open, $1<p<\infty, k$ a nonnegative integer and $\omega \in A_{p}$. We define the weighted Sobolev space $W^{k, p}(\Omega, \omega)$ as the set of functions $u \in L^{p}(\Omega, \omega)$ with weak derivatives $D^{\alpha} u \in L^{p}(\Omega, \omega), 1 \leq|\alpha| \leq k$. The norm of u in $W^{k, p}(\Omega, \omega)$ is defined by

$$
\begin{equation*}
\|u\|_{W^{k, p}(\Omega, \omega)}=\left(\int_{\Omega}|u(x)|^{p} \omega(x) d x+\sum_{1 \leq|\alpha| \leq k} \int_{\Omega}\left|D^{\alpha} u(x)\right|^{p} \omega(x) d x\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

We also define $W_{0}^{k, p}(\Omega, \omega)$ as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\|u\|_{W_{0}^{k, p}(\Omega, \omega)}=\left(\sum_{1 \leq|\alpha| \leq k} \int_{\Omega}\left|D^{\alpha} u(x)\right|^{p} \omega(x) d x\right)^{1 / p}
$$

If $\omega \in A_{p}$, then $W^{k, p}(\Omega, \omega)$ is the closure of $C^{\infty}(\Omega)$ with respect to the norm (2.1) (see Corollary 2.1.6 in [13]). The spaces $W^{1,2}(\Omega, \omega)$ and $W_{0}^{1,2}(\Omega, \omega)$ are Hilbert spaces. It is evident that the weights ω which satisfy $0<C_{1} \leq \omega(x) \leq C_{2}$ for $x \in \Omega$ give nothing new (the space $\mathrm{W}^{k, p}(\Omega, \omega)$ is then identical with the classical Sobolev space $\left.W^{k, p}(\Omega)\right)$. Consequently, we shall interested above all in such weight functions ω which either vanish somewhere in $\bar{\Omega}$ or increase to infinity (or both). For a general theory of weighted Sobolev spaces $W^{k, p}(\Omega, \omega)$ with $\omega \in A_{p}$ see [4], [9], [12] and [13]. For information about weighted Sobolev spaces with others weights see [14].

In this work we use the following two theorems.
Theorem 2.4. (The weighted Sobolev inequality) Let Ω be an open bounded set in \mathbb{R}^{n} and $\omega \in A_{p}(1<p<\infty)$. There exist constants C_{Ω} and δ positive such that for all $u \in C_{0}^{\infty}(\Omega)$ and all k satisfying $1 \leq k \leq n /(n-1)+\delta$, we have $\|u\|_{L^{k_{p}(\Omega, \omega)}} \leq C_{\Omega}\|\nabla u\|_{L^{p}(\Omega, \omega)}$.

Proof. See [2],Theorem 1.3.

Theorem 2.5. Let Ω be an open set in \mathbb{R}^{n}. If $\omega \in A_{2}$ then the embedding $W_{0}^{1,2}(\Omega, \omega) \hookrightarrow L^{2}(\Omega, \omega)$ is compact and $\|u\|_{L^{2}(\Omega, \omega)} \leq C\|u\|_{W_{0}^{1,2}(\Omega, \omega)}$.

Proof. See [3], Theorem 4.6.
Definition 2.6. Let ω be a weight in \mathbb{R}^{n}. We say that ω is uniformly A_{p} in each coordinate if
(a) $\omega \in A_{p}\left(\mathbb{R}^{n}\right)$;
(b) $\omega_{i}(t)=\omega\left(x_{1}, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_{n}\right)$ is in $A_{p}(\mathbb{R})$, for $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}$ a.e., $1 \leq i \leq n$, with A_{p} constant is bounded independently of $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}$.

Example 2.7. Let $\omega(x, y)=\omega_{1}(x) \omega_{2}(y)$, with $\omega_{1}(x)=|x|^{1 / 2}$ and $\omega_{2}(y)=|y|^{1 / 2}$. We have that ω is uniformly A_{2} in each coordinate.

Definition 2.8. We say that an element $u \in W^{1,2}(\Omega, \omega)$ is a weak solution of the equation

$$
L u=g-\sum_{i=1}^{n} D_{i} f_{i}, \text { with } \frac{g}{\omega}, \frac{f_{i}}{\omega} \in L^{2}(\Omega, \omega)
$$

if

$$
\mathcal{B}(u, \varphi)=\sum_{i=1}^{n} \int_{\Omega} f_{i}(x) D_{i} \varphi(x)+\int_{\Omega} g(x) \varphi(x) d x, \quad \forall \varphi \in W_{0}^{1,2}(\Omega, \omega),
$$

where

$$
\mathcal{B}(u, \varphi)=\int_{\Omega}\left[\sum_{i, j=1}^{n} a_{i j}(x) D_{i} u(x) D_{j} \varphi(x)-\sum_{i=1}^{n} b_{i}(x) \varphi(x) D_{i} u(x)\right] d x .
$$

Theorem 2.9. (Solvability of the Dirichlet problem) Let L be the operator (1.1) satisfying (1.2) and (1.3). Assume that $\varphi \in W^{1,2}(\Omega, \omega), g / \omega \in L^{2}(\Omega, \omega), f_{i} / \omega \in L^{2}(\Omega, \omega)$ and $\omega \in A_{2}$. Then the Dirichlet problem

$$
(P)\left\{\begin{array}{l}
L u=g-\sum_{i=1}^{n} D_{i} f_{i} \\
u-\varphi \in W_{0}^{1,2}(\Omega, \omega)
\end{array}\right.
$$

has a unique solution $u \in W^{1,2}(\Omega, \omega)$.

