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Abstract

We describe a method for solving the Poisson equation onfacguin R3, which,
via the introduction of conformal coordinates, reducesgtablem to that of solving
a system of Fredholm equations of second kind on a union ob#mzurves in the

plane.
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Introduction

Let " be a smooth closed surfacel®¥ with induced Riemannian metrig In this note we
explain how to find and use conformal coordinate charts taagedhe problem of solving

the Poisson equation dn
Agu= T, (0.2)
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to that of solving computationally simpler problems on doman the plane.

If the genusp, of ' is at least two then we reduce to solving & 2-system of Fredholm
equations of second kind on a unionf- 1 smoothly embedded simple closed curves in
the plane. If the genus is then we can either solve a system of Fredholm equations on
a single embedded simple closed curve, or work directly enuthit sphere and use the
spherical harmonic representation. Finally, if the gersu&,ithen we can either solve a
system of Fredholm equations on two embedded simple close#s; or use the Fourier
series representation.

1 A Riemann-Hilbert Problem for Harmonic Functions

We begin by considering a Riemann-Hilbert problem on anrabstclosed compact mani-
fold.

Proposition 1.1. Suppose thatM,g) is a connected, compact Riemannian manifold that
can be written as a union of two components=M. UM_, which meet along a common
boundary, SSuppose that € ¢*(M) and on M. we can find u € C*(M..), which satisfy

Dguy = T [y, - 1.1)
If
B du, . ou_
Uy f[s=U-[s anda—v [s= v s, (1.2)

with v the outward unit normal along (relative to M S, then

u(x) = ur(x) forxe M, (1.3)
] u(® forxeM_ '

is a smooth solution t.1)on M.

Proof. A simple integration by parts argument, employing (1.1) @n#), shows thahgu =
f on M in the sense of distributions. The conclusion then follovesrf elliptic regularity.

]
Assume that we can find, satisfying (1.1), with
.09 8 (9] s = h(x)
12— 2] 1= K0 o
and functions/, in C1(M) N C4(M..), which satisfy
Agvs = 0in My
V400 —v- (9] [s= (Y ws)

% _av_

5200~ S (0] Ts = k(X).
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The functionsu. = Uy — vy then satisfy the hypotheses of the Proposition, and therefo
glue together to define a solution to (0.1).

Suppose that, are harmonic functions satisfying (1.5) for givémk), then the Propo-
sition easily implies that any other solution is of the fovm+ ¢, for ac € C. On the other
hand, an obvious necessary condition for the solvabilitthisf problem is that

/ K(X)dS(X) = 0. (1.6)
S

The scalar Laplacian dv is a self adjoint operator, with a 1-dimensional nullspgmnsied
by the constant functions. We I€t(x,y) denote Schwartz kernel of the partial inverse, and
Tl the orthogonal projection onto the constant functions.ydaisfy

DgxG(x,y) = G(X,y)Agy = d(X—Y) — Th. (1.7)

From this identity it follows that ih is a smooth function o andk is a smooth function,
of mean zero oveg, then

Vi = [ Gyky)dSy) + [0, Gxyhy)dsy) (1.8)
s s

is harmonic inM\ S As G is a classical pseudodifferential operator, with a stashdaymp-
totic expansion along the diagonal, the jump relations@Bare:

[V (X) —V—(X)] [s= h(x) and[dyv;. (x) — duv_(x)] [s= K(X). (1.9)
This completes the proof of the following theorem:
Theorem 1.2. If h,k € C*(S), with k of mean zero, then the Riemann-Hilbert problem
in (1.5)has a solution v € C*(M..), given by(1.8). The space of solutions is 1-dimensional

and consists ofvy. +c: ce C}.

The regularity statement in this theorem follows from thél\eown mapping proper-
ties of the Green’s kernel, which imply the Sobolev spacsiwearof the theorem:

Corollary 1.3. For s€ R, if h € H¥(S), k € HS"(S), with k of mean zero, then the solution
of the Riemann-Hilbert problem_v given in(1.5) belongs to W%(Mi). The mapd :
(h,K) — (v4,v_) is continuous from

®:HY(S) B HSHS) — H¥ 2 (My) @ HS 2 (ML),
Here H.,(S) are distributions ke H(S) such that(k, 1) = 0.

