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1. Motivation and results

1.1. Global motivation. Let V be a vector space over Q, of finite
dimension d, and let q be a non-degenerate quadratic form on V . We suppose
given an orthogonal decomposition V = D ⊕W , where D is a line. Denote
by G, resp. H, the special orthogonal group of V , resp. W . The group H
is a subgroup of G, it is the subgroup of elements which act by identity on
D. We assume, for instance, d even, and, to simplify, d ≥ 4.

Denote by A the ring of adeles of Q. The group G(A) acts by right
translations on the space L2(G(Q)\G(A)) of square-integrable functions on
G(Q)\G(A). Consider a closed subspace V ⊂ L2(G(Q)\G(A)), invariant by
G(A), such that the representation π of G(A) on V is irreducible (there is
no closed invariant subspace distinct from V and {0}). Such representation
π is called automorphic of the discrete spectrum. The quotient G(Q)\G(A)
is not compact in general, but we can define the notion of “rapid decay”
for a function on G(Q)\G(A). Assume that the subset V0 of elements of
rapid decay of V is dense in V. Then we say that π is cuspidal. Let π be
such automorphic cuspidal irreducible representation of G(A) on a subspace
V ⊂ L2(G(Q)\G(A)). Similarly, let σ be an automorphic cuspidal irre-
ducible representation of H(A) on a subspace W ⊂ L2(H(Q)\H(A)). For
ϕ ∈ V0 and ψ ∈ W0, we define the integral

J(ψ,ϕ) =
∫
H(Q)\H(A)

ψ(h)ϕ(h) dh.

It is absolutely convergent and define a sesquilinear form J on W0 × V0.
A conjecture of Gross and Prasad ([GP], conjecture 14.8) says (in particu-
lar) that, if this sesquilinear form is non-zero, then a special value of some
L-function is non-zero. What is this L-function? Of course, the notion
of automorphic representation of the discrete spectrum is defined for all
reductive groups over Q (some minor modifications are needed when the
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group has infinite center). Using a conjecture of Langlands, we can asso-
ciate to π a representation π of the group GL(d,A) that is not always an
automorphic representation of the discrete spectrum, but is induced in a
certain sense of such representation of a subgroup of GL(d,A). We can
consider π as a set {π1, . . . ,πk}, where, for all i = 1, . . . , k, πi is an auto-
morphic representation of the discrete spectrum of GL(di,A), with πi �= πi′
if i �= i′, and d = d1 + · · ·+ dk. Similarly, we associate to σ a representation
σ of GL(d − 2,A), that we can consider as a set {σ1, . . . ,σl} (the group
GL(d − 2) appears here for reasons that we will explain in 1.3). Jacquet,
Piatetski-Shapiro and Shalika have defined a function L(π×σ, s) depending
of a complex parameter s. The special value appearing in the Gross-Prasad
conjecture is L(π × σ, 1/2). A more precise conjecture, due to Ichino and
Ikeda ([II]), gives an exact formula expressing the square |J(ψ,ϕ)|2 as the
product of L(π × σ, 1/2) with more technical, but more elementary terms.
Cf. 2.10 for a precise statement. When π and σ have arithmetical proper-
ties, such a formula implies rationality properties of the special value of the
L-function.

A first problem is to understand when J is non-zero. The group G(A)
is a subgroup of

∏
v G(Qv), with a suitable topology, where v describes the

places of Q, that is the set of prime numbers plus the infinite place v = ∞
for which Q∞ = R. In a suitable sense, we can decompose (π,V) as a tensor
product ⊗v(πv,Vv) where, for all v, πv is an irreducible unitary represen-
tation of G(Qv) in an Hilbert space Vv. Instead of Vv, it is convenient to
consider the dense subspace Eπv of smooth vectors of Vv. For v = p a
prime, Eπp is the subspace of the elements e ∈ Vp such that the stabilizer
{g ∈ G(Qp);πp(g)e = e} is open. This subspace is invariant by G(Qp). Of
course, the dimension of Eπp is infinite in general. Similarly, we decompose
(σ,W) as a tensor product ⊗v(σv,Wv). We see that, for all v, there exists
a sesquilinear form Jv on Eσv ×Eπv such that J =

∏
v Jv in a certain sense.

