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Abstract

We describe a method for solving the Poisson equation on a surface inR3, which,
via the introduction of conformal coordinates, reduces theproblem to that of solving
a system of Fredholm equations of second kind on a union of smooth curves in the
plane.
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Introduction

Let Γ be a smooth closed surface inR
3 with induced Riemannian metricg. In this note we

explain how to find and use conformal coordinate charts to reduce the problem of solving
the Poisson equation onΓ,

∆gu = f , (0.1)
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to that of solving computationally simpler problems on domains in the plane.
If the genus,p, of Γ is at least two then we reduce to solving a 2×2-system of Fredholm

equations of second kind on a union ofp+ 1 smoothly embedded simple closed curves in
the plane. If the genus is 0, then we can either solve a system of Fredholm equations on
a single embedded simple closed curve, or work directly on the unit sphere and use the
spherical harmonic representation. Finally, if the genus is 1, then we can either solve a
system of Fredholm equations on two embedded simple closed curves, or use the Fourier
series representation.

1 A Riemann-Hilbert Problem for Harmonic Functions

We begin by considering a Riemann-Hilbert problem on an abstract, closed compact mani-
fold.

Proposition 1.1. Suppose that(M,g) is a connected, compact Riemannian manifold that
can be written as a union of two components M= M+ ∪M−, which meet along a common
boundary, S. Suppose that f∈ C ∞(M) and on M± we can find u± ∈ C 1(M±), which satisfy

∆gu± = f ↾M± . (1.1)

If

u+ ↾S= u− ↾S and
∂u+

∂ν
↾S=

∂u−
∂ν

↾S, (1.2)

with ν the outward unit normal along (relative to M+) S, then

u(x) =

{
u+(x) for x∈ M+

u−(x) for x∈ M−
(1.3)

is a smooth solution to(0.1)on M.

Proof. A simple integration by parts argument, employing (1.1) and(1.2), shows that∆gu=
f on M in the sense of distributions. The conclusion then follows from elliptic regularity.

Assume that we can find̃u± satisfying (1.1), with

[ũ+(x)− ũ−(x)] ↾S = h(x)

[
∂ũ+

∂ν
(x)− ∂ũ−

∂ν
(x)] ↾S = k(x);

(1.4)

and functionsv± in C 1(M±)∩C 2(M±), which satisfy

∆gv± = 0 in M±
[v+(x)−v−(x)] ↾S = h(x)

[
∂v+

∂ν
(x)− ∂v−

∂ν
(x)] ↾S = k(x).

(1.5)
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The functionsu± = ũ±− v± then satisfy the hypotheses of the Proposition, and therefore
glue together to define a solution to (0.1).

Suppose thatv± are harmonic functions satisfying (1.5) for given(h,k), then the Propo-
sition easily implies that any other solution is of the formv± +c, for a c∈ C. On the other
hand, an obvious necessary condition for the solvability ofthis problem is that

Z

S

k(x)dS(x) = 0. (1.6)

The scalar Laplacian onM is a self adjoint operator, with a 1-dimensional nullspace spanned
by the constant functions. We letG(x,y) denote Schwartz kernel of the partial inverse, and
π0 the orthogonal projection onto the constant functions. They satisfy

∆g,xG(x,y) = G(x,y)∆g,y = δ(x−y)−π0. (1.7)

From this identity it follows that ifh is a smooth function onSandk is a smooth function,
of mean zero overS, then

v±(x) =

Z

S

G(x,y)k(y)dS(y)+

Z

S

∂νyG(x,y)h(y)dS(y) (1.8)

is harmonic inM\S. As G is a classical pseudodifferential operator, with a standard asymp-
totic expansion along the diagonal, the jump relations along Sare:

[v+(x)−v−(x)] ↾S= h(x) and[∂νv+(x)−∂νv−(x)] ↾S= k(x). (1.9)

This completes the proof of the following theorem:

Theorem 1.2. If h,k ∈ C ∞(S), with k of mean zero, then the Riemann-Hilbert problem
in (1.5)has a solution v± ∈C ∞(M±), given by(1.8). The space of solutions is 1-dimensional
and consists of{v± +c : c∈ C}.