We now turn to the special case of a surface> R3.
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2 Surfaces inR3 and Conformal Charts

Let ' — RS2 be a smooth closed surface of gequembedded iR® and letg denote the
metric induced from the embedding. We suppose ffhedin be covered by two coordinate
chartsU_,U_, which intersect in a union gb+ 1 disjoint annuli,{A; : j=0,...,p}. We
also suppose that we can findnformalmaps:

@.:U. — D, CC. (2.1)

Let Y. denote the inverses of these maps gndg ¢@_ o Y, the gluing map. This is a
conformal map from{@, (Aj)) CC: j=0,...,p} onto{@_(A;) CC: j=0,...,p}. We
usex™ = @.(x), to denote the local coordinates defined by these maps.

In each annulug\; we choose a smooth simple cuiSig which separated; into two an-
nuli. The union of these curves, separate§ into two connected componerlis CC U...
We letD, =@, (My) CC D.; these are smoothly bounded planar domains, diffeomorphic
to a disk with p disjoint sub-disks removed. We now show how to use this comdb
representation df to reduce the problem of solving the Poisson equatioh on

Agu=f, (2.2)

to that of solving a system of second kind integral equatmnS.
We letAo denote the flat Euclidean Laplacialf,+ 05, and

1
GO(Xay) = E_[Iog‘x_y‘7 (23)

its fundamental solution ifR2. Because the mapg. are conformal, the local coordinate
representations of the Laplace operator are of the form

1

Ag 5, = ) (xi)AO’ (2.4)

where
WL (dAy) = (<) dxg dx . (2.5)

If fis a function of mean zero of, then we letf also denote its pullbacks ©.. The
functions

/ Golx*.y*) (y*) 2 (y*)dy* (26)

pulled back td” solve
Agus = f [y, . (2.7)

We can pull this formula back td.. to obtain

- / Go(@= (), @« (¥)) F(y)dAg(y). (2.8)
U
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If, as before, we leG(x,y) denote the Schwartz kernel of the partial inversé\gfthen
these relations imply that do. x UL we have

Dgx[Go(@=(X), = (Y)) — G(xy)] = —A—lr = Dgy[Go(@=(X), @:(y)) —G(xy)l,  (2.9)

with Ar the area of . Therefore

(Bgs-+ ) Gol: (%) 92 () — G(xy)] = —~ (2.10)

Elliptic regularity therefore shows

Proposition 2.1. There are functions m(x,y) € ¢*(Ux x U, ) so that

Go (¢ (X), 9+ (Y)) — G(X,y) = mx(X,Y). (2.11)

An important corollary of (2.11) is the fact that

Go(®+ (X), @+ (Y)) — Go(@-(X), - (Y)) = M (Xy) —m_(X,y). (2.12)

Hence, we do not need to know the Schwartz ker@gk,y), to compute the difference:
m—F(va) —m (va)'

Let the jumps indy andd,Uy acrossS be denoted by andk respectively. Iff has
mean zero ovelr, then Green’s formula implies thiathas mean zero ov& as required for
the solvability of the Riemann-Hilbert problem. We now needind harmonic functions
V.. defined inl .. that satisfy the jump conditions:

V4 (X) —V_(X)] [s= h(x) and [0,V (X) — dyV_(X)] [s= K(X). (2.13)
We use corrections of the form

Vi (X) = / [Go(@=(X), = (Y))a(y) + 0y yGo(@= (X), = (y))b(Y)|dsy (). (2.14)
S

Proposition 2.1 easily gives formulae for the jumpsinandd, v, acrossS:
(0 = V(0] = b+ [ [m: (y) ~ m-(xy)Jay)dg(y)+

[ duyim- (cy) - m_(xy)lb)dg(y). (2.15)
S

0u [V, (X) — V_(X)] = —a(x) + / Ovx[My(X,y) —m_(x,y)]a(y)ds(y)+
S

[ Busduylm: (cy) - m_(xy)lb)dg(y). (2.16)
S
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To actually solve this problem we need to pull these equathmack to the plane. For
this purpose we use the coordinate mjap The difference in the fundamental solutions
m, —m_ now takes a simple explicit form:

n(X",y") = m (x7,y") —m(x7,y") = Go(x",y") = Go(d(x"),0(y")).  (2.17)
The fact thatp is conformal leads immediately to the following basic résul

Lemma 2.2. For x,y € bD, we have the relation

GO(X7y) = G0(¢(X)7¢(y)) + n(X, y)a (218)
where ne C*(bD, x bD,).

