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Abstract

Recently, the existence and multiplicity results of heteroclinic orbits for a discrete pen-

dulum equation have been investigated. In present paper, we generalize those results to

a class of discrete Hamiltonian systems. Since the variational functional is identically

infinite, some effective methods, provided by Rabinowitz, have to be adopted to detect

critical points corresponding to heteroclinic solutions.
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1 Introduction

Difference equations have been widely used as mathematical models to describe real life

situations in probability theory, matrix theory, electrical circuit analysis, combinatorial anal-
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ysis, number theory, psychology and sociology, and etc. So it is worthwhile to explore this

topic. In past decades, many scholars investigate the qualitative properties of difference

equations such as disconjugacy, stability, attractiveness, oscillation and boundary value

problems, see for examples [1, 2, 4, 7, 12, 28]. But results on the existence and multi-

plicity of periodic solutions are relatively rare. In 2003, Guo and Yu [8, 9, 10] introduce

the critical point theory to study discrete dynamical systems. They construct a variational

framework and convert the problem of the existence of periodic solutions to the study of the

existence of critical points of corresponding variational functional. Since then, the study

of the existence of all kinds of solutions for difference equations attaches the attention of

many researchers. For some recent results on boundary value problems, periodic solutions,

homoclinic orbits, we refer the reader to [3, 5, 6, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22,

23, 24, 25, 26, 27, 29, 30].

More recently, Xiao and Yu [18] investigate the existence and multiplicity of hetero-

clinic orbits of a discrete pendulum equation. It seems that the origin idea comes from the

observing of strong similarities between the phase plane of the discrete pendulum equation

and that of the classical pendulum equation. Let us recall it briefly. The phase plane portrait

of the discrete pendulum equation 42xn−1 + Asinxn = 0, n ∈ Z with A = 0.1, shown on

Figure 2, can be compared with the phase plane portrait of the classical pendulum equation

x′′(t)+ Asinx(t) = 0, t ∈ R with A = 1, shown on Figure 1. The phase plane analysis of
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Figure 1. phase plane portrait of the classical pendulum equation

the classical pendulum equation shows the existence of two heteroclinic solutions joining

−π and π. On the other hand, the phase plane of the difference equation is similar to that

of differential equation. On Figure 2, different colors are used to distinguish between dif-

ferent orbits. The nine ellipses represent nine periodic orbits, while two curves around the

other nine ellipses are non-periodic orbits. Strong similarities observed on Figures 1 and

2 suggest the existence of heteroclinic orbits of the difference equation. Indeed, Xiao and

Yu [18] prove that there exist heteroclinic orbits of the discrete pendulum equation join-

ing equilibria. In this paper, we generalize the results to a class of discrete Hamiltonian

systems.

Let us introduce some notation that will be used throughout this paper. Denote by

R,Z,N the sets of all real, integer and positive integer numbers, respectively. For a, b ∈ Z,
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Figure 2. phase plane portrait of the discrete pendulum equation

define Z[a] = {a,a+1,a+2, · · ·}, Z[a, b] = {a,a+1, · · · ,b} when a ≤ b. For D ⊂R
m,ε >

0, denote Bε(D) as an open ε−neighborhood of D. For a convergent bi-infinite sequence

{xn}+∞
n=−∞, denote by x±∞ the limits of the sequence as n tends to ±∞, i.e., x∞ := lim

n→∞
xn and

x−∞ := lim
n→−∞

xn.

In this paper, we investigate the following system

42xn−1 +V ′(xn) = 0, n ∈ Z, (1.1)

where xn ∈ Rm, 4 is the forward difference operator defined by 4xn = xn+1 −xn, 42xn =

4(4xn), V(z) ∈ C1(Rm,R), V ′(z) denote the gradient of V . A solution x : Z → R
m of

(1.1) is called a heteroclinic solution (or a heteroclinic orbit) if there exist two equilibria of

equation (1.1), ξ,η ∈ R
m, ξ 6= η, such that x joins ξ and η, and the difference approaches

zero as n tends to ±∞. We will study the existence and multiplicity of heteroclinic orbits of

(1.1).

2 Main Results

In this section, we will state and prove the main results. We assume that

(V1) V(z) ∈C1(Rm,R),

(V2) V is periodic in zi with period Ti, 1 ≤ i ≤ m.