Because of the integral definition of J , each form Jv satisfies the relation

(1) Jv(σv(h)e′, πv(h)e) = Jv(e′, e)

for all e ∈ Eπv , e′ ∈ Eσv , h ∈ H(Qv). Consider the space HomH(Qv)(Eπv ,
Eσv). Its elements are the linear applications lv : Eπv → Eσv satisfying the
relation lv(πv(h)e) = σv(h)(lv(e)) for all e ∈ Eπv and h ∈ H(Qv). To each
such lv, we can associate the sesquilinear form J lv on Eσv ×Eπv defined by

J lv(e′, e) = (e′, lv(e))

for all e′ ∈ Eσv and e ∈ Eπv , where the product of the right member is the
hermitian product on Wv. The form J lv satisfies the relation (1). We see eas-
ily that the application lv 
→ J lv is a bijection between HomH(Qv)(Eπv , Eσv)
and the space of sesquilinear forms on Eσv ×Eπv satisfying (1). In particu-
lar, there exists lv ∈ HomH(Qv)(Eπv , Eσv) such that Jv = J lv . Of course, if
J �= 0, then Jv �= 0 and lv �= 0. So a necessary condition such that J �= 0 is
that, for all v, the space HomH(Qv)(Eπv , Eσv) is not zero.
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The present formulation of the Ramanujan-Petersson conjecture says
that if π � ⊗vπv is an irreducible automorphic and cuspidal representa-
tion of a group GL(n,A), then all the components πv are tempered. I will
define later this notion. For our group G, this property is not true. The
Arthur’s conjecture says (among other things) what are the cuspidal auto-
morphic representations π of G(A) for which we can hope their components
are tempered. The condition is that the elements πi of π = {π1, . . . ,πk}
are cuspidal automorphic representations, and not only automorphic rep-
resentations of the discrete spectrum. In any case, the automorphic repre-
sentations whose all components are (conjecturally) tempered are of special
interest. So it’s reasonable to restrict, at the present time, our local problem
to tempered representations.

1.2. The local problem. Now, let F be Qp for a prime p, or more
generally, let F be a finite extension of Qp. Let V = D ⊕ W , G and
H as above except that the base field is now F and not Q. Let π be a
smooth irreducible representation of G(F ) in a complex space Eπ and let σ
be a smooth irreducible representation of H(F ) in a complex space Eσ. We
consider the space HomH(F )(Eπ, Eσ). The first result is the following, due
to Aizenbud, Gourevitch, Rallis and Schiffmann ([AGRS]).

Theorem. dimC(HomH(F )(Eπ, Eσ)) ≤ 1.

We denote by m(π, σ) this dimension. Introduce the contragredient π̌ of
π. That is the transpose representation of π in the subspace Eπ̌ of smooth
vectors of the dual E∗

π. For e ∈ Eπ and ě ∈ Eπ̌, we define the coefficient
ce,ě(g) =< π(g)e, ě > for g ∈ G(F ) (< ., . > is the natural pairing between
Eπ and its dual). We say that π is tempered if, for all e and ě, the function
ce,ě is of moderate growth, in a suitable sense. The same definition holds
for σ. The central problem of my paper is to compute m(π, σ) for π and σ
tempered.

In fact, it’s more convenient to consider two pairs (Vi,Wi) and (Va,Wa)
instead of one pair (V,W ). We define the discriminant δ ∈ F×/F×,2 of q
(or of (V, q)) by δ = (−1)[d/2]det(q), where the determinant is computed
using any basis of V and [d/2] is the integral part of d/2 (we have assumed
d even in 1.1, but the same formula holds if d is odd). Recall that, for a
given dimension and a given discriminant, there exists exactly two classes of
equivalence of spaces provided with quadratic forms, of the given dimension
and the given discriminant. We consider two such spaces Vi and Va, with
quadratic forms qi and qa, of the same even dimension d and the same
discriminant δ, that are not equivalent. We assume given an orthogonal
decomposition Vi = D⊕Wi. Then we can decompose similarly Va = D⊕Wa

(with the same quadratic form on D). It’s easy to prove that Wi and Wa,
provided with the restrictions of qi and qa, have the same dimension and
discriminant, but are not equivalent. We denote the four special orthogonal
groups by Gi, Ga, Hi and Ha.
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1.3. Parametrization of the tempered representations. Let F̄
be an algebraic closure of F . Denote by WF the Weil group of F . That
is the subgroup of the elements of the Galois group Gal(F̄ /F ) that act by
an entire power of the Frobenius on the residue field of F̄ (the topology of
WF is finer that the induced topology). Let WDF = WF × SL(2,C) be the
Weil-Deligne group. Assume again that the dimension d = dim(V ) is even.
Then d′ = dim(W ) = d − 1 is odd. We introduce the symplectic group
Sp(d′ − 1,C) ⊂ GL(d′ − 1,C). Consider the continuous homomorphisms
ϕ : WDF → Sp(d′ − 1,C) such that:

• the composed homomorphism

WDF
ϕ→ Sp(d′ − 1,C) → GL(d′ − 1,C)

is a semi-simple representation of WDF ;
• the restriction of ϕ to SL(2,C) is algebraic.

