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Abstract

This paper is devoted to some mathematical questions related to the stationary Navier-
Stokes problem in three-dimensional exterior domains. Our approach is based on a
combination of properties of Oseen problems in R3 and in exterior domains of R3.
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1 Introduction and preliminary results

This paper continues our previous studies in [AN] related to the three-dimensional sta-
tionary Navier-Stokes equations. Let Ω′ be a bounded open region of R3, not necessarily
connected, with a Lipschitz-continuous boundary and let Ω be the complement of Ω′. We
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suppose that Ω′ has a finite number of connected components and each connected compo-
nent has a connected boundary, so that Ω is connected. In this paper, we study the following
exterior Navier-Stokes problem:

(N S)


−ν∆u+u.∇u+∇π = f in Ω,

div u = 0 in Ω,

u = 0 on Γ,

u → u∞ at infinity,

where ν > 0, f and u∞ ∈ R3 are respectively the viscosity of the fluid, the external force
field acting on the fluid and a given constant vector of R3. The problem consists in look-
ing for the velocity field u = (u1,u2,u3) of the fluid and the pressure function π. We shall
assume that the origin of the coordinate frame is attached to Ω′. The third equation of the
system states that the fluid adheres at the surface of the body, which is the common no-slip
condition. Since the domain Ω is unbounded, the last equation is really necessary. In this
equation, we have two different cases concerning the behavior of u at infinity. If u∞ = 0,
the flow is at rest at infinity and in the remaining case, if u∞ 6= 0, the flow is past at infinity.

In this paper, we are interested in considering the case Ω being an exterior domain in R3

and u∞ 6= 0. We note that the case Ω = R3 was considered in our previous paper [AN]. Our
purpose is to study some regularity properties of the weak solutions to the problem (N S).

To our knowledge, in the three-dimensional situation, following Farwig [FA] and Galdi
[GA], they consider the problem (N S) in the case u∞ = 0 or u∞ 6= 0. In the case u∞ 6= 0,
they consider the external force field f belonging to the classical spaces Lp(Ω), and in
[FA] with the weight (1+ |x |)α for some p and α ∈]0,1[. The solutions are obtained in the
homogeneous Sobolev spaces with or without the weight. In this paper, we are interested
in the case in which the external force field belongs to the weighted Sobolev spaces W−1,p

0 ,
that permits us to obtain generalized solutions in the weighted Sobolev spaces W1,p

0 . We
consider also the case in which the external force field belongs to Lq or Lq ∩W−1,p

0 and
some regularity properties. Our main interest is directed at Lp-regularity of weak solutions,
under suitable assumptions on the right-hand side f. This point is improved in this paper.
We assume different levels of regularity of f, and then describe the corresponding level of
smoothness of the weak solutions associated to f. We refine a regularity theory which may
be found in [GA]. Galdi assumes that f ∈ Lp(Ω) for all p ∈ (1, p0], with some p0 > 3 (see
Section IX.7 [GA]). More precisely, in Theorem 31, we recover Galdi’s regularity results.

This paper is organised as follows: In this section, the problem will be introduced and
we recall well-known results about weighted Sobolev spaces. In Section 2, a result about
existence of weak solutions for the problem (N S) will be presented. In next sections, we
shall obtain some regularity properties of the weak solution u and the associated pressure
π. In Section 4, the exterior Oseen problem is considered. The identity energy will be given
in the last section.
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In this paper, we use bold type characters to denote vector distributions or spaces of
vector distributions with 3 components and C > 0 usually denotes a generic constant the
value of which may change from line to line. We shall also denote by BR the open ball of
radius R > 0 centered at the origin and BR = R3 −BR. In particular, since Ω′ is bounded,
we can find some R0 such that Ω′ ⊂ BR0 and we introduce, for any R ≥ R0, the set

ΩR = Ω∩BR and Ω
R = Ω−ΩR.

We now recall the main notations and results , concerning the weighted Sobolev spaces,
which we shall use later on.
We define D(Ω) to be the linear space of infinite differentiable functions with compact
support on Ω. Now, let D ′(Ω) denote the dual space of D(Ω), often called the space of dis-
tributions on Ω. We denote by 〈., .〉 the duality pairing between D(Ω)′ and D(Ω). Remark
that when f is a locally integrable function, then f can be identified with a distribution by

〈f,ϕ〉=
Z

Ω

f (x) .ϕ(x)dx.

Given a Banach space B, with dual space B′ and a closed subspace X of B, we denote by
B′ ⊥ X (or more simply X⊥, if there is no ambiguity as to the duality product) the subspace
of B′ orthogonal to X , i.e.

B′ ⊥ X = X⊥ = { f ∈ B′|∀ v ∈ X ,< f ,v >= 0}= (B/X)′.

The space X⊥ is also called the polar space of X in B′. A typical point in R3 is denoted
by x = (x1,x2,x3) and its norm is given by r = |x |= (x2

1 + x2
2 + x2

3)
1
2 . We define the weight

function ρ(x) = 1 + r. For each p ∈ R and 1 < p < ∞, the conjugate exponent p′ is given

by the relation
1
p

+
1
p′

= 1. We now define the weighted Sobolev space

W 1,p
0 (Ω) = {u ∈ D ′(Ω),

u
w1

∈ Lp(Ω),∇u ∈ Lp(Ω)},

where

w1 =

{
(1+ r) if p 6= 3,

(1+ r) ln(2+ r) if p = 3.

This space is a reflexive Banach space when endowed with the norm:

||u||W 1,p
0 (Ω) = (|| u

w1
||pLp(Ω) + ||∇u ||pLp(Ω))

1/p.

We also introduce the space

W 2,p
0 (Ω) = {u ∈ D ′(Ω),

u
w2

∈ Lp(Ω),
∇u
w1

∈ Lp(Ω),D2u ∈ Lp(Ω)},

where

w2 =

(1+ r)2 if p /∈ {3
2
,3},

(1+ r)2 ln(2+ r), otherwise,
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which is a Banach space equipped with its natural norm given by

||u||W 2,p
0 (Ω) = (|| u

w2
||pLp(Ω) + ||∇u

w1
||pLp(Ω) + ||D2u||pLp(Ω))

1/p.

We note that the logarithmic weight only appears if p = 3 or p = 3
2 and all the local

properties of W 1,p
0 (Ω) (respectively, W 2,p

0 (Ω)) coincide with those of the corresponding
classical Sobolev space W 1,p(Ω) (respectively, W 2,p(Ω)). For m = 1 or m = 2, we set
◦

W m, p
0 (Ω) = D(Ω)

W m, p
0 (Ω)

and we denote the dual space of
◦

W m, p
0 (Ω) by W−m,p′

0 (Ω), which

is the space of distributions. When Ω = R3, we have W m,p
0 (R3) =

◦
W m, p

0 (R3). If Ω is a
Lipschitz exterior domain, then

◦
W 1, p

0 (Ω) = {v ∈W 1,p
0 (Ω); v = 0 on Γ}.

If Ω is a C1,1 exterior domain, then

◦
W 2, p

0 (Ω) = {v ∈W 2,p
0 (Ω); v = ∂nv = 0 on Γ},

where ∂nv is the normal derivative of v. For all λ ∈ N3 where 0 ≤ |λ| ≤ 2m with m = 1 or
m = 2, the mapping

u ∈W m,p
0 (Ω)→ ∂

λu ∈W m−|λ|,p
0 (Ω)

is continuous. Also recall the following Sobolev embeddings (see [AD]):

W 1,p
0 (Ω) ↪→ Lp∗(Ω) where p∗ =

3p
3− p

and 1 < p < 3. (1)

Consequently, by duality, we have

Lq(Ω) ↪→W−1,p′
0 (Ω) where q =

3p′

3+ p′
and p′ > 3/2. (2)

Note also that if ∇u∈Lp(Ω) with p > 3 (respectively, p = 3) and u∈ Lr(Ω) for some r≥ 1,
then we have u ∈ L∞(Ω) (respectively, u ∈ Lq(Ω) for any real q ≥ r). Moreover,

• For all u ∈W 1,3
0 (Ω)∩Lr(Ω), we have

||u ||Lq ≤C ( ||∇u ||L3 + ||u ||Lr) for all q ≥ r; (3)

• For all u ∈W 1,p
0 (Ω)∩Lr(Ω) with p > 3, we have

||u ||Lq ≤C ( ||∇u ||Lp + ||u ||Lr) for all q ∈ [r,∞ ]. (4)

We introduce the space

X1,p
0 (Ω) =

{
u ∈W 1,p

0 (Ω);
∂u
∂x1

∈W−1,p
0 (Ω)

}
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which is a Banach space equipped with the following norm

||u||X1,p
0 (Ω) = || u

w1
||Lp(Ω) +

3

∑
i=1

|| ∂u
∂xi

||Lp(Ω) + || ∂u
∂x1

||W−1,p
0 (Ω).

We also introduce the space

◦
X 1, p

0 (Ω) = {u ∈ X1,p
0 (Ω); u = 0 on Γ},

and we know that D(Ω) is dense in
◦
X 1, p

0 (Ω) (cf. [AR2]). Now we introduce the following
Lemma.

Lemma 1. Let Ω ⊂ R3 be a Lipschitz exterior domain. Assume that u ∈
◦

W 1, p
0 (Ω) such

that
∂u
∂x1

∈ Lq(Ω) with 1 < 2
p + 1

q . Then u ∈ Lr(Ω) with 1
r = 1

3( 2
p + 1

q −1) and we have the

estimate as follows

||u||Lr(Ω) ≤C(||u||W 1,p
0 (Ω) + || ∂u

∂x1
||Lq(Ω)). (5)

Proof. We extend u by zero outside Ω and denote ũ the extended function. Then ũ ∈

W 1,p
0 (R3) and

∂ũ
∂x1

∈ Lq(R3). We set

Xp,q(R3) = {v ∈W 1,p
0 (R3);

∂v
∂x1

∈ Lq(R3)}.

