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Wellposedness of the two- and three-dimensional
full water wave problem

Sijue Wu

1. Introduction

The mathematical problem of n-dimensional water wave concerns the
motion of the interface separating an inviscid, incompressible, irrotational
fluid, under the influence of gravity, from a region of zero density (i.e. air)
in n-dimensional space. It is assumed that the fluid region is below the air
region. Assume that the density of the fluid is 1, the gravitational field is
−k, where k is the unit vector pointing in the upward vertical direction, and
at time t ≥ 0, the free interface is Σ(t), and the fluid occupies region Ω(t).
When surface tension is zero, the motion of the fluid is described by

(1.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vt + v · ∇v = −k −∇P on Ω(t), t ≥ 0,

divv = 0, curlv = 0, on Ω(t), t ≥ 0,

P = 0, on Σ(t)
(1,v) is tangent to the free surface (t, Σ(t)),

where v is the fluid velocity, P is the fluid pressure. It is well-known that
when surface tension is neglected, the water wave motion can be subject
to the Taylor instability [30, 3, 2]. Assume that the free interface Σ(t)
is described by ξ = ξ(α, t), where α ∈ Rn−1 is the Lagrangian coordinate,
i.e. ξt(α, t) = v(ξ(α, t), t) is the fluid velocity on the interface, ξtt(α, t) =
(vt +v ·∇v)(ξ(α, t), t) is the acceleration. Let n be the unit normal pointing
out of Ω(t). The Taylor sign condition relating to Taylor instability is

(1.2) −∂P

∂n
= (ξtt + k) · n ≥ c0 > 0,

point-wisely on the interface for some positive constant c0. In [32, 33], we
showed that the Taylor sign condition (1.2) always holds for the
n-dimensional infinite depth water wave problem (1.1), n ≥ 2, as long as
the interface is non-self-intersecting; and the initial value problem of the
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water wave system (1.1) is uniquely solvable locally in time in Sobolev spaces
for arbitrary given data. Earlier work include Nalimov [20], Yosihara [36]
and Craig [11] on local existence and uniqueness for small data in 2D. Notice
that if surface tension is not zero, or if there is a bottom, or nonzero-vorticity,
the Taylor sign condition need not hold. Local wellposedness for water wave
motion with the effect of surface tension, bottom and a non-zero vorticity,
under the assumption (1.2) can be found in [1, 5, 6, 15, 18, 19, 21, 25, 37].

To understand the large time behavior of solutions for the water wave
problem (1.1), it is necessary to understand the nature of its nonlinearity.

From the fluids literature [12], we know that “wavelengths which are
generated in the open ocean can be very large; swell as long as 800m between
crests has been recorded. The wave heights are limited, the theoretical limit
being about one seventh of the wave length. Records of giant waves have to
be regarded with some caution, and a survey taken from sailing ships’ logs
showed that 45% of waves are less than 1.25m in height between trough and
crest, with only 10% greater than 6m. Nevertheless there is a reliable record
of a wave 34m in height.

We shall see that waves of different wavelengths travel at different speeds,
so that a giant wave maybe produced for a short time by a combination of
shorter and longer waves. However, in some parts of the world the occurrence
of giant waves is apparently more frequent, for example off the east coast
of South Africa, where long waves originating in the ‘roaring forties’ meet
the Agulhas current flowing towards them. Adverse currents amplify waves
and can bend them to give a focusing effect. There are numerous reports
of ships being damaged by waves in this area. In 1973 two large ships were
damaged.... Something similar probably accounted for the disappearance of
the Waratah, a liner on only her second voyage, in 1909. No trace of her
was ever found, although there had been other ships in the area at the time,
including sailing ships, which had not been in difficulties.”

Such giant waves is the so called rogue waves. From the above descrip-
tion it seems that rogue waves can appear in perfectly clear weather in open
ocean. Conjectures on possible causes include: diffractive focusing due to
certain coastal shapes; focusing by currents; and nonlinear effect–such as
that of a focusing nonlinear Schrödinger equation.

In our recent work [34, 35] we focused on understanding the nonlinear
effect. We therefore assumed there is no wind, no coast, no bottom. For
large scale waves such as those in open ocean, it is reasonable to neglect
surface tension. We studied the behavior of solutions of system (1.1) for
large time for data that are small in appropriate senses.

In [34, 35], we showed that for the 2D water wave problem (1.1) (n =
2), the quantity Θ = (I − H)y, under an appropriate coordinate change
k = k(α, t), satisfies an equation of the type

(1.3) ∂2
t Θ − i∂αΘ = G
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with G consisting of nonlinear terms of only cubic and higher orders. Here
H is the Hilbert transform related to the water region Ω(t), y is the height
function for the interface Σ(t) : ξ = (x(α, t), y(α, t)), α ∈ R. Similarly, for
the 3D water wave problem (1.1) (n = 3), if Σ(t) : ξ = (x(α, β, t), y(α, β, t),
z(α, β, t)), (α, β) ∈ R

2 is the interface at time t, and H is the Hilbert trans-
form associated to the water region Ω(t), N = ξα×ξβ is the outward normal,
then the quantity θ = (I − H)z satisfies such an equation

(1.4) ∂2
t θ − aN ×∇θ = G

where G is a nonlinearity of cubic and higher orders in nature. Further-
more we found a coordinate change k that transforms (1.4) into an equation
consisting of a linear part plus only cubic and higher order nonlinear terms.
Using these favorable structures, we showed that for water waves in two
space dimensions, if initially the amplitude of the interface (and finitely
many of its derivatives) is of size O(ε) and the kinetic energy is of size O(ε2)
and small, then there exists a unique classical solution of the water wave
equation (1.1) (n = 2) for a time period [0, ec/ε]; during this time period,
the amplitude of the interface remains small and is as regular as the initial
interface. Here c is a constant independent of ε (c.f. Theorem 3.8 and [34]).
For water waves in three space dimensions, if initially the steepness of the
interface and the fluid velocity on the interface (and finitely many of their
derivatives) are small, then there exists a unique classical solution of the
water wave equation (1.1) (n = 3) for all time, and the interface remains to
have small steepness and is as regular as the initial interface for all time (c.f.
Theorem 3.9 and [35]). We note that in our result for the 3D water waves,
no direct assumptions are made to the height of the initial interface and the
velocity field in the fluid domain. In particular, the amplitude of the initial
interface can be arbitrary large, the initial kinetic energy 1

2‖v‖2
L2(Ω(0)) can

be infinite. We also note that although our result for the 2D water waves
[34] requires the initial kinetic energy 1

2‖v‖2
L2(Ω(0)) being small, while viewed

as a special case of 3D where the wave is constant in one direction, its 3D
energy in fact is infinite (∞× ε2 = ∞).