The group Sp(d′ − 1,C) acts by conjugacy on the set of such homomor-
phisms. Denote by Φorth(d′) the set of conjugacy classes. Consider now the
subset of ϕ as above, such that ϕ(WF ) is a relatively compact subgroup of
Sp(d′−1,C). Denote by Φorth

temp(d
′) the set of conjugacy classes in this subset.

Denote by � one of the two indices i or a. The first assertion of a local
conjecture of Langlands is that, to each ϕ ∈ Φorth

temp(d
′), is associated a finite

set ΠH�(ϕ) of smooth tempered irreducible representations of H�(F ), called
an L-packet, and that the set of smooth tempered irreducible representations
of H�(F ) is exactly the disjoint union of those L-packets ΠH�(ϕ), when ϕ

describes Φorth
temp(d

′).
Fix ϕ in Φorth

temp(d
′) (more exactly, ϕ is an homomorphism whose class is in

this set). Denote by S(ϕ) the centralizer of the image of ϕ in Sp(d′ − 1,C),
and by S(ϕ)0 the identity component of S(ϕ). The group S(ϕ)/S(ϕ)0 is
abelian, isomorphic to a finite product of copies of Z/2Z. Let Π(ϕ) be the
disjoint union of ΠHi(ϕ) and ΠHa(ϕ) and let (S(ϕ)/S(ϕ)0)∧ be the dual
group of S(ϕ)/S(ϕ)0. Then the conjecture says there is a bijection

(S(ϕ)/S(ϕ)0)∧→ Π(ϕ)
ε 
→π(ϕ, ε).

This bijection must satisfy some properties related to the theory of
endoscopy and is uniquely determined by these properties.

The conjecture for the groups Gi and Ga is similar. The dimension
d is even. The discriminant δ is an element of F×/F×2, which defines a
quadratic character of WF , also denoted by δ. We introduce the complex
orthogonal group O(d,C) and we consider the homorphisms ϕ : WF →
O(d,C) satisfying the same conditions as above and the following. The
sequence

WF →WDF
ϕ→ O(d,C) det→ {±1}

defines a quadratic character δϕ. We assume δϕ = δ. We denote Φorth(d, δ)
the set of conjugacy classes for the action of SO(d,C) (and not O(d,C)) in
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the set of such ϕ. We define as above the subset Φorth
temp(d, δ). As previously,

we conjecture that to each ϕ ∈ Φorth
temp(d, δ) is associate a finite L-packet

ΠG�(ϕ) of smooth tempered irreducible representations of G�(F ) (for � = i
or a). The set of smooth tempered irreducible representations of G�(F ) must
be the disjoint union of the packets ΠG�(ϕ) when ϕ describes Φorth

temp(d, δ).
Fix ϕ ∈ Φorth

temp(d, δ). Denote by S(ϕ) the centralizer in SO(d,C) of the
image of ϕ, and by S(ϕ)0 its identity component. The group S(ϕ)/S(ϕ)0 is
again a product of copies of Z/2Z. We denote by Π(ϕ) the disjoint union of
ΠGi(ϕ) and ΠGa(ϕ). Then the conjecture says there is a bijection

(S(ϕ)/S(ϕ)0)∧→ Π(ϕ)
ε 
→π(ϕ, ε).

A great recent work of Arthur, but not yet published, proves a substan-
tial part of the parametrization’s conjectures, cf. 4.8 for more details.

1.4. Weak form of the Gross-Prasad conjecture. From now on,
I assume the parametrization’s conjectures as stated in Section 1.3. For
a smooth irreducible representation π of Gi(F ), resp. Ga(F ), and for a
smooth irreducible representation σ of Hi(F ), resp. Ha(F ), we define the
multiplicity m(π, σ) ∈ {0, 1} as in Section 1.2.

Theorem A. Let ϕ ∈ Φorth
temp(d, δ) and ϕH ∈ Φorth

temp(d
′ − 1). There exists

a unique pair (π, σ) ∈ (ΠGi(ϕ)×ΠHi(ϕH))
 (ΠGa(ϕ)×ΠHa(ϕH)) such that
m(π, σ) = 1.

Cf. [W2], th. 7.10. It’s the first assertion of the local Gross-Prasad
conjecture ([GP], conjecture 10.7). This result was previously know in some
special cases ([GR], [GGP1]).

1.5. Strong form of the Gross-Prasad conjecture. Let ϕ and
ϕH as in the theorem A. This theorem defines a unique pair, which is
parametrized by an element (ε, εH) ∈ (S(ϕ)/S(ϕ)0)∧ × (S(ϕH)/S(ϕH)0)∧.
I state the following theorem in an imprecise form.