It is easy to prove that D(R3) is dense in Xp,q(R3), i.e, there exists ϕk ∈ D(R3) such that
ϕk → ũ in Xp,q(R3). Thanks to Babenko [BA], we have the following inequality

||ϕk||Lr(R3) ≤C||∂ϕk

∂x2
||1/3

Lp(R3)||
∂ϕk

∂x3
||1/3

Lp(R3)||
∂ϕk

∂x1
||1/3

Lq(R3)

≤C(||∇ϕk||Lp(R3) + ||∂ϕk

∂x1
||Lq(R3))

with 1
r = 1

3( 2
p + 1

q − 1). Since (ϕk) is bounded in Lr(R3), then ũ ∈ Lr(R3) and we obtain
(5).

We introduce the

Lemma 2. Let Ω ⊂ R3 be a Lipschitz exterior domain and u ∈
◦
X 1, p

0 (Ω).

i) If 1 < p < 3, then u ∈ L
4p

4−p (Ω)∩L
3p

3−p (Ω) and the following estimate holds

||u ||
L

4p
4−p (Ω)

+ ||u ||
L

3p
3−p (Ω)

≤ C ||u ||X1, p
0 (Ω). (6)

ii) If p = 3, then there exists a unique constant k(u) such that u+k(u) ∈
\

r≥12

Lr(Ω) and the

following estimate holds

||u+ k(u) ||Lr(Ω) ≤ C ||u ||X1, p
0 (Ω) for any r ≥ 12. (7)
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iii) If 3 < p < 4, then there exists a unique constant k(u) such that u+k(u)∈ L4p/(4−p)(Ω)∩
L∞(Ω) and the following estimate holds

||u+ k(u) ||
L

4p
4−p (Ω)

+ ||u+ k(u) ||L∞(Ω) ≤ C ||u ||X1, p
0 (Ω). (8)

Proof. Let u ∈
◦
X 1, p

0 (Ω) with 1 < p < 4. Extend u by zero outside Ω and denote ũ by
the extended function. It is clear that ũ belongs to W 1,p

0 (R3). It remains to prove that
∂ũ
∂x1

∈ W−1,p
0 (R3). Let R0 > 0 be a real and sufficient large such that Ω′ is contained in

BR0 and R1, R2 be reals such that R2 > R1 > R0. Choose now some functions ψ1 and ψ2
satisfying

ψ1 ∈C∞(R3), ψ1(x) = 0 if |x | ≤ R1, ψ1(x) = 1 if |x | ≥ R2,

∀x ∈ R3,ψ1(x)+ψ2(x) = 1.

We then can write ũ = ũψ1 + ũψ2 = ũ1 + ũ2. It is easy to prove that
∂ũ1

∂x1
and

∂ũ2

∂x1
belong

to W−1,p
0 (R3), then

∂ũ
∂x1

∈W−1,p
0 (R3) and we can deduce ũ ∈ X1,p

0 (R3). Moreover,

|| ũ ||X1,p
0 (R3) ≤ C ||u ||X1,p

0 (Ω).

Since −∆ũ+
∂ũ
∂x1

∈W−1,p
0 (R3) and

<−∆ũ+
∂ũ
∂x1

,1 >
W−1,p

0 (R3)×W 1,p′
0 (R3)

= 0 if p < 3/2,

we know from Theorem 4.4 [AR1] there exists a unique v ∈ X1,p
0 (R3)∩L4p/(4−p)(R3) such

that

−∆v+
∂v
∂x1

= −∆ũ+
∂ũ
∂x1

and satisfying the following estimate

||v ||X1,p
0 (R3) + ||v ||L4p/(4−p)(R3) ≤ C || −∆ũ+

∂ũ
∂x1

||W−1,p
0 (R3)

≤ C ||u ||X1,p
0 (Ω).

(9)

The function z = ũ− v ∈ X1,p
0 (R3) verifying the equation

−∆z+
∂z
∂x1

= 0 in R3,

then z is a polynomial that belongs to W 1,p
0 (R3). Therefore, there exists a constant k such

that z = k, with k = 0 if 1 < p < 3. It means that u− k = v in Ω. The estimate (6) is
immediately deduced from (9). The estimates (7) and (8) are consequences of (3) and
(4).
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Remark 3. The above result is available for all u ∈ X1,p
0 (Ω) because we know that u can

be extended by Pu ∈ X1,p
0 (R3).

Defining now

X2,p
0 (Ω) = {v ∈W 2,p

0 (Ω);
∂v
∂x1

∈ Lp(Ω)}.

Note that

W 2,p
0 (Ω) ↪→ Lp∗(Ω) where p∗=

3p
3−2p

and 1 < p < 3/2.

By duality, we have

Lq ↪→W−2,p′
0 (Ω) where q =

3p′

2p′+3
and p′ > 3.

Note also that if v ∈W 2,p
0 (Ω) with 3

2 ≤ p < 3 and ∇v ∈ Lr(Ω) for some r, then ∇v ∈ Lq(Ω)
for all q ≥ r if p = 3/2 and ∇v ∈ Lr(Ω)∩L∞(Ω) if 3/2 < p < 3.

We now introduce a lemma concerning the extension of X2,p
0 (Ω) in R3.

Lemma 4. Assume v ∈ X2,p
0 (Ω). Then there exists ṽ ∈ X2,p

0 (R3) such that ṽ = v in Ω and

|| ṽ ||X2,p
0 (R3) ≤ C ||v ||X2,p

0 (Ω). (10)

Proof. We know that there exists an linear and continuous extended operator P of W 2,p
0 (Ω)

in W 2,p
0 (R3). Setting ṽ = Pv and using again the partition of unity

ṽ = ṽψ1 + ṽψ2,

then it is easy to prove that ṽ ∈W 2,p
0 (R3) and ṽ satisfies the estimate (10).

Proposition 5. Let Ω ⊂ R3 be a Lipschitz exterior domain and u ∈ X2, p
0 (Ω).

i) If 1 < p < 3/2, then u ∈ L2p/(2−p)(Ω)∩L3p/(3−2p)(Ω).
ii) If 3/2 ≤ p < 2, then there exists a unique constant k such that u + k ∈ Lq(Ω) for all
q ≥ 2p/(2− p).

Proof. The proof is similar as in the one of Lemma 2 by using once again the partition of
unity and Proposition 4.3 [AR1].

Proposition 6. Let Ω ⊂ R3 be a Lipschitz exterior domain and u ∈ X2, p
0 (Ω).

i) If 1 < p < 3, then ∇u ∈ L4p/(4−p)(Ω)∩L3p/(3−p)(Ω).
ii) If p = 3, then there exists a unique k ∈ P1, independent on x1, such that ∇(u + k) ∈\
r≥12

Lr(Ω), where P1 is the space of polynomials of degree ≤ 1.

iii) If 3 < p < 4, then there exists a unique k ∈ P1, independent on x1, such that ∇(u+k) ∈
L4p/(4−p)(Ω)∩L∞(Ω).

Proof. This proposition is a consequence of Lemma 2 and Remark 3.
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2 Existence of weak solutions in weighted Sobolev spaces

First of all, we shall study the existence of weak solutions of Navier-Stokes problem in
weighted Sobolev spaces in this chapter. Without loss of generality, we can set u∞ = λe1
with e1 = (1,0,0) and λ ≥ 0. From now on, we consider the case of a fixed λ > 0.

In 1933, Jean Leray [LE] who introduced the concept of the weak solution: A weak
solution to the problem (N S ) is a field u ∈ H1

loc(Ω) vanishing on ∂Ω, with ∇u ∈ L2(Ω),

div u = 0 in Ω and lim
|x |→∞

Z
S2

|u(σ|x |)−u∞|dσ = 0 where S2 is the unit sphere of R3 such

that for all ϕ ∈ V (Ω) = {v ∈ D(Ω),div v = 0}:

ν

Z
Ω

∇u : ∇ϕdx+
Z

Ω

(u.∇u) .ϕdx = 〈f,ϕ〉 .

As in [AA], it is easy to prove the following theorem.

Theorem 7. Let Ω ⊂ R3 be a Lipschitz exterior domain. Given a force f ∈ W−1,2
0 (Ω),

the problem (N S) has a weak solution u satisfying u−u∞ ∈ W1,2
0 (Ω) and there exists a

function π ∈ L2
loc(Ω), unique up to a constant, such that (u,π) solves the problem (N S) in

the sense of distributions and we have the following estimation

||u−u∞||W1,2
0 (Ω) ≤

C
ν
|| f ||W−1,2

0 (Ω) +C(ν)|u∞|(1+ |u∞|). (11)

In Theorem 7, we see that a pressure π locally belongs to L2(Ω). At the beginning, we
shall establish, without additional assumption, of the properties of integrability at infinity
of the pressure.

Proposition 8. Let Ω ⊂ R3 be an exterior domain and let f ∈ W−1,2
0 (Ω). The pressure π

obtained in Theorem 7 has a representative such that

π = τ
1 + τ

2 with τ
1 ∈ L2(Ω) and τ

2 ∈W 1,3/2
0 (Ω).

Proof. Let R1 and R2 be reals such that R2 > R1 > R0 and choose some functions ψ1 and
ψ2 such that

ψ1 ∈C∞(R3), ψ1(x) = 0 if |x | ≤ R1, ψ1(x) = 1 if |x | ≥ R2,

∀x ∈ R3,ψ1(x)+ψ2(x) = 1.

Let v = u−u∞ where u is a solution given by Theorem 7 and let π ∈ L2
loc(Ω) be the associ-

ated pressure. We define (v1,π1) as follows

(v1,π1) = (vψ1,πψ1) in Ω, (v1,π1) = (0,0) in Ω′,

and set (v2,π2) = (vψ2,πψ2) in Ω. It is easy to check that (v1,π1) ∈ W1,2
0 (R3)×L2

loc(R3)
and (v2,π2) ∈ H1(Ω2)×L2(Ω2). Moreover, we can establish the equalities in the sense of
distributions (respectively in D ′(R3) if i = 1 and in D ′(Ω2) if i = 2):

−ν∆vi +λ
∂vi

∂x1
+∇π

i = f i and div vi = gi, (12)
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where

f i = [fψi−νv∆ψi−2ν∇v∇ψi +π∇ψi]+ [λv
∂ψi

∂x1
− (v.∇v)ψi] := ki +hi,

gi =−v.∇ψi.
(13)

Since ψ1 is C∞ on R3 with supp ψ1 ⊂Ω, we have naturally denoted by fψ1 the distributions
on R3 given by:

∀ϕ ∈ D(R3), < fψ1,ϕ >R3 = < f,ϕψ1 >Ω .