Before moving on to some detailed discussions, we mention the main
idea in proving the Taylor sign condition (1.2) for the water wave equation
(1.1):

Applying div to both sides of the Euler equation, and using the assump-
tion that curlv = 0, we find

ΔP = −|∇v|2 ≤ 0 in Ω(t).

Therefore from P = 0 on the interface Σ(t) and the maximal principle, we
have −∂P

∂n ≥ 0. For a precise proof of the fact that the Taylor sign condition
(1.2) always holds, we refer to [32, 33].

We now give some details on what we have obtained so far (c.f. [32,
33, 34, 35]). Notice that equation (1.1) is a nonlinear equation defined in
moving domains. It is difficult to obtain results directly from it. One key
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step in our approach is to rewrite (1.1) into forms from which results and
informations can be obtained.

2. Local wellposedness of the 2D and 3D water wave problems

We first discuss some of the main ideas in proving the local in time
well-posedness of the water wave system (1.1) [32, 33]. For clarity, we
mainly write in terms of the 2D water wave, we will only mention the main
differences and ideas for 3D.

Let ξ = ξ(α, t) = (x(α, t), y(α, t)), α ∈ R, be the equation of the free
interface Σ(t) at time t in Lagrangian coordinates α. In what follows, we
regard the 2-D space as a complex plane and use the same notation for a
complex form ξ = x + i y and a point ξ = (x, y). So ξ̄ = x − i y. We write
[A, B] = AB − BA.

As we know it is difficult to solve (1.1) directly since it is defined on
moving domains. The first step used in [32, 33] in solving (1.1) was to
reduce it to an equivalent equation defined on the moving interface Σ(t).1

This was done based on the following observations. First notice that the
second equation in (1.1): divv = 0, curlv = 0 implies that the complex
conjugate of the velocity field v̄ is holomorphic in Ω(t). Therefore the trace
of the velocity on Σ(t): ξt(·, t) = v(ξ(·, t), t) satisfies ξ̄t = Hξ̄t, where

(2.1) Hf(α, t) =
1
πi

p.v.

∫
f(β, t)ξβ(β, t)
ξ(α, t) − ξ(β, t)

dβ

is the Hilbert transform on Σ(t) associated with the parameterization
ξ = ξ(α, t). Now from the third equation in (1.1): P = 0 on Σ(t), we
know ∇P points in the direction normal to Σ(t), therefore −∇P = iaξα,
with a = −∂P

∂n
1

|ξα| . So the trace of the Euler equation on Σ(t) can be written
as ξtt + i = iaξα, and the system (1.1) is equivalent to the following system
on the interface Σ(t):

(2.2)

{
ξtt + i = iaξα

ξ̄t = Hξ̄t

However (2.2) is fully nonlinear. To solve (2.2), we further reduced it into a
quasilinear equation [32, 33], so that on which the classical energy method
could be applied. This was done by taking one derivative to t to the first
equation in (2.2). Taking derivative to t to the first equation in (2.2), we
got

(2.3)

{
ξttt − iaξtα = iatξα

ξ̄t = Hξ̄t

1The approaches of Nalimov [20], Yosihara [36] and Craig [11] were also to reduce
the system (1.1), for n = 2 only, to a system defined on the moving interface.
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Using the fact that ξ̄t = Hξ̄t, we deduced

(I − H)(−iatξ̄α) = (I − H)(ξ̄ttt + iaξ̄tα)

= [∂2
t + ia∂α, H]ξ̄t

= 2[ξtt, H]
ξ̄tα

ξα
+ 2[ξt, H]

ξ̄ttα

ξα
− 1

πi

∫
(
ξt(α, t) − ξt(β, t)
ξ(α, t) − ξ(β, t)

)2ξ̄tβ dβ(2.4)

Further using the fact that a and at are real valued gave

(2.5)
(I + K∗)(at|ξα|)

= Re(
iξα

|ξα|{2[ξtt, H]
ξ̄tα

ξα
+ 2[ξt, H]

ξ̄ttα

ξα
− 1

πi

∫
(
ξt(α, t) − ξt(β, t)
ξ(α, t) − ξ(β, t)

)2ξ̄tβ dβ})

here Reξ indicates the real part of ξ,

K∗f(α, t) = p.v.

∫
Re{−1

πi

ξα

|ξα|
|ξβ(β, t)|

(ξ(α, t) − ξ(β, t))
}f(β, t) dβ

is the adjoint of the double layered potential operator K in L2(Σ(t), dS).
Notice that I + K∗ is invertible on L2(Σ(t), dS). From (2.5) we see that
at|ξα| has the same regularity as that of ξ̄tt and ξ̄t.

We now rewrite (2.3) as

(2.6)

⎧⎨
⎩ξttt − iaξtα =

ξtt + i

|ξtt + i|at|ξα|
ξ̄t = Hξ̄t,

and use (2.5) for at|ξα|. Notice that i∂αξt = −∇nξt, and the Dirichlet-
Neumann operator ∇n is a positive operator. As we have seen the Taylor
sign condition (1.2) holds, i.e. a > 0 [32, 33]. Therefore (2.6) is a weakly
hyperbolic quasi-linear system with the right hand side of the first equa-
tion in (2.6) consisting of terms of lower order derivatives of ξt. The lo-
cal in time wellposedness of (2.6)-(2.5) in Sobolev spaces (with (ξt, ξtt) ∈
C([0, T ], Hs+1/2 × Hs)) was then proved by energy estimates and a fixed
point iteration argument. Through establishing the equivalence of (1.1)
with (2.6)-(2.5), we obtained the local in time well-posedness in Sobolev
spaces of the full water wave equation (1.1). For details of the proof, we
refer the readers to [32, 33].