Theorem B. The parameters ε and εH can be explicitly computed.

Cf. [W4], th. 4.9. This assertion is the second part of the local Gross-
Prasad conjecture. As in the global situation, we can associate to ϕ a
finite family (π1, . . . ,πk) of smooth irreducible representations of groups
GL(di, F ), of the discrete serie, and similarly, we can associate to ϕH a
finite family (σ1, . . . ,σl) of representations of groups GL(d′j , F ). Then ε

and εH are related to the ε-factors ε(πi × σj , 1/2, ψF ) defined by Jacquet,
Piatetski-Shapiro and Shalika.
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1.6. Generalizations. Consider parameters ϕ ∈ Φorth(d, δ) and ϕH ∈
Φorth(d′ − 1) that are not tempered. Using the theorem of Langlands’ quo-
tient, we can again define L-packets Π(ϕ) and Π(ϕH), cf. Section 6.1. In
general, there is no conjecture (at the present time) that computes the mul-
tiplicities m(π, σ). But the local Gross-Prasad conjecture holds if Π(ϕ) and
Π(ϕH) are generic. We will define in 6.2 what is a generic L-packet. This
property is weaker than to be tempered. For instance, all local components
of a cuspidal automorphic representation of GL(n,A) are generic.

Theorem C (joint with Moeglin). Let ϕ ∈ Φorth(d, δ) and ϕH ∈ Φorth

(d′). Assume Π(ϕ) and Π(ϕH) are generic. Then the theorems A and B
holds.

Cf. [MW], introduction.
Instead of a decomposition V = D ⊕ W , with a line D, assume now

there is a decomposition V = Z ⊕W , where dim(Z) is odd and the special
orthogonal group of Z is split. For smooth irreducible representations π
of G(F ) and σ of H(F ), we can again define a multiplicity m(π, σ), using
a variant of Whittaker’s models. We have again m(π, σ) = 0 or 1. The
theorems A, B, and C holds well in this case.

We have assumed that, in the pair (dim(V ), dim(W )), the greatest d
was even and the smallest was odd. But we can assume the greatest is odd
and the smallest is even. The results are the same.

Our work concerns only special orthogonal groups. But Gan, Gross and
Prasad consider other cases, cf. [GGP2]. If you are optimistic, you can hope
that the same method holds in some other cases, for instance for unitary
groups.

2. An integral formula

2.1. Multiplicities for more general situation. As before, let F be
a finite extension of Qp. Let V be a vector space over F , of finite dimension
d, and let q be a non-degenerate quadratic form on V . We remove the
assumption that d is even. Assume given:

• an orthogonal decomposition V = W ⊕ Z;
• a basis {vi; i = −r, . . . , r} of Z, for some r ∈ N, and an element
ν ∈ F× such that, if v =

∑
i=−r,...,r xivi ∈ Z,

q(v, v)/2 = ν(−1)dx2
0 +

∑
i=1,...,r

xix−i.

In particular, the dimension 2r+ 1 of Z is odd. We denote by G and H
the special orthogonal groups of V and W . Introduce the flag of isotropic
subspaces

Fvr ⊂ Fvr ⊕ Fvr−1 ⊂ · · · ⊂ Fvr ⊕ · · · ⊕ Fv1

of V , and the set P of elements of G that fix these subspaces. It is a
parabolic subgroup. We denote by U its unipotent radical. Fix a non-trivial
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and continuous character ψF of F . Define a character ξ of U(F ) by

ξ(u) = ψF

⎛
⎝ ∑
i=0,...,r−1

q(u(vi), v−i−1)

⎞
⎠ .

The groupH is included in a Levi component of P and ξ is fixed by conjugacy
by elements of H(F ).

Now, let π, resp. σ, be an irreducible smooth representation of G(F ),
resp. H(F ), in a complex space Eπ, resp. Eσ. Let HomH(F ),ξ(Eπ, Eσ) be
the space of linear applications ϕ : Eπ → Eσ such that

ϕ(π(hu)e) = ξ(u)σ(h)ϕ(e)

for all h ∈ H(F ), u ∈ U(F ), e ∈ Eπ. Denote by m(π, σ) the dimension over
C of HomH(F ),ξ(Eπ, Eσ). This dimension does not depend of the choice of
ψF nor of the basis {vi; i = −r, . . . , r}.

Remark. When Z is a line, the situation is the same as in Section 1.2.
When dim(W ) ≤ 1, we have H = {1}, the representation σ is the trivial
representation of {1} in Eσ = C and the elements of HomH(F ),ξ(Eπ, Eσ) are
usual Whittaker’s functionals on Eπ.

