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Abstract

In this paper we survey recent work on the existence of an adjoint for operators on
Banach spaces and applications. In [GBZS] it was shown that each bounded linear
operatorA, defined on a separable Banach sp&¢énas a natural adjoiry* defined

on the space. Here, we show that, for each closed linear op&atefined on3,

there exists a pair of contractioAs B such thaC = AB1. We also show that, i€ is
densely defined, theB= (I — A*A)~%/2. This result allows us to extend the results of
[GBZS] (in a domain independent way) by showing that every closed densely defined
linear operator orB has a natural adjoint. As an application, we show that our theory
allows us to provide a natural definition for the Schatten class of operators in separable
Banach spaces. In the process, we extend an important theorem due to Professor Lax.

AMS Subject Classification: Primary (45); Secondary(46).
Keywords: adjoints, Banach space embeddings, Hilbert spaces.

1 Introduction

In a previous paper [GBZS], we used the fact that every separable BanachApaebe
continuously embedded in a separable Hilbert spéde show that each operatarc L[ 3],

the algebra of bounded linear operatorg&as a natural adjoint operatat € L[B]. This

means that, for example, every ideal is a star idedl[fB], and such notions as unitary,
selfadjoint, normal, etc, may be defined in (almost) the same manner as for a Hilbert space.
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Here, we show that the bounded linear operaltg#y are continuously embedded lif# |
provided thatB’ C #. (This extends a theorem of Professor Lax [LX].) Furthermore, if

B has the approximation property, then the embedding is dense. This allows us to prove
the existence of new classes of operators which naturally deserve to be called the Schatten
classes oveB in the sense that they are the restrictions of the Schatten classésm®.

(The importance of these results is they imply that the structure of separable Banach spaces,
and the linear operators which act on them, are much closer to those of Hilbert spaces than
perviously thought possible.)

2 Preliminaries

As abovel [B],L[H] denote the bounded linear operators®¥ respectively, and is a
continuous dense embedding#h The following is the major result in Gill et al [GBZS]. It
generalizes the well-known result of von Neumann [VN] for bounded operators on Hilbert
spaces.

Theorem 1. Let‘B be a separable Banach space andAdie a bounded linear operator on
‘B. ThenA has a well-defined adjoirA* defined onB such that:

1. the operatorA*A > 0 (maximal accretive),
2. (A*A)* = A"A, and
3. | + A*A has a bounded inverse.

The proof depends on the fact that, givBnthere always exist Hilbert spacg§ and
Ho such that#; € B C H,, as continuous dense embeddings, withdetermined by,
(see [GBZS]). IfAis any bounded linear operator @) we defineA* by

Arx =37 (A1) 132 3(%), 1
whereA; is A restricted ta#f, J;|3 mapsB into H'; andJ{l maps#’, onto #;.

Remark 2. Recall that, on any Hilbert spac#/, the adjoint of a linear operator is defined
asA*x = J 1A Jxfor all Jxe D(A). Thus, we see that (1) is very close to the Hilbert space
definition.

Returning to Theorem 1, it is not clear thaheed have a bounded extensior#g On
the other hand, the theorem by Lax [LX] states that:

Theorem 3. If Ais a bounded linear operator 0B such thatA is selfadjoint (i.e.(Ax y)2 =
(x,Ay)2 for all x,y, € B), thenAiis bounded or#2 and||A||,, < K||Al|5 with k constant.

SinceA*A is selfadjoint onB, it is natural to expect that the same is truesn How-
ever, this need not be the case. To get a simple counterexample, recall that, in standard
notation, the simplest class of bounded linear operator8 mB @ B, in the sense that:

BB :B— B, by Ax=(bab)x=(x,b')b.

Thus, ifb’ is in B\ H,, thend{J; 1[(A1)']d] 3} is not in #,, so thatA*A is not selfadjoint
as an operator oftb. The next result is an extension of Theorem 1. (This also corrects an
error in Theorem 6 of [GBZS].)



The Adjoint Problem on Banach Spaces 3

Theorem 4. LetAbe a bounded linear operator d@h. If B c 75, thenA has a bounded ex-
tension toL[#], with [|Al|,, <k||Al| with k constant (i.e.L[B] is continuously embedded

in L[#H]).

Proof. : For any bounded linear operatdidefined onB, let T = A*A. It is easy to see that
T extends to a closed linear operafoon 7. As B c 75, we see thaT is selfadjoint on

B. By Lax's theorem[T is bounded o and || A*Al|,, = [|All5, < [|A*Allz < C|A|3,
whereC = inf{M| |A*A| 5 < M[|A||%}. O

Clearly, Theorem 4 is empty unless spaces with the above properties exist. The follow-
ing theorem is a by-product of the work in [GZ].