This notation also applies to each other term in the definition (13) with i = 1. Considering
now with i = 2, the regularity of v and π near the boundary depends on the regularity of
(f 2,g2) and on the properties of the Oseen problem in the bounded domain Ω2. Similarly,
the regularity of v and π near the infinity depends on the regularity of (f 1,g1) and on the
properties of the Oseen problem in the bounded domain R3. We have π = π1 +π2 and from
Theorem 7, we obtain π2 ∈ L2(Ω). Thus, the main of the proof deals with the properties of
π1 and therefore of (f 1,g1). We consider

−ν∆a1 +λ
∂a1

∂x1
+∇b1 = k1 and div a1 =−v∇ψ1 in R3. (14)

Since ψ1 is bounded and has bounded derivatives with compact support, it is easy to check
that the term fψ1, v∆ψ1, ∇v∇ψ1 and π∇ψ1 belong to W−1,2

0 (R3) and because W1,2
0 (R3)⊂

L6(R3) then we have v.
∂ψ1

∂x1
∈ Lq(R3) for all q ∈ [1,6]. Even simple is to prove that g1 =

−v.∇ψ1 ∈ L2(R3)∩W−1,2
0 (R3) and therefore

∂g1

∂x1
∈ W−2,2

0 (R3) satisfying the following

compatibility condition 〈
∂g1

∂x1
,1

〉
W−2,2

0 (R3)×W 2,2
0 (R3)

= 0.

Applying Theorem 1.10 [AN], there exists a unique solution (a1,b1)∈ (X1,2
0 (R3)×L2(R3))

of (14) such that a1 ∈ Lr1(R3) where 4 ≤ r1 ≤ 6. Thanks to Hölder inequality, we deduce

that (v.∇v)ψ1 ∈ L3/2(R3) and, in particular, we have v.
∂ψ1

∂x1
∈ L3/2(R3). Therefore, from

Theorem 1.9 (see [AN]), the system as follows

−ν∆a2 +λ
∂a2

∂x1
+∇b2 = h1 and div a2 = 0 in R3, (15)

has a unique solution (a2,b2) ∈ Ls1(R3)×W 1,3/2
0 (R3) such that ∇a2 ∈ Lr2(R3), ∇2a2 ∈

L3/2(R3) and
∂a2

∂x1
∈ L3/2(R3) for all s1 ∈ [6,∞) and r2 ∈ [12/5,3].

We set z = v1−a1−a2 and θ = π1−b1−b2. Subtracting (12) to (14) and (15), we get

−ν∆z+λ
∂z
∂x1

+∇θ = 0 and div z = 0 in R3. (16)

Therefore, we have

−ν∆curl z+λ
∂(curl z)

∂x1
= 0 in R3,
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and we get Ψ = curl z, then for i = 1,2,3,

−ν∆Ψi +λ
∂ψ1

∂x1
= 0 in R3,

where Ψi ∈ L2(R3) + Lr2(R3) ↪→ S′(R3). Then, from Lemma 4.1 [AR1], Ψ is a polyno-
mial which belongs to L2(R3) + Lr2(R3). Consequently, Ψ = 0 = curl z and div z = 0.
Therefore,

−∆z = curl curl z+∇ div z = 0 in R3.

Similarly, it is easy to prove that z is a constant, then we can deduce from (16) that ∇θ = 0
and by the way the existence of a constant c such that π1 = b1 + b2 + c. Therefore, the
proposition is proved setting τ1 = π2 +b1, τ2 = b2.

3 Regularity of weak solutions

Let v = u−u∞ where u is the weak solution of the Navier-Stokes problem (N S) given by
Theorem 7. Then we rewrite the Navier-Stokes problem (N S) as follows:

(N S)


−ν∆v+λ

∂v
∂x1

+∇π = f− v.∇v in Ω,

div v = 0 in Ω,

v =−u∞ on Γ,

v −→ 0 if |x| → ∞.

(17)

We start our studies by adding assumptions on the force field f. First, we assume addition-
ally that f ∈ W−1,3

0 (Ω), and then, we will consider the case more generally f ∈ W−1,2
0 (Ω)∩

W−1,p
0 (Ω) with p ≥ 3. Following this idea, we state and prove the

Theorem 9. Let Ω ⊂ R3 be an exterior domain with a C1,1 boundary. Given p ≥ 3 and
f ∈ W−1,2

0 (Ω)∩W−1,p
0 (Ω). Then, each weak solution u to the problem (N S) satisfies

v ∈ W1,2
0 (Ω)∩W1,p

0 (Ω)∩Lr1(Ω) and
∂v
∂x1

∈ W−1,r2
0 (Ω) (18)

for any r1 ≥ 6 and any r2 ≥ 3. Besides, the associated pressure has a representative

π ∈ L3(Ω)∩Lp(Ω), (19)

and if p > 3, then we have v ∈ L∞(Ω).

Proof. We use once again the partition of unit introduced in Proposition 8. We first prove
the case p = 3 and then consider the case p > 3.

a) The case p = 3: f ∈ W−1,2
0 (Ω)∩W−1,3

0 (Ω). Let u be a weak solution of (N S) given
by Theorem 7 and v = u− u∞. Since v ∈ L6(Ω) and v.∇v = div(v⊗ v), we have that

v.∇v ∈ W−1,3
0 (Ω), v

∂ψ1

∂x1
∈ L3/2(R3) ↪→ W−1,3

0 (R3) and fψ1 − (v.∇v)ψ1 ∈ W−1,3
0 (R3).
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Moreover, since v ∈ H1
loc(Ω) and π ∈ L2(Ω2), we deduce easily from Sobolev imbedding

theorem that

−2ν∇v∇ψ1−νv∆ψ1 +π∇ψ1 ∈ W−1,3
0 (R3), −v.∇ψ1 ∈ L3(R3).

Hence, the pair (f 1,g1) belongs to W−1,3
0 (R3)× L3(R3). Otherwise, we can easily see

that g1 ∈ L3/2(R3) ⊂W−1,3
0 (R3) and therefore

∂g1

∂x1
∈W−2,3

0 (R3) satisfying the following

compatibility condition 〈
∂g1

∂x1
,1

〉
W−2,3

0 (R3)×W 2,3/2
0 (R3)

= 0.

Then, applying Theorem 1.10 [AN], the following Oseen system

−ν∆w+λ
∂w
∂x1

+∇q = f 1 and div w = g1 in R3 (20)

has a unique solution (w,q) ∈ (X1,3
0 (R3)×L3(R3)) such that w ∈ Lr(R3) for any r ≥ 12.

We set z = v1−w and θ = π1−q. Subtracting (12) to (20), we get

−ν∆z+λ
∂z
∂x1

+∇θ = 0 and div z = 0 in R3.

Proceeding analogously as in the proof of Proposition 8, we can deduce that ∇z = 0 in R3.
Since z belongs to W1,2

0 (R3)+ W1,3
0 (R3), then z must be a constant c and ∇v1 = ∇w. As

z ∈ L6(R3)+ L12(R3), then c = 0, i.e. v1 = w and v1 ∈ W1,2
0 (R3)∩W1,3

0 (R3). Moreover,

we have v1 ∈ Lr1(R3) and
∂v1

∂x1
∈ W−1,r2

0 (R3) for any r1 ≥ 6 and any r2 ≥ 3. Since z = 0,

we deduce that ∇θ = 0, then θ must be a constant, i.e, there exists a constant a such that
π1 = q + a with q ∈ L3(R3). Let us now come to the regularity near the boundary. Recall
that (v2,π2) ∈ H1(Ω2)×L2(Ω2) satisfies (12) with i = 2. Moreover, we can prove-like we
proved- that (f 2,g2) ∈ W−1,3(Ω2)×L3(Ω2). Thanks to Green’s formula and div v = 0, we
have Z

Ω2

g2(x)dx =−
Z

Γ

ψ2u∞.ndσ. (21)

With such data, and since Ω2 has C1,1 boundary, we can deduce from Proposition 4.2 [AR2]
that (v2,π2) ∈ W1,3(Ω2)× L3(Ω2) which immediately imply that (v2,π2) ∈ W1,3

0 (Ω)×
L3(Ω). This ends the proof of the case p = 3.

b) The case p > 3: Let f ∈ W−1,2
0 (Ω)∩W−1,p

0 (Ω). It is clear that f ∈ W−1,3
0 (Ω) and since

we have proved the theorem for p = 3, we know that v ∈ W1,2
0 (Ω)∩W1,3

0 (Ω)∩Lr1(Ω) for
any r1 ≥ 6 and π ∈ L3(Ω). Then

(f 1,g1) ∈ W−1,p
0 (R3)×Lp(R3) and (f 2,g2) ∈ W−1,p(Ω2)×Lp(Ω2).

As in the case a), we prove that (v1,π1) ∈ W1,p
0 (R3)×Lp(R3) and (v2,π2) ∈ W1,p

0 (Ω)×
Lp(Ω), i.e, v ∈ W1,p

0 (Ω) and π ∈ Lp(Ω). Moreover v ∈ L∞(Ω). The proof is complete.
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From Sobolev embedding theorem and the properties of the duality, we know that
L3/2(Ω) ↪→ W−1,3

0 (Ω). If we now reinforce the assumptions of Theorem 9, f belongs
to L3/2(Ω) instead of W−1,3

0 (Ω), we can prove the following.