We now mention some of the main ideas in deriving the quasi-linear
system for the 3D water waves. To derive a similar equivalent quasilinear
system for the 3D water wave equation (1.1) (n = 3), naturally we looked for
a suitable counterpart in 3D of the equation for the trace on the interface
of “divv = 0, curlv = 0”. We found Clifford analysis offers a suitable
framework for 3D water waves. Let’s recall the basics of Clifford algebra, or
in other words, the algebra of quaternions C(V2) (c.f. [14]). Let {1, e1, e2, e3}
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be the basis of C(V2), satisfying

(2.7) e2
i = −1, for i = 1, 2, 3, eiej = −ejei, i �= j, e3 = e1e2.

Let D = ∂xe1 + ∂ye2 + ∂ze3. By definition, a Clifford-valued function F :
Ω ⊂ R

3 → C(V2) is Clifford analytic in domain Ω if DF = 0 in Ω. Therefore
F =

∑3
i=1 fiei is Clifford analytic in Ω if and only if divF = 0 and curlF = 0

in Ω. Furthermore we know Clifford analytic functions have the property
that F is Clifford analytic in Ω if and only if F = HΣF , where

(2.8) HΣg(α, β) = p.v.

∫∫
K(η(α′, β′)− η(α, β)) (η′α′ × η′β′) g(α′, β′) dα′dβ′

is the 3D version of the Hilbert transform on Σ = ∂Ω : η = η(α, β), (α, β) ∈
R

2, with normal ηα × ηβ pointing out of Ω, and

Γ(η) = − 1
ω3|η| , K(η) = −2DΓ(η) = − 2

ω3

η

|η|3 ,

ω3 is the surface area of the unit sphere in R
3.

Therefore if ξ = ξ(α, β, t), (α, β) ∈ R
2 is the free interface Σ(t) in

Lagrangian coordinates (α, β) at time t, with N = ξα × ξβ pointing out
of the fluid domain, we can rewrite the 3D water wave system (1.1) (n = 3)
as (c.f. [33])

(2.9)

{
ξtt + e3 = aN

ξt = HΣ(t)ξt

where a = − 1
|N |

∂P
∂n . From the nonlinear system (2.9) we derived the quasi-

linear system (cf. (5.21)-(5.22) of [33]) for the 3D water waves, and the
local in time well-posedness of the 3D full water wave system was therefore
obtained from energy estimates and a fixed point iteration argument to the
quasi-linear system [33].

Before ending this section, we point out that the quasilinear system (2.6)-
(2.5) (and (5.21)-(5.22) of [33] for 3D water waves) is coordinate invariant.

Let Ugf(α, t) = f ◦ g(α, t) = f(g(α, t), t). For fixed t, let k = k(α, t) :
R → R be a diffeomorphism and kα > 0. Let k−1 be such that k◦k−1(α, t) =
α. Define

(2.10) ζ = ξ ◦ k−1, b = kt ◦ k−1 and A ◦ k = akα

Let

Dt = U−1
k ∂tUk = ∂t + b∂α

be the material derivative. By a simple application of the chain rule, we have

U−1
k (∂2

t − ia∂α)Uk = D2
t − iA∂α,



WELLPOSEDNESS OF THE 2D AND 3D WATER WAVE PROBLEM 169

and equation (2.6) becomes

(2.11)

⎧⎨
⎩(D2

t − iA∂α)Dtζ = (at|ξα|) ◦ k−1 D2
t ζ + i

|D2
t ζ + i|

Dtζ = HDtζ

with

(I + K∗)((at|ξα|) ◦ k−1)

= Re(
iζα

|ζα|{2[D2
t ζ,H]

∂αDtζ

ζα
+ 2[Dtζ,H]

∂αD2
t ζ

ζα

− 1
πi

∫
(
Dtζ(α, t) − Dtζ(β, t)

ζ(α, t) − ζ(β, t)
)2∂βDtζ(β, t) dβ})(2.12)

and

Hf(α, t) = U−1
k HUkf(α, t) =

1
πi

p.v.

∫
f(β, t)ζβ(β, t)

ζ(α, t) − ζ(β, t)
d β,(2.13)

K∗f(α, t) = p.v.

∫
Re{−1

πi

ζα

|ζα|
|ζβ(β, t)|

(ζ(α, t) − ζ(β, t))
}f(β, t) dβ.(2.14)

Notice the remarkable similarities between equations (2.6)-(2.5) and (2.11)-
(2.12). In particular, the structures of the terms in (2.6)-(2.5) do not change
under the change of variables. This makes it convenient for us to work
in another coordinate system and to choose a different coordinate system
when there is advantage to do so. In fact, using (2.11)-(2.12) (and the
corresponding 3D version) one can prove the local in time well-posedness of
the water wave problem in this arbitrarily chosen coordinate system using
the same analysis as in [32, 33].

We now turn to the question of long time behavior of the solutions for
the water wave equation (1.1) for small initial data.

3. Global and almost global well-posedness of the 2D and 3D
water wave problem

Our study of the global in time behavior of the water wave equation (1.1)
further uses two new ideas, one is the dispersive aspect of the water wave
motion, another is a better understanding of the nature of the nonlinearity
of (1.1).

Let u = ξt. Linearizing the quasi-linear system (2.6)-(2.5) (or the quasi-
linear system (5.21)-(5.22) of [33] for 3D water waves) at the zero solution,
we obtain

(3.1) ∂2
t u + |D|u = F (ut, |D|u), (α, t) ∈ R

n−1 × R

where |D| =
√−Δ, Δ is the Laplacian in R

n−1 for n-D water waves, F
consists of the nonlinear terms. It is not surprising that F contains quadratic
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nonlinear terms. We know the dispersion relation of the free equation

(3.2) ∂2
t u + |D|u = 0

is

(3.3) ω2 = |k|
for plane wave solutions u = ei(k·α+ωt). So waves of wave number k travel
with phase velocity ω

|k| k̂, where k̂ = k
|k| , equation (3.1) is dispersive. We

know for a large class B of smooth initial data, the solution of the linear
equation (3.2) exists for all time and remains smooth, and its L∞ norm
decays with rate 1/t

n−1
2 . But nonlinear interactions can cause blow-up of

the solutions at finite time. So to answer the question that for small data
in B, for how long does the solution of the nonlinear equation (3.1) remain
smooth, we need to know for how long does the linear part of the equation
(3.1) remain dominant. The weaker the nonlinear interaction, the longer
the solution remains smooth. For small data, quadratic interactions are in
general stronger than the cubic and higher order interactions.