Proof. This is a consequence of Proposition 2.1, but it is instvecto give a different
proof. There is nothing to prove unlesgndy are close together. In this case we see that,

forx £y,
‘cb o(y)

Go(¢(x),0(y)) = 2—Ioglx yl +

Becausa) is analytic in a neighborhood &D. we see that the second term above can be
rewritten as

(2.19)

1, |90 —0y)| _ oll(y)
an g‘ Xy = 2T[Iog gl i (x—y)I~ (2.20)
As ¢’(y) does not vanish obD, this completes the proof of the lemma. O

To rewrite equations in thex™,y ™) variables we need to relatis™, Euclidean arclength
alongbD_, to dgy, andd, x to dy x+ alongS. An elementary computation, using the fact that
Y. is conformal, shows that we have the relations

. 1
Pidsy(x") = j;+(x")ds" ando, x = Y. [maw)ﬁ] , (2.21)

where the conformal factgyr, is defined in (2.5). The integral equations can now be rewrit-
ten as:

() =b(x) + [ nix .y Jaly ) (y*)ds (v )+

bD,
[ dvynity byds (). (2.2
bD,,
(x") = —alx) + / By, 0y Jaly ) - (v )ds' (v )+
J+(X

1
/ Ty e vy XY DY IS (). (223)

-+
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As n(x",y") is a smooth function oD, Equations (2.22) and (2.23) are a system of
Fredholm equations of the second kind.

The dateh(x") andk(x") can easily be computed from the local coordinate representa
tions ofUy. :

v / Gol™,y) F(y*)i2 ()", (2.2

along with the relations in (2.21). If, as we have assumesl ctinformal mapgq@, } are
defined in an open cover 6f, then the boundaries & .. lie in the interior of the domains
of definition of Ux, which should facilitate the numerical evaluationhgk™) andk(x").
For numerical purposes, we can also insert smooth cutoftifums into these integrals, so
long as they take the value 1 @n..

If a pair (a,b) is in the null-space of the system of equations (2.22) ar@i3j2then
the harmonic function¥.., defined in (2.14), glue together aloi®to define a harmonic
function on all ofl", which must therefore be constant. For such data, the paarofidnic
functions

v = [ [Go(xy)aly) i (y) £0uyGolx yblylds* (). (2.25)
bD.

assume the same constant valudin, respectively. The difficulty in characterizing the
null-space arises because the extensiong.0k) to DS defined by the integral formula
in (2.25), donot, in general, agree with the pull-backs\of via the gluing magp. Hence,
our hypothesis does not immediately imply that the funationare constant acros..,
and therefore zero. We leave the problem of characteriziegntll-space of this system
of equations to a subsequent publication. We consider tbkelgm of constructing the
necessary conformal maps in the following section.

3 Finding Conformal Charts

We briefly describe how to find conformal coordinates chanta surfacel”, embedded in
RR3. Finding such coordinates usually entails solving the Leslaquation on the surface,
or at least on subdomains of the surface, and is therefoyevamith the effort if one needs
to repeatedly solve the inhomogeneous equation:

Aru= f. (3.1)

We describe an approach to this problem, which works in aésa It assumes thatis
covered by twamoothcoordinate charts, of planar character, which are therrécted” to
give conformal coordinate charts.

For the most part we are considering surfaces with ggnu<. If the genus is either 0
or 1, then the Riemann-Hilbert approach described above candtt bat it also possible
to use a more global approach. If the genus,ithen a conformal mappingy: ' — Sf,
can be constructed. He8 is the unit sphere ifR3. This case is discussed in considerable
detail in the monograph [2]. Equation (3.1) can then be mgulavith

éAS%u — 1, (3.2)
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whereg* (p?d<,) = g, the metric induced of by its embedding int®3. The equation can

be solved using, e.g., spherical harmonics. The torus pasd, is considered in Section 4.
Forl" of genusp, we assume that it is divided into two smoothly bounded regfionof
planar character, which meet along a uniorpaf 1 simple closed curves. We can find two

open subsets . as described above, which intersect in a uniorpef 1 disjoint annular
regions{A;: j =0,...,p}, so thatbl" . is a relatively compact subset of the union of these
annuli. It is usually very difficult to find conformal maps fromultiply connected regions
onto “model domains,” e.g. domains bounded by circles. @rother hand, for the method
described above to work, it is only necessary that we thagonformally onto smoothly
bounded regions of the plane, with no necessity to carefidhytrol the geometry of the
boundary of the image.

Starting with the cover of by two open setdl. D Iy, of planar character, we suppose
that there are smooth one-to-one maps

Py Si — U4, (3.3)

with Dy smoothly bounded domains &?. In other words the open subséls are repre-
sented parametrically over bounded domains in the plangol@gically, the domain® .,

are disks withp holes removed. We suppose, without loss of generality,thehD... is a
union of p+ 1 smooth, simple closed curves, which we der{mé :]=0,1,...,p}. Here

C5 bound the unbounded components of the complemerids.ofind, for 1< j < p,
Ci =bB;, (3.4)

where the{Bji} are topological disks.
The pullback by of the induced metric ot is represented by a smooth family of
symmetric, positive definite 2 2-matrices.