Then V possesses a global maximum, V , on Rm. Let Λ := {z ∈ Rm| V (z) = V}. Assume

further that

(V3) Λ consists only isolated points.

Let c be the vector space consisting of all convergent bi-infinite sequences x = {xn}∞
n=−∞,

i.e.,

c := {x = {xn}| lim
n→∞

xn and lim
n→−∞

xn exist, xn ∈ R
m, n ∈ Z}.



4 H. Xiao, Y. Long, and H. Shi

We define the space H by

H := {x ∈ c|
∞

∑
n=−∞

|4xn|2 < ∞}.

We define a bilinear product on H as follows:

< x,y >:=
∞

∑
n=−∞

4xn ·4yn +x0 · y0, ∀ x,y ∈ H, (2.1)

where · denote the usual inner product on R
m. First, we place a result of matrix analysis.

Lemma 2.1. Let x = (x1,x2, · · · ,xm)T , xk = (xk
1,xk

2, · · · ,xk
m)T ∈ R

m, k = 1,2, · · ·. Then

vector sequence {xk}∞
k=1 converges to x if and only if lim

k→∞
xk

i = xi, i = 1,2, · · · ,m.

Proposition 2.2. The bilinear product (2.1) is an inner product on H. The space H is a

Hilbert space with the norm given below

‖x‖ := [
∞

∑
n=−∞

|4xn|2 + |x0|2]
1
2 , ∀ x ∈ H. (2.2)

Proof. Recall that the space l2 of all sequences a = {ak}∞
k=−∞ such that ak ∈ R

m, ‖a‖2 :=
[

∑∞
−∞ |ak|2

]
1
2 < ∞, is a Hilbert space. Let {yn}∞

n=1 ⊂ H be a Cauchy sequence in H, i.e.

∀ ε > 0, ∃ N, ∀ n,n′ ≥ N, ‖yn −yn′‖ =

[

∞

∑
k=−∞

|4yn
k −4yn′

k |2 + |yn
0 −yn′

0 |2
]

1
2

< ε. (2.3)

Then {yn
0}∞

n=1 is a Cauchy sequence in Rm, while {4yn}∞
n=1, 4yn := {4yn

k}∞
k=−∞, is a

Cauchy sequence in l2. By completeness of l2, there exists a limit a in l2 of {4yn}∞
n=1. One

can easily observe, that there exists a unique y0 := {y0
k}∞

k=−∞ in H such that limn→∞ yn
0 =

y0
0, and ∀ k ∈ Z, 4y0

k
= ak. By passing to the limit as n′ goes to ∞, we obtain from (2.3)

∀ ε > 0, ∃ N, ∀ n ≥ N, ‖yn −y0‖ ≤ ε,

which proves that {yn}∞
n=1 converges to y0. Consequently, H is a Hilbert space.

We are interested in the existence of heteroclinic solutions of (1.1) which tends to the

equilibria as n →±∞. The variation functional associated with (1.1) defined on H is

J(x) =
∞

∑
n=−∞

[
1

2
|4xn|2−V (xn)]. (2.4)

Without loss of generality, we assume that 0∈ Λ,V(0) = 0. Therefore −V (z)≥ 0 for all

z∈R
m and −V (z)> 0 if z /∈Λ. Denote γ = 1/3minξ, η∈Λ,ξ6=η |ξ−η| > 0. Given ξ∈ Λ\{0},

ε ∈ (0,γ), we define Γε(ξ) to be the set of x ∈ H satisfying

(i) x−∞ = 0,

(ii) x∞ = ξ,
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(iii) xn /∈ Bε(Λ\{0,ξ}) for all n ∈ Z.

Obviously, Γε(ξ) is not empty for all ξ ∈ Λ. Define

cε(ξ) := inf
x∈Γε(ξ)

J(x) and αε := min
x/∈Bε(Λ)

[−V(x)].

Remark 2.3. For any ε > 0, we claim that αε > 0. Since V is periodic in xi and x /∈ Bε(Λ),

then αε can be achieved. Of course, αε 6= 0. Otherwise, there exists an element y in R
m,

which does not belong to Bε(Λ), such that V(y) = 0, which implies y ∈ Λ. This is a contra-

diction.

Now we present a useful lemma without proof. One can find details in [18].