To illustrate this idea, we look at the following model equation with the
(p + 1)th-order nonlinearity:

(3.4) ∂2
t u + |D|u = (∂tu)p+1, (α, t) ∈ R

n−1 × R

Suppose we can prove such decay estimates for the solution: for i ≤ s − 10,

|∂i∂tu(t)|L∞ � (1 + t)−
n−1

2 Es(t)1/2

where ∂ is some kind of derivatives,

Es(t) =
∑
|j|≤s

∫
|∂j∂tu(α, t)|2 + |∂j |D|1/2u(α, t)|2 dα

Then we can derive energy estimates for s ≥ 20,

d

dt
Es(t) � (1 + t)−

(n−1)p
2 Es(t)p/2+1

therefore

Es(0)−p/2 − Es(T )−p/2 �
∫ T

0
(1 + t)−

(n−1)p
2 dt

Heuristically, we expect to prove existence of solutions of (3.4) for as long as
the energy Es(t) remains finite. If p = 1, i.e. if the nonlinear term in (3.4) is
quadratic, then for both n = 2 and n = 3, the integral

∫ ∞
0 (1 + t)−

(n−1)p
2 dt =

∞, and we would not be able to conclude solutions exist for all time (for small
initial data) from this analysis. In fact, if p = 1 and n = 2, the existence
time we expect from this analysis would be of orderO(ε−2) for data of size ε.
On the other hand, if p ≥ 2, i.e. if there is no quadratic nonlinearity, then
we can expect to prove longer time existence for solutions of (3.4) starting
from small initial data. In fact, we can expect for n = 2, p = 2, an existence
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time period of [0, ec/ε2 ]; and for n = 3, p = 2, an existence time period [0,∞)
for data of size ε, when ε is sufficiently small.

So the question now is whether there is another unknown v that satisfies
an equation of the type

(3.5) ∂2
t v + |D|v = F1(vt, |D|v, ut, |D|u)

with F1 containing no quadratic nonlinearities and ‖v‖ ≈ ‖u‖ in various
norms ‖ · ‖ involved in the course of analysis. The idea of finding such an
unknown v is the so called method of normal forms, originally introduced
by Poincaré in solving ordinary differential equations. Certainly in most
cases, one should not expect such a new unknown v exist. For quadratic
Klein-Gordon equation however, Shatah [24] succeeded in finding a bilinear
normal form transformation of the type

(3.6) v = u + B(u, u)

with B(u, u) bilinear, canceling out the quadratic nonlinear terms in the
Klein-Gordon equation, and satisfying the norm equivalence ‖u+B(u, u)‖ ≈
‖u‖ for small ‖u‖. However using the bilinear normal form ansatz v =
u + B(u, u), we found that in order to cancel the quadratic terms in the
water wave system (2.6)-(2.5) (or (5.21)-(5.22) of [33] for 3D water waves),
the bilinear form B(u, u) must contain a small divisor of the type

(3.7) B(u, u) =
∫∫

eiα·(η1+η2)m(η1, η2)û(η1)û(η2) dη1 dη2

where

lim
η1→0

|η1|m(η1, η2) �= 0

Proving ‖u+B(u, u)‖ ≈ ‖u‖ for small ‖u‖ in such norms ‖·‖ = ‖·‖L2(Rn−1) is
then impossible, as it amounts to proving such an inequality ‖f‖L2(Rn−1) �
‖∇f‖L2(Rn−1).

After further analysis and reformulation of the water wave system (2.6)-
(2.5) (or (5.21)-(5.22) of [33] for 3d water waves), we realized that the small
divisor might be attributable to the particular coordinate system used in
(2.6)-(2.5) (or (5.21)-(5.22) of [33] for 3d water waves), choosing an appro-
priate coordinate system (if it exists) might resolve this difficulty. Indeed
through much further effort, we find new unknowns and new coordinate sys-
tems for both the two and three dimensional water waves, such that in these
coordinate systems, the new unknown functions satisfy equations with no
quadratic nonlinearities.

3.1. The transformation for the 2D water waves. We give the
transformation we constructed for the 2D water waves, c.f. [34].
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Proposition 3.1 (Proposition 2.3 of [34]). Let ξ = ξ(α, t) be a solution
of the 2d water wave system (2.2). Let Π = (I−H)(ξ−ξ̄), k = k(·, t) : R → R

be a diffeomorphism. Let ζ = ξ ◦ k−1, Dtζ = ξt ◦ k−1. We have

(3.8)
(D2

t − iA∂α)(Π ◦ k−1)

=
4
π

∫
(Dtζ(α, t) − Dtζ(β, t))(Im ζ(α, t) − Im ζ(β, t))

|ζ(α, t) − ζ(β, t)|2 ∂βDtζ(β, t)dβ

+
2
π

∫ (
Dtζ(α, t) − Dtζ(β, t)

ζ(α, t) − ζ(β, t)

)2

∂β Im ζ(β, t)dβ

Here Im ζ is the imaginary part of ζ.

Notice that the right hand side of equation (3.8) is cubicly small if the ve-
locity Dtζ, the height function Im ζ of the interface (and their derivatives)
are small. But the left hand side of (3.8) still contains quadratic nonlin-
earities. We resolved this difficulty by choosing an appropriate coordinate
change k.