The regularity statement in this theorem follows from the well known mapping proper-
ties of the Green’s kernel, which imply the Sobolev space version of the theorem:

Corollary 1.3. For s∈ R, if h ∈ Hs(S), k∈ Hs−1(S), with k of mean zero, then the solution
of the Riemann-Hilbert problem, v±, given in (1.5) belongs to Hs+ 1

2 (M±). The mapΦ :
(h,k) → (v+,v−) is continuous from

Φ : Hs(S)⊕Hs−1
m (S) → Hs+ 1

2 (M+)⊕Hs+ 1
2 (M−).

Here Ht
m(S) are distributions k∈ Ht(S) such that〈k,1〉 = 0.

We now turn to the special case of a surfaceΓ →֒ R
3.
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2 Surfaces inR
3 and Conformal Charts

Let Γ →֒ R
3 be a smooth closed surface of genusp embedded inR3 and letg denote the

metric induced from the embedding. We suppose thatΓ can be covered by two coordinate
chartsU+,U−, which intersect in a union ofp+ 1 disjoint annuli,{A j : j = 0, . . . , p}. We
also suppose that we can findconformalmaps:

φ± : U± −→ D̃± ⊂ C. (2.1)

Let ψ± denote the inverses of these maps andϕ = φ− ◦ ψ+, the gluing map. This is a
conformal map from{φ+(A j) ⊂ C : j = 0, . . . , p} onto {φ−(A j) ⊂ C : j = 0, . . . , p}. We
usex± = φ±(x), to denote the local coordinates defined by these maps.

In each annulusA j we choose a smooth simple curveSj , which separatesA j into two an-
nuli. The union of these curves,S, separatesΓ into two connected componentsΓ± ⊂⊂U±.
We letD± = φ±(Γ±) ⊂⊂ D̃±; these are smoothly bounded planar domains, diffeomorphic
to a disk with p disjoint sub-disks removed. We now show how to use this conformal
representation ofΓ to reduce the problem of solving the Poisson equation onΓ :

∆gu = f , (2.2)

to that of solving a system of second kind integral equationson S.

We let∆0 denote the flat Euclidean Laplacian,∂2
x + ∂2

y, and

G0(x,y) =
1
2π

log|x−y|, (2.3)

its fundamental solution inR2. Because the mapsφ± are conformal, the local coordinate
representations of the Laplace operator are of the form

∆g ↾D̃±
=

1

j2±(x±)
∆0, (2.4)

where
ψ∗
±(dAg) = j2±(x±)dx±1 dx±2 . (2.5)

If f is a function of mean zero onΓ, then we let f also denote its pullbacks tõD±. The
functions

ũ±(x±) =
Z

D̃±

G0(x
±,y±) f (y±) j2±(y±)dy± (2.6)

pulled back toΓ solve
∆gũ± = f ↾U± . (2.7)

We can pull this formula back toU± to obtain

ũ±(x) =
Z

U±

G0(φ±(x),φ±(y)) f (y)dAg(y). (2.8)
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If, as before, we letG(x,y) denote the Schwartz kernel of the partial inverse of∆g, then
these relations imply that onU±×U± we have

∆g,x[G0(φ±(x),φ±(y))−G(x,y)] = − 1
AΓ

= ∆g,y[G0(φ±(x),φ±(y))−G(x,y)], (2.9)

with AΓ the area ofΓ. Therefore

(∆g,x + ∆g,y)[G0(φ±(x),φ±(y))−G(x,y)] = − 2
AΓ

. (2.10)

Elliptic regularity therefore shows

Proposition 2.1. There are functions m±(x,y) ∈ C ∞(U±×U±) so that

G0(φ±(x),φ±(y))−G(x,y) = m±(x,y). (2.11)

An important corollary of (2.11) is the fact that

G0(φ+(x),φ+(y))−G0(φ−(x),φ−(y)) = m+(x,y)−m−(x,y). (2.12)

Hence, we do not need to know the Schwartz kernel,G(x,y), to compute the difference:
m+(x,y)−m−(x,y).