Theorem 5. Let B be a classical Banach space. Then there exists a Hilbert sfasach
that B’ C #H.

2.1 Closed Linear operators onB

In this section, we extend Theorem 1 to the class of closed densely defined linear operators
on B. For a single opeator, this is both direct and easy (see [GZ1]), but depends on the
domain ofA and hence, orif;. A result that is independent 6f; requires additional effort.

Definition 6. If B is a bounded linear operator o8, we defindB~* to be the inverse of the
restriction ofB to the closure oB*(‘B).

Theorem 7. Suppose thas is a subset of B, ||-||), and (S, |-||') is a Banach space with
|w||" > ||w|| for eachy € S. Thens is the range of a nonnegative bounded linear operator
in B.

Proof. Since S is a subset ofB, the inclusion mapl from (S, ||-||') into (B, ||-]) is
bounded. It follows that the adjoint df, T*, is bounded from(, |- ||) to (S, ||-|I'). If
T* =U[TT*]¥2 s the polar decomposition df*, thenU is a partial isometry mapping
ontoS. SinceT is nonnegative, so id. O

Theorem 8. LetR(-) denote the range of an operator.AfB € L(‘B), then

R(A") +R(B*) = R(|A*A+B*B|Y2).

Proof. Let T* act onB % B in the normal way and represent it 88 = ( A" B > SO

0O O
(A DO «— ([ A"A+B'B 0 ]
thatT = ( B 0 > andT*T = < 0 0 > It follows that:

[R(A")+R(B")| & {0} =R(T") = R([T*T]l/z) _ R( [A*A+ B*B]1/2 0 >

0 0
= R(A*A+B*B]Y?) 5 {0}.
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Theorem 9. LetC be a closed linear operator of8. Then there exists a pair of bounded
linear contraction operatoré, B € L[8] such thaC = AB~2, with B nonnegative. Further-
more,D(C) = R(B), R(C) = R(A) and P = A*A+B*B is the orthogonal projectio~'B
ontoR(B*) = R(A*) + R(B*).

Proof. Let.§ = D(C) be the domain of and endow it with the graph norm, so thigt|’ =
W+ ||Cy]|. SinceC is linear and closed,s, |- ||') is a Banach space afidy||' > ||y
We will have use of the fact that, singeis a Banach subspace 8f it is embedded in
a Hilbert subspacgs’, (-,-)") of A, where(d, )’ = (¢, ) + (Cd,Cu).
By Theorem 7, there is a bounded nonnegative contra&iwafith B(B) = § and, for
Pes, [y =||B~*y||. Now letA=CBso that, fonp € B, we have:

IAW] = (ICBYI| < [|BY[ + [[CBY]|
= Byl = [|BBY[| = [Pw]| <[]

Hence,||Ad|| < ||$|| so thatA is a contraction and = CB = (AB~1)B = A(B~1B) = AP.
Also, sinceA andB are bounded omB, they have extensions t&. With the same notation,
we also have orif:

(0, [A"A+B"B|Y) = (B, By) + (CBh,CBY)
= (B¢,BY) = (B™'B$,BBY) = (P, Py) = (¢, Py).

Hence A*A+ B*B = P and, sinceR(A*) + R(B*) = R([A*A+ B*B]Y/?), R(A*) + R(B*) is
closed and equal to the closureR{B*) on #, the same is true for the restriction®(note
thatB is selfadjoint). O

Let V(‘B) be the set of contractions a{B) the set of closed densely defined linear
operators orB. The following improvement of Theorem 9 is possible when the ope€ator
is also densely defined. This extends a theorem of Kaufman [KA] to Banach spaces.

Theorem 10. The equatiork (A) = A(l — A*A)~%/2 defines a bijection fronv () onto
C(‘B), with inverseK ~1(C) = C(I +C*C) /2,

Proof. Let A € V(B) and seB = (I — A*A)Y/2, which is easily seen to be positive and in
V(B). It follows thatK(A) = AB~! andA*A+ B2 = | so that, by the proof of Theorem
9, we see thaK(A) is a closed linear operator db. Since the domain dk(A) is B(‘B),
which is dense irB, K(A) is in C(‘B). For the opposite direction, @ € C(B), using the
same notation, le€ be the extension t&d/. Then, by Theorem 9 there exists a pair of
bounded linear contraction operaté(s < L[#] such thaC = AB~* with B positive with
rangeD(C) andA*A+ B2 = |. Furthermore, for each nonzegoc #, Hq)Hi[ - HA¢H§{ =
||Bc|)||§{ > 0. Thus,A € V(#H) with K(A) = C, so that the restriction o € V(B) and
K(A) =Con 3.