Proof. See [1], Theorem 2.9.

Definition 2.10. Let u be a function on a bounded open set $\Omega \subset \mathbb{R}^{n}$ and denote by e_{i} the unit coordinate vector in the x_{i} direction. We define the difference quotient of u at x in the direction e_{i} by

$$
\begin{equation*}
\Delta_{k}^{h} u(x)=\frac{u\left(x+h e_{k}\right)-u(x)}{h},(0<|h|<\operatorname{dist}(x, \partial \Omega)) . \tag{2.2}
\end{equation*}
$$

Lemma 2.11. Let $\Omega^{\prime} \subset \subset \Omega$ and $0<|h|<\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)$. If $u, v \in L_{\mathrm{loc}}^{2}(\Omega, \omega)$, $\operatorname{supp}(v) \subset \Omega^{\prime}$ and g is a measurable function with $|g(x)| \leq C \omega(x)$, then
(a) $\Delta_{k}^{h}(u v)(x)=u\left(x+h e_{k}\right) \Delta_{k}^{h} v(x)+v(x) \Delta_{k}^{h} u(x)$, with $1 \leq k \leq n$;
(b) $\int_{\Omega}^{k} g(x) u(x) \Delta_{k}^{-h} v(x) d x=-\int_{\Omega} v(x) \Delta_{k}^{h}(g u)(x) d x$;
(c) $\Delta_{k}^{h}\left(D_{j} v\right)(x)=D_{j}\left(\Delta_{k}^{h} v\right)(x)$.

Proof. The proof of this lemma follows trivially from the Definition 2.10.
Our first regularity result provides conditions under which weak solutions of the equation $L u=g$ are twice weakly differentiable.

Theorem 2.12. Let $u \in W^{1,2}(\Omega, \omega)$ be a weak solution of the equation $L u=g$ in Ω, and assume that
(a) $g / \omega \in L^{2}(\Omega, \omega)$;
(b) ω is a weight uniformly A_{2} in each coordinate;
(c) $\left|\Delta_{k}^{h} a_{i j}(x)\right| \leq C_{1} \omega(x)$, a.e. $x \in \Omega^{\prime} \subset \subset \Omega, 0<|h|<\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)$, with constant C_{1} is independent of Ω^{\prime} and h.
Then for any subdomain $\Omega^{\prime} \subset \subset \Omega$, we have $u \in W^{2,2}\left(\Omega^{\prime}, \omega\right)$ and

$$
\begin{equation*}
\|u\|_{W^{2,2}\left(\Omega^{\prime}, \omega\right)} \leq \mathbf{C}\left(\|u\|_{W^{1,2}(\Omega, \omega)}+\|g / \omega\|_{L^{2}(\Omega, \omega)}\right) \tag{2.3}
\end{equation*}
$$

for $\mathbf{C}=\mathbf{C}\left(n, \lambda, \Lambda, C_{1}, d^{\prime}\right)$, and $d^{\prime}=\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)$.
Proof. See [1], Theorem 3.8.

Example 2.13. If $\varphi \in B M O\left(\mathbb{R}^{n}\right)$ then $\omega(x)=\mathrm{e}^{\alpha \varphi(x)} \in A_{2}$, for some $\alpha>0$ (see [5] or [11], Chapter V, section 6). Let $\varphi_{1}, \varphi_{2} \in B M O(\mathbb{R})$, with $\varphi_{1}^{\prime}, \varphi_{2}^{\prime} \in L^{\infty}(\mathbb{R})$ and let α_{1}, α_{2} be constants such that $\omega_{1}(x)=\mathrm{e}^{\alpha_{1} \varphi_{1}(x)}, \omega_{2}(y)=\mathrm{e}^{\alpha_{2} \varphi_{2}(y)} \in A_{2}(\mathbb{R})$. Then the weight $\omega(x, y)=\omega_{1}(x) \omega_{2}(y)$ is a weight uniformly A_{2} in each coordinate.
Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ and consider the operator

$$
L u(x, y)=-\frac{\partial}{\partial x}\left[\beta_{1} \omega(x, y) \frac{\partial u}{\partial x}\right]-\frac{\partial}{\partial y}\left[\beta_{2} \omega(x, y) \frac{\partial u}{\partial y}\right]
$$

where β_{1} and β_{2} are positive constants. By Theorem 2.12 the equation $L u=g$, with $\frac{g}{\omega} \in L^{2}(\Omega, \omega)$, has a solution $u \in W^{2,2}\left(\Omega^{\prime}, \omega\right)$ for all $\Omega^{\prime} \subset \subset \Omega$.