Proposition 2.4. Let n ≤ l ∈ Z. If x ∈ H such that xi /∈ Bε(Λ) for all i ∈ Z[n, l], then

J(x) ≥
√

2αε|xl+1−xn|.

Lemma 2.5. If x ∈ H,J(x) < ∞, then there exist ζ, η ∈ Λ such that x−∞ = ζ, x∞ = η.

Proof. Since {xn}∞
n=−∞ is a convergent bi-infinite sequence, the existence of ζ and η is

obvious. We claim that ζ,η ∈ Λ. We only prove that ζ = limn→−∞ xn ∈ Λ, since the proof

that η = limn→∞ xn ∈ Λ follows similarly. Suppose that there exists δ > 0 such that xn /∈
Bδ(Λ) for all n near −∞. By remark 2.3, αδ > 0. Then

J(x) ≥
n

∑
i=−∞

[−V(xi)] ≥
n

∑
i=−∞

αδ

for any n ∈ Z, which shows J(x) = ∞, contrary to the hypothesis. Hence ζ ∈ Λ.

The main idea of this paper is to find heteroclinic orbits through minimization argu-

ments. As we can see, for any ε > 0, J is identically infinite on the set H \S

ξ∈Λ Γε(ξ). So

the critical point theory, which determines the existence of critical points by values of J on

the whole space, can not be used directly to find minima. However, we can restrict J to

a subset Γε(ξ) of H and get a minimum cε(ξ) on Γε(ξ). The minimum cε(ξ) achieves at

some xε,ξ ∈ Γε(ξ). For a fixed ε, we will prove that there are only finite many ξ’s candidate

for the minimum cε = minξ∈Λ cε(ξ). Thus, there exists at least an element of Λ, denoted by

ξ(ε), such that cε = cε(ξ(ε)). Choosing a decreasing sequence {εn}∞
n=1 such that εn → 0

as n → ∞, we will prove that the sequence {ξ(εn)}∞
n=1 is independent of εn, denoted by ξ0.

Thus, c = minε cε achieves at some x ∈ Γε(ξ0). Finally, we will prove that x is a desired

heteroclinic orbit.

Lemma 2.6. Consider ξ ∈ Λ \ {0} and let {xk}∞
k=1 be a minimizing sequence for (2.4)

restricted to Γε(ξ) such that for any n ∈ N, xk → x uniformly for i ∈ Z[−n,n]. If x ∈
H and J(x) < ∞, then x ∈ Γε(ξ).

Proof. Fix ε ∈ (0,γ). By Lemma 2.5, there exist ζ,η ∈ Λ such that x−∞ = ζ, x∞ = η. Since

xk → x uniformly for i∈ Z[−n,n] and xk ∈ Γε(ξ), we will prove this lemma in four partions.
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Claim 1: xn /∈ Bε(Λ\{0,ξ}) for all n ∈ Z.

If there exist n0 and θ ∈ Λ \ {0,ξ} such that xn0
∈ Bε(θ), then δ = |xn0

− θ| < ε. Since

xk → x uniformly for i ∈ Z[−n0,n0], for sufficiently large k, we have |xk
n0
− xn0

| < ε− δ.

Thus |xk
n0
−θ| ≤ |xk

n0
−xn0

|+ |θ−xn0
| < ε. This is a contradiction.

Claim 2: x±∞ ∈ {0,ξ}.

If x−∞ = ζ ∈ Λ \ {0,ξ}, then for any 0 < ε1 < ε, ∃N1 ∈ N,x−n ∈ Bε1/2(ζ), ∀ n ≥ N1.

Since xk → x uniformly for n ∈ Z[−N1,N1], there exists N2 ∈ N, such that for any k > N2,

|xk
−N1

− x−N1
| < ε1/2. Consequently, for these ε1,N1,N2, we have |xk

−N1
− ζ| ≤ |xk

−N1
−

x−N1
|+ |x−N1

−ζ| < ε1. Thus xk
−N1

∈ Bε1
(ζ), which contradicts with the definition of Γε(ξ).

Thus ζ ∈ {0,ξ}. The same argument guarantees η ∈ {0,ξ}.

Claim 3: x−∞ = 0.