Let the jumps inũ± and∂νũ± acrossS be denoted byh andk respectively. If f has
mean zero overΓ, then Green’s formula implies thatk has mean zero overS, as required for
the solvability of the Riemann-Hilbert problem. We now needto find harmonic functions
ṽ± defined inΓ± that satisfy the jump conditions:

[ṽ+(x)− ṽ−(x)] ↾S= h(x) and[∂νṽ+(x)−∂νṽ−(x)] ↾S= k(x). (2.13)

We use corrections of the form

ṽ±(x) =
Z

S

[G0(φ±(x),φ±(y))a(y)+ ∂ν,yG0(φ±(x),φ±(y))b(y)]dsg(y). (2.14)

Proposition 2.1 easily gives formulæ for the jumps inv± and∂νv± acrossS:

[ṽ+(x)− ṽ−(x)] = b(x)+
Z

S

[m+(x,y)−m−(x,y)]a(y)dsg(y)+

Z

S

∂ν,y[m+(x,y)−m−(x,y)]b(y)dsg(y), (2.15)

∂ν[ṽ+(x)− ṽ−(x)] = −a(x)+
Z

S

∂ν,x[m+(x,y)−m−(x,y)]a(y)dsg(y)+

Z

S

∂ν,x∂ν,y[m+(x,y)−m−(x,y)]b(y)dsg(y). (2.16)
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To actually solve this problem we need to pull these equations back to the plane. For
this purpose we use the coordinate mapψ+. The difference in the fundamental solutions
m+−m− now takes a simple explicit form:

n(x+,y+) = m+(x+,y+)−m−(x+,y+) = G0(x
+,y+)−G0(ϕ(x+),ϕ(y+)). (2.17)

The fact thatϕ is conformal leads immediately to the following basic result

Lemma 2.2. For x,y∈ bD+ we have the relation

G0(x,y) = G0(ϕ(x),ϕ(y))+n(x,y), (2.18)

where n∈ C ∞(bD+ ×bD+).

Proof. This is a consequence of Proposition 2.1, but it is instructive to give a different
proof. There is nothing to prove unlessx andy are close together. In this case we see that,
for x 6= y,

G0(ϕ(x),ϕ(y)) =
1
2π

log|x−y|+ 1
2π

log

∣∣∣∣
ϕ(x)−ϕ(y)

x−y

∣∣∣∣ . (2.19)

Becauseϕ is analytic in a neighborhood ofbD+ we see that the second term above can be
rewritten as

1
2π

log

∣∣∣∣
ϕ(x)−ϕ(y)

x−y

∣∣∣∣ =
1
2π

log

∣∣∣∣∣
∞

∑
j=1

ϕ[ j](y)
j!

(x−y) j−1

∣∣∣∣∣ . (2.20)

As ϕ′(y) does not vanish onbD+ this completes the proof of the lemma.

To rewrite equations in the(x+,y+) variables we need to relateds+, Euclidean arclength
alongbD+, to dsg, and∂ν,x to ∂ν,x+ alongS. An elementary computation, using the fact that
ψ+ is conformal, shows that we have the relations

ψ∗
+dsg(x

+) = j+(x+)ds+ and∂ν,x = ψ+∗

[
1

j+(x+)
∂ν,x+

]
, (2.21)

where the conformal factorj+ is defined in (2.5). The integral equations can now be rewrit-
ten as:

h(x+) = b(x+)+
Z

bD+

n(x+,y+)a(y+) j+(y+)ds+(y+)+

Z

bD+

∂ν,y+n(x+,y+)b(y)ds+(y+), (2.22)

k(x+) = −a(x+)+
Z

bD+

1
j+(x+)

∂ν,x+n(x+,y+)a(y+) j+(y+)ds+(y+)+

Z

bD+

1
j+(x+)

∂ν,x+∂ν,y+n(x+,y+)b(y+)ds+(y+). (2.23)
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As n(x+,y+) is a smooth function onbD+ Equations (2.22) and (2.23) are a system of
Fredholm equations of the second kind.

The datah(x+) andk(x+) can easily be computed from the local coordinate representa-
tions ofũ± :

ũ±(x±,y±) =

Z

D̃±

G0(x
±,y±) f (y±) j2±(y±)dy±, (2.24)

along with the relations in (2.21). If, as we have assumed, the conformal maps{φ±} are
defined in an open cover ofΓ, then the boundaries ofD± lie in the interior of the domains
of definition of ũ±, which should facilitate the numerical evaluation ofh(x+) andk(x+).
For numerical purposes, we can also insert smooth cutoff functions into these integrals, so
long as they take the value 1 onD±.

