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Abstract

By applying the method of weight function and techniques from Real Analysis, a
Hilbert-type inequality depending upon a multi-parameter with a best constant factor
is studied. The best constant is formulated in terms of a hypergeometric function.
Furthermore, the inverse inequality is studied.
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1 Introduction

oo oo

Ifa,,b,>0,0< ¥ a2 <ooand0< ¥ b2 < oo, then(see [1])
1 1

n— n—

1/2
— v dmbn = 2% 2
};Em+n<n{2an’;bn} : (1.1)

n=1

where the constant factor T is the best possible. Inequality (1.1) is well known as Hilbert’s
inequality. Soon after, inequality (1.1) had been generalized by Hardy-Riesz as(see [1]): If
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an,bnzo,p>1,%+é:1,0<Z;°:1a5<°oand0<2;'f:1bz<oo,then

o o o Ip ¢ 1/q
gzm—i-n s1nn/p {; } {ng.le} ) (1.2)

1

where the constant factor m(n 77) is the best possible. Inequality (1.2) is named of Hardy-
Hilbert’s inequality (see [1]). It is important in analysis and its applications. It was studied
extensively and refinements, generalizations and numerous variants appeared in the litera-
ture (see [1]- [5]). Under the same condition of (1.2), we obtained the Hardy-Hilbert’s type
inequality (see [1], Th. 341, Th. 342)

- b - p ¢ 1/q
Z z_"maX?Jn}<pq{Zag} {sz} ’ (1.3)

= = log(m/n) afe V(e
y gambn<n2csc2{2ag} {Zbg} , (1.4)
p n=1

where the constant factors pg and > csc? % are both the best possible.

In 2008, Yang (see [6]) gave a bilateral inequality as follows: If p > 1, %—&—é =

1,0 <A< 2,a,b,c >0,a+bc >0, a,,b, >0, such that 0 < Z,lenp(k%)*laﬁ < 0,0 <
Yo ndl- - Il < o0. Then

H:=
L X amax{m*, 7‘}—|—bm7‘—|—cn7‘

n=1m=1

- . 1/p 1/q
<Ck(a,b,c){2np(12)la£} {an 1bq} ) (1.5)

where the constant factor Cy (a,b, c) is the best possible. In addition, for 0 < p < 1, Yang
got the reverse inequality as follows

H:=
=~ & amax{m*, nk} +bm* + cnt
o 1/p 1/q
> Cy(a,b,c) {Z [1—6y(a,b,c,n)]n?~ 2= aﬁ} {Zn" lbq} ,  (1.6)
1 N W V. SRV I
where 0y (a,b,c,m) := cab o apratt = O(-77) € (0,1), and the constant

factor Cy (a, b, c) is the best possible. During the recent years the reverse form of the Hardy-
Hilbert’s inequality has been studied by a number of mathematicians ( [7]), ( [8],[9]).

Very recently, Huang(see [9]) obtained the following inequality: If p > 1, % + é =1,
0<A<1,a,,b, >0suchthat0 <Y nPlaf <ooand 0 <Y  n9 b < oo, then

>, (min{m,n})* 2 > WP 1
Z Z Mambn<kln2{2np_lag} {an_le} s (17)
m n

n=1 n=1
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where the constant factor %ln2 is the best possible.

In the above considerations we have focus our attention to the study of Hilbert’s in-
equality with negative number kernel. In the following our goal is to investigate the real
number kernel.

2 Some Lemmas

The hypergeometric function F(a, B,7,z) is defined [10] by
o (0)n(B)n
F(o,B,y,2) = 7, 2.1
(0P 3) ;) n!(V)a 21

where (), = oo+ 1)(0t+2)---(t+n—1),n>1and (o) =1, # 0.
The integral form of it is [10] (see also [11])

where Re(y) > Re(B) > 0,|arg(1 —z)| < wand I is the gamma function. In particular, when
o=1andy=B+1, we get

glith d 1F 1 1 2.3
= — . .
| = gFLB B 19 (23)
Lemma 2.1. Let o € R,A > |0 and A > —1. Define the weight function @ (o, x) and
w(a,y) as

.  (minfuyht a0

o,x) = - . dy,x € (0,00), 2.4

Brla) = [ s € (0. 24)

o

bl mind x A -
Falony)i= [ Y ey e (0,09), 25)

x4 y*+ A(min{x,y})* I
then we obtain
o0, x) =Wy (a,y) = Gy (a,A), (2.6)
where
F(1,1+ %24+ % —1-A) . F(,1-§2-%-1-4)