Gan, Gross and Prasad have generalized the theorem of Aizenbud,
Gourevitch, Rallis and Schiffmann to the present situation: m(π, σ) is equal
to 0 or 1 ([GGP2], corollary 20.4).

We fix π and σ for the whole Section 2.

2.2. Tempered representations. We recall here in more details the
definition of tempered representations, for a general reductive group L
defined over F . Let ρ be a smooth irreducible representation of L(F ) in
a complex space Eρ. We have defined in 1.2 the coefficient ce,ě for e ∈ Eρ
and ě ∈ Eρ̌. Denote by ZL the center of L. We say that ρ is of the discrete
serie if and only if

• the central character of ρ is unitary;
• for all e and ě, the absolute value |ce,ě| is square-integrable on
L(F )/ZL(F ) (by the first condition, it is a function on this quo-
tient).

Now consider a parabolic subgroup Q of L and a Levi component M of Q,
withQ andM defined over F . Let ρM be a smooth irreducible representation
of M(F ), of the discrete serie. Harish-Chandra has defined the induced
representation IndLQ(ρM ) of L(F ). It is not irreducible in general, but semi-
simple and of finite lenght. We say that the representation ρ of L(F ) is
tempered if and only if there exists Q, M and ρM as above such that ρ is an
irreducible component of IndLQ(ρM ). In fact, the pair (M,ρM ) is uniquely
determined by ρ up to conjugacy by L(F ). It is not obvious, but true, that
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a representation is tempered if and only if its coefficients are of moderate
growth, in some suitable sense.

2.3. Some results of Harish-Chandra. Let π as before. Denote by
C∞
c (G(F )) the space of functions f : G(F ) → C that are locally constant

and of compact support (I will use later similar notation for other groups).
Fix an Haar mesure on G(F ). Then C∞

c (G(F )) acts on the space Eπ by

π(f)e =
∫
G(F )

f(g)π(g)e dg,

for f ∈ C∞
c (G(F )) and e ∈ Eπ. The operator π(f) has finite rank, so we can

define the distribution f 
→ trace(π(f)). Harish-Chandra has proved that
this distribution was locally integrable, i.e. there exists a locally integrable
function χπ on G(F ) such that

trace(π(f)) =
∫
G(F )

f(g)χπ(g) dg.

The function χπ is invariant by conjugacy. Let t be a semi-simple element of
G(F ). If t is strongly regular (i.e. the centralizer ZG(t) of t in G is a torus),
χπ is constant in a neighbourhood of t. It’s not true if t is not strongly
regular. In the general case, denote by gt the Lie algebra of the identity
component Gt = ZG(t)0 of ZG(t). Denote by Nil(gt(F )) the set of nilpotent
orbits in gt(F ), for the adjoint action of ZG(t)0(F ). Let U ∈ Nil(gt(F )), fix
a measure on U , invariant by this adjoint action. We define the nilpotent
orbital integral

f 
→ JU (f) =
∫
U
f(u) du

for f ∈ C∞
c (gt(F )). Fix a non-degenerate quadratic form qgt on gt(F ),

invariant by the adjoint action of Gt(F ). We define a Fourier transform
f 
→ f̂ on C∞

c (gt(F )) by the usual formula

f̂(X) =
∫

gt(F )
ψF (qgt(X,Y ))f(Y )dY.

Then we have the Fourier transform of the nilpotent orbital integral f 
→
JU (f̂). Moreover, for X ∈ gt(F ) near 0, we define as usual exp(X) ∈
Gt(F ). Harish-Chandra proves ([HC], theorem 16.2) that there exists an
open neighbourhood ω of 0 in gt(F ) and a unique family (cπ,U (t))U∈Nil(gt(F ))

of complex numbers such that, for f ∈ C∞
c (ω), we have the identity∫

ω
χπ(exp(X)t)f(X) dX =

∑
U∈Nil(gt(F ))

cπ,U (t)JU (f̂).

Of course, we need to define precisely the measures: the measure on gt(F )
is autodual for the Fourier transform; using the quadratic form qgt , U(F )
appears as a symplectic variety and the measure on U(F ) is deduced from
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this structure. We see that the coefficients cπ,U (t) are independent of the
choice of the quadratic form qgt .

2.4. Some tori. Consider the set T of subtori T ⊂ H, defined over F ,
not maximal in general, such that there exists an orthogonal decomposition
W = W ′ ⊕W ′′ satisfying the following conditions:

(1) dim(W ′) is even;
(2) denote by H ′ the special orthogonal group of W ′ (it’s a subgroup

of H); then T ⊂ H ′ and T is a maximal subtorus of H ′;
(3) the maximal F -split subtorus of T is {1};
(4) if d is odd, the special orthogonal group G′′ of W ′′ ⊕ Z is split

over F ; if d is even, the special orthogonal group H ′′ of W ′′ is split
over F .