Now, the graph o€ in # is the set of al{ (Bd,Ad),d € H} , so that C = {(@, V) €
H x H} such that(@,Ad) . = (P, Bd) 4, or (A*Q, )4 = (BY,d), for all ¢ € H, so that
C* = B~!A*. Thus, the same is true for the restrictiorQjfto B. It is clear that +C*C is
an invertible linear operator with bounded inverse and, for @a€hB, we have that

¢ =B%+B (1 -B?B 1B%
= (1+BA*AB 1)B%¢p = (1 +C*C)B?}.
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It follows that(l +C*C)~! = B? and thereforeA = CB=C(l +C*C) Y2=K~1(C). O

Corollary 11. Let ‘B be a separable Banach space andAebe a closed densely defined
linear operator onB. ThenA has a well-defined adjoik* defined onB such that:

1. the operatorA*A > 0 (maximal accretive),
2. (A*A)* = A'A, and

3. | +A*A has a bounded inverse.

2.2 Semigroups of Operators

In this section we introduce some basic results from the theory of semigroups of operators.
Our purpose is to provide background material that will be required later. We use a fixed
separable Banach space o@rthe complex numbers, and assume, when convenient, that
B = KS?[R"] (see [GZ]). The basic references are Goldstein [GS] and Pazy [PZ], where
complete proofs can be found.

Definition 12. A family of linear operatorgS(t),0 <t < «} (not necessarily bounded)
defined onD C B, is a semigroup if

1. S(t+9)$p = St)S(s)¢ for ¢ € D, the domain of the semigroup.

2. The semigroup is said to be strongly continuodsinici)‘S(t +1)p =S(t)p forall ¢ €
—
D, t>0.

3. Itis said to be a&Co-semigroup if it is strongly continuouS(0) =1, and!ing)S(t)q) =¢
forall ¢ € B.

4. S(t) is aCp-contraction semigroup ifS(t)|| < 1.

Definition 13. The linear operatoA defined by
D(A) = {¢ cB ‘Itim $HSt)d — o] exists} and

.
Ap=lim Hisp 4] = !

for ¢ € D(A)

t=0
is the infinitesimal generator of the semigrof) andD(A) is the domain oA.

Definition 14. For eachA > 0, we define the Yosida approximator bf; = AARA,A) =
AR\ A) — Al

Theorem 15. LetA be a closed linear operator with(A) = B. If the resolvent sgt(A) of
AcontainsR* and, for everyA > 0, ||[R(A\,A)| 5 <A1, then

1. AIim Ad=Ap ford e D(A),
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2. A, is a bounded generator of a contraction semigroup and, for gaehB, A, 1> 0,
we have:

€0 -] <tflMmd—Awb,-
Definition 16. LetA be a linear operator or3. A is said to be dissipative if
Re(Ad, f3) < Oforall ¢ € D(A).

Definition 17. LetA be a closed dissipative linear operator wii{A) dense inB. If there
is aAg such thatRan Aol — A) = B, thenAis said to be m-dissipative.

2.3 Generalized Yosida Approximator

If all we know is thatA is the generator of a strongly continuous semigrodp = exp(tA), t >
0, on B, this is not enough to ensure thaahas a Yosida Approximator. Unfortunately, for
general strongly continuous semigroufpsnay not have a bounded resolvent. The follow-
ing (artificial example) shows what can (and will) happen in some real cases.

Example 18. Let # = HY(R") be the Hilbert spacgoverR) of functions mappin®" to
itself, which vanish at infinity. Consider the Cauchy problem:

%u(xjt) = a|x|u(x,t), u(x,0) =f(x),

wherea = [T sign(x). LetT(t)f(x) = &3*/(x), wherex = [xq,--- ,X,|'. Itis easy to see
that T (t) is a semigroup orH with generatorA such thatAf(x) = a|x|f(x). It follows that
u(x,t) = St)f(x) solves the above initial-value problem. If we compute the resolvent, we
get that: 7
® 1
RAAF(X) = e Mexp{—t|x|H(x)dt = ———f(x).
A = e exp{—t |} 0x)dt = 3

It is clear that the spectrum & is the real line, so thaR(A,A) is an unbounded operator
for all real A. However, it can be checked that the bounded linear operator

Ay = ah[x|/[A +[x]]
converges strongly t& (onD(A)) asA — o, and

lim Ty (0 () = T(OF ().