Let23

(3.9) k(α, t) = ξ̄(α, t) +
1
2
(I + H)(I + K)−1(ξ − ξ̄)

where K = Re H is the double layered potential operator. In Proposition 3.2
we will see that for the diffeomorphism k as defined by (3.9), the quantities
b = kt ◦ k−1 and A − 1 = (akα) ◦ k−1 − 1 are quadratically small provided
the velocity Dtζ and the height function Im ζ of the interface (and their
derivatives) are small. Therefore when the diffeomorephism k is given by
(3.9), the left hand side of (3.8) is a linear term (∂2

t − i∂α)(Π ◦ k−1) plus
some terms that are cubicly small.

Proposition 3.2 (Proposition 2.4 of [34]). Let k be as given in (3.9),
b = kt ◦ k−1 and A = (akα) ◦ k−1. We have

(3.10)
(I −H)b = −[Dtζ,H]

ζ̄α − 1
ζα

(I −H)(A − 1) = i[Dtζ,H]
∂αDtζ

ζα
+ i[D2

t ζ,H]
ζ̄α − 1

ζα

2The first coordinate change as defined in (2.18) of [34] used the Riemann mapping.
However there is no Riemann mapping in 3D. To construct the coordinate change for the
3D water waves, we realized that the only property used of the Riemann mapping is that
it is a holomorphic function in the fluid domain Ω(t) with its imaginary part equal to zero
on Σ(t). We therefore came up with a construction for the 3D water waves using this idea.
The current formulation as in (3.9) also uses this idea and is used in the author’s recent
work with N. Totz on a rigorous justification of the modulation approximation for the 2D
water wave problem [31].

3This k = k(·, t) : R → R as defined in (3.9) is a diffeomorphism provided the interface
ξ = ξ(·, t) is a small perturbation from the flat wave. This can be proved in a similar way
as that in [34].
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Therefore the quantity Π ◦ k−1 = (I − H)(ζ − ζ̄), with the coordinate
change k given as in (3.9), satisfies an equation of the type (∂2

t − i∂α)(Π ◦
k−1) = G with G containing only nonlinear terms of cubic and higher orders.
We make the following remarks:

Remark 3.3.4

1. The transformation I −H and the coordinate change k as given in
(3.9) are fully nonlinear in terms of the unknown function ζ and its
derivatives.

2. The bilinear part of the quantity (I − H)(ξ − ξ̄) has a bounded
Fourier symbol. The coordinate change k has taken care of the
difficulty of the small divisor in the Fourier symbol of the bilin-
ear normal form transformation. This can be easily seen in the
following calculation.

Assume that a normal form transformation G is exactly obtained from the
original unknown g by a change of coordinates k−1, i.e. G(X) = g(k−1(X)),
with k(X)−X a small quantity depending on g. By the chain rule we know
‖G‖ ≈ ‖g‖ in various norms ‖ · ‖ provided the norms of ∇k−1 − I are finite,
here I is the identity map. On the other hand, from the Taylor expansion

(3.11) G(X) = g(k−1(X)) = g(X) + ∇g(X) · (k−1(X) − X) + . . . ,

we know that if one only retains the linear and bilinear parts of the trans-
formation g ◦ k−1, then one gets

(3.12) G1(X) = g(X) + ∇g(X) · (k−1(X) − X)5

To obtain ‖G1‖ ≈ ‖g‖ in various norms ‖ · ‖ for small ‖g‖, one cannot
avoid engaging the smallness of the norms of the primitive k−1(X) − X,
and the dependence on ∇g in the quadratic term can also be problematic.
Therefore if one uses a full nonlinear transformation, in this case a full
coordinate change, one doesn’t encounter the problem of small divisors as
one would if one considered a transformation consisting of only linear and
bilinear forms of g.

3. Notice that the linear operator of the equation (3.8) is ∂2
t − i∂α.

The difference of (∂2
t +|D|)(Π◦k−1) and (∂2

t −i∂α)(Π◦k−1) contains
quadratic nonlinearities.

The proofs of Propositions 3.1, 3.2 use the following identities, c.f. [34].
Let ξ = ξ(·, t) define a non-selfintersecting curve, and H be the Hilbert
transform as defined in (2.1).

4For more detailed discussion of the normal form transformation of the water wave
equations, we refer the reader to Appendix C of [35].

5This suggests an algorithm to handle problems where the bilinear normal form trans-
formation contain small divisors attributable to a change of coordinates.
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Lemma 3.4 (Lemma 2.1 of [34]). Assume that ξt, ξα − 1 ∈ C1([0, T ],
H1(R)), f ∈ C1(R × (0, T )) satisfies fα(α, t) → 0, as |α| → ∞. We have

(3.13)

[∂t,H]f = [ξt,H]
fα

ξα

[∂2
t ,H]f = [ξtt,H]

fα

ξα
+ 2[ξt,H]

ftα

ξα
− 1

π i

∫ (ξt(α, t) − ξt(β, t)
ξ(α, t) − ξ(β, t)

)2
fβ dβ

[a∂α,H]f = [aξα,H]
fα

ξα
, ∂αHf = ξαH

fα

ξα

[∂2
t − ia∂α,H]f = 2[ξt,H]

ftα

ξα
− 1

π i

∫ (ξt(α, t) − ξt(β, t)
ξ(α, t) − ξ(β, t)

)2
fβ dβ

(I − H)(−iatξ̄α) = 2[ξtt,H]
ξ̄tα

ξα
+ 2[ξt,H]

ξ̄ttα

ξα
− 1

πi

∫
(
ξt(α, t) − ξt(β, t)
ξ(α, t) − ξ(β, t)

)2ξ̄tβ dβ

The proof of Lemma 3.4 is straightforwardly integration by parts, we
omit the proof.

Let Ω be a C1 domain in the complex plane. Assume that the boundary
of Ω is parametrized by z = z(α), α ∈ R, oriented in the clockwise sense,
and there exist constants μ1, μ2 > 0, such that μ1|α− β| ≤ |z(α)− z(β)| ≤
μ2|α − β| for all α, β ∈ R. Let

Hf(α) =
1
πi

p.v.

∫
zβ(β)

z(α) − z(β)
f(β) dβ

be the associated Hilbert transform. We know H2 = I in L2, we use the
convention H1 = 0. We have

Lemma 3.5 (Lemma 2.2 of [34]).

1. f(·) = F (z(·)) ∈ L2(∂Ω) is the boundary value of a holomorphic
function F in Ω if and only if f = Hf .