If a pair (a,b) is in the null-space of the system of equations (2.22) and (2.23), then
the harmonic functions̃v±, defined in (2.14), glue together alongS to define a harmonic
function on all ofΓ, which must therefore be constant. For such data, the pair of harmonic
functions

v±(x) =

Z

bD±

[G0(x,y)a(y) j±(y)±∂ν,yG0(x,y)b(y)]ds±(y), (2.25)

assume the same constant value inD±, respectively. The difficulty in characterizing the
null-space arises because the extensions ofv±(x) to Dc

± defined by the integral formula
in (2.25), donot, in general, agree with the pull-backs ofv∓ via the gluing mapϕ. Hence,
our hypothesis does not immediately imply that the functions v± are constant acrossbD±,
and therefore zero. We leave the problem of characterizing the null-space of this system
of equations to a subsequent publication. We consider the problem of constructing the
necessary conformal maps in the following section.

3 Finding Conformal Charts

We briefly describe how to find conformal coordinates charts on a surface,Γ, embedded in
R

3. Finding such coordinates usually entails solving the Laplace equation on the surface,
or at least on subdomains of the surface, and is therefore only worth the effort if one needs
to repeatedly solve the inhomogeneous equation:

∆Γu = f . (3.1)

We describe an approach to this problem, which works in all cases. It assumes thatΓ is
covered by twosmoothcoordinate charts, of planar character, which are then “corrected” to
give conformal coordinate charts.

For the most part we are considering surfaces with genusp≥ 2. If the genus is either 0
or 1, then the Riemann-Hilbert approach described above can be used, but it also possible
to use a more global approach. If the genus is 0, then a conformal mapping,φ : Γ → S2

1,
can be constructed. HereS2

1 is the unit sphere inR3. This case is discussed in considerable
detail in the monograph [2]. Equation (3.1) can then be replaced with

1
ρ2∆S2

1
u = f , (3.2)
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whereφ∗(ρ2ds2
S2

1
) = g, the metric induced onΓ by its embedding intoR3. The equation can

be solved using, e.g., spherical harmonics. The torus case,p= 1, is considered in Section 4.
ForΓ of genusp, we assume that it is divided into two smoothly bounded regions Γ± of

planar character, which meet along a union ofp+1 simple closed curves. We can find two
open subsetsU± as described above, which intersect in a union ofp+ 1 disjoint annular
regions{A j : j = 0, . . . , p}, so thatbΓ± is a relatively compact subset of the union of these
annuli. It is usually very difficult to find conformal maps from multiply connected regions
onto “model domains,” e.g. domains bounded by circles. On the other hand, for the method
described above to work, it is only necessary that we mapU± conformally onto smoothly
bounded regions of the plane, with no necessity to carefullycontrol the geometry of the
boundary of the image.

Starting with the cover ofΓ by two open setsU± ⊃ Γ±, of planar character, we suppose
that there are smooth one-to-one maps

ψ̂± : D̂± −→U±, (3.3)

with D̂± smoothly bounded domains inR2. In other words the open subsetsU± are repre-
sented parametrically over bounded domains in the plane. Topologically, the domainŝD±
are disks withp holes removed. We suppose, without loss of generality, thatthebD± is a
union of p+1 smooth, simple closed curves, which we denote{C±

j : j = 0,1, . . . , p}. Here

C±
0 bound the unbounded components of the complements ofD̂±, and, for 1≤ j ≤ p,

C±
j = bB±

j , (3.4)

where the{B±
j } are topological disks.

The pullback byψ̂± of the induced metric onΓ is represented by a smooth family of
symmetric, positive definite 2×2-matrices.

ψ̂∗
±(g) = ∑

1≤i, j≤2

g±i j dxidxj . (3.5)

To find a conformal representation, we extend the metric tensor smoothly into the bounded
components of the complement,B± = ∪p

j=1B±
j . Let D̃± = D̂±∪B±. The space of symmet-

ric, positive definite matrices is a convex cone, and therefore we only need to extendg±i j to
a small neighborhood ofbB±. Using a partition of unity we can then interpolate from these
extensions to the identity matrix. We also useg±i j to denote the extended metric tensor. Us-
ing this approach, the conformal structure on a large part ofB± can be made to agree with
the standard structure onC.