Theorem 10. Let Ω ⊂ R3 be an exterior domain with C1,1 boundary.
i) Assume that f ∈ W−1,2

0 (Ω)∩L3/2(Ω). Then each weak solution u to the problem (N S)
satisfies

v ∈ W1,2
0 (Ω)∩W1,3

0 (Ω)∩Lr1(Ω), (22)

∂v
∂x1

∈ L3/2(Ω)∩L3(Ω)∩W−1,r2
0 (Ω) and ∇

2v ∈ L3/2(Ω) (23)

for any r1 ≥ 9
2 , r2 ≥ 3. Besides, the associated pressure π belongs to W 1,3/2

0 (Ω).

ii) Let
3
2

< p < 3. Assume that f ∈W−1,2
0 (Ω)∩Lp(Ω). Then each solution u to the problem

(N S) satisfies

v ∈ W1,2
0 (Ω)∩W1,p∗

0 (Ω)∩Lr1(Ω) and
∂v
∂x1

∈ W−1,r2
0 (Ω) (24)

for any r1 ∈ [3p,∞] if 3
2 < p < 2, for any r1 ∈ [6,∞] if 2 ≤ p < 3 and for any r2 ≥ 3.

Besides, the associated pressure satisfies

π ∈ L3(Ω)∩Lp∗(Ω) (25)

where p∗=
3p

3− p
. Moreover, we have

∇
2v ∈ Lp(Ω),

∂v
∂x1

∈ Lp(Ω) and π ∈W 1,p
0 (Ω). (26)

Proof. i) Let u be a weak solution of (N S). Since L3/2(Ω) ↪→W−1,3
0 (Ω), from Theorem 9,

we know that u and π satisfy (18) and (19)with p = 3. Now it remains to prove that v belongs

to L9/2(Ω) and
∂v
∂x1

, ∇2v, ∇π belong to L3/2(Ω). It is then clear that f 1 ∈ L3/2(R3)and

g1 ∈ X1,3/2
0 (R3). Then, by applying Theorem 1.9 [AN], the following Oseen system

−ν∆w+λ
∂w
∂x1

+∇µ = f 1 and div w = g1 in R3, (27)

has a unique solution (w,µ) such that w ∈ Ls(R3), ∇w ∈ Lr(R3), ∇2w ∈ L3/2(R3),
∂w
∂x1

∈

L3/2(R3) and the pressure µ ∈W 1,3/2
0 (R3) for all s ∈ [6,∞) and r ∈ [12/5,3]. We set z =

v1−w and θ = π1−µ. Subtracting (17) to (27), we get

−ν∆z+λ
∂z
∂x1

+∇θ = 0 and div z = 0 in R3.

By the analogous techniques as in the proof of Theorem 9, we conclude v1 = w, π1 =

µ ∈W 1,3/2
0 (R3),

∂v1

∂x1
∈ L3/2(R3) and ∇2v1 ∈ L3/2(R3). Thanks to Lemma 1.4 [AN] with
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q =
3
2

, we can deduce v1 ∈ L9/2(R3). Let us now come to the regularity near the bound-

ary. First, we verify easily that (f 2,g2) ∈ L3/2(Ω2)×W 1,3/2(Ω2). With such data, and
since Ω2 has C1,1 boundary, we can deduce from Proposition 4.3 [AR2] that (v2,π2) ∈
W2,3/2(Ω2)×W 1,3/2(Ω2) which immediately imply that (v2,π2)∈W2,3/2

0 (Ω)×W 1,3/2(Ω).
Finally, since v = v1 + v2 and π = π1 +π2, we obtain (22) and (23).

ii) Thanks to the Sobolev embedding theorem, since f ∈ Lp(Ω) where
3
2

< p < 3, we

can deduce that f ∈ W−1,p∗
0 (Ω) with p∗ = 3p

3−p and p∗ > 3. From Theorem 9, we have
(18) and (19) but p∗ plays a role as p in Theorem 9. From Hölder’s inequality, we obtain

v.∇v ∈ Lq(Ω) for all
3
2
≤ q2 < 3 and then f−v.∇v ∈ Lp(Ω). Proceeding similarly as in the

previous case, we prove (26). By applying Lemma 1, we have v ∈ L3p(Ω) and we deduce
(24). Finally, we obtain π ∈ Lp∗(Ω) from π ∈W 1,p

0 (Ω). The theorem is completely proved.

In Theorem 10 (i), we proved v ∈ Lr1(Ω) for any r1 ≥ 9/2. To obtain v ∈ Lr1(Ω) with
r1 < 9/2, we have to assume additionally a condition for f. We can state the

Theorem 11. Let Ω ⊂ R3 be an exterior domain with C1,1 boundary. Assume that f ∈
W−1,2

0 (Ω)∩L3/2(Ω)∩L4/3(Ω). Then each weak solution u and the associate pressure π to
the problem (N S) satisfy the results in Theorem 10 i). Moreover,

∇
2v ∈ L4/3(Ω),

∂v
∂x1

∈ L4/3(Ω), π ∈ W 1,4/3
0 (Ω) and v ∈ Lr1(Ω) (28)

for any r1 ≥ 4.

Proof. From Theorem 10 and Theorem 5.26 [AR2], we have the following estimate

λ|| ∂v
∂x1

||L3/2(Ω) ≤C(|| f− v.∇v ||L3/2(Ω) + ||u∞||W4/3,3/2(Γ))

≤C(|| f ||L3/2(Ω) + || v ||L6(Ω)||∇v ||L2(Ω) + ||u∞||W4/3,3/2(Γ))
≤C(|| f ||L3/2(Ω) + || v ||L6(Ω)||f ||W−1,2

0 (Ω) + ||u∞||W4/3,3/2(Γ)).

(29)

Applying Lemma 1.4 [AN] with q = 3/2, we can deduce

||v||L9/2(Ω) +λ|| ∂v
∂x1

||L3/2(Ω) ≤C(|| f ||L3/2(Ω) + || v ||L6(Ω) +1).

We define the sequence {qk} as follows

2qk+1

2−qk+1
= 3qk, k ∈ N (30)

with q0 = 2. Clearly, the sequence {qk} is strictly decreasing and converges to 4/3. By
induction, we can deduce for 4/3 ≤ qk ≤ 2 with k ∈ N that

||v||L3qk+1 (Ω) +λ|| ∂v
∂x1

||Lqk+1 (Ω) ≤C(|| f ||Lqk+1 (Ω) + || v ||L2qk+1/(2−qk+1)(Ω) +1)

≤C(|| f ||Lqk+1 (Ω) + || v ||L3qk (Ω) +1).
(31)
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Thanks to Babenko [BA] and (31), we have the following estimate

||v ||L3qk+1 (Ω) ≤ C || ∂v
∂x1

||1/3
Lqk+1 (Ω)||

∂v
∂x2

||1/3
L2(Ω)||

∂v
∂x3

||1/3
L2(Ω)

≤ C || ∂v
∂x1

||1/3
Lqk+1 (Ω)

≤ C (1+ ||v ||L3qk (Ω))
1/3.

(32)

Then we deduce

1+ ||v ||L3qk+1 (Ω) ≤ C (1+ ||v ||L3qk (Ω))
1/3

≤ C1+ 1
3 +...+ 1

3k (1+ ||v ||L3q0 (Ω))
1

3k .

When k →+∞, then qk → 4/3 and we can deduce v ∈ L4(Ω) with the following estimate

1+ ||v ||L4(Ω) ≤ C (1+ ||v ||L6(Ω)) ≤ C.

Since v ∈ L4(Ω) and ∇v ∈ L2(Ω), we obtain f− v.∇v ∈ L4/3(Ω) and we deduce (28). The
Theorem is completely proved.

4 The exterior Oseen problem

For our studies, we shall introduce the following problem. Let

a fixed z ∈ L3(Ω) such that div z = 0 in Ω, (33)

we search a solution (w,θ) to the following Oseen problem

−ν∆w+λ
∂w
∂x1

+ z.∇w+∇θ = f in Ω,

div w = 0 in Ω,
w = u∗ on Γ.

(34)

We introduce the space

Vp(Ω) = {v ∈
◦

W 1, p
0 (Ω), div v = 0}.

As in [AA], we can prove the following lemma

Lemma 12. Let Ω⊂R3 be a Lipschitz exterior domain. Assume that z satisfies (33), u∗ = 0

and let f ∈ W−1,2
0 (Ω). Then Problem (34) has a solution (w,θ) ∈

◦
W 1,2

0 (Ω)×L2
loc(Ω).

We have the following corollary.

Corollary 13. With the same hypothesis as in Lemma 12, we can deduce that θ ∈ L2(Ω).

Moreover, we have w ∈ L4(Ω),
∂w
∂x1

∈ W−1,2
0 (Ω).
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Proof. We use once again the partition of unit with the role of w (θ, respectively) as v
(π, respectively) introduced in Proposition 8. Proceeding analogously as in the proof of

Theorem 9, we can deduce that θ belongs to L2(Ω). Moreover, we have
∂w
∂x1

∈ W−1,2
0 (Ω)

because ∆w, z.∇w, ∇θ and f belong to W−1,2
0 (Ω). Thanks to Lemma 2, we deduce w ∈

L4(Ω).

Lemma 14. Let Ω⊂R3 be a Lipschitz exterior domain. Assume that z satisfies (33), u∗ = 0

and let f ∈ W−1,2
0 (Ω). Then Problem (34) has a unique solution (w,θ) ∈ (

◦
W 1,2

0 (Ω)∩

L4(Ω))×L2(Ω) with
∂w
∂x1

∈ W−1,2
0 (Ω) and w satisfies the energy equality

ν

Z
Ω

|∇w |2dx = < f ,w >
W−1,2

0 (Ω)×
◦

W1,2
0 (Ω)

. (35)

Moreover, we have the estimate

||w ||L4(Ω) + ||∇w||L2(Ω) + || ∂w
∂x1

||W−1,2
0 (Ω) + ||∇θ||L2(Ω)

≤C(||f ||W−1,2
0 (Ω) + ||z.∇w ||W−1,2

0 (Ω)).
(36)

Proof. The existence of (w,θ) ∈ (
◦

W 1,2
0 (Ω)∩L4(Ω))×L2(Ω) such that

∂w
∂x1

∈ W−1,2
0 (Ω)

is given by Lemma 12 and Corollary 13. Since the space V (Ω) is dense in V2(Ω), for any
ϕ ∈ V2(Ω), we have

ν
R

Ω
∇w.∇ϕdx+λ <

∂w
∂x1

,ϕ >
W−1,2

0 (Ω)×
◦

W1,2
0 (Ω)

+ < z.∇w,ϕ >
W−1,2

0 (Ω)×
◦

W1,2
0 (Ω)

= < f,ϕ >
W−1,2

0 (Ω)×
◦

W1,2
0 (Ω)

.
(37)

Since D(Ω) is dense in
◦
X 1,2

0 (Ω) (see [AR]), for all ψ,ϕ ∈
◦
X 1,2

0 (Ω), we obtain〈
∂ψ

∂x1
,ϕ

〉
W−1,2

0 (Ω)×
◦

W1,2
0 (Ω)

=−
〈

ψ,
∂ϕ

∂x1

〉
◦

W1,2
0 (Ω)×W−1,2

0 (Ω)
.