Let T ∈ T and t ∈ T (F ). If t is in general position, Gt = T × G′′ and
Nil(gt(F )) = Nil(g′′(F )), where g′′ is of course the Lie algebra of G′′. The
coefficient cπ,U (t) is defined for all U ∈ Nil(g′′(F )). Assume d odd. Then
G′′ is a split special orthogonal group in odd dimension, and it’s well know
that there exists a unique regular nilpotent orbit in g′′(F ). Denote by Ureg
this orbit and let cπ(t) = cπ,Ureg(t). Assume now d even. Then there exists
several regular nilpotent orbits in g′′(F ). But consider the subspace Z0 ⊂ Z
generated by the vectors vi for i �= 0. It is a sum of hyperbolic planes.
Consider the special orthogonal group H ′′

0 of W ′′ ⊕Z0. Because H ′′ is split,
H ′′

0 is also split. For the same reason as before, there exists a unique regular
nilpotent orbit in h′′0(F ). By the inclusion H ′′

0 ⊂ G′′, it is included in some
nilpotent orbit of g′′(F ) and in fact in a regular nilpotent orbit. We denote
by Ureg this orbit and we define cπ(t) = cπ,Ureg(t) as before. Then cπ is a
function defined almost everywhere on T (F ).

Similarly, we have Ht = T ×H ′′ and Nil(ht(F )) = Nil(h′′(F )). If d is
even, H ′′ is split and in “odd dimension”, so h′′(F ) has a unique nilpotent
regular orbit UHreg. If d is odd, and dim(W ′′) ≤ 2, h′′(F ) has again a unique
nilpotent regular orbit UHreg. Assume d odd and dim(W ′′) ≥ 4. Because G′′

is split, we see that there exists an orthogonal decompositionW ′′ = W0⊕D0,
where D0 is a line and the space D0⊕Fv0 is an hyperbolic plane. As above,
the Lie algebra of the special orthogonal group of W0 has a unique regular
nilpotent orbit. This orbit is included in a nilpotent orbit of h′′(F ), denote
by UHreg this orbit. In all cases, let cσ(t) = cσ,UH

reg
(t). Then cσ is a function

defined almost everywhere on T (F ).
We define two others functions almost everywhere on T (F ). Let t ∈

T (F ) in general position. We put

Δ(t) = |det((1 − t)|W ′)|F ,

where |.|F is the usual absolute value of F ;

DH(t) = |det((ad(t) − 1)|h(F )/ht(F ))|F .
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And we denote by W (H,T ) the quotient of the normalizer of T in H(F ) by
the centralizer. It is a finite group.

2.5. The integral formula. The group H(F ) acts by conjugacy on
T . We fix a set T of representatives of conjugacy classes. Let

mgeom(π, σ) =
∑
T∈T

|W (H,T )|−1

∫
T (F )

cπ(t)cσ(t)DH(t)Δ(t)r dt,

where the measures on the tori have total mass 1.

Proposition. (i) The above formula is absolutely convergent.
(ii) Assume π and σ are tempered. Then m(π, σ) = mgeom(π, σ).

Cf. [W2], théorème 7.1.

2.6. About the proof: the geometric side. The proof of the propo-
sition is very long. I will describe the starting point only. We choose a
family (KN )N≥1 of compact open subsets of H(F )U(F )\G(F ) such that
KN ⊂ KN+1 and

⋃
N≥1KN = H(F )U(F )\G(F ). Let κN be the char-

acteristic function of the inverse image of KN in G(F ). For N ≥ 1 and
f ∈ C∞

c (G(F )), define

JN (θσ, f) =
∫
H(F )U(F )\G(F )

×
∫
H(F )

∫
U(F )

θσ(h)f(g−1hug)ξ(u)−1 du dhκN (g) dg.

This expression is absolutely convergent. We want to compute its limit when
N tends to ∞.

Here, the idea is the same as for the Arthur’s local trace formula. There
are two ways for the computation. The first is “geometric”: we express the
integral using orbital integrals or weighted orbital integrals of the function
f . In fact, it is more complicated as for the local trace formula, because
the integrals have more singularities as in this case. These singularities are
reflected in the final formula by the presence of integrals over non maximal
tori: these integrals appear as singularities of integrals over maximal tori.
And its not possible to compute the limit of JN (θσ, f) for all choice of the
sets KN and all functions f : we must choose particular KN and we must
assume that f is strongly cuspidal. That means that for all proper parabolic
subgroup P ′ = M ′U ′ of G, defined over F , where M ′ is a Levi component
of P ′ and U ′ is the unipotent radical of P ′, we have∫

U ′(F )
f(m′u′) du′ = 0
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for all m′ ∈M ′(F ). Under those conditions, we can compute the limit as

limN→∞JN (θσ, f) = mgeom(f, σ)

where mgeom(f, σ) is similar to mgeom(π, σ). The function cπ is replaced
by a function cf deduced from weighted orbital integrals of f . Cf. [W1]
théorème 7.8.