Cr(oA4) = A+ o r—a

Proof. Setting t = y/x, we obtain

B o0 (min{x,y})* x*
= ) d
¢ (o, x) /0 xx+yh+A(min{x,y})7‘ ylto i’
o (min{],l‘})l —o—1
y D et
0 1+r*+A(min{1,z})*

1 t?w(xfl o gm0l
= ——dt /7dt
/0 1+ (1+A)* - 1 1+A+1>

1 t?»focfl 1 t?»ﬂxfl
= ——dt /7@
/0 1+ (1+A)? * 0o 14+ (14+A)*
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Setting x = r* for the above equality and in view of (2.3), we get

N 1w/ 1 /A
wlen) = [t [ = Glea)
0 0o 1+(

1+ (14+A)x 1+A)x
_ F(LL1+$24+%,-1-A) +F(l,1—%,2—%,—1—A)
A+o A—o ’

Similarly, we can calculate that
q’?\(avy) = CX((XWA)'
The Lemma is proved. O

Lemma 2.2. Ler o € R, |a| <A < 1+ |a| and A > —1. Define @) (o.,m) and y, (a,n) as

> (min{m,n})* m®
= . 2.7
(0 m) n; m* + n* + A(min{m,n})* PETE N, 27)
> (min{m,n})* n ¢
_ . N 2.8
va(0un) mZ:’l m* +n* + A(min{m,n})* m!—¢ e 238)
then
Cr(0,A) ([1 =8y (o, m,A)] < @p(a1,m) < Gy (a1, A), (2.9)
y(o,n) <Gy (a,A), (2.10)
where
1 W o] 1
0<0 A dr = 0,1 — oo,
<O(mA)i= o A)/O = Ol € (0.

Proof. On one hand, setting t = y/m, by monotonicity and in view of (2.6), we obtain

o

(min{m, y})*
m*+y* + A(min{m,y})* yl+o

o (a,m) < @y (o, m) = dy = G (i, A).

Similarly, we obtain
\Ihu((xvn) < Ch(a>A)>

thus (2.10) is valid.
On the other hand, setting r = y/m, we get

(min{m,y})* - m*
a, > d
P(0m) I mr 4y A(min{m,y})* ylFo Y

S L)
L 14+ A(min{1,z})*
1 o1

= (A —/’"7&
MeA) = ) 1+ (1+A)*

= Cx(OC,A)

1 noo el
1—
Cx(oc,A)/o 1+ (1+A)*
= C?»(avA)[l_el(awva)]'
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Obviously, 0 < 6, (ct,m,A) := f o — A‘ 7dr < 1. Since

1 m 1 1
0< 0, (a,m,A) < /t"“lz : ,
w(em,A) Cr(a,A) Jo (A—a)Cy(a,A) mr—o
then 6, (o, m,A) = O(ﬁ) Hence (2.9) is valid. The Lemma is proved. O

Lemma 2.3. If p>0,p # 1, %+é=1,a€R,|0€|<7\,§1+](x|andA>—1, setting

Z Z (min{m,n})* .mafl—%n—oc—l—? (2.11)

m* +n* + A(min{m,n})*

n=1m=1

where € is sufficiently small and positive, then we obtain

Proof. Setting t = 7 in the following, in view of Lemma 2.2, we get

©(minfen)t g
(/0 x7“+n7“+A(min{x,n})7“x dx)

_ vy ! /°° (min{r, IN* oo
- 1+e A i A
=n 0o t*+1+A(min{z,1})

5]

— [ck(och)+5(1)]anl+£ (e—0");

n=1

Y

Je) < Y%
n=1

Je) > —0—1-¢ / (min{x,n}) 1
®) ,;n ' ( 1 x*+n*+A(min{x,n})* S
1 oo 1 A e
[ e g,
Sontte \J1 A+ 1+ A(min{z,1})
> 1 > (min{z, 1})* a1t
> -t dr
gnm (/o A1+ A(min{r, 1})F ’

SEL([ e el

I
s

—_

S

:\*—‘

Since




On a Hilbert-Type Inequality with a Hypergeometric Function 89

In view of the above inequalities, we obtain

Je) > [Culaa)+a(1)] Y

n=1 n=1 n=1
= ¥ i ey o) (=07
n=
The Lemma is proved. ]

3 Main Results

Theorem 3.1. pr >1,1 —1—1 ,A>—1, a,,b, > 0 such that

0<y> nri-0-1 < oo and 0< Z nq (1+0)— 1bq < oo, Then we obtain the following
inequality

oo

Z Z (min{m,n})* b

= = w4 nh+ A(min{m,n})* "

- Up ¢ 1/q
< Cy(o,A) {Z g} {Zn4<1+“>—1bg} , (3.1)
=1 n=1

where the constant factor C) (o, A) is the best possible.