Then, we deduce 〈
∂ψ

∂x1
,ψ

〉
W−1,2

0 (Ω)×
◦

W1,2
0 (Ω)

= 0 (38)

and we have for any ϕ ∈ V2(Ω),

〈div (z⊗ϕ),ϕ〉
W−1,2

0 (Ω)×
◦

W1,2
0 (Ω)

= −
Z

Ω

zi ϕ j
∂ϕ j

∂xi
dx

= −1
2

Z
Ω

zi
∂ϕ2

j

∂xi
dx = 0. (39)

From (38) and (39) and (37), we have (35). The uniqueness of (w,θ) is a immediate conse-
quence of (35).
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We consider the following nonhomogeneous problem.

Lemma 15. Let Ω ⊂ R3 be a Lipschitz exterior domain. Assume that z satisfies (33),
u∗ ∈ H1/2(Γ) and let f ∈ W−1,2

0 (Ω). Then Problem (34) has a unique solution (w,θ) ∈
(X1,2

0 (Ω)∩L4(Ω))×L2(Ω) and we have the estimate

||w ||L4(Ω) + ||∇w||L2(Ω) + || ∂w
∂x1

||W−1,2
0 (Ω) + ||∇θ||L2(Ω)

≤C(||f ||W−1,2
0 (Ω) + ||z.∇w ||W−1,2

0 (Ω) + ||u∗||H1/2(Γ)).
(40)

Proof. It is easily to show Lemma 15 by applying Lemma 14 and Lemma 5.8 [AR2] with
the case p = 2.

Our objective is to consider the Navier-Stokes equations by using the properties of the
Oseen equations. We now consider some properties of the Oseen equations. Beforehand,
we introduce

Y 1,p
0 (Ω) =

{
X1,p

0 (Ω)∩L4p/(4−p)(Ω) if 1 < p < 4,

X1,p
0 (Ω) if p ≥ 4,

and ◦
Y 1, p

0 (Ω) = {v ∈ Y 1,p
0 (Ω); v = 0 on Γ},

with the same definition when Ω = R3. Now defining

N +
p (Ω) = {(u,π) ∈

◦
Y 1, p

0 (Ω)×Lp(Ω),T(u,π) = (0,0) in Ω},

N −
p (Ω) = {(u,π) ∈

◦
Y 1, p

0 (Ω)×Lp(Ω),T∗(u,π) = (0,0) in Ω},

with

T(u,π) = (−∆u+
∂u
∂x1

+∇π,−div u),

and its adjoint

T∗(u,π) = (−∆u− ∂u
∂x1

+∇π,−div u).

Moreover, if 1 < p < 4, u satisfies the properties i)-iii) of Lemma 2. We introduce the
characterization of the kernel N +

p (Ω). (see [AR2]).

Lemma 16. Let Ω be an exterior domain with a C1,1 boundary.
1) If 1 ≤ p < 4, then N +

p (Ω) = {(0,0)}.
2) If p ≥ 4, then N +

p (Ω) = {(λc− c,µc); c ∈ R3} where

(λc,µc) ∈
\

r>4/3

Y1,r
0 (Ω)×

\
s>3/2

Ls(Ω)

is the unique solution of the following system

−∆λc +
∂λc

∂x1
+∇µc = 0, divλc = 0 in Ω, λc = c on Γ. (41)
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Remark that we have the similar results for N −
p (Ω). We now introduce the

Theorem 17. [AR2] Let Ω be an exterior domain with a C1,1 boundary. Assume that
f ∈ W−1,p

0 (Ω) and u∗ ∈ W1/p′,p(Γ). Moreover, if 1 < p ≤ 4/3, assume that we have the
compatibility condition

∀(v,η) ∈ N −
p′ (Ω), < f,v >Ω + < (∇v−ηI).n,u∗ >Γ = 0. (42)

i) If 1 < p < 4, then the following problem

−∆u+
∂u
∂x1

+∇π = f, divu = 0 in Ω, u = u∗ on Γ (43)

has a unique solution (u,π) ∈ Y1,p
0 (Ω)×Lp(Ω) satisfying the estimate

||u ||Y1,p
0 (Ω) + ||π ||Lp(Ω) ≤C ( || f ||W−1,p

0 (Ω) + ||u∗ ||W1/p′,p(Γ) ).

ii) If p ≥ 4, then problem (43) has a solution (u,π) ∈ Y1,p
0 (Ω)×Lp(Ω), unique up to an

element of N +
p (Ω), satisfying the estimate

inf
(v,η)∈N +

p (Ω)
( ||u+ v ||Y1,p

0 (Ω) + ||π+η ||Lp(Ω))≤C ( || f ||W−1,p
0 (Ω) + ||u∗ ||W1/p′,p(Γ) ).

The next Lemma characterizes the kernel N p,q(Ω) of the exterior Oseen system:

N p,q(Ω) = {(u,π) ∈ [Y1,p
0 (Ω)+Y1,q

0 (Ω)]× [Lp(Ω)+Lq(Ω)],
T(u,π) = (0,0) in Ω ,u = 0 on Γ}

with 1 < p < q < ∞.

Lemma 18. Let Ω be an exterior domain with a C1,1 boundary and 1 < p < q < ∞.
i) If q < 4, then N p,q(Ω) = {(0,0)}.
ii) If q ≥ 4, then

N p,q(Ω) = {(λc− c,µc); c ∈ R3}

where
(λc,µc) ∈

\
r>4/3

Y1,r
0 (Ω)×

\
s>3/2

Ls(Ω)

is the unique solution of the system (41). Moreover, we have λc ∈ Ls(Ω)∩L∞(Ω) for all
s > 2.

Proof. Let (z,θ) ∈ N p,q(Ω), then z = u− v with u ∈ Y1,p
0 (Ω), v ∈ Y1,q

0 (Ω) and u = v on
Γ. Let now ṽ ∈ Y1,q

0 (R3) be an extended function of v outside Ω. We set ũ = u in Ω, ũ = ṽ
outside Ω and z̃ = ũ− ṽ. Then ũ∈Y1,p

0 (R3), z̃ = 0 outside Ω and we can prove that div z̃ = 0
in R3. We now extend θ by 0 outside Ω and denote θ̃ its extended function. It is easy to see
that θ̃ ∈ Lp(R3)+Lq(R3). Now setting

h =−∆z̃+
∂̃z
∂x1

+∇θ̃,
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then supp h ⊂ Γ and h ∈ W−1,p
0 (R3).

1) The case p >
4
3

: Thanks to Theorem 1.10 [AN], there exists w ∈ Y 1,p
0 (R3) and α ∈

Lp(R3) such that

−∆w+
∂w
∂x1

+∇α = h and divw = 0 in R3.

We now set that y = w− z̃ and k = α− θ̃. Hence, we have

−∆y+
∂y
∂x1

+∇k = 0 and divy = 0 in R3,

and we deduce

−∆curly+
∂(curly)

∂x1
= 0 in R3.

We take Φ = curly. Then, for i = 1,2,3, we have

−∆Φi +
∂Φi

∂x1
= 0

where Φi ∈ Lp(R3)+Lq(R3) ↪→ S′(R3). It is deduced that Φ is a polynomial which belongs
to Lp(R3)+Lq(R3). Consequently, Φ = 0 = curly. Therefore,

−∆y = curlcurly+∇divy = 0.

Since y ∈ Y 1,p
0 (R3)+ Y 1,q

0 (R3), then y must be a constant c and ∇w = ∇z̃. Moreover, we
obtain ∇k = 0 in R3. Then k is a constant belonging to Lp(R3)+Lq(R3), it means α = θ̃ in
R3.
a) The case q < 4: As y ∈ L4p/(4−p)(R3) + L4q/(4−q)(R3), then c = 0. Therefore, w = z̃
in R3 and w = 0 on Γ. Since p < 4, from Theorem 17, then w = 0 in Ω, i.e., z = 0 in
Ω. Therefore, ∇θ = 0 in Ω and we can deduce that θ is a constant which belongs to
Lp(Ω)+Lq(Ω). Hence, θ = 0 in Ω.
b) The case q ≥ 4: There exists a constant c = (c1,c2,c3) such that w− z̃ = c and w = c on
Γ. Consider now the following problem

−∆λi +
∂λi

∂x1
+∇µi = 0, divλi = 0 in Ω, λi = ei on Γ, (44)

where (e1,e2,e3) is the canonical basis of R3. We know that the system (44) has a unique
solution (λi,µi) such that λi ∈

\
r>4/3

Y1,r
0 (Ω) and µi ∈

\
r>3/2

Lr(Ω). If p < 4, from Theorem

17, w is unique and then wi = c.ei = c.λi on Γ, therefore wi = c.λi in Ω. Now we set
λc = (c.λ1,c.λ2,c.λ3) and µc = c.µ with µ = (µ1,µ2,µ3). By construction of λc and µc, we
deduce that (λc,µc) is the unique solution of the following system

−∆λc +
∂λc

∂x1
+∇µc = 0, divλc = 0 in Ω, λc = c on Γ,
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such that λc ∈
\

r>4/3

Y1,r
0 (Ω) and µc ∈

\
r>3/2

Lr(Ω). It is easy to see that (w,α) = (w,θ) =

(λc,µc) in Ω. Then we obtain (z,θ) = (λc− c,µc) in Ω. If p ≥ 4, we obtain again (z,θ) =
(λc− c,µc) in Ω by proceeding similarly as in the case p < 4.