I will give a basic example of the computation. Consider the case where
dim(V ) = 3, dim(W ) = 2 and G and H are split. We can identify G with
PGL(2) and H with its diagonal subtorus. Let K = PGL(2, oF ) be the
standard maximal subgroup of G(F ), where oF is the ring of integers of F .
We can write every element g ∈ G(F ) as a product

g =
(
a 0
0 1

)(
1 b
0 1

)
k,

with a ∈ F×, b ∈ F and k ∈ K (we consider the two first matrices as
elements of PGL(2, F )). The measure dg decomposes as dg = |a|−1

F da db dk.
We assume that κN (g) = 1 if valF (b) ≥ −N and κN (g) = 0 if valF (b) < −N ,
where valF is the usual valuation of F . We can consider the character θσ as
an usual character of F×. Then

JN (θσ, f) =
∫
K

∫
F×

∫
b∈F ;valF (b)≥−N

θσ(a)

f

(
k−1

(
1 −b
0 1

)(
a 0
0 1

)(
1 b
0 1

)
k

)
db |a|−1

F da dk.

We define fK by

fK(g) =
∫
K
f(k−1gk)dk.

Then

(1) JN (θσ, f) =
∫
F×

∫
b∈F ;valF (b)≥−N

θσ(a)fK

×
((

a (a− 1)b
0 1

))
db |a|−1

F da.

What happens if we suppress the condition valF (b) ≥ −N? Changing b in
(a− 1)−1b, we obtain the integral

(2)
∫
F×

∫
F
θσ(a)fK

((
a b
0 1

))
db |a|−1

F |a− 1|−1
F da.

The support of the integrand is compact. But the integral is not convergent
because the function a 
→ |a− 1|−1

F is not integrable in a neighbourhood of
a = 1 (the point a = 1 corresponds to the point 1 ∈ H(F )). So we choose
some auxiliary constant ε > 0 and we decompose our integral (1) in the sum
of an integral over the domain |a− 1|F > ε and an integral over the domain
|a − 1|F ≤ ε. In the first integral, we can use the dominate convergence
theorem: its limit when N → ∞ is the integral (2), restricted to the domain
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|a − 1|F > ε. In fact, the limit is 0: the integral over b is 0 because f
is strongly cuspidal. Consider the second integral. Because fK is locally
constant of compact support, we can choose ε such that

fK
((

a (a− 1)b
0 1

))
= fK

((
1 (a− 1)b
0 1

))

for every b and every a such that |a − 1|F < ε. We can also assume that
θσ(a) = 1 for every such a. Let x = a − 1. The condition |a − 1|F < ε
is equivalent to valF (x) > n, where n is some big integer determined by ε.
Then our integral is equal to∫

x∈F ;valF (x)>n

∫
b∈F ;valF (b)≥−N

fK
((

1 xb
0 1

))
db dx.

We change b to bx−1 and we obtain∫
x∈F ;valF (x)>n

∫
b∈F ;valF (b)≥−N+valF (x)

fK
((

1 b
0 1

))
db |x|−1

F dx.

Assume that we can permute the two integrals. Then we obtain∫
b∈F

∫
x∈F ;n<valF (x)≤N+valF (b)

fK
((

1 b
0 1

))
|x|−1

F dx db.

Because the support of fK is compact, we can assume valF (b) ≥ c for some
constant c. Then N + valF (b) ≥ n if N is big and the inner integral is equal
to N + valF (b)−n (assuming that the measure of the set of units is 1). We
obtain

(3)
∫
b∈F

fK
((

1 b
0 1

))
(N − n+ valF (b)) db.

This expression is absolutely convergent. If we replace fK by its absolute
value in the preceding computation, we obtain a similar result. Then the
permutation of integrals is justified and our integral is equal to (3), or to
the sum of

(4) (N − n)
∫
b∈F

fK
((

1 b
0 1

))
db

and

(5)
∫
b∈F

fK
((

1 b
0 1

))
valF (b) db.