For each k ∈ N, since xk ∈ Γε(ξ), there exists n(k) ∈ Z such that xk
n(k) /∈ Bε(0) and xk

n ∈
Bε(0) for all n < n(k). For x ∈ H, putting xn(k) := xn−n(k), we have J(x(k)) = J(x) where

x(k) = {xn(k)}. Therefore it can be assumed that n(k) = 0 for all k ∈ N. Consequently

xk
n ∈ Bε(0) and xn ∈ Bε(0), ∀ n < 0. Thus ζ ∈ Bε(0)∩{0,ξ}= {0}, i.e., ζ = 0.

Claim 4: x∞ = ξ.

Suppose, to the contrary, that x∞ = 0. We will show that, under this assumption, there will

be always a contradiction with the minimizing sequence {xk}∞
k=1. Since xk

0 /∈ Bε(0), we go

on our discussion in two cases.

Case 1 If there exists a subsequence of {xk}∞
k=1 (denoted again by {xk}∞

k=1) such that xk
0 ∈

Bε(ξ), then |xk
0 − xk

−1| ≥ γ/3. Since x∞ = 0, there exists n0 > 0 such that xn0
∈ Bε/6(0). On

one hand, since xk → x uniformly for i ∈ Z[−n0,n0], for large k, we have xk
n0
∈ Bε/3(0). On

the other hand,

J(xk) =
∞

∑
n=−∞

[
1

2
|4xk

n|2−V (xk
n)]

≥ 1

2
|x0−x−1|2 +

∞

∑
n=n0

[
1

2
|4xk

n|2−V (xk
n)]

≥ 1

18
γ2 +

∞

∑
n=n0

[
1

2
|4xk

n|2 −V (xk
n)]. (2.5)

Define

yk
n :=

{

0 n ≤ n0 −1

xk
n n ≥ n0.
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Then yk := {yk
n} ∈ Γε(ξ) and

J(yk) =
∞

∑
n=n0−1

[
1

2
|4yk

n|2 −V(yk
n)]

=
1

2
|xk

n0
|2 +

∞

∑
n=n0

[
1

2
|4xk

n|2 −V (xk
n)]

<
1

18
ε2 +

∞

∑
n=n0

[
1

2
|4xk

n|2−V (xk
n)]. (2.6)

(2.5) and (2.6) imply that cε(ξ) = lim
k→∞

J(xk) > lim
k→∞

J(yk)+ γ2/18− ε2/18 ≥ cε(ξ)+ (γ2 −
ε2)/18, which is a contradiction since γ > ε.

Case 2 Otherwise, there exists K ∈ N such that for all k ≥ K, xk
0 /∈ Bε(Λ). Since xk

−∞ = 0,

two possibilities should be considered:

Subcase I There exists a subsequence of {xk}∞
k=1, denoted again by {xk}∞

k=1, such that

xk
−1 ∈ Bε/2(0). Then we have |xk

0 − xk
−1| ≥ ε/2. By using a similar argument as case I, we

get a contradiction.

Subcase II There exists M ≥ K such that xk
−1 /∈ Bε/2(0) for all k ≥ M. Denote n(k) = {n1 <

0| xk
n1−1 ∈ Bε/2(0), xk

n /∈ Bε/2(0), for all 0 > n ≥ n1}. Then

J(xk) ≥
√

2αε/2ε/2+
∞

∑
n=n(k)

[
1

2
|4xk

n|2−V (xk
n)].

Set ρ2 =
√

2αε/2ε/2. Since x∞ = 0, there exists n2 > 0 such that xn2
∈ Bρ/2(0). Since

xk → x uniformly for i ∈ Z[−n2,n2], for k ≥ M large enough, we have xk
n2
∈ Bρ(0). Define

zk
n :=

{

0 n < n2

xk
n n ≥ n2.

Then zk := {zk
n} ∈ Γε(ξ) and

J(zk) =
∞

∑
n=n2−1

[
1

2
|4zk

n|2 −V (zk
n)]

=
1

2
|xk

n2
|2 +

∞

∑
n=n2

[
1

2
|4xk

n|2 −V (xk
n)]

≤ 1

2
ρ2 +J(xk)−ρ2

< J(xk)− 1

2
ρ2.

Thus cε(ξ) = lim
k→∞

J(xk) > lim
k→∞

J(zk) + ρ2/2 ≥ cε(ξ) + ρ2/2. Again, it is a contradiction.