Proof. By Hélder’s inequality with weight[12], we obtain

i (min{m,n})* b

A+ n* 4+ A(min{m,n})* mon

v v (min{m, n}) m1—)/q p(140)/p
B n; [ am " qb"

« = mh+n* + A(min{m,n})* | n(1+)/p

IN

Z e (min{m,n})* m1—0)(p—1) ) 1/p
n; ) m* +n* + A(min{m,n})*  nlt® m

m=1

= & (min{m,n})* a0 V4
; L m* +n* + A(min{m,n})» ml-o "

=1

1

q

==

= { ) <Px(0€7m)mp(1“)laﬁ}
m=1

In view of (2.9) and (2.10), we have (3.1). . .
Let € be positive and sufficiently small, setting @, =m® "7, by =n"%"'"¢ (m,n € N),
by (2.11), we have

{i e n)n’f“““bz}
n=1

co oo

(min{m,n})* a-1-t —a-1-f _
Z L m* 4+ n* + A(min{m,n})* e = ().

n=1m=1
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Assuming that there exists a positive number k with 0 < k < Gy (o, A), such that (3.1) is
still correct by changing C (., A) to k, then, in particular, by (2.12), we have

- p ¢ N 1/q “
<k{z:ln”(1“)1&fj} {Z};ﬂ(l*“)lbz} :k;F.

It follows that Gy (a,A) —o(1) < k, so Cy(a,A) < k(¢ — 0"). Hence the constant factor
k= Cy(a,A) in (3.1) is the best possible. This completes the proof. O

Remark For A =0 and a0 =0, (3.1) turns into (1.7). Hence (3.1) is a generalization of
(1.7).
Theorem 3.2. IfO<p<1 1+1— —1, a,,b, > 0 such

that0 <Y >, pl—0) =140 o and o<y, H“) Ibl < oo, then we obtain the following
inverse mequalzty

oo

= (min{m,n A
; Z {m,n}) by

mh+ n" +A(min{m,n})*

o p ¢ o 1/q
> Cy (a1, A) {Z 1—6; (o,1,A)]nP1 =%~ 1a5} {an(H“)_le} , (3.2)

n=1

m l>L ol
where 0 < 0, (a,m,A) := o ch f T (A dr =

stant factor Cy (o, A) is the best posszble

O(—=) € (0,1),m — oo, and the con-

Proof. By the reverse Holder’s inequality with weight[12], in view of (2.7) and (2.8), we
obtain

;] — 2 (min{m, n})k m1—%)/q n(1+06)/pb
N Zm 1m7‘+n7‘+A(mln{m n}) HO‘)/Pam m—a)/q "

=2 (min{m,n})*  mi-e-n
L) m* +n* + A(min{m,n})* n(+®) m
= 2 (minfmnp)* o) Y
L X m* +n* + A(min{m,n})» mi-o "

n=1m=1
1 1
> P [ o i
) {Z (P"(“’”’)”’”“““aﬁ} {Zw%n)nqﬂw)%} .

m=1 n=1

Y

1

By (2.9) and (2.10), in view of ¢ < 0, we have (3.2).
Let € be positive and small enough , setting @, =m® ' 7, by=n"*""¢ (m,n € N),
by (2.11), we have

co oo

(min{m,n})* a-1-t —a-1-f _
Z L m* 4+ n* + A(min{m,n})* e = ().

n=1m=1
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Assuming that there exists a positive number k with k > Cy(a,A), such that (3.2) is still
correct by changing C) (o, A) to k, then, in particular, by (2.12), we have
~ |
(Cula,A)+0(1)) Y, —55 > ()

n=1

n=1

- 1/p 1/q
>k { Y- ex(a,n,A)]np“—OO—lag} { Y nq(1+°‘>—1bg}

It follows that

1/p

Culo,A) +5(1) > k{1 - (i 1111%)1}g [0 (nKIa> n11+8] :

and then Cy (ot,A) > k(e — 0™). Thus the constant factor k = C)(a,A) in (3.2) is the best
possible. The theorem is proved. O
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