2) The case 1 < p <
4
3

: We set m = (m j) j with m j =< h j,1 >
W−1,p

0 (R3)×W 1,p′
0 (R3)

and

Hi = hi − δδi jm j where δ is the Dirac distribution and δi j denotes the Kronecker symbol.
From Theorem 1.10 [AN], there exists a unique solution (w0,α0)∈Y1,p

0 (R3)×Lp(R3) such
that

−∆w0 +
∂w0

∂x1
+∇α0 = H, divw0 = 0 in R3.

We now set that
w = w0−O.m and α = α0−P .m

where (O,P ) is the fundamental solution of Oseen equations. Then we have

−∆w+
∂w
∂x1

+∇α = h, divw = 0 in R3.

Moreover, proceeding as in the case 1 of this Lemma, we obtain ∇w = ∇z̃ and α = θ̃ in
R3. Note now that the pair (a,b) ∈ N −

p′ (Ω) satisfies the Green’s formula: for all (ψ,ξ) ∈
D(Ω)×D(Ω),Z

Ω

{(−∆ψ+
∂ψ

∂x1
+∇ξ)a−bdivψ}dx =< (∇a−bI).n,ψ >Γ, (45)

where <,>Γ denotes the duality pairing between W−1/p′,p′(Γ) and W 1/p′,p(Γ). Thanks to
the density of D(Ω) in X1,p

0 (Ω) and D(Ω) in Lp(Ω), applying (45) with (ψ,ξ) = (w0,α0)∈
X1,p

0 (Ω)×Lp(Ω) and (a,b) = (vβ−β,θβ) ∈ N −
p′ (Ω) (β ∈ R3), we obtain

< (∇vβ−θβI).n,w0 >W−1/p′,p′ (Γ)×W1/p′,p(Γ)= 0. (46)

a) The case q < 4: Then we have w− z̃ = 0 in R3 and w = 0 on Γ. Therefore, we deduce
w0 = O.m on Γ. From (46), we have

m < (∇vβ−θβI).n,O >Γ= 0. (47)

By some calculs, we can obtain

0 =
Z

Ω

{(−∆O +
∂O
∂x1

+∇P )vβ−θβ divO}dx

= < (∇vβ−θβI).n,O >Γ −β

Z
Γ

∂O
∂n

,

then we deduce < (∇vβ−θβI).n,O >Γ 6= 0 and from (47), m = 0. Then (w0,α0) = (0,0) in
Ω and we can deduce that (w,α) = (0,0) and (z,θ) = (0,0) in Ω.
b) The case q≥ 4: There exists a constant c such that w− z̃ = c in R3 and w = c on Γ. Then
we have w0 = c+O.m on Γ. Applying (46), we deduce that

< (∇vβ−θβI).n,c+O.m >Γ= 0.



60 C. Amrouche and H. H. Nguyen

We set that µ = c+O.m. It is easy to prove that µ ∈W1/r′,r(Γ) for all
4
3

< r < 4. Thanks to
Theorem 17, the following system

−∆y0 +
∂y0

∂x1
+∇κ = 0, divy0 = 0 in Ω, y0 = µ on Γ,

has a unique solution (y0,κ) ∈Y1,r
0 (Ω)×Lr(Ω). Then (y0−w0,κ−α0) ∈N p,r(Ω) and we

deduce that (y0,κ) = (w0,α0). Moreover, we can see that µ ∈W1/p′,p(Γ). Then there exists
(s,ω) ∈ Y1,q

0 (Ω)×Lq(Ω) such that

−∆s+
∂s
∂x1

+∇ω = 0, divs = 0 in Ω, s = µ on Γ.

Then (s−w0,ω−α0) ∈ N r,q(Ω) and (w0,α0) ∈ Y1,q
0 (Ω)×Lq(Ω). Therefore, we deduce

that (w,α) ∈ Y1,q
0 (Ω)× Lq(Ω). Since w = c on Γ and thanks to the characterization of

N q,q(Ω), we obtain that (z,θ) = (λc− c,µc).

Finally, in the case p =
4
3

, let ϕ ∈ D(R3) satisfying
Z

R3
ϕi = 1. We set U = O ∗ϕ and

K = P ∗ϕ. The reasonning can be applied by replacing δδi j by ϕi, U by O and K by
P .

Thanks to the above lemma, we immediately deduce the following corollary.

Corollary 19. Let Ω be an exterior domain with a C1,1 boundary. Assume f ∈ W−1,p
0 (Ω),

u∗ ∈ W1/p′,p(Γ) with 1 < p < 4 satisfying the compatibility condition (42) and (u,π) ∈
Y1,p

0 (Ω)×Lp(Ω) be the unique solution of the system (43). If in addition, f∈W−1,q
0 (Ω) and

u∗ ∈ W1/q′,q(Γ) with 1 < q < 4 satisfying the compatibility condition (42) by remplacing p
by q, then we also have (u,π) ∈ Y1,q

0 (Ω)×Lq(Ω).

We denote by [q] the integer part of q. For any k ∈ N, Pk (respectively, P ∆
k ) stands

for the space of polynomials (respectively, harmonic polynomials) of degree ≤ k. If k is
strictly negative integer, we set by convention Pk = {0}. We introduce the following space
of polynomials:

Nk = {(λ,µ) ∈ Pk×P ∆
k−1, −∆λ+

∂λ

∂x1
+∇µ = 0, div λ = 0 in R3 }.

Observe that N0 = R3 ×{0} and N1 = P ′
1 ×R3 where P ′

1 is the space of polynomials of
degree less than or equal to one not depending on x1.

We now introduce the space Zp(Ω) as follows:

Zp(Ω) =


X2,p

0 (Ω) if p ≥ 4,

X2,p
0 (Ω)∩W

1, 4p
4−p

0 (Ω) if 2 ≤ p < 4,

X2,p
0 (Ω)∩W

1, 4p
4−p

0 (Ω)∩L
2p

2−p (Ω) if 1 < p < 2.

Define that

A+
p (Ω) = {(u,π) ∈ Zp(Ω)×W 1,p

0 (Ω), T(u,π) = (0,0) in Ω, u = 0 on Γ}.

We can characterize the kernel A+
p (Ω) (see [AR2]), as follows:
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Lemma 20. Let Ω be an exterior domain with a C1,1 boundary.
i) If 1 < p < 2, then A+

p (Ω) = {(0,0)}.
ii) If 2 ≤ p < 4, then A+

p (Ω) = {(λc− c,µc); c ∈ R3 }, where

(λc,µc) ∈
\

r>4/3

Y1,r
0 (Ω)×

\
s>3/2

Ls(Ω)

is the unique solution of the problem (41).
iii) If p ≥ 4, then A+

p (Ω) = {(λc− c,µc−η); (c,η) ∈ N1 }, where

(λc,µc) ∈
\

r>4/3

Y1,r
0 (Ω)×

\
s>3/2

Ls(Ω)

is the unique solution of the problem (41).

The next lemma characterizes the kernel A p,q(Ω) of the exterior Oseen system:

A p,q(Ω) = {(u,π) ∈ [Zp(Ω)+Zq(Ω)]× [W 1,p
0 (Ω)+W 1,q

0 (Ω)],
T(u,π) = (0,0) in Ω, u = 0 on Γ}.

Lemma 21. Let Ω be an exterior domain with a C1,1 boundary and 1 < p < q < ∞.
i) If 1 < p < 2, then A p,q(Ω) = {(0,0)}.
ii) If 2 ≤ p < 4, then A p,q(Ω) = {(λc− c,µc); c ∈ R3 }, where

(λc,µc) ∈
\

r>4/3

Y1,r
0 (Ω)×

\
s>3/2

Ls(Ω)

is the unique solution of the problem (41).
iii) If p ≥ 4, then A p,q(Ω) = {(λc− c,µc−η); (c,η) ∈ N1 }, where

(λc,µc) ∈
\

r>4/3

Y1,r
0 (Ω)×

\
s>3/2

Ls(Ω)

is the unique solution of the problem (41).

Proof. The proof can be obtained by proceeding similarly as in the one of Lemma 18.

The following corollary is immediately deduced from the previous lemma.

Corollary 22. Let Ω be an exterior domain with a C1,1. Let f ∈ Lp(Ω), u∗ ∈ W1+1/p′,p(Γ)
with 1 < p < 2 and (u,π) ∈ Zp(Ω)×W 1,p

0 (Ω) be the unique solution of the system (43).
If in addition, f ∈ Lq(Ω), u∗ ∈ W1+1/q′,q(Γ) with 1 < q < 2, then we also have (u,π) ∈
Zq(Ω)×W 1,q

0 (Ω).

5 More regularity for the velocity field u and the pressure π of
the Navier-Stokes system

We now introduce the following result which we shall need in this part. The proof of this
lemma is similar as the one of Lemma 4.2 [AN].
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Lemma 23. Let Ω ⊂R3 be a Lipschitz exterior domain and z ∈ L4(Ω) such that div z = 0.
Then, for all ε > 0, there exist ρ = ρ(ε,z) > 0 and a sequence (zk)k∈N ∈ L3(Ω)∩L4(Ω),
such that div zk = 0, satisfying

zk → z in L4(Ω). (48)

Moreover, there exist sequences (ak) and (bk) in L3(Ω)∩L4(Ω) satisfying for each k ∈ N

zk = ak +bk with ||ak||L4(Ω) ≤ ε and supp bk ⊂ Ωρ. (49)

From now on, Ω is an exterior domain with C1,1 boundary in R3. Note that L6/5(Ω) ↪→
W−1,2

0 (Ω) and L3/2(Ω) ↪→ W−1,3
0 (Ω), and with the previous results in hand, we can now

prove the following theorem.