This completes the proof.
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Lemma 2.7. For any ε ∈ (0,γ), ξ ∈ Λ \ {0}, there exists x0 = x(ε,ξ) ∈ Γε(ξ) such that

J(x(ε,ξ)) = cε(ξ), i.e. x(ε,ξ) minimizes J|Γε(ξ).

Proof. Let {xk}∞
k=1 be a minimizing sequence for (2.4) restricted to Γε(ξ). There exists

a positive number M > 0 such that M ≥ J(xk) ≥ 1/2
∞

∑
n=−∞

|4xk
n|2. We claim that {xk

0}∞
k=1

is a bounded sequence. Suppose, to the contrary, that for any j ∈ N, there exists k j ∈ N

such that |xk j

0 | ≥ j. Then lim j→∞ |xk j

0 | = ∞, which implies the existence of j0 ∈ N such that

x
k j

0 /∈ Bε(ξ) when j ≥ j0. We consider the sequence {x
k j

1 }∞
j= j0

. If there is a subsequence of

{x
k j

1 }∞
j= j0

(denoted again by {x
k j

1 }∞
j= j0

) such that x
k j

1 ∈ Bε(ξ), then

J(xk j)≥ |xk j

0 −ξ−ε|2/2 for all j > j0.

Letting j → ∞, we have J(xk j) → ∞, which contradicts with the assumptions. Other-

wise, there exists J > 0 such that x
k j

1 /∈ Bε(ξ) for all j ≥ J. Denote n j := {n > 0| x
k j

l
/∈

Bε(ξ) for all l ∈ Z[0,n] and x
k j

n+1 ∈ Bε(ξ)}. Then

J(xk j) ≥
√

2αε|xk j

0 −x
k j
n j |+

1

2
|xk j

n j+1 −x
k j
n j |2 for all j > j0. (2.7)

Letting j → ∞, we have |xk j

0 −x
k j

n j+1| → ∞. But |xk j

0 −x
k j

n j+1| → ∞ if and only if |xk j

0 −x
k j
n j |+

|xk j
n j − x

k j

n j+1| → ∞ if and only if
√

2αε|xk j

0 − x
k j
n j |+ |xk j

n j+1 − x
k j
n j |2/2 → ∞, which contradicts

again with the assumptions. Thus {xk
0}∞

k=1 is a bounded sequence. From the definition of

norm on H, we can learn that {xk}∞
k=1 is a bounded sequence in H. Therefore passing to a

subsequence if necessary, there exists x0 ∈ H such that xk converges weakly to x0 in H .

We claim that J(x0) < ∞. Indeed, consider −∞ < s < t < ∞ and define for x ∈ H

J(s, t,x) =
t

∑
n=s

[
1

2
|4xn|2 +V (xn)].

Since xk → x0 weakly in H, xk
n → x0

n for any n ∈ Z. Then {xk
n}t

n=s converges uniformly

to {x0
n}t

n=s. Clearly, J(s, t,x) is lower continuous, and it must be lower semi-continuous.

Combining M ≥ J(xk) ≥ J(s, t,xk) with the lower semi-continuous property of J(s, t,x), we

have

J(s, t,x0) ≤ liminf
k→∞

J(s, t,xk) ≤ cε(ξ) = liminf
k→∞

J(xk) ≤ M. (2.8)

Since x0 ∈ H and s, t are arbitrary, (2.8) implies J(x0) ≤ inf
x∈Γε(ξ)

J(x). Lemma 2.6 implies

x0 ∈ Γε(ξ). Thus J(x0) = cε(ξ).

Put

cε = inf
ξ∈Λ\{0}

cε(ξ).

We will show that for a fixed ε > 0 there exist ξ0 ∈ Λ \ {0} and q ∈ Γε(ξ0) such that

cε(ξ0) = cε, J(q) = inf{J(x) : x ∈ S

ξ∈Λ\{0}Γε(ξ)}. That is, J achieves its minimum on the

set
S

ξ∈Λ\{0}Γε(ξ).
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Lemma 2.8. The set ϒε := {ξ ∈ Λ\{0}| cε(ξ) = cε} is finite.

Proof. Consider ξ ∈ Λ\ {0}. For any x ∈ Γε(ξ), we have x−∞ = 0, x∞ = ξ, xn /∈ Bε(Λ\
{0,ξ}). Put k1 := max{n| xn ∈ Bε(0)}, k2 := min{n| n > k1, xn ∈ Bε(ξ)}. If k2 > k1 + 2,

then by Proposition 2.4

J(x) ≥
k2−1

∑
n=k1

1

2
|4xn|2 ≥

√

2αε|xk2−1−xk1+1|+
1

2
|4xk1

|2 +
1

2
|4xk2−1|2.