3 Global Regularity

We recall here that a mapping $f: \Omega \rightarrow \mathbb{R}^{n}, \Omega \subset \mathbb{R}^{n}$ open ($n \geq 2$), is quasiconformal if f is one-to-one, the components, f_{i}, of f have distributional derivatives belonging to $L_{\text {loc }}^{n}\left(\mathbb{R}^{n}\right)$, and there is a constant $C>0$ such that $|D f(x)|^{n} \leq C J_{f}(x)$ for a.e. $x \in \mathbb{R}^{n}$, where $D f(x)=\left(\partial_{j} f_{i}(x)\right)$ is the formal differential matrix of f and $J_{f}(x)$ is the Jacobian determinant of f at x. We have that f^{-1} is a quasiconformal mapping in $f(\Omega)$. For instance, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, f(x)=x|x|^{\alpha}$, $\alpha>1$, is a quasiconformal mapping.

In this paper we use the following theorems.
Theorem 3.1. If $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a quasiconformal mapping then $\log \left(\left|J_{h}(x)\right|\right) \in B M O$.

Proof. See [10], Theorem 1.

Theorem 3.2. Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a quasiconformal mapping and $\omega \in A_{p}$. Then $\omega \circ h \in A_{p}$ if and only if $\log \left(\left|J_{h}(x)\right|\right) \in B M O$.

Proof. See [7], Theorem at page 96, or Theorem 2.11 in [8].

Definition 3.3. Let ω be a weight uniformly A_{p} in each coordinate. We denote by $\mathcal{A}(\omega)$ the set of all quasiconformal mapping $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\omega \circ h$ is a weight uniformly A_{p} in each coordinate.

Example 3.4. Let $\omega_{1}(x, y)=|x|^{1 / 2}|y|^{1 / 2}$ and $\omega_{2}(x, y)=|x|^{1 / 2}|y|^{-1 / 2}$. We have that ω_{1} and ω_{2} are two weights uniformly $A_{2}\left(\mathbb{R}^{2}\right)$ in each coordinate. Consider the quasiconformal mapping $h(x, y)=(x, y)|(x, y)|^{2}=\left(x\left(x^{2}+y^{2}\right), y\left(x^{2}+y^{2}\right)\right)$. We have that $\tilde{\omega}_{1}(x, y)=\omega_{1}(h(x, y))$ is not a weight uniformly A_{2} in each coordinate, and $\tilde{\omega}_{2}(x, y)=\omega_{2}(h(x, y))$ is a weight uniformly A_{2} in each coordinate (see Example 2.1). Therefore $h \notin \mathcal{A}\left(\omega_{1}\right)$ and $h \in \mathcal{A}\left(\omega_{2}\right)$.

Definition 3.5. Let $\Omega \subset \mathbb{R}^{n}$ be open bounded set, ω a weight uniformly A_{p} in each coordinate and k a nonnegative integer. We say that Ω is of class C^{k} with ω-quasiconformal boundary if for each point $x_{0} \in \partial \Omega$ there is a ball $B=B\left(x_{0}\right)$ and a quasiconformal mapping ψ of B onto an open set $D \subset \mathbb{R}^{n}$ such that
(i) $\psi(B \cap \Omega) \subset \mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}: x_{n}>0\right\}$;
(ii) $\psi(B \cap \partial \Omega) \subset \partial \mathbb{R}_{+}^{n}$;
(iii) $\psi \in C^{k}(B)$ and $\psi^{-1} \in C^{k}(D)$;
(iv) $\psi \in \mathcal{A}(\omega)$ and $\psi^{-1} \in \mathcal{A}(\omega)$.

We are able now to prove the main result of this paper.
Theorem 3.6. Let us assume, in addition to the hypotheses of Theorem 2.12, that (a) There exist $D_{k} a_{i j}$ a.e. $x \in \Omega, 1 \leq k \leq n$ (and then we have $\left|D_{k} a_{i j}(x)\right| \leq C_{2} \omega(x)$ for any $\Omega^{\prime} \subset \subset \Omega$);
(b) Ω is of class C^{2} with ω-quasiconformal boundary;
(c) There exists a function $\varphi \in W^{2,2}(\Omega, \omega)$ for which $u-\varphi \in W_{0}^{1,2}(\Omega, \omega)$.

Then we have also $u \in W^{2,2}(\Omega, \omega)$ and

$$
\|u\|_{W^{2,2}(\Omega, \omega)} \leq C\left(\|u\|_{W^{1,2}(\Omega, \omega)}+\|g / \omega\|_{L^{2}(\Omega, \omega)}+\|\varphi\|_{W^{2,2}(\Omega, \omega)}\right),
$$

where $C=C\left(n, \lambda, \Lambda, C_{1}, C_{2}, \partial \Omega\right)$.