2. If f = Hf , g = Hg, then [f,H]g = 0.
3. For any f, g ∈ L2(∂Ω), we have [f,H]Hg = −[Hf,H]g.

The first statement in Lemma 3.5 is a consequence of the Cauchy integral
formula. The second statement follows from the fact that the product of
holomorphic functions is holomorphic. For details of the proof, see [34].

We now give the proofs for Propositions 3.1, 3.2.6 We first prove (3.8).
We have, for ξ = ξ(·, t) satisfying the water wave system (2.2),

(∂2
t − ia∂α){(I − H)(ξ − ξ̄)} = (I − H){(∂2

t − ia∂α)(ξ − ξ̄)}
− [∂2

t − ia∂α, H](ξ − ξ̄)

6The proofs are taken from [34].
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= (I − H)(−2ξ̄tt) − 2[ξt, H]
ξtα − ξ̄tα

ξα

+
1
π i

∫
(
ξt(α, t) − ξt(β, t)
ξ(α, t) − ξ(β, t)

)2∂β(ξ(β, t) − ξ̄(β, t)) dβ

= −2[ξt, H]
ξtα

ξα
+

1
π i

∫ (ξt(α, t) − ξt(β, t)
ξ(α, t) − ξ(β, t)

)2(ξ − ξ̄)β dβ

= −2[ξt, H
1
ξα

+ H̄
1
ξ̄α

]ξtα

+
1
π i

∫ (ξt(α, t) − ξt(β, t)
ξ(α, t) − ξ(β, t)

)2(ξβ − ξ̄β) dβ(3.14)

Here in the second and third steps we used (2.2) and Lemma 3.4, and in
the fourth step we inserted the term [ξt, H̄

1
ξ̄α

]ξtα to make it an at least cubic

nonlinear term. [ξt, H̄
1
ξ̄α

]ξtα = 0 because both ξ̄t and
ξ̄tα

ξα
are traces of some

holomorphic functions in Ω(t) and because of the part 2 of Lemma 3.5.
Applying the change of coordinates Uk−1 to (3.14), and expanding the first
term in the last equality, we arrive at (3.8).

Now for the proof of Proposition 3.2, we notice that for k be as given in
(3.9),

k(α, t) − ξ̄(α, t) =
1
2
(I + H)(I + K)−1(ξ − ξ̄)

is the trace on Σ(t) of a holomorphic function in Ω(t), so (3.10) can be
proved in exactly the same way as that of Proposition 2.4 in [34]: Let Φ be
the holomorphic function in Ω(t), such that

ξ̄(α, t) − k(α, t) = Φ(ξ(α, t), t).

We have,

(3.15) ξ̄t − kt = Φt + Φξξt, ξ̄α − kα = Φξξα.

Using the fact Φt, Φξ are holomorphic in Ω(t) and Lemma 3.5, we obtain

−(I − H)kt = (I − H)(ξ̄t − kt)

= (I − H){Φξξt} = [ξt, H]Φξ = [ξt, H]
ξ̄α − kα

ξα
.(3.16)

Now using (3.15), (2.2), and the fact that Φξ is holomorphic in Ω(t), we also
have

(I − H)(iaξ̄α − iakα) = (I − H)(iaξαΦξ) = [ξtt, H]Φξ

therefore using Lemma 3.4, (2.2) and (3.15),

−(I − H)(iakα) = −(I − H)(iaξ̄α) + [ξtt, H]Φξ

= −i + [ξt, H]
ξ̄tα

ξα
+ [ξtt, H]

ξ̄α − kα

ξα
(3.17)

Applying the change of variable U−1
k to (3.16), (3.17), we arrive at (3.10).
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3.2. The transformation for the 3D water waves. We study the
global in time behavior of the 3D water wave problem in the setting of the
Clifford Algebra C(V2). We further introduce the following notations.

We know an element σ ∈ C(V2) has a unique representation σ = σ0 +∑3
i=1 σiei, with σi ∈ R for 0 ≤ i ≤ 3; We call σ a vector if σ0 = 0. If

not specified, we always assume in such an expression σ = σ0 +
∑3

i=1 σiei

that σi ∈ R for 0 ≤ i ≤ 3. We define σ = e3σe3, the conjugate of σ. We
identify a point or a vector ξ = (x, y, z) ∈ R

3 with its C(V2) counterpart
ξ = xe1 + ye2 + ze3. For vectors ξ, η ∈ C(V2), we know

(3.18) ξη = −ξ · η + ξ × η,

where ξ · η is the dot product, ξ × η the cross product. For vectors ξ, ζ, η,
ξ(ζ×η) is obtained by first finding the cross product ζ×η, then regard it as
a Clifford vector and calculating its multiplication with ξ by the rule (2.7).
We write ∇ = (∂x, ∂y, ∂z). We abbreviate notations such as

HΣf(α, β) =
∫∫

K(η(α′, β′) − η(α, β)) (η′α′ × η′β′) f(α′, β′) dα′dβ′

=
∫∫

K(η′ − η) (η′α′ × η′β′) f ′ dα′dβ′ =
∫∫

K N ′ f ′ dα′dβ′.

Similar to the 2D case, we also have H2
Σ = I in L2; we use the convention

HΣ1 = 0.
We now give the transformation for the 3D water wave equation. Let

Ω(t) be the fluid region, Σ(t) be the fluid interface in R
3. Let Σ(t) :

ξ(α, β, t) = x(α, β, t)e1+y(α, β, t)e2+z(α, β, t)e3, (α, β) ∈ R
2 be the param-

eterization of the interface Σ(t) at time t in Lagrangian coordinates (α, β)
with N = ξα × ξβ pointing out of the fluid domain Ω(t). Let H = HΣ(t) be
defined as in (2.8), and

a = − 1
|N |

∂P

∂n
.