Pig= Y gjdxdx. (3.5)
1<i,j<2

To find a conformal representation, we extend the metricotesimoothly into the bounded
components of the compleme#t; = UP_,B;". Let D. = D, UB*. The space of symmet-
ric, positive definite matrices is a convex cone, and theeefee only need to exterg;jjE to
a small neighborhood dfB*. Using a partition of unity we can then interpolate from these
extensions to the identity matrix. We also Lgﬁiato denote the extended metric tensor. Us-
ing this approach, the conformal structure on a large paBtofan be made to agree with
the standard structure di

The simply connected domaif®. have globally defined metrics. Therefore we can
use the Laplace operator defined by this metric to find corddrmmaps onto the unit disk,
q)i D. — D1, which carryC0 ontobD;. A standard method would be to find real harmonic
functions,u., on Dy with an interior logarithmic singularity, vanishing on theundary of
D.. For simplicity, we can place the logarithmic singularitytire interior ofB*, where
the conformal structure defined by the metric agrees wittsthedard one. The harmonic
conjugates/,. are easily found by integration, and then

@ =tV (3.6)
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defines a conformal map & onto the unit disk. This method is described in [3]. If we
let D, denote the image dD. under the mapg,, and i, the inverses ofp., then the
compositions

Wi =0roPs:Dr — Uy (3.7)

are conformal maps.

Once these conformal maps are found, we can use the methaibeesin Section 2 to
solve the Poisson equation 6n Of course, to find the conformal coordinates we need to
solve the Poisson equation on domain§ itonce these coordinates are found, the problem
of solving the Poisson equation is reduced to that of apglyfre Newtonian potential to
functions on the coordinate charts, and the solution of arsmk&ind integral equation on
a union of smooth curves. The application of the Newtoniatemtial can be accelerated
using a fast multi-pole method, (see [1]) and the integrakbéign is on a one-dimensional
set rather than a two-dimensional set. Once the work of fintlie conformal maps is done,
these two steps can presumably be done much faster tharréioé sblution of the Poisson
equations by a non-sparse, 2-dimensional method. As nbmgathis method will prove
efficacious when the Poisson equation has to be solved esjhg&br a variety of right hand
sides, on a fixed embedded surface. The accuracy of the owegtilod will be determined
by the accuracy of the computation of the conformal mggps,

4 The Torus Case

The torus,p = 1, is a special case in that if ¢ R3 is a surface of genus 1, then we can
choose two embedded circlag by so that \ a; Ub; is homeomorphic to a disk. Moreover
there is a conformal map

¢o:M\aub—R (4.2)

whereR s a region inC bounded by a parallelogram. di is a real harmonic 1-form oh
thendz= w+ i, wis a holomorphid1, 0)-form; herex; is the Hodge star-operator defined
by the metric onl". Integrating this form then defines the m@pUsing this coordinate
representation we can reduce the problem of solving theacaptquation on to that of
solving the Euclidean Laplace equation Rynwith periodic boundary conditions. This can
easily be done using a Fourier representation. In this eese the case of genus 0, the
Riemann-Hilbert step is not needed, as the Fourier reptesam automatically imposes
the needed periodic boundary conditions.

If I is a torus of revolution, then the conformal coordinate cafolind quite explicitly.
Under this hypothesis, there are periodic functir(s),z(t)) defined orR so thatl is the
image of the map

(t,s) — (r(t)coss,r(t)sins, z(t)). 4.2)

In these coordinates the metric on the surface takes the form
g=r2(t)dS + [(r'(t))? + (Z(t))3dt?. (4.3)

Without loss of generality we can assume that the genemsiymarameterized by arclength,
that is:
(r'®)*+(Z(t)*=1. (4.4)
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The area form is then given by

dA=r(t)dsAdt. (4.5)
A simple calculation shows that
w=ds (4.6)
is a harmonic form with
*200 = ﬁ 4.7)

r(t)

We introduce the new parameter

t

dt
b(t) — /m 4.8)

0

If we lett(b), denote the inverse ¢f— b(t), then the map
(b,s) — (r(t(b)) cossr(t(b))sins,z(t(b))) (4.9)

is a conformal map from a rectangRec C to " € R3. Suppose the rectangleRs= [0, S x
[0,B]; the Laplace equation dntakes the form

Wl))Z[ag +aRu= f(sh), (4.10)

wherep is B-periodic and bothu and f areS-periodic insandB-periodic inb. As usual this
equation is solvable if and only @2(b) f (s,b) has mean Qin this case,

2nims 2rinb

pb)?*f(sb)= 5 fmeses, (4.11)
(mn)Z(0,0)
and N N
B2 fo S €8
u(s,b) = ——— ey T (4.12)
417 mnfZ(00) m2B2 4 n?&?