Proof. Replacing u by $u-\varphi$, we see that there is no loss of generality in assuming $\varphi \equiv 0$ and hence $u \in W_{0}^{1,2}(\Omega, \omega)$. Since Ω is of class C^{2} with ω-quasiconformal boundary, then exists for each $x_{0} \in \partial \Omega$, a ball $B=B\left(x_{0}\right)$ and a quasiconformal mapping ψ from B onto an open set $D \subset \mathbb{R}^{n}$ such that $\psi(B \cap \Omega) \subset \mathbb{R}_{+}^{n}, \psi(B \cap \partial \Omega) \subset \partial \mathbb{R}_{+}^{n}, \psi \in C^{2}(B)$ and $\psi^{-1} \in C^{2}(D)$. Let $B\left(x_{0} ; R\right) \subset \subset B$ and set $B^{+}=B\left(x_{0} ; R\right) \cap \Omega, \tilde{D}=\psi\left(B\left(x_{0} ; R\right)\right)$ and $D^{+}=\psi\left(B^{+}\right)$.

STEP 1. We set $y=\psi(x)=\left(y_{1}, \ldots, y_{n}\right)=\left(\psi_{1}(x), \ldots, \psi_{n}(x)\right)$ and we define the weight $\tilde{\omega}(y)=$ $\omega\left(\psi^{-1}(y)\right)$. We have that $\tilde{\omega}$ is uniformly A_{2} in each coordinate. If $u \in W^{1,2}\left(B^{+}, \omega\right)$, then $v=u \circ \psi^{-1} \in W^{1,2}\left(D^{+}, \tilde{\omega}\right)$.

STEP 2. We define the operator $\tilde{L} v(y)=L u\left(\psi^{-1}(y)\right)$.We have
(i) $\frac{\partial}{\partial x_{i}}(v \circ \psi)(x)=\sum_{k=1}^{n} \frac{\partial v}{\partial y_{k}} \frac{\partial \psi_{k}}{\partial x_{i}}$,
(ii) $\frac{\partial}{\partial x_{j}}\left(\frac{\partial}{\partial x_{i}}(\nu \circ \psi)(x)\right)=\sum_{k=1}^{n} \frac{\partial v}{\partial y_{k}} \frac{\partial^{2} \psi_{k}}{\partial x_{j} \partial x_{i}}+\sum_{k=1}^{n}\left(\sum_{l=1}^{n} \frac{\partial^{2} v}{\partial y_{l} \partial y_{k}} \frac{\partial \psi_{l}}{\partial x_{j}}\right) \frac{\partial \psi_{k}}{\partial x_{i}}$.

Hence, by condition (a), we obtain

$$
\begin{aligned}
\tilde{L} v(y) & =L(v \circ \psi)(x) \\
& =-\sum_{i, j=1}^{n}\left(a_{i j}(x) D_{i j}(v(y))+D_{i} a_{i j}(x) D_{j}(v(y))\right)-\sum_{j=1}^{n} b_{j}(x) D_{j}(v(y)) \\
& =-\sum_{k, l=1}^{n}\left(\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial \psi_{l}}{\partial x_{j}} \frac{\partial \psi_{k}}{\partial x_{i}}\right) D_{k l} v(y) \\
& -\sum_{k=1}^{n}\left(\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} \psi_{k}}{\partial x_{j} \partial x_{i}}+D_{i} a_{i j}(x) \frac{\partial \psi_{k}}{\partial x_{j}}+\sum_{j=1}^{n} b_{j} \frac{\partial \psi_{k}}{\partial x_{j}}\right) D_{k} v(y) \\
& =-\sum_{k, l=1}^{n} \tilde{a}_{k l}(y) D_{k l} v(y)-\sum_{k=1}^{n} \tilde{b}_{k}(y) D_{k} v(y)
\end{aligned}
$$

where

$$
\tilde{a}_{k l}(y)=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial \psi_{l}}{\partial x_{j}} \frac{\partial \psi_{k}}{\partial x_{i}} \text { and } \tilde{b}_{k}(y)=\sum_{i, j=1}^{n}\left(a_{i j}(x) \frac{\partial^{2} \psi_{k}}{\partial x_{j} \partial x_{i}}+D_{i} a_{i j}(x) \frac{\partial \psi_{k}}{\partial x_{j}}\right)+\sum_{j=1}^{n} b_{j}(x) \frac{\partial \psi_{k}}{\partial x_{j}} .
$$

Therefore, under the mapping ψ the equation $L u=g$ in B^{+}is transformed to an equation of the same form in D^{+}.
Since $\psi \in C^{2}$ and by conditions about the coefficients $a_{i j}$ e b_{i}, we obtain the following estimates.
(1) $\left|\Delta_{p}^{h} \tilde{a}_{k l}(y)\right| \leq \tilde{C}_{2} \tilde{\omega}(y), y \in D^{+}$, for all $1 \leq p \leq n$. In fact, using the Mean Value Theorem we obtain $\left|\Delta_{p}^{h}\left(\frac{\partial \psi_{l}}{\partial x_{j}} \frac{\partial \psi_{k}}{\partial x_{i}}\right)\right| \leq C_{\psi}$. By (1.2), $\lambda \omega(x) \leq a_{i j}(x) \leq \Lambda \omega(x)$ a.e. $x \in \Omega$. Hence, by Lemma 2.11(a) we have