Theorem 24. Assume that f ∈ L6/5(Ω)∩L3/2(Ω). Then each weak solution (u,π) to the
problem (N S), satisfies

v ∈ Lq(Ω) for all q ∈ [3,∞), π ∈W 1,6/5
0 (Ω)∩ W 1,3/2

0 (Ω),
∇v ∈ L12/7(Ω)∩L3(Ω), ∇2v ∈ L6/5(Ω)∩L3/2(Ω),

∂v
∂x1

∈ L6/5(Ω)∩L3(Ω).
(50)

Proof. Let u be a weak solution of (N S). As f satisfies the hypothesis of Theorem 11,

then (v,π) verify (18), (19), (22), (23) and in particular, v ∈ L4(Ω) and
∂v
∂x1

∈ L4/3(Ω).

Let ε > 0, ρ > 0 and vk = ak + bk be a sequence as zk in Lemma 23. Since vk ∈ L3(Ω)
and div vk = 0, from Lemma 15, there exists a unique solution (wk,θk) ∈ X1,2

0 (Ω)×L2(Ω)
satisfying

−ν∆wk +λ
∂wk

∂x1
+ vk.∇wk +∇θk = f and div wk = 0 in Ω (51)

with wk =−u∞ on Γ. Thanks to Theorem 5.26 [AR2], we have

||wk ||L3(Ω) + ||∇wk ||L12/7(Ω)+

+ || ∂wk

∂x1
||L6/5(Ω) + ||∇2wk ||L6/5(Ω) + ||θk ||W 1,6/5

0 (Ω)

≤C(|| f ||L6/5(Ω) + ||vk.∇wk ||L6/5(Ω) + ||u∞ ||W7/6,5/6(Γ)),

(52)

where C ≥ 0 depends only on λ, ν and Ω. Note now that by construction of the sequence
bk, we have |bk| ≤ v almost everywhere in Ω, we have

||vk.∇wk ||L6/5(Ω)

≤ ||ak ||L4(Ω)||∇wk ||L12/7(Ω) + ||bk ||L6(Ωρ)||∇wk ||L3/2(Ωρ)

≤ ε||∇wk ||L12/7(Ω) + ||v ||L6(Ω)||∇wk ||L3/2(Ωρ) (53)

But there exists C1 ∈ R such that

∀k ∈ N∗, ||∇wk ||L3/2(Ωρ) ≤C1(|| f ||L6/5(Ω) + ||u∞ ||W7/6,5/6(Γ)). (54)
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Contradicting (54) means that there exists a sequence (km)m∈N∗ such that, for all m ∈ N∗,

||∇wkm ||L3/2(Ωρ) = 1,

||−ν∆wkm +λ
∂wkm

∂x1
+ vkm .∇wkm +∇θkm ||L6/5(Ω) + ||wkm ||W7/6,5/6(Γ) ≤

1
m

.
(55)

Then we deduce from (52), (53) and (55) that

||wkm ||L3(Ω) + ||∇wkm ||L12/7(Ω) + ||∇2wkm ||L6/5(Ω)

+|| ∂wkm

∂x1
||L6/5(Ω) + ||θkm ||W 1,6/5

0 (Ω)
≤C.

Therefore (wkm)m is bounded in W2,6/5
0 (Ω)∩W1,12/7

0 (Ω),
(

∂wkm

∂x1

)
m

is bounded in L6/5(Ω),

(wkm)m is bounded in L3(Ω) and (θkm)m is bounded in W 1,6/5
0 (Ω). Thus, there exist subse-

quences, again denoted by (wkm)m and (θkm)m, such that wkm ⇀ w in W2,6/5
0 (Ω)∩W1,12/7

0 (Ω),
∂wkm

∂x1
⇀

∂w
∂x1

in L6/5(Ω), wkm ⇀ w in L3(Ω), and θkm ⇀ θ in W 1,6/5
0 (Ω). Moreover, since

W2,6/5(Ωρ) ↪→ W1,3/2(Ωρ) with compact imbedding, we have wkm → w in W1,3/2(Ωρ)
with

||∇w ||L3/2(Ωρ) = 1, (56)

and

−ν∆w+λ
∂w
∂x1

+ v.∇w+∇θ = 0 in Ω. (57)

Since w ∈ W1,2
0 (Ω) and θ ∈ L2(Ω), then we have ∆w and ∇θ belonging to W−1,2

0 (Ω). On
the other hand, we deduce that v.∇w = div (v⊗w) ∈ W−1,2

0 (Ω) because v and w belong

to L4(Ω). Since L6/5(Ω) ↪→ W−1,2
0 (Ω) we also have

∂w
∂x1

∈ W−1,2
0 (Ω). Moreover, w is

divergence free and, because of (55), it has also zero trace at the boundary. Then, we
deduce w = 0 in Ω which contradicts (56). Thanks to (52), (53) and (54), we have the
following estimation

||wk ||L3(Ω) + ||∇wk ||L12/7(Ω)

|| ∂wk

∂x1
||L6/5(Ω) + ||∇2wk ||L6/5(Ω) + ||θk ||W 1,6/5

0 (Ω)

≤C(|| f ||L6/5(Ω) + ||v ||L6(Ω)|| f ||L6/5(Ω) + ||u∞||W1+1/6,6/5(Γ)).

We can show that there exist a subsequence of (wk)k which converges weakly towards w
in W2,6/5

0 (Ω) ∩ W1,12/7
0 (Ω) ∩ L3(Ω) and a subsequence of (θk)k which converges weakly

towards θ in W 1,6/5
0 (Ω) being a solution of the system as follows

−ν∆w+λ
∂w
∂x1

+ v.∇w+∇θ = f and div w = 0 in Ω.

We set y = v−w and χ = π−θ. Then we deduce that (y,χ) is a solution of the following
system

−ν∆y+λ
∂y
∂x1

+ v.∇y+∇χ = 0 and div y = 0 in Ω.
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Since y satisfies the energy equality (35) with f = 0, we deduce that y = 0 then χ = 0.
Thanks to uniqueness arguments, we show that w = v and θ = π. Theorem is completely
proved.

Thanks to Theorem 10 (part ii), Theorem 24, Sobolev embedding theorem and by dual-
ity arguments, we can prove the following.

Corollary 25. i) Assume that f ∈ Lp(Ω) for all p ∈ [6/5,2). Then the Navier-Stokes prob-
lem (N S) has a solution (u,π) satisfying

v ∈ Lq(Ω), ∇v ∈ Ls1(Ω), π ∈W 1,s2
0 (Ω),

∇2v ∈ Ls2(Ω),
∂v
∂x1

∈ Ls3(Ω),
(58)

for any q ∈ [3,∞], any s1 ∈ [12/7,6), any s2 ∈ [6/5,2) and any s3 ∈ [6/5,6).

ii) Assume that f ∈ Lp(Ω) for all p ∈ [6/5,3). Then we have (58) for any q ∈ [3,∞],
s1 ∈ [12/7,∞), s2 ∈ [6/5,3) and s3 ∈ [6/5,∞).

We now prove the following Theorem.

Theorem 26. Assume that f ∈ Lp(Ω) for all p ∈ (1,3/2]. Then each weak solution (u,π)
to the problem (N S) satisfies

v ∈ Lq(Ω), ∇v ∈ Ls1(Ω), π ∈W 1,s2
0 (Ω),

∇2v ∈ Ls2(Ω),
∂v
∂x1

∈ Ls3(Ω),
(59)

for any q ∈ (2,∞), any s1 ∈ (4/3,3], any s2 ∈ (1,3/2] and any s3 ∈ (1,3].

Proof. Remark that from Theorem 24, as v∈L3(Ω) and ∇v∈L12/7(Ω), we have f−v.∇v∈
L12/11(Ω). By applying Theorem 5.26 [AR2] with p =

12
11

, the following system

−ν∆w+λ
∂w
∂x1

+∇θ = f − v.∇v, div w = 0 in Ω; w =−u∞ on Γ,

has a unique solution (w,θ) satisfying the following properties: w ∈ L2p/(2−p)(Ω) ∩

L3p/(3−2p)(Ω), ∇w ∈ L4p/(4−p)(Ω)∩L3p/(3−p)(Ω), ∇2w ∈ Lp(Ω),
∂w
∂x1

∈ Lp(Ω) and θ ∈

W 1,p
0 (Ω), i.e., (w,θ) ∈ Z12/11(Ω)×W 1,12/11

0 (Ω). On the other hand, from (50), we can

show (v,π)∈Z6/5(Ω)×W 1,6/5
0 (Ω). Thanks to Corollary 22, we have (w,θ) = (v,π). Then,

we obtain v ∈ L12/5(Ω)∩L12/7(Ω), ∇v ∈ L4/3(Ω)∩L12/7(Ω), ∇2v, and
∂v
∂x1

belong to

L12/11(Ω), π∈W 1,12/11
0 (Ω). Combining with the results in Theorem 24, we have v∈Lq(Ω)

for all q ∈ [12/5,∞) and ∇v ∈ L4/3(Ω)∩L3(Ω). Hence, it is easy to prove that f − v.∇v
belongs to Lp(Ω) for all p ∈ ]1,3/2] and we can deduce that v ∈ L

2p
2−p (Ω)∩L

3p
3−2p (Ω),

∇v ∈ L
4p

4−p (Ω)∩L
3p

3−p (Ω), ∇2v ∈ Lp(Ω),
∂v
∂x1

∈ Lp(Ω) and π ∈W 1,p
0 (Ω). Clearly, we have

(59) by combining with (50).
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Thanks to Corollary 25 and Theorem 26, we immediately obtain the following results.

Corollary 27. i) Assume that f ∈ Lp(Ω) for all 1 < p < 2. Then each weak solution (u,π)
to (N S) satisfies

v ∈ Lq(Ω), ∇v ∈ Ls1(Ω), π ∈W 1,s2
0 (Ω),

∇2v ∈ Ls2(Ω),
∂v
∂x1

∈ Ls3(Ω),
(60)

for any q ∈ (2,∞], any s1 ∈ [4/3,6), any s2 ∈ [1,2) and any s3 ∈ [1,6).

ii) Assume that f ∈ Lp(Ω) for all 1 < p < 3. Then we have (60) for any q ∈ (2,∞],
s1 ∈ (4/3,∞), s2 ∈ (1,3) and s3 ∈ (1,∞).