The Fourier representation pff and the solution of the Laplace equation can both be
accomplished with spectral accuracy by samplingn a uniformly spaced grid (in the
(s,b)-coordinates) and using the standard discrete Fouriesfomm to approximate the
Fourier integrals and inverse Fourier transform.

5 Numerical Examples

We close this paper by considering the special case of dairtnrus, so that the generator
of ' is a round circle. We can parameterizen the rectangle-mt<t < mmand 0< s< 21
by setting:

(r(t),z(t)) = (R+rcog,rsint), (5.1)



36 C. L. Epstein and L. Greengard

with r < R. This is not a conformal representation. The metric indugethb embedding
into R3 is given by

_ 2 r? 2
g= (R+rcost) <d§+mdt ) (5.2)

This parameterization of the generator has constant spged] tor, which is adequate for
our purposes. In this case

rdt
*zw—db— m, (53)
integrating we find that
_ t(b) 2r R—r
= 1 _— = — = _—
b= ptan [Atan( > >] , Wherep TR andA RIT (5.4)
Solving we obtain that
1 b
_ e g
t(b) = 2tan L\ tan(uﬂ . (5.5)
The natural parameter domain is the rectangle:
s L1
R={(s,b): 0<s<2m, —u§§b< HE}' (5.6)

In the (b, s) coordinates the metric induced on the embedded torus th&derm
g = p?(b)(ds +db?), (5.7)

where
R—r

p(b) = sir?(b/u) +A2co2(b/W)

Because the map from ttfg b)-plane to the embedded torus is conformal, the coeffigent
measures the metric distortion between the induced metrib@ embedded torus and the
flat metricds® + db?. A simple calculation shows that this distortion varies bswR+r
andR—r, and thereforé\? gives a measure of the variability of the mesh size in the @nag
domain, produced as the image of a uniform rectangular gritie (s, b)-plane. Observe
that, in the ambient coordinatesRf we have

_ - 2212 R2
=Y and co §)>:R Xy o R (5.9)

Our first plots show the distortions which result from diéfet choices ofr, R). In Fig-
ure 1(a) we show the mesh obtained with-322-grid withr = 1 andR=1.2. In Figure 1(b)
we show the mesh obtained with 3232-grid withr = 2 andR = 16. As predicted there
is considerable variation in the size of the image grid infitst case whera? = 1/11, as
compared to the second case, whete- 7/9.

(5.8)
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To test the accuracy of our algorithm, we begin with

f, = Re M
” oe +y2)h22 (5.10)
o _Re| OV Ry X+ y2+r2—R2 '
" (R +y2)" /X2 +y2 '
The formuee in (5.9) show that
p?(b) fo(b,s) = sinnsandp?(b)gn(b,s) = sinnscos<2—5> , (5.11)
and therefore the solutions fu, = f, andAgv,, = g, are
-1 -1 2b
— __si dvy= —— i — . 5.12
Un 2 sinnsandvy » 2smnscos< “> ( )

2
P+ (2

Our numerical experiments show that as soon as the numbanggles in thes-direction
exceeds the Nyquist rate, the error in the numerical solggsentially equals the machine
accuracy (about 13%). We show several pairsfs, us), (f32,Us2), and (gie, Vie). in Fig-
ure 2. In these examples we take- 1 andR= 2.

We conclude with a pair of examples involving more compédatight hand sides. In
Figure 3 we show the solution with= cosxcos 3/sin %, and in Figure 4, the solution with
f =exp(—((x+3)?+y?+ 7)) — c. (Herec is selected so that has mean zero.) For these
examples = 1 andR = 2, moreover we use 256 points in tedirection and 512 points in
the b-direction.
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Plot of p
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(a) 32x 32 grid withr = 1,R

Plot of p

=16

(b) 32x 32 grid withr =2,R

Figure 1. Examples showing the distortion in the image grid.
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Figure 2. Examples where the exact solution is known.
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(a) Plot of f (b) Plot ofu

Figure 3. f = cosxcos 3/sinz

Plot of f Plot of u

(a) Plot of f (b) Plot ofu

Figure 4. f = exp(—((x+3)2+ Y2+ 22)) —