The simply connected domains̃D± have globally defined metrics. Therefore we can
use the Laplace operator defined by this metric to find conformal maps onto the unit disk,
φ̃± : D̃±→D1, which carryC±

0 ontobD1. A standard method would be to find real harmonic
functions,u±, on D̃± with an interior logarithmic singularity, vanishing on theboundary of
D̃±. For simplicity, we can place the logarithmic singularity inthe interior ofB±, where
the conformal structure defined by the metric agrees with thestandard one. The harmonic
conjugatesv± are easily found by integration, and then

φ̃± = eu±+iv± (3.6)
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defines a conformal map of̃D± onto the unit disk. This method is described in [3]. If we
let D± denote the image of̂D± under the maps̃φ±, and ψ̃± the inverses of̃φ±, then the
compositions

ψ± = ψ̂± ◦ ψ̃± : D± −→U± (3.7)

are conformal maps.
Once these conformal maps are found, we can use the method described in Section 2 to

solve the Poisson equation onΓ. Of course, to find the conformal coordinates we need to
solve the Poisson equation on domains inΓ. Once these coordinates are found, the problem
of solving the Poisson equation is reduced to that of applying the Newtonian potential to
functions on the coordinate charts, and the solution of a second kind integral equation on
a union of smooth curves. The application of the Newtonian potential can be accelerated
using a fast multi-pole method, (see [1]) and the integral equation is on a one-dimensional
set rather than a two-dimensional set. Once the work of finding the conformal maps is done,
these two steps can presumably be done much faster than the direct solution of the Poisson
equations by a non-sparse, 2-dimensional method. As noted above, this method will prove
efficacious when the Poisson equation has to be solved repeatedly for a variety of right hand
sides, on a fixed embedded surface. The accuracy of the overall method will be determined
by the accuracy of the computation of the conformal maps,ψ±.

4 The Torus Case

The torus,p = 1, is a special case in that ifΓ ⊂ R
3 is a surface of genus 1, then we can

choose two embedded circlesa1,b1 so thatΓ\a1∪b1 is homeomorphic to a disk. Moreover
there is a conformal map

φ : Γ\a1∪b1 −→ R, (4.1)

whereR is a region inC bounded by a parallelogram. Ifω is a real harmonic 1-form onΓ
thendz= ω+ i ⋆2ω is a holomorphic(1,0)-form; here⋆2 is the Hodge star-operator defined
by the metric onΓ. Integrating this form then defines the mapφ. Using this coordinate
representation we can reduce the problem of solving the Laplace equation onΓ to that of
solving the Euclidean Laplace equation onR, with periodic boundary conditions. This can
easily be done using a Fourier representation. In this case,as in the case of genus 0, the
Riemann-Hilbert step is not needed, as the Fourier representation automatically imposes
the needed periodic boundary conditions.

If Γ is a torus of revolution, then the conformal coordinate can be found quite explicitly.
Under this hypothesis, there are periodic functions(r(t),z(t)) defined onR so thatΓ is the
image of the map

(t,s) → (r(t)coss, r(t)sins,z(t)). (4.2)

In these coordinates the metric on the surface takes the form

g = r2(t)ds2 +[(r ′(t))2 +(z′(t))2]dt2. (4.3)

Without loss of generality we can assume that the generator is parameterized by arclength,
that is:

(r ′(t))2 +(z′(t))2 = 1. (4.4)
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The area form is then given by
dA= r(t)ds∧dt. (4.5)

A simple calculation shows that
ω = ds (4.6)

is a harmonic form with

⋆2ω =
dt

r(t)
. (4.7)

We introduce the new parameter

b(t) =

t
Z

0

dτ
r(τ)

. (4.8)

If we let t(b), denote the inverse oft → b(t), then the map

(b,s) → (r(t(b))coss, r(t(b))sins,z(t(b))) (4.9)

is a conformal map from a rectangleR⊂ C to Γ ⊂ R
3. Suppose the rectangle isR= [0,S]×

[0,B]; the Laplace equation onΓ takes the form

1
ρ(b)2 [∂2

s + ∂2
b]u = f (s,b), (4.10)

whereρ is B-periodic and bothu and f areS-periodic insandB-periodic inb. As usual this
equation is solvable if and only ifρ2(b) f (s,b) has mean 0. In this case,

ρ(b)2 f (s,b) = ∑
(m,n) 6=(0,0)

fmne
2πims

S e
2πinb

B , (4.11)

and

u(s,b) = −S2B2

4π2 ∑
(m,n) 6=(0,0)

fmne
2πims

S e
2πinb

B

m2B2 +n2S2 . (4.12)

The Fourier representation ofρ2 f and the solution of the Laplace equation can both be
accomplished with spectral accuracy by samplingf on a uniformly spaced grid (in the
(s,b)-coordinates) and using the standard discrete Fourier transform to approximate the
Fourier integrals and inverse Fourier transform.