$$
\begin{aligned}
& \left|\Delta_{p}^{h} \tilde{a}_{k l}(y)\right| \leq \sum_{i, j=1}^{n}\left|\Delta_{p}^{h}\left(a_{i j} \frac{\partial \psi_{l}}{\partial x_{j}} \frac{\partial \psi_{k}}{\partial x_{i}}\right)(x)\right| \\
& =\sum_{i, j=1}^{n}\left|\left(\frac{\partial \psi_{l}}{\partial x_{j}} \frac{\partial \psi_{k}}{\partial x_{i}}\right)\left(x+h e_{p}\right) \Delta_{p}^{h} a_{i j}\left(\psi^{-1}(y)\right)+a_{i j}\left(\psi^{-1}(y)\right) \Delta_{p}^{h}\left(\frac{\partial \psi_{l}}{\partial x_{j}} \frac{\partial \psi_{k}}{\partial x_{i}}\right)(x)\right| \\
& \leq \sum_{i, j=1}^{n}\left(C_{\psi}\left|\Delta_{p}^{h} a_{i j}\left(\psi^{-1}(y)\right)\right|+C_{\psi}\left|a_{i j}\left(\psi^{-1}(y)\right)\right|\right) \\
& \leq \sum_{i, j}^{n} C_{\psi}\left(C_{2} \omega\left(\psi^{-1}(y)\right)+\Lambda \omega\left(\psi^{-1}(y)\right)\right) \\
& =\left(\sum_{i, j=1}^{n} C_{\psi}\left(C_{2}+\Lambda\right)\right) \omega\left(\psi^{-1}(y)\right) \\
& =\tilde{C}_{2} \omega\left(\psi^{-1}(y)\right)=\tilde{C}_{2} \tilde{\omega}(y) .
\end{aligned}
$$

(2) $\left|\tilde{b}_{k}(y)\right| \leq \tilde{C}_{1} \tilde{\omega}(y), y \in D^{+}$. In fact,

$$
\begin{aligned}
& \left|\tilde{b}_{k}(y)\right| \leq \sum_{i, j=1}^{n}\left|a_{i j}\left(\psi^{-1}(y)\right)\right| C_{\psi}+\left|D_{i} a_{i j}\left(\psi^{-1}(y)\right)\right| C_{\psi}+\sum_{j=1}^{n}\left|b_{j}\left(\psi^{-1}(y)\right)\right| C_{\psi} \\
& \leq C_{\psi}\left(\Lambda \omega\left(\psi^{-1}(y)\right)+C_{2} \omega\left(\psi^{-1}(y)\right)+C_{1} \omega\left(\psi^{-1}(y)\right)\right) \\
& =C_{\psi}\left(\Lambda+C_{2}+C_{1}\right) \omega\left(\psi^{-1}(y)\right)=\tilde{C}_{1} \tilde{\omega}(y) .
\end{aligned}
$$

(3) Let $\tilde{A}(y)=\left(\tilde{a}_{k l}(y)\right)=T A(x) T^{t}$, where $T=\left(\frac{\partial \psi_{k}}{\partial x_{j}}\right)_{1 \leq j, k \leq n}$. Since $\overline{B\left(x_{0} ; R\right)}$ is compact and T is invertible, there exists a constant C_{3} independent of x such that $\left\|T^{t}(x) \xi\right\| \geq C_{3}\|\xi\|$. Hence, by condition (1.2) we obtain

$$
\begin{aligned}
\langle\tilde{A} \xi, \xi\rangle & =\left\langle T A T^{t} \xi, \xi\right\rangle=\left\langle A T^{t} \xi, T^{t} \xi\right\rangle \\
& \geq \lambda\left\|T^{t} \xi\right\|^{2} \omega(x) \\
& \geq \lambda C_{3}^{2}\|\xi\|^{2} \omega\left(\psi^{-1}(y)\right) \\
& =\tilde{\lambda}\|\xi\|^{2} \tilde{\omega}(y),
\end{aligned}
$$

and we also have

$$
\begin{aligned}
\langle\tilde{A} \xi, \xi\rangle & =\left\langle A T^{t} \xi, T^{t} \xi\right\rangle \\
& \leq \Lambda\left\|T^{t} \xi\right\|^{2} \omega(x) \\
& \leq \Lambda\left\|T^{t}\right\|^{2}\|\xi\|^{2} \omega\left(\psi^{-1}(y)\right) \\
& =\tilde{\Lambda}\|\xi\|^{2} \tilde{\omega}(y) .
\end{aligned}
$$

Hence we have

$$
\tilde{\lambda}|\xi|^{2} \tilde{\omega}(y) \leq \sum_{k, l=1}^{n} \tilde{a}_{k l}(y) \xi_{k} \xi_{l} \leq \tilde{\Lambda}|\xi|^{2} \tilde{\omega}(y) .
$$

Moreover, if $u \in W_{0}^{1,2}\left(B^{+}, \omega\right)$ is a solution of $L u=g$, then $v=u \circ \psi^{-1} \in W_{0}^{1,2}\left(D^{+}, \tilde{\omega}\right)$ is a solution of $\tilde{L} v(y)=\tilde{g}(y)=g\left(\psi^{-1}(y)\right)$ and satisfies $\eta v \in W_{0}^{1,2}\left(D^{+}, \omega\right)$, for all $\eta \in C_{0}^{\infty}(\tilde{D})$.