Notice that ξ → ∞ if and only if |xk2−1−xk1+1|+ |4xk1
|+ |4xk2−1|→ ∞ which is equivalent

to
√

2αε|xk2−1−xk1+1|+ |4xk1
|2/2+ |4xk2−1|2/2 → ∞. Thus J(x) → ∞ as ξ → ∞. For the

case k1 ≤ k2 ≤ k1 + 2, using a similar analysis as above, we get the same result. Choose

ξ1 ∈ Λ\{0}. Obviously, cε(ξ1)≥ cε. There exists K1 > 0 such that for any ξ ∈ Λ, |ξ|> K1,

we have infx∈Γε(ξ) J(x) > cε(ξ1). Thus, by assumption (V3), there are only finite many cε(ξ)

candidate for cε.

For a fixed ε, Lemma 2.8 implies that there exists ζ(ε) ∈ ϒε such that cε = cε(ζ(ε)).

The existence of x(ε,ζ(ε)) such that cε = J(x(ε,ζ(ε))) follows by Lemma 2.7. Now by

choosing a decreasing sequence {ε j}∞
j=1 such that ε j → 0 as j → ∞, we claim that for

sufficiently large j, ζ(ε j) ∈ ϒε j
is independent of ε j, i.e., we have the following:

Lemma 2.9. Suppose that ε j is a decreasing sequence of positive numbers such that ε j → 0

as j → ∞. Then there exists a set ϒ ⊂ Λ\{0} such that ϒε j
= ϒ for sufficiently large j.

Proof. Consider {cε j
}∞

j=1. For any x ∈ Γε j
(η), xn /∈ Bε j

(Λ\{0,η}), and also xn /∈ Bε j+1
(Λ\

{0,η}) for all n ∈ Z. Thus x ∈ Γε j+1
(η). Now consider a monotone sequence Γε1

(η) ⊂
Γε2

(η)⊂ . . .Γε j
(η) ⊂ Γε j+1

(η)⊂ . . . . By definition of cε j
(η), we have

cε j
(η) = inf

x∈Γε j
(η)

J(x) ≥ inf
x∈Γε j+1

(η)
J(x) = cε j+1

(η). (2.9)

Then {cε j
}∞

j=1 forms a new monotonically decreasing real number sequence which is bounded

both from above and from below. Using a similar argument as in Lemma 2.8, we know that

{ζ(ε j)}∞
j=1 is bounded. Thus there is a convergent subsequence of {ζ(ε j)}∞

j=1. Since Λ con-

sists of isolated points, the convergent subsequence must be a constant sequence, denoted

by {ζ}∞
1 . Denote by ϒ the set of elements of constant sequences. Then ϒ is independent of

ε j.

Theorem 2.10. For j sufficiently large, x(ε j,ζ) is a heteroclinic solution joining 0 and ζ.

Proof. Denote x( j) = x(ε j,ζ). By the definition of Γε(ζ) and H, it is sufficient to show that

for large j, xn( j) /∈ ∂Bε j
(Λ\ {0,ζ}) for all n ∈ Z. If not, there exist a sequence {ηk}∞

k=1 ⊂
Λ\{0,ζ} and a sequence {nk}∞

k=1 ⊂ Z such that

xnk
(k) ∈ ∂Bεk

(ηk) and xn(k) /∈ ∂Bεk
(ηk), ∀ n < nk.

Using a similar argument as in Lemma 2.8, we have {ηk}∞
k=1 is bounded. Passing to a

subsequence, if necessary, {ηk}∞
k=1 must be a constant sequence, denoted by {η}∞

1 . There

are two cases to be considered:



10 H. Xiao, Y. Long, and H. Shi

Case 1 There is an increasing sequence of integers k′ → ∞ such that xn(k′) /∈ Bε j
(ζ) for all

n < nk′.

Case 2 For every j ∈ N, there is lk < nk such that xlk(k) ∈ ∂Bεk
(ζ).

If Case 1 occurs, we define

yn(k′) =

{

xn(k′) n ≤ n′k
η n ≥ n′k +1.