We now search weak solutions of Navier-Stokes system (N S) such that v ∈ Lq(Ω) and
π ∈ Lq(Ω) for small values of q (q ≤ 2) with similar properties for ∇v. The following
theorem allow us to improve the results in Theorem 24 by taking an additional assumption
for f.

Theorem 28. Let
4
3

< p < 2 and f ∈ L6/5(Ω)∩L3/2(Ω)∩W−1,p
0 (Ω). Then each weak

solution (u,π) to the problem (N S) satisfies (50). Besides, we have

π ∈ Lp(Ω) and
∂v
∂x1

∈ W−1,s
0 (Ω) for any s ≥ p. (61)

In particular, if
4
3

< p <
12
7

, we obtain additionally

v ∈ Lq(Ω) for any q ≥ 4p
4− p

and ∇v ∈ Lp(Ω). (62)

Proof. From Theorem 24, if u is a solution of (N S), we have v satisfies (50). In particular,
v ∈ L3(Ω)∩L4(Ω) and div (v⊗ v) ∈ W−1,3/2

0 (Ω)∩W−1,2
0 (Ω).

1) The case 3/2≤ p < 2: We have f−v.∇v∈W−1,p
0 (Ω). As p > 4/3, then the compatibility

condition (42) is automatically satisfied. Thanks to Theorem 17, the following system

−ν∆w+λ
∂w
∂x1

+∇θ = f − v.∇v, div w = 0 in Ω; w =−u∞ on Γ,

has a unique solution (w,θ) satisfying w ∈ L4p/(4−p)(Ω)∩L3p/(3−p)(Ω), θ ∈ Lp(Ω), ∇w ∈

Lp(Ω) and
∂w
∂x1

∈ W−1,p
0 (Ω). It is easy to see that (w,θ) ∈ Y1,p

0 (Ω)×Lp(Ω) and (v,π) ∈

Y1,3/2
0 (Ω)×L3/2(Ω). Applying Corollary 19, we have (w,θ) = (v,π), then we obtain (61).

2) The case 4/3 < p < 3/2: Since f∈L6/5(Ω) ↪→W−1,2
0 (Ω), then in particular we have f∈

W−1,3/2
0 (Ω). From the case 1) of this theorem, we have v ∈ L4p/(4−p)(Ω)∩L3p/(3−p)(Ω).

Applying with p = 3/2, we have v ∈ L12/5(Ω)∩L3(Ω). Hence, we can show that v.∇v =
div (v⊗ v) ∈ W−1,4/3

0 (Ω)∩W−1,3/2
0 (Ω) and f− v.∇v ∈ W−1,p

0 (Ω). By applying Theorem
17 and Corollary 19, we have (61) and (62).

The proof is complete by combining the case 1) with the case 2).
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Remark 29. Because of the compatibility condition (42), the above problem is open for

the case 1 < p ≤ 4
3

.

In Theorem 26, we know that if f ∈ Lp(Ω) for all p ∈ (1,3/2], then v satisfies (59).
With additional assumption for f, we shall prove that the weak solutions given in Theorem
26 satisfy better properties.

Proposition 30. Given r >
4
3

. Assume that f ∈ Lp(Ω)∩W−1,r
0 (Ω) for all p ∈ (1,3/2].

Then each weak solution (u,π) to (N S) satisfies (59) and
∂v
∂x1

∈ W−1,s
0 (Ω) for any s ≥ r.

Moreover,

if
4
3

< r ≤ 3
2
, π ∈ Lt(Ω) for all r ≤ t ≤ 3. (63)

Proof. We know that (u,π) satisfies (59). In addition, thanks to Theorem 26, we have
v⊗ v ∈ Lq(R3) for all q > 1. Then we deduce f − v.∇v ∈ W−1,r

0 (Ω). Proceeding as in

Theorem 28, it is easy to prove that v ∈ L
4r

4−r (Ω)∩L
3r

3−r (Ω), ∇v ∈ Lr(Ω),
∂v
∂x1

∈ W−1,r
0 (Ω)

and π ∈ Lr(Ω). As v ∈ Lq(Ω) for any q ≥ 2, we have
∂v
∂x1

∈ W−1,s
0 (Ω) for any s ≥ r. For

the pressure, we note that thanks to (59), π ∈ Lt(Ω) for all 3/2 < t ≤ 3 and then, we have
(63). The Theorem is completely proved.

We now prove the following theorem.

Theorem 31. Let 4/3 < p < ∞ and q0 ≥ 3. Assume that f ∈ Lq(Ω) ∩ W−1,p
0 (Ω) for all q ∈

(1,q0]. Then the problem (N S) has a solution (u,π) satisfying the properties of Corollary
27 part ii). Moreover, we have π ∈ W 1,s2

0 (Ω) and ∇2v ∈ Ls2(Ω) for all s2 ∈ (1,q0]. In
particular, if 4/3 < p ≤ 3/2, we have additionally π ∈ Lk1(Ω) for any k1 ≥ p.

Proof. In particular, we have f ∈ Lq(Ω) for all 1 < q < 3. From Corollary 27 part ii), we
have

v ∈ Ls0(Ω), ∇v ∈ Ls1(Ω), π ∈W 1,s2
0 (Ω),

∇2v ∈ Ls2(Ω),
∂v
∂x1

∈ Ls3(Ω),
(64)

for any s0 ∈ (2,∞], any s1 ∈ (4/3,∞), any s2 ∈ (1,3) and any s3 ∈ (1,∞). Using the partition
of unity, we can deduce (f 1,g1) ∈ Lq(R3)×X1,q

0 (R3) and (f 2,g2) ∈ Lq(Ω2)×W 1,q
0 (Ω2)

for all q ∈ (1,q0] satisfying (21). Applying Theorem 1.9 [AN], Proposition 4.3 [AR2] and

proceeding as in Theorem 9, we can obtain that π ∈W 1,q
0 (Ω), ∇2v ∈ Lq(Ω),

∂v
∂x1

∈ Lq(Ω).

Combining with the previous results, we have (64) for all s2 ∈ (1,q0], s3 ∈ (1,∞). As
v⊗ v ∈ Lr(R3) for any r > 1, then f− v.∇v ∈ W−1,p

0 (R3). We use the same technique as
in the proof of Theorem 28, we have (v,π) ∈ (X1,p

0 (Ω)×Lp(Ω)) such that w ∈ Ls(Ω) for
all 4p

4−p ≤ s ≤ 3p
3−p . Note that π ∈ Lk1(Ω) for any k1 ≥ p if 4/3 < p ≤ 3/2. The Theorem is

completely proved.
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Now we introduce the stress tensor T and the related stretching tensor D, T(u,π) =
−πI+2νD(u), where I is the identity matrix and D(u) = {Di j}(u) with

Di j(u) =
1
2
(

∂ui

∂x j
+

∂u j

∂xi
).

We now consider the energy identity. The key idea to find the conditions to obtain the
energy identity (65), is to test the Navier-Stokes problem with v.

Theorem 32. Let f ∈ L6/5(Ω)∩L3/2(Ω) and (u,π) be a weak solution of (N S). Then we
have the energy identity

ν

Z
Ω

|∇v |2dx−λ

Z
Γ

T.n dσ =
Z

Ω

f.v dx. (65)

Proof. Let (u,π) be a weak solution of (N S). From Theorem 24, we know that (50) takes
place. Let a0 ∈H1(Ω2R) where R > R0 such that a0 = 0 on ∂Ω, a0 = u∞ on ∂B2R, diva0 = 0
in Ω2R. We set that a = u∞ in B2R and a = a0 in Ω2R. Then, we have a−u∞ ∈ W1,2

0 (Ω)
with compact support and diva = 0. As V (Ω) is dense in V2(Ω) (cf. [AA]), there exists
a sequence (ψi) ∈ V (Ω) with (ψi) ⇀ v− a + u∞ in V2(Ω) with compact support. Since
v ∈ L3(Ω) then we deduce v−a+u∞ ∈ L3(Ω). Testing (17) with (ψi), we obtain

ν
R

Ω
∇v.∇ψidx+λ <

∂v
∂x1

,ψi >
W−1,2

0 (Ω)×
◦

W1,2
0 (Ω)

+ < v.∇v,ψi >
W−1,2

0 (Ω)×
◦

W1,2
0 (Ω)

=< f,ψi >
W−1,2

0 (Ω)×
◦

W1,2
0 (Ω)

.

When i → ∞, we deduce that

ν
R

Ω
|∇v |2dx−ν

R
Ω

∇v.∇a dx+λ <
∂v
∂x1

,v+u∞−a >
W−1,2

0 ×
◦

W1,2
0

+ < v.∇v,v+u∞−a >
W−1,2

0 ×
◦

W1,2
0

=< f,v−a+u∞ >
W−1,2

0 ×
◦

W1,2
0

.
(66)

From (50),
∂v
∂x1

and v.∇v are in L3/2(Ω). Then, we can rewrite (66) as follows

ν
R

Ω
|∇v |2dx−ν

R
Ω

∇v.∇a dx+λ
R

Ω

∂v
∂x1

.(v+u∞−a) dx

+
R

Ω
v.∇v.(v+u∞−a) dx =

R
Ω

f.(v−a+u∞) dx.
(67)

Next, we multiply (17) with u∞−a ∈ W1,2
0 (Ω) having compact support. Integrating on Ω

and using integration by parts, we get

−ν
R

Ω
∇v : ∇a dx−λ

R
Γ

T.n dσ+λ
R

Ω

∂v
∂x1

.(u∞−a) dx

+
R

Ω
v.∇v.(u∞−a) dx =

R
Ω

f.(u∞−a) dx.
(68)

It is easy to see that
R

Ω
v.∇v.v = 0 and

R
Ω

∂v
∂x1

.v = 0 ( cf. [FA]). From (67) and (68), we

have (65).
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