Accordingly, let us now suppose that $u \in W_{0}^{1,2}\left(D^{+}, \omega\right)$ satisfies $L u=g$ in D^{+}. Following the lines of Theorem 3.8 in [1], for any $\eta \in C_{0}^{\infty}(\tilde{D})$ satisfying $0 \leq \eta \leq 1, \eta \equiv 1$ on $\Omega^{\prime} \subset \subset \tilde{D}$, $\Omega^{\prime}=\psi\left(B_{r}\left(x_{0}\right) \cap \Omega\right)$ where $0<r<R$ and $\|\eta\|_{L^{\infty}} \leq 2 / d^{\prime}, d^{\prime}=\operatorname{dist}\left(\Omega^{\prime}, \partial \tilde{D}\right)$, if $0<|h|<\operatorname{dist}(\operatorname{supp}(\eta), \partial \tilde{D})$ and $1 \leq k \leq(n-1)$, we have

$$
\eta^{2} \Delta_{k}^{h} u \in W_{0}^{1,2}\left(D^{+}, \omega\right) .
$$

Analogously, from Theorem 3.8 (in [1]) we obtain (for any $0<r<R$ and $B_{r}=B\left(x_{0}, r\right)$)

$$
D_{i j} u \in L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)
$$

with $(i, j) \neq(n, n)$, and

$$
\begin{equation*}
\left\|D_{i j} u\right\|_{L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)} \leq C\left(\|u\|_{W^{1,2}\left(D^{+}, \omega\right)}+\|g / \omega\|_{L^{2}\left(D^{+}, \omega\right)}\right) . \tag{3.1}
\end{equation*}
$$

STEP 3. We can now estimate the second derivative $D_{n n} u$. Remembering the definition of L, we can rewrite the equation $L u=g$ as

$$
\begin{aligned}
g & =L u=-\sum_{i, j=1}^{n} D_{j}\left(a_{i j} D_{i} u\right)-\sum_{i=1}^{n} b_{i} D_{i} u \\
& =-\sum_{i, j=1}^{n}\left(D_{j} a_{i j} D_{i} u+a_{i j} D_{i j} u\right)-\sum_{i=1}^{n} b_{i} D_{i} u
\end{aligned}
$$

So we discover

$$
a_{n n} D_{n n} u=-g-\sum_{i, j=1}^{n} D_{j} a_{i j} D_{i} u-\sum_{i=1}^{n} b_{i} D_{i} u-\sum_{\substack{0 \leq i, j \leq n \\(i, j) \neq(n, n)}} a_{i j} D_{i j} u
$$

Therefore

$$
\frac{a_{n n}}{\omega}\left(D_{n n} u\right)=-\frac{g}{\omega}-\sum_{i, j=1}^{n} \frac{D_{j} a_{i j}}{\omega} D_{i} u-\sum_{i=1}^{n} \frac{b_{i}}{\omega} D_{i} u-\sum_{\substack{0 \leq i, j \leq n \\(i, j) \neq(n, n)}} \frac{a_{i j}}{\omega} D_{i j} u .
$$

Now, we have the following estimates.
(1) $g / \omega \in L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)$ (by condition (a) in Theorem 2.12).
(2) $\left(a_{i j} D_{i j} u\right) / \omega \in L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)$ (with $(i, j) \neq(n, n)$). In fact, if $(i, j) \neq(n, n)$, by (1.2) and (3.1) we obtain

$$
\begin{aligned}
\int_{\psi\left(B_{r} \cap \Omega\right)}\left(\frac{\left|a_{i j} D_{i j} u\right|}{\omega}\right)^{2} \omega d x & =\int_{\psi\left(B_{r} \cap \Omega\right)}\left(\frac{\left|a_{i j}\right|}{\omega}\right)^{2}\left|D_{i j} u\right|^{2} \omega d x \\
& \leq \Lambda^{2} \int_{\psi\left(B_{r} \cap \Omega\right)}\left|D_{i j} u\right|^{2} \omega d x<\infty
\end{aligned}
$$

(3) $\left(D_{j} a_{i j} D_{i} u\right) / \omega \in L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)$. In fact, by condition (a) we have

$$
\begin{aligned}
\int_{\psi\left(B_{r} \cap \Omega\right)}\left(\frac{\left|D_{j} a_{i j} D_{i} u\right|}{\omega}\right)^{2} \omega d x & =\int_{\psi\left(B_{r} \cap \Omega\right)}\left(\frac{\left|D_{j} a_{i j}\right|}{\omega}\right)^{2}\left|D_{i} u\right|^{2} \omega d x \\
& \leq C_{2}^{2} \int_{\psi\left(B_{r} \cap \Omega\right)}\left|D_{i} u\right|^{2} \omega d x<\infty
\end{aligned}
$$