Then y(k′) := {yn(k′)} ∈ Γε j
(η) and

J(x(k′))−J(y(k′)) =
∞

∑
n=nk′

[
1

2
|4xn(k′)|2−V (xn(k′))]− 1

2
|4ynk′ (k′)|2 +V (ynk′ (k′))

=
∞

∑
n=nk′

[
1

2
|4xn(k′)|2−V (xn(k′))]− 1

2
ε2

j +V (xnk′ (k′)).

If there exists n0 > nk′ such that xn0
/∈ Bγ(Λ), then

J(x(k′))−J(y(k′)) ≥ V (xn0
(k′))− 1

2
ε2

j +V (xnk′ (k′))

≥ αγ −
1

2
ε2

j +V (xnk′ (k′)). (2.10)

Letting j → ∞, the second and third item of (2.10) approach 0. Hence for large j, cε j
=

J(x(k′)) > J(y(k′)). This is a contradiction. Otherwise, there exist two adjacent points such

that the distance between them is larger than γ. Then

J(x(k′))−J(y(k′))≥
∞

∑
n=nk

1

2
|4xn(k′)|2− 1

2
ε2

j +V (xnk′ (k′)) > γ2/2− 1

2
ε2

j +V (xnk′ (k′)).

We get a contradiction by using an analogous discussion as above.

If Case 2 occurs, define

zn(k) :=

{

xn(k) n ≤ lk
ζ n ≥ lk +1.

Then z(k) := {zn(k)} ∈ Γε j
(ζ) and

J(x(k))−J(z(k)) =
∞

∑
n=lk

[
1

2
|4xn(k)|2−V (xn(k))]− 1

2
|4zlk(k)|2 +V (zlk(k))

=
∞

∑
n=lk

[
1

2
|4xn(k)|2−V (xn(k))]− 1

2
ε j

2 +V (xlk(k)).

Using a similar argument as in case 1, we get a contradiction and finish our proof.

Theorem 2.11. Suppose that V satisfies (V1-V3). For each β ∈ Λ, there exist two hete-

roclinic solutions connecting β to Λ\ {β}, one of which originates at β and one of which

terminates at β.
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Proof. Without loss of generality, we only need to check heteroclinic orbits connecting 0 to

Λ\{0}. In Theorem 2.10, we have proved that there exists a heteroclinic solution, denote by

{xn}∞
n=−∞, connecting 0 and ζ, which originates at 0. Then {x−n}∞

n=−∞ is also a heterclinic

orbit joining ζ and 0, which terminates at 0. This completes the proof.

Next the multiplicity of heteroclinic orbits will be studied in the simplest possible set-

ting. Suppose that V satisfies

(V4) Λ/T m is a singleton.

By (V4), Λ consists only of the translates of a single point. Without loss of generality, we

can take the single point to be 0. Denote Ξ as the set of ξ such that for ε ∈ (0,γ), cε(ξ)
corresponds to a connecting orbits of (1.1) joining 0 and ξ. Let Ψ denote the set of finite

linear combinations over Z of elements of Ξ.

Lemma 2.12. Ψ = Λ.

Proof. If not, denote Ω = Λ\Ψ 6= /0. Using a similar argument as in the proof of Theorem

2.10, we shows that for each ε ∈ (0,γ), there exists ξε ∈ Ω such that

cε(ξε) = inf
ζ∈Ω

cε(ζ).

And there exists x(ε) = x(ε,ξε) ∈ Γε(ξε) such that J(x(ε)) = cε(ξε). We claim that for ε
sufficiently small,

xn(ε) /∈ ∂Bε(Λ\{0,ξε}) for all n ∈ Z. (2.11)

And therefore x(ε) is a heteroclinic orbit of (1.1) joining 0 and ξε. Then ξε ∈ Ξ, which is

contrary to the choice of ξε ∈ Ω. Thus Ψ = Λ.

Assume to the contrary of (2.11), that there exist ηε ∈ Λ\ {0,ξε} and nε ∈ Z such that

xnε(ε) ∈ ∂Bε(ηε). Two cases need to be considered:

(a) ηε ∈ Ω,

(b) ξε −ηε ∈ Ω.

No other case will happen. Indeed, if ηε ∈ Λ,ξε −ηε ∈ Λ, then ξε = ξε −ηε + ηε ∈ Λ, a

contradiction.