We know from [33] that a > 0 and equation (1.1) (n = 3) is equivalent to
the following nonlinear system defined on the interface Σ(t):

(3.19)

{
ξtt + e3 = aN

ξt = Hξt

Let Ugf(α, β, t) = f(g(α, β, t), t) = f ◦ g(α, β, t). For fixed t, let k =
k(·, t) = k1e1 + k2e2 : R

2 → R
2 be a diffeomorphism with its Jacobian

J(k(t)) > 0. Let k−1 be such that k ◦ k−1(α, β, t) = αe1 + βe2. Define

(3.20) ζ = ξ ◦ k−1, b = kt ◦ k−1, A ◦ ke3 = aJ(k)e3 = akα × kβ
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Let Dt = U−1
k ∂tUk be the material derivative, N = ζα × ζβ . By a simple

application of the chain rule, we know

(3.21) Dt = ∂t+b·(∂α, ∂β), U−1
k (aN×∇)Uk = AN×∇ = A(ζβ∂α−ζα∂β),

and U−1
k HUk = H, with

(3.22)

Hf(α, β, t) =
∫∫

K(ζ(α′, β′, t) − ζ(α, β, t))(ζ ′α′ × ζ ′β′)f(α′, β′, t) dα′ dβ′

We have

Proposition 3.6 (Proposition 1.3 of [35]). Let ξ = ξ(α, β, t) be a solu-
tion of the 3d water wave system (3.19). Let Π = (I − H)(ξ − ξ̄), and for
fixed t, k(·, t) : R

2 → R
2 be a diffeomorphism. We have

(3.23)
(D2

t − AN ×∇)(Π ◦ k−1)

= 2
∫∫

K(ζ ′ − ζ) (Dtζ − D′
tζ

′) × (ζ ′β′∂α′ − ζ ′α′∂β′)D′
tζ

′ dα′dβ′

−
∫∫

K(ζ ′ − ζ) (Dtζ − D′
tζ

′) × ((D′
tζ

′)β′∂α′

− (D′
tζ

′)α′∂β′)(ζ ′ − ζ̄ ′) dα′dβ′

−
∫∫

DtK(ζ ′ − ζ) (Dtζ − D′
tζ

′) × (ζ ′β′∂α′ − ζ ′α′∂β′)(ζ ′ − ζ̄ ′) dα′dβ′

We see that the second and third terms in the right hand side of (3.23)
are cubicly small provided the velocity Dtζ and the steepness of the height
function ∂α(ζ−ζ̄), ∂β(ζ−ζ̄) are small, while the first term appears to be only
quadratically small. Unlike the 2D case, multiplications of Clifford analytic
functions are not necessarily analytic, so we cannot reduce the first term at
the right hand side of equation (3.23) into a cubic form. However we notice
that Dtζ is almost analytic7 in the air region Ω(t)c, and this implies that the
first term is almost analytic in the fluid domain Ω(t). Notice that the left
hand side of (3.23) is almost analytic in the air region. The orthogonality
of the projections (I −H) and (I +H) allows us to reduce the first term to
cubic in energy estimates.

Now the left hand side of (3.23) still contains quadratic terms. Similar to
the 2D case, this difficulty is resolved by choosing an appropriate coordinate
change k. Let

(3.24) k = k(α, β, t) = ξ(α, β, t) − (I + H)z(α, β, t)e3 + Kz(α, β, t)e3

7Since the order of smallness is what matters, here a quantity X of size O(εN ), in
other words of order N , is said to be almost analytic in the fluid region Ω(t) (respectively
in the air region Ω(t)c), if (I −H)X (respectively (I + H)X ) is at most of size O(εN+1),
or in other words at least of order N + 1.
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Here K = Re H:

(3.25) Kf(α, β, t) = −
∫∫

K(ξ(α′, β′, t) − ξ(α, β, t)) · N ′f(α′, β′, t) dα′ dβ′

is the double layered potential operator. It is clear that the e3 component
of k as defined in (3.24) is zero. In fact, the real part of k is also zero. This
is because∫∫

K(ξ′ − ξ) × (ξ′α′ × ξ′β′)z′e3 dα′ dβ′

=
∫∫

(ξ′α′ξ′β′ · K − ξ′β′ξ′α′ · K)z′e3 dα′ dβ′

= −2
∫∫

(ξ′α′∂β′Γ(ξ′ − ξ) − ξ′β′∂α′Γ(ξ′ − ξ))z′e3 dα′ dβ′

= 2
∫∫

Γ(ξ′ − ξ)(ξ′α′zβ′ − ξ′β′zα′)e3 dα′ dβ′

= 2
∫∫

Γ(ξ′ − ξ)(N ′
1e1 + N ′

2e2) dα′ dβ′

So

(3.26) Hze3 = Kze3 + 2
∫∫

Γ(ξ′ − ξ)(N ′
1e1 + N ′

2e2) dα′ dβ′

This shows that the mapping k defined in (3.24) has only the e1 and e2

components k = (k1, k2) = k1e1 + k2e2. If Σ(t) is a graph with small
steepness, i.e. if zα and zβ are small, then the Jacobian of k = k(·, t):
J(k) = J(k(t)) = ∂αk1∂βk2 − ∂αk2∂βk1 > 0 and k(·, t) : R

2 → R
2 defines a

valid coordinate change (c.f. [35]).
From the following proposition we see that if k is as given in (3.24), then

b, A − 1 are consisting of only quadratic and higher order terms. Let

(3.27) K = ReH = U−1
k KUk, P = αe1 + βe2, and ζ = P + λ.

Proposition 3.7 (Proposition 1.4 of [35]). Let k be as given in (3.24).
Let b = kt ◦ k−1 and A ◦ k = aJ(k). We have

b =
1
2
(H−H)Dtζ − 1

2
[Dt,H−K](ζ − ζ̄) +

1
2
K(Dtζ − Dtζ)

(A − 1)e3 =
1
2
(−H + H)D2

t ζ +
1
2
([Dt,H]Dtζ − [Dt,H]Dtζ)

+
1
2
[AN ×∇,H](ζ − ζ̄) − 1

2
Aζβ × (∂αK(ζ − ζ̄))

+
1
2
Aζα × (∂βK(ζ − ζ̄)) + A∂αλ × ∂βλ(3.28)

Here H = e3He3.