(4) $\left(b_{i} D_{i} u\right) / \omega \in L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)$. In fact, using (1.3) we have

$$
\begin{aligned}
\int_{\psi\left(B_{r} \cap \Omega\right)}\left(\frac{\left|b_{i} D_{i} u\right|}{\omega}\right)^{2} \omega d x & =\int_{\psi\left(B_{r} \cap \Omega\right)}\left(\frac{b_{i}}{\omega}\right)^{2}\left|D_{i} u\right|^{2} \omega d x \\
& \leq C_{1}^{2} \int_{\psi\left(B_{r} \cap \Omega\right)}\left|D_{i} u\right|^{2} \omega d x<\infty .
\end{aligned}
$$

Therefore $\left(a_{n n} / \omega\right) D_{n n} u \in L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)$. Since $\left|a_{n n} / \omega\right| \geq \lambda$, we conclude

$$
D_{n n} u \in L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right),
$$

and using (3.1) we obtain

$$
\begin{aligned}
& \lambda\left\|D_{n n} u\right\|_{L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)} \leq\|g / \omega\|_{L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)}+C_{2} \sum_{j=1}^{n}\left\|D_{j} u\right\|_{L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)} \\
& +\sum_{\substack{(0 \leq i, j \leq n \\
(i, j) \neq(n, n)}} \Lambda\left\|D_{i j} u\right\|_{L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)}+\sum_{i=1}^{n} C_{1}\left\|D_{i} u\right\|_{L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)} \\
& \leq\|g / \omega\|_{L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)}+\left(C_{1}+C_{2}\right) \sum_{j=1}^{n}\left\|D_{j} u\right\|_{L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)} \\
& +\Lambda C\left(\|g / \omega\|_{L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)}+\|u\|_{W_{0}^{1,2}\left(D^{+}, \omega\right)}\right) \\
& \leq C\left(\|g / \omega\|_{L^{2}\left(D^{+}, \omega\right)}+\|u\|_{W_{0}^{1,2}\left(D^{+}, \omega\right)}\right) .
\end{aligned}
$$

Then we obtain

$$
\left\|D_{n n} u\right\|_{L^{2}\left(\psi\left(B_{r} \cap \Omega\right), \omega\right)} \leq \frac{C}{\lambda}\left(\|u\|_{W_{0}^{1,2}\left(D^{+}, \omega\right)}+\|g / \omega\|_{L^{2}\left(D^{+}, \omega\right)}\right) .
$$

Hence, returning to the original domain Ω with the mapping $\psi^{-1} \in C^{2}$ we obtain that $u \in W^{2,2}\left(B\left(x_{0}, r\right) \cap \Omega, \omega\right)$ (for all $\left.0<r<R\right)$. Since x_{0} is an arbitrary point of $\partial \Omega$ and $u \in W^{2,2}\left(\Omega^{\prime}, \omega\right)$ for all $\Omega^{\prime} \subset \subset \Omega$ (by Theorem 2.12) we have that $u \in W^{2,2}(\Omega, \omega)$.

STEP 4. Finally by choosing a finite number of points $x_{i} \in \partial \Omega$ such that the balls $O_{i}=$ $B\left(x_{i}, R\right)$ cover $\partial \Omega$. There exist ψ_{i} such that $\psi_{i}: O_{i} \rightarrow D, \psi_{i}\left(O_{i} \cap D\right)=D^{+}$, where each ψ_{i} satisfies Definition 3.5. We can suppose that O_{1}, \ldots, O_{k} cover Ω. Choosing $\rho_{i} \in C^{2}, i=$ $1,2, \ldots, k$, such that

$$
\operatorname{supp}\left(\rho_{i}\right) \subset O_{i} \text { and } \sum_{i=1}^{k} \rho_{i}(x)=1, \forall x \in \bar{\Omega} .
$$

Since $u \in W_{0}^{1,2}(\Omega, \omega)$, we have that $\operatorname{supp}\left(\rho_{i} u\right) \subset O_{i} \subset \subset \Omega$. If $g_{i}=L\left(\rho_{i} u\right)$, we have (for $i=1$),

$$
\begin{aligned}
g_{1}=L\left(\rho_{1} u\right) & =\sum_{i, j=1}^{n} a_{i j} D_{i j}\left(\rho_{1} u\right)+D_{i} a_{i j} D_{j}(\rho u)+\sum_{j=1}^{n} b_{j} D_{j}\left(\rho_{1} u\right) \\
& =\rho_{1} L u+u L \rho_{1}+a_{i j} D_{i} \rho_{1} D_{j} u+a_{i j} D_{i} u D_{j} \rho_{1} \\
& =\rho_{1} g+u L \rho_{1}+a_{i j} D_{i} \rho_{1} D_{j} u+a_{i j} D_{i} u D_{j} \rho_{1} .
\end{aligned}
$$

Since ρ_{1} is of class C^{2} (in O_{1}) and by the assumptions about the coefficients $a_{i j}$ e b_{j} we have
(a) $\rho_{1} g / \omega \in L^{2}(\Omega, \omega)$;
(b) $u L \rho_{1} / \omega \in L^{2}(\Omega, \omega)$;
(c) $a_{i j} D_{i} \rho_{1} D_{j} u / \omega \in L^{2}(\Omega, \omega)$.