If case (a) happens, two further possibilities arise:

(i) xn(ε) /∈ Bε(ξε) for n < nε,

(ii) there exists n′ε < nε such that xn′ε(ε) ∈ ∂Bε(ξε).

For case (a) (i) occurs, define

yn(ε) =

{

xn(ε) n ≤ nε

ηε n ≥ nε +1.

Then y ∈ Γε(ηε) and

J(y(ε))−J(x(ε)) =
1

2
|4ynε(ε)|2− 1

2
|4xnε(ε)|2−

∞

∑
n=nε+1

[
1

2
|4xn(ε)|2−V (xn(ε))]

=
1

2
ε2 − 1

2
|4xnε(ε)|2−

∞

∑
n=nε+1

[
1

2
|4xn(ε)|2−V (xn(ε))].
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Using a similar argument as in Theorem 2.10 case I, we conclude J(y(ε)) < J(x(ε)) for

small ε. Consequently, cε(ηε) < cε(ξε), which is a contradiction. If case (a) (ii) occurs,

using a similar argument as in case (a) (i), we shows this case is impossible. Next, if case

(b) occurs, two further possibilities will also be met:

(iii) xn(ε) /∈ Bε(0) for all n ≥ nε,

(iv) there exists n′ε > nε such that xn′ε(ε) ∈ ∂Bε(0).

For case (b) (iii) occurs, define

zn(ε) =

{

0 n ≤ nε −1

xn(ε)−ηε n ≥ nε.

Then z := {zn(ε)} ∈ Γε(ξε −ηε) and

J(z(ε))−J(x(ε)) =
1

2
|4znε−1(ε)|2−

nε−2

∑
n=−∞

[
1

2
|4xn(ε)|2−V (xn(ε))]− 1

2
|4xnε−1(ε)|2 +V (xnε−1(ε))

=
1

2
ε2 − 1

2
|4xnε−1(ε)|2 +V (xnε−1(ε))−

nε−2

∑
n=−∞

[
1

2
|4xn(ε)|2−V (xn(ε))].

Using a similar argument as in case (a) (i), we get cε(ξε −ηε) < cε(ξε), a contradiction. A

simple comparison argument shows that if case (b) (iv) occurs, x(ε) would not minimize J

on Γε(ξε), which finishes our proof.

Theorem 2.13. If V satisfies (V1), (V2) and (V4), for any β ∈ Λ, (1.1) has at least 4m het-

eroclinic orbits joining β to Λ\{β}, 2m of which originate at β and 2m of which terminate

at β.

Proof. Without loss of generality, we can assume β = 0. Since Ψ = Λ, there are at least

m distinct heteroclinic orbits of (1.1) emanating from 0. If {xn}∞
n=−∞ is a heteroclinic orbit

joining 0 to ζ ∈ Λ \ {0}, then {x−n}∞
n=−∞ is also a heteroclinic orbit joining ζ to 0. And

{xn −ζ}∞
n=−∞, {x−n −ζ}∞

n=−∞ are also two heteroclinic solutions joining ζ and 0. Among

these four heteroclinic orbits, {xn}∞
n=−∞ and {x−n − ζ}∞

n=−∞ emanate from 0, {x−n}∞
n=−∞

and {xn −ζ}∞
n=−∞ terminate at 0. This completes our proof.

Now we give a example to illustrate our results. Let z = (x,y)T be an element of R2.

Consider difference equations on plane. We choose potential function V as below:

V (z) = sinxcosy.

Thus V ∈ C1(R2,R) and V is 2π periodic in x and y. The gradient of V gives by V ′(z) =
(cosxcosy, − sinxsiny)T . One can easily compute that Λ = {(x,y)| x = 2kπ + π/2, y =

2lπ, k, l ∈ Z}.
Consider the following difference equations:

{

42xn−1 +cos xn cosyn = 0

42yn−1 + sinxn sinyn = 0.
(2.12)

Since V satisfies (V1-V3), Theorem 2.11 implies that there exist two heteroclinic orbits of

(2.12). Further, Λ/T 2 = {(π/2,0)} is a singleton. Theorem 2.13 can be applied. Thus,

there exist 8 heteroclinic orbits of (2.12), four of which originate at (π/2,0), four of which

terminate at (π/2,0).
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