WELLPOSEDNESS OF THE 2D AND 3D WATER WAVE PROBLEM 179

Let χ = Π ◦ k−1 with k be as defined by (3.24). Therefore the left hand
side of equation (3.23) is

(∂2
t − e2∂α + e1∂β)χ − ∂βλ∂αχ + ∂αλ∂βχ + cubic and higher order terms

The quadratic term ∂βλ∂αχ − ∂αλ∂βχ is new in 3D. We notice that this is
one of the null forms studied in [17] and we find that it is also null for our
equation and can be written as the factor 1/t times a quadratic expression
involving some “invariant vector fields” for ∂2

t − e2∂α + e1∂β . Therefore this
term is cubic in nature and equation (3.23) is of the type “linear + cubic
and higher order perturbations”.

3.3. Global in time behavior of solutions for the 2D and 3D
water waves. With equations (3.8) and (3.23) available now we can study
the global in time behavior of small solutions of the 2D and 3D water wave
equations. We point out that it is more natural to treat D2

t −iA∂α and D2
t −

AN×∇ as the main operators for the 2D and 3D water wave equations than
treating them as perturbations of the linear operators ∂2

t −i∂α and ∂2
t −e2∂α+

e1∂β. The basic idea is what we illustrated with the model equation (3.4);
we make this idea rigorous by the method of invariant vector fields. This
involves constructing invariant vector fields for the operator ∂2

t −e2∂α+e1∂β

(the invariant vector fields for ∂2
t − i∂α for the 2D water wave are available

due to the well studied Schrödinger operator i∂t − ∂2
x); proving generalized

Sobolev inequalities that give L2 → L∞ estimates with the decay rate 1/t1/2

for the 2D and 1/t for the 3D water waves respectively; using equations (3.8)
and (3.23) to show that properly constructed energies that involve invariant
vector fields remain bounded for the time period [0, ec/ε] for the 2D and for
all time for the 3D water waves for data of size O(ε). We point out that not
only does the projection (I −H) give us the quantity (I −H)(ξ− ξ̄), but it is
also used in various ways to project away “quadratic noises” in the course of
deriving the energy estimates. The almost global well-posedness for the 2D
and global well-posedness for the 3D water wave equations follow from the
local well-posedness results, the uniform boundedness of the energies and
continuity arguments. We state our main theorems.

Let |D| =
√−Δ, Hs(Rn−1) = {f | (I + |D|)sf ∈ L2(Rn−1)}, with

‖f‖Hs(Rn−1) = ‖(I + |D|)sf‖L2(Rn−1).

2D water waves. Let s ≥ 12, max{[ s
2 ] + 3, 11} ≤ l ≤ s − 1. Assume

initially that

(3.29)
ξ(α, 0) = (α, y(α)), ξt(α, 0) = u(α), ξtt(α, 0) = w(α) α ∈ R,

v(z, 0) = g(z), z ∈ Ω(0)

and the data in (3.29) satisfies the 2D water wave system (2.2). In par-
ticular ḡ is a holomorphic function in the initial fluid domain Ω(0) and
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g(ξ(α, 0)) = u(α). Let Γ = ∂α, α∂α. Assume that∑
|j|≤s−1

(‖Γjyα‖H1/2(R) + ‖Γju‖H3/2(R) + ‖Γjw‖H1(R)) < ∞.

Let

ε =
∑
|j|≤l

(‖Γjy‖H1(R) + ‖Γju‖H1(R)) +
∑

j≤l−2

‖(z∂z)j ḡ‖L2(Ω(0)).

Theorem 3.8 (2D Theorem [34]). There exist ε0 and c > 0, such that for
ε < ε0, the initial value problem (2.2)–(3.29) has a unique classical solution
for the time period [0, ec/ε]. During this time period, the interface is a graph,
the solution is as regular as the initial data and remains small. Moreover
the L∞ norm of the steepness of the interface ∂α(ξ − ξ̄), the velocity ξt and
acceleration ξtt on the interface decay at rate 1/t1/2.

3D water waves. Let s ≥ 27, max{[ s
2 ] + 1, 17} ≤ l ≤ s − 10. Assume

that initially

ξ(α, β, 0) = (α, β, z0(α, β)), ξt(α, β, 0) = u0(α, β),

ξtt(α, β, 0) = w0(α, β),(3.30)

and the data in (3.30) satisfies the 3D water wave system (3.19). Let Γ =
∂α, ∂β, α∂α + β∂β, α∂β − β∂α. Assume that∑

|j|≤s−1
∂=∂α,∂β

‖Γj |D|1/2z0‖L2(R2) + ‖Γj∂z0‖H1/2(R2)

+ ‖Γju0‖H3/2(R2) + ‖Γjw0‖H1(R2) < ∞(3.31)

Let

ε =
∑

|j|≤l+3
∂=∂α,∂β

‖Γj |D|1/2z0‖L2(R2) + ‖Γj∂z0‖L2(R2)

+ ‖Γju0‖H1/2(R2) + ‖Γjw0‖L2(R2).(3.32)

Theorem 3.9 (3D Theorem, c.f. [35]). There exists ε0 > 0, such that
for 0 ≤ ε ≤ ε0, the initial value problem (3.19)–(3.30) has a unique classical
solution globally in time. For each time 0 ≤ t < ∞, the interface is a
graph, the solution has the same regularity as the initial data and remains
small. Moreover the L∞ norm of the steepness and the acceleration on the
interface, the derivative of the velocity on the interface decay at rate 1

t .

Remark 3.10. In [34, 35] we considered only the case that the
velocity v → 0 at the spatial infinity. One can also treat water waves
with v → c = (c′, 0) a constant velocity at spatial infinity. Exact analogous
computations lead to analogues of (3.8) and (3.23). This yields results like
Theorems 3.8, 3.9 with v → c at spatial infinity.
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Remark 3.11. Theorems 3.8, 3.9 and their analogues for v → c at
spatial infinity show that there are lower bounds on the size of possible
solitary waves in 2D and 3D since the L∞ decay of small solutions rules out
small solitary waves.8

Remark 3.12. Using the advantageous structure of the equation (3.8),
N. Totz and the author obtained a rigorous justification of the modulation
approximation to the 2D water wave system (1.1) (n = 2), c.f. [31].
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