Hence, we have that $L\left(\rho_{1} u\right)=g_{1}$, with $g_{1} / \omega \in L^{2}(\Omega, \omega)$ and

$$
\left\|g_{1} / \omega\right\|_{L^{2}(\Omega, \omega)} \leq \tilde{C}_{1}\left(\|g / \omega\|_{L^{2}(\Omega, \omega)}+\|u\|_{W^{1,2}(\Omega, \omega)}\right) .
$$

Then we obtain

$$
\begin{aligned}
\left\|\rho_{1} u\right\|_{W^{2,2}\left(O_{1}, \omega\right)} & =\left\|\rho_{1} u\right\|_{W^{2,2}(\Omega, \omega)} \\
& \leq C\left(\left\|\rho_{1} u\right\|_{W^{1,2}(\Omega, \omega)}+\left\|g_{1} / \omega\right\|_{L^{2}(\Omega, \omega)}\right) \\
& \leq C\left[\left\|\rho_{1}\right\|_{L^{\infty}}\|u\|_{W^{1,2}(\Omega, \omega)}+\tilde{C}_{1}\left(\|g / \omega\|_{L^{2}(\Omega, \omega)}+\|u\|_{W^{1,2}(\Omega, \omega)}\right)\right] \\
& \leq \mathbf{C}\left(\|u\|_{W^{1,2}(\Omega, \omega)}+\|g / \omega\|_{L^{2}(\Omega, \omega)}\right)
\end{aligned}
$$

Analogously we have $g_{i} / \omega \in L^{2}(\Omega, \omega)(1 \leq i \leq k)$ and

$$
\left\|g_{i} / \omega\right\|_{L^{2}(\Omega, \omega)} \leq \tilde{C}_{i}\left(\|u\|_{W^{1,2}(\Omega, \omega)}+\|g / \omega\|_{L^{2}(\Omega, \omega)}\right) .
$$

We also have

$$
\left\|\rho_{i} u\right\|_{W^{2,2}\left(O_{i}, \omega\right)}=\left\|\rho_{i} u\right\|_{W^{2,2}(\Omega, \omega)} \leq \mathbf{C}\left(\|u\|_{W^{2,2}(\Omega, \omega)}+\|g / \omega\|_{L^{2}(\Omega, \omega)}\right) .
$$

Therefore we obtain

$$
\begin{aligned}
\|u\|_{W^{2,2}(\Omega, \omega)} & =\left\|\sum_{i=1}^{k} \rho_{i} u\right\|_{W^{2,2}(\Omega, \omega)} \leq \sum_{i=1}^{k}\left\|\rho_{i} u\right\|_{W^{2,2}(\Omega, \omega)} \\
& \leq C\left(\|u\|_{W^{1,2}(\Omega, \omega)}+\|g / \omega\|_{L^{2}(\Omega, \omega)}\right) .
\end{aligned}
$$

References

[1] Cavalheiro A.C., Regularity of weak solutions to certain degenerate elliptic equations, Comment. Math. Univ. Carolinae. 47 (2006), no. 4, 681-693.
[2] Fabes E., Kenig C. and Serapioni R., The Local Regularity of Solutions of Degenerate Elliptic Equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77-116.
[3] Franchi B. and Serapioni R., Pointwise Estimates for a Class of Strongly Degenerate Elliptic Operators: a Geometrical Approch, Ann. Scuola Norm. Sup. Pisa 14 (1987), 527-568.
[4] Garcia-Cuerva J. and Rubio de Francia J., Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, 116. Notas de Matemática [Mathematical Notes], 104. North-Holland Publishing Co., Amsterdam, 1985.
[5] Garnett, J.B. and Jones, P.W., The distance in BMO to L ${ }^{\infty}$. Annals of Math. 108 (1978), 373-393.
[6] Gilbarg, D. and Trudinger, N., Elliptic Partial Differential Equations of Second Order. Springer-Verlag (1977).
[7] Johnson,R., Changes of variable and A_{p} weights, Contemp. Math. 107 (1990), 93-99.
[8] Johnson,R. and Neugebauer,C.J., Homeomorphisms preserving A_{p}, Revista Matemática Iberoamericana 3 (1987), no. 2, 249-273.
[9] Heinonen J., Kilpeläinen T. and Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, The Cleredon Press, Oxford University Press, New York, 1993.
[10] Reimann, H.M., Functions of bounded mean oscillation and quasiconformal mappings, Commen. Math. Helv. 49 (1974), 260-276.
[11] Stein, E., Harmonic Analysis, Princeton University Press, 1993.
[12] Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego (1986).
[13] Turesson B.O., Nonlinear Potential Theory and Weighted Sobolev Spaces, Lec. Notes in Math., vol. 1736, Springer-Verlag (2000).
[14] Zhikov, V.V., Weighted Sobolev spaces. (Russian) Mat. Sb. 189 (1998), no. 8, 27-58; translation in Sb. Math. 189 (1998), no. 7-8, 1139-1170.

[^0]: *E-mail address: accava@gmail.com