We do not prove this since it is a special case of the next theorem.

As an application of our extension theory, we will show that the Yosida approach can be
generalized in such a way as to give a contractive approximator for all strongly continuous
semigroups of operators @B. For any closed densely defined linear oper#tan B, let
T =—[A*AY2 T = —[AA7Y2, Since—T(—T) is maximal accretiveTl (T) is m-dissipative
and hence, generates a contraction semigroup. We can nowAwvaseA = UT, where
U is a partial isometry. Defind, by Ay = AARA, T). Note thatAy = AUTR\,T) =
AMUR(A, T) — AU and, althougiA does not commute witR(A, T), we havehAR\, T) =
ARA,T)A.
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Theorem 19. For every closed densely defined linear operaian B, we have that
1. A, is a bounded linear operator arldn, ., A\¢ = Ad, for all ¢ € D(A),
2. exptAy] is a bounded contraction far> 0, and

3. if Agenerates a strongly continuous semigrdyp) = exptAj onD fort > 0, D(A) C
D, thenlim)_ ||exptAy]¢ — exptAl¢p||z = Ofor all ¢ € D.

Proof. : To prove (1), leth € D(A). Now use the fact thdim)_.,AR(A, T)d = ¢ andAyd =
AR(A, T)Ad. To prove (2), usé\, = AU RN, T)—AU, ||AR(A,T)||g =1,and||U||g =1to
get that||exp[t)\2U RN, T) —tAU]||3 < exp[—tA||U || 5] exptA||U || 5| AR, T)|| 5] < 1.
To prove (3), let > 0and$ € D(A). Then
YA t
d.
| expltAlp —expltAolls = || o e eMods]s
YA t
< [ (A— Ay )] || 5
0
YA t
< A=) s
Now use [[Ae9]]l5 = [[ARN, T)e4A0]||5 < [|[€A0][|5 to get ||[(A—Ay)ed]||s <
2||[e*AAd]|| 3. Now, since||[e*Ad]||5 is continuous, by the bounded convergence theorem
we havelim), _,, |[exptAld — expltAy]o]|s < o limy_ ||[(A—Ay)eD] || zds= 0. O

Theorem 20. EveryCo-semigroup of contractions dr?[R"], {S(t),0 <t < o}, extends to
a Co-semigroup of contractions dtS2[R"].

2.4 Schatten Classes

In this section, we show how our approach allows us to provide a natural definition for the
Schatten class of operators #n

Let K(B) be the class of compact operators®rand letF(B) be the set of operators
of finite rank. Recall that, for separable Banach spa&gB,) is an ideal that need not be
the maximal ideal i [B]. If M(B) is the set of weakly compact operators &h(@) is the
set of operators that map weakly convergent sequences into strongly convergent sequences,
it is known that both are closed two-sided ideals in the operator norm, and, in general,
F(B) C K(B) C M(B) andF(B) C K(B) C N(‘B) (see Dunford and Schwartz [DS], pg.
553). For reflexive Banach spad&$3) = N(B) andM(B)=L[3B]. For the space of con-
tinuous function<C[Q], on a compact Hausdorff spa€e Grothendieck [GR] has shown
thatM(B8)=N(B). On the other hand, it is shown in Dunford and Schwartz [DS] that, for a
positive measure spade, =, 1), onL1(Q, 3 p), M(B) C N(B).

We assume thaB has the approximation property (i.e., every compact operator can be
approximated by operators of finite rank). Recall that, gi#Berthere always exist and
#H, such that#; C B C 75, as continuous dense embeddings, withdetermined by,
(see [GBZS]). LefA be a compact operator ahand letA be its extension tds. For each
compact operatoh on 75, there exists an orthonormal set of functidifs, [n > 1} such
that

A= ba(A) (- 6n),Udn,
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where theu, are the eigenvalues p&"Aj%/2 = |A|, counted by multiplicity and in decreasing

order, andJ is the partial isometry associated with the polar decompositioh-efU \A\

Without loss, we can assume that the set of functiffis|n > 1} is contained inB and

{¢n |n> 1} is the normalized version iB. If Sy[#5] is the Schatten Class of ordprin
L[#4], it is well-known that, ifA € S o[ 2], its norm can be represented as:

A = (TR AP = {57 (R A dn) 22} = (57 (A}
Definition 21. We define the Schatten Class of orgen L[B] by:
Sp[B] = Sp[H] NL[B] |
SinceA is the extension oA e Sp|B], we can represert on B as
A= ta(A) (. 15(0))Udn.