5 Numerical Examples

We close this paper by considering the special case of a circular torus, so that the generator
of Γ is a round circle. We can parameterizeΓ on the rectangle−π ≤ t < π and 0≤ s< 2π
by setting:

(r(t),z(t)) = (R+ r cost, r sint), (5.1)
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with r < R. This is not a conformal representation. The metric induced by the embedding
into R

3 is given by

g = (R+ r cost)2
(

ds2 +
r2

(R+ r cost)2 dt2
)

. (5.2)

This parameterization of the generator has constant speed,equal tor, which is adequate for
our purposes. In this case

⋆2ω = db=
rdt

R+ r cost
, (5.3)

integrating we find that

b = µtan−1
[

λ tan

(
t(b)

2

)]
, whereµ=

2r√
R2− r2

andλ =

√
R− r
R+ r

. (5.4)

Solving we obtain that

t(b) = 2tan−1
[

1
λ

tan

(
b
µ

)]
. (5.5)

The natural parameter domain is the rectangle:

R= {(s,b) : 0≤ s< 2π, −µ
π
2
≤ b < µ

π
2
}. (5.6)

In the(b,s) coordinates the metric induced on the embedded torus takes the form

g = ρ2(b)(ds2 +db2), (5.7)

where

ρ(b) =
R− r

sin2(b/µ)+ λ2 cos2(b/µ)
. (5.8)

Because the map from the(s,b)-plane to the embedded torus is conformal, the coefficientρ
measures the metric distortion between the induced metric on the embedded torus and the
flat metricds2 + db2. A simple calculation shows that this distortion varies betweenR+ r
andR− r, and thereforeλ2 gives a measure of the variability of the mesh size in the image
domain, produced as the image of a uniform rectangular grid in the(s,b)-plane. Observe
that, in the ambient coordinates ofR

3 we have

eis =
x+ iy√
x2 +y2

and cos

(
2b
µ

)
=

R
√

x2 +y2+ r2−R2

r
√

x2 +y2
. (5.9)

Our first plots show the distortions which result from different choices of(r,R). In Fig-
ure 1(a) we show the mesh obtained with 32×32-grid withr = 1 andR= 1.2. In Figure 1(b)
we show the mesh obtained with 32× 32-grid with r = 2 andR= 16. As predicted there
is considerable variation in the size of the image grid in thefirst case whereλ2 = 1/11, as
compared to the second case, whereλ2 = 7/9.
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To test the accuracy of our algorithm, we begin with

fn = Re

[
(x+ iy)n

(x2 +y2)
n+2

2

]

gn = Re

[
(x+ iy)n

(x2 +y2)
n+2

2

][
R
√

x2 +y2+ r2−R2

r
√

x2 +y2

]
.

(5.10)

The formuæ in (5.9) show that

ρ2(b) fn(b,s) = sinnsandρ2(b)gn(b,s) = sinnscos

(
2b
µ

)
, (5.11)

and therefore the solutions to∆gun = fn and∆gvn = gn are

un =
−1
n2 sinnsandvn =

−1

n2 +
(

2b
µ

)2 sinnscos

(
2b
µ

)
. (5.12)

Our numerical experiments show that as soon as the number of samples in thes-direction
exceeds the Nyquist rate, the error in the numerical solution essentially equals the machine
accuracy (about 10−16). We show several pairs( f4,u4), ( f32,u32), and(g16,v16). in Fig-
ure 2. In these examples we taker = 1 andR= 2.

We conclude with a pair of examples involving more complicated right hand sides. In
Figure 3 we show the solution withf = cosxcos3ysin5z, and in Figure 4, the solution with
f = exp(−((x+3)2 +y2 +z2))−c. (Herec is selected so thatf has mean zero.) For these
examplesr = 1 andR= 2, moreover we use 256 points in thesdirection and 512 points in
theb-direction.
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Figure 1. Examples showing the distortion in the image grid.



Solving the Laplace Equation on a Surface 39

(a) Plot of f4 (b) Plot ofu4

(c) Plot of f32 (d) Plot ofu32

(e) Plot ofg16 (f) Plot of v16

Figure 2. Examples where the exact solution is known.
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(a) Plot of f (b) Plot ofu

Figure 3. f = cosxcos3ysinz

(a) Plot of f (b) Plot ofu

Figure 4. f = exp(−((x+3)2 +y2+z2))−c