wheref3(¢) = J2(¢n)/H¢nH§ is the Steadman duality map associated With The corre-
sponding norm oA on S,[B] is defined by:

o 1/
117 = {3, (Ao, £50)72)

Theorem 22. LetA € Sp[], then||A||” = HA_‘HZ[Z

Proof. It is clear that{¢, [n > 1} is a set of eigenfunctions f&k*A on B. Furthermore,
by our extension of Lax’s Theorerdy*A is selfadjoint and the point spectrum AfA is
unchanged by its extension #. It follows thatA*A¢, = |un(A)\2¢n,

A S 1 A kol
A"A n,fn == A"A ns¥n n,
(A"Adn, Fr(9)) ||¢n||§( n, bn), = H¢nH2(¢ n)2 = [,

and
A2 = {30 (A A, £500)72) 7 = (30 Il P = A%,
O

Lemma 23. If B has the approximation property, the embeddind [®] in L[#£4] is both
continuous and dense.

Proof. Recall that the embedding is continuous by Theorem 4. Sihbas the approxi-
mation property, the finite rank operatdt&B) on B are dense in the finite rank operators
F(#H) on #,. It follows thatSy[B] is dense inSp[#>]. In particular,S1[B] is dense in
S1[#5] and, sinceS: [Ha|* = L[Ho], we see thabs[B]* = L[B] must be dense ih[#5]. O

Itis clear that much of the theory of operator ideals on Hilbert spaces extend to separable
Banach spaces in a straightforward way. We state a few of the more important results to
give a sense of the power provided by the existence of adjoints. The first result extends
theorems due to Weyl [WY], Horn [HO], Lalesco [LE] and Lidskii [LI]. (The methods of
proof for Hilbert spaces carry over without much difficulty.)
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Theorem 24. LetA € K(‘B), the set of compact operators @) and let{A,} be the eigen-
values ofA counted up to algebraic multiplicity. K is a mapping on0, ] which is
nonnegative and monotone increasing, then we have:
1. (Weyl)
N N
S PAn(A)) < 3 oy @ ((A))
and

2. (Horn) " N
o1 P (An(A1A2)]) <5 ) @ (Ha(A1)ba(A2)).

In caseA € S1(‘B), we have:

3. (Lalesco) " \
S 1 Aa(A) < TN n(A)
and

4. (Lidskii) N
S i hn(A) =Tr(A).

2.5 Discussion

In a Hilbert space# the Schatten class&g () are the only ideals ik () andSy(#) is
minimal. In a Banach space, this is far from true. For a fairly complete review up to 1975,
see Retherford [RE]. We limited this discussion to a few of the major topics in the history
of the subject. First, Grothendieck [GR] defined an important class of nuclear operators as
follows:

Definition 25. If A € F(‘B) (the operators of finite rank), define the idé&l(B) by:
Ni(B) = {A € F(B) [N1(A) <},

where

Ni(A) =gb{S " I fall [l [fa€ B, e B, A=S T an(-, f) }
and the greatest lower bound is over all possible representation& for

Grothendieck has shown thak (B) is the completion of the finite rank operators.
N1(B) is a Banach space with norMy(-), and is a two-sided ideal iK(‘B). It is easy
to show that:

Corollary 26. M(B),N(B) andN1(‘B) are two-sided *ideals.

In order to compensate for the (apparent) lack of an adjoint for Banach spaces, Pietsch
[PI] defined a number of classes of operator ideals for a gRe®f particular importance
for our discussion is the clag%,(‘B), defined by

00

Co(B) = {A €K(B) [Cp(A) = T, [S(A)P <0},
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where the singular numbess(A) are defined by:
s(A) =inf{||A—K]| |[rank ofK < n}.

Pietsch has shown th@t (B) C N1(‘B), while Johnson et al [JKMR] have shown that for
eachA € C1(B), Sh-1|An(A)| < 0. On the other hand, Grothendieck [GR] has provided
an example of an operatér in N1(L*[0,1]) with $7_; |[An(A)| = « (see Simon [SI], pg.
118). Thus, it follows that, in general, the containment is strict. It is known th@,(8) =
N1(‘B), thenB is isomorphic to a Hilbert space (see Johnson et al). Itis clear from the above
discussion, that:

Corollary 27. Cp(‘B) is a two-sided *ideal ifK(3B), andS1(B) C N1(‘B).

For a given separable Banach space, it is not clear how the sfa¢®s of Pietsch
relate to our Schatten Classgg‘B) (clearlySp(B) C Cp(‘B)). Thus, one question is that
of equality forSp(B) andCp(‘B). (There are many interesting research directions one can
pursue from here.)
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