But (4) is 0 for the same reason as before: the function f is strongly cuspi-
dal. Up to a constant, the expression (5) is the unipotent weighted orbital
integral of f as defined by Arthur. Coming back to our general formula
for mgeom(f, σ), we have only one torus in T : the torus T = {1}. For the
unique element 1 ∈ T (F ), we have cσ(1) = 1 and cf (1) is the weighted
orbital integral above.
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2.7. The spectral side. The second way for computing the limit
limN→∞JN (θσ, f) is “spectral”. We need to introduce some notations. We
call “Levi subgroup of G” a subgroup L ⊂ G defined over F that is a Levi
component of some parabolic subgroup of G defined over F . We fix some
minimal Levi subgroup M0 of G and we denote by L(M0) the set of Levi
subgroup of G that contains M0. Let L ∈ L(M0). Denote by X∗(L) the
group of algebraic characters of L defined over F . Let A∗

L = X∗(L) ⊗Z R,
A∗
L,C = A∗

L ⊗R C and aL = dim(A∗
L,C). Each element λ ∈ A∗

L,C defines a
continuous homomorphism λL :L(F ) → C× as follows. If λ =

∑
i=1,...,n siχi,

with si ∈ C and χi ∈ X∗(L), and if l ∈ L(F ), we put

λL(l) =
∏

i=1,...,n

|χi(l)|si
F .

Let’s remark that the values |χi(l)|F are all integral powers of the number
of elements q of the residual field of F . This implies that λL = 1 if si ∈
(2πi/log(q))Z for all i. So the homomorphism λL depends only of the image
of λ in A∗

L,C/iA∨
L,F , where A∨

L,F is some lattice in A∗
L. If ρ is a smooth

representation of L(F ), we denote by ρλ the representation l 
→ λL(l)ρ(l).
If ρ is tempered, or of the discrete serie, and if λ ∈ iA∗

L, then ρλ is also
tempered, or of the discrete serie. We denote by Π2(L) the set of irreducible
representations of L(F ) of the discrete serie. Arthur has defined a set Πell(L)
of “elliptic” representations that are not always irreducible. It is slightly
bigger as Π2(L). We can say that it is the set of virtual representations
that satisfy the same condition of growth as the irreducible representations
of the discrete serie. For a smooth irreducible representation ρ of L(F ), of
finite length, Arthur has defined its weighted character, that is a distribution
f 
→ JGL (ρ, f) on C∞

c (G(F )). When L = G, it is the usual character θρ and
it is an invariant distribution (invariant by conjugacy by G(F )). But, if
L � G, the definition involves intertwining operators and the distribution is
not invariant.

A Levi subgroup L ∈ L(M0) is not a special orthogonal group, if L �= G.
But it is a product

L = L0 ×GL(n1) × · · · ×GL(nk).

The group L0 is the special orthogonal group of a subspace V0 ⊂ V , of
which the orthogonal is a sum of hyperbolic planes. Let ρ be an smooth
irreducible representation of L(F ). We write ρ = ρ0 ⊗ (⊗iρi), where ρ0 is a
representation of L0(F ) and the ρi are representations of the factors GL(ni).
Up to conjugacy, the spaces V0 and W satisfy the same conditions as our
starting spaces V and W (may be the roles of V and W are reversed). So
we can define the multiplicity m(ρ0, σ) (or m(σ, ρ0) if the roles of V and
W are reversed) and we put m(ρ, σ) = m(ρ0, σ) (or m(σ, ρ0)). Here the
representation ρ was irreducible, but it is possible to adapt the definition to
the case of an elliptic non irreducible representation.
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We come back to our expression JN (θσ, f). Using the Plancherel for-
mula, due to Harish-Chandra in this case, we express f as an integral over
the set of tempered irreducible representations of G(F ) of the traces of f in
these representations. After a long computation, which follows closely the
one of Arthur (but it’s also necessary to assume that f is strongly cuspidal),
we obtain

limN→∞JN (θσ, f) =
∑

L∈L(M0)

|WL||WG|−1(−1)aL
∑

ρ∈Πell(L)/iA∗
L;m(ρ,σ)=1

c(ρ)
∫
iA∗

L/iA∨
L,F

JGL (ρλ, f) dλ.

Cf. [W2] théorème 6.1. The terms WL and WG are the usual Weyl groups
of L and G, relative to the minimal Levi M0. The term c(ρ) is some explicit
constant, depending of the measures. The important point is the condition
m(ρ, σ) = 1 that appears in our formula. We explain this fact in 2.9.

Using the method of Arthur, we can transform the preceding formulas
such that they contain only invariant distributions (and not weighted char-
acters, that are not invariant). Then, assuming π of the discrete serie, we
choose for f a pseudo-coefficient of π, that is a function such that χπ(f) = 1
but χπ′(f) = 0 for all irreducible tempered representation π′ ofG(F ), π′ �= π.
Then we obtain the second assertion of the proposition 2.5 by comparison
of the two limits computed in 2.6 and above. The general case where π is
only tempered can be deduced by studying the behaviour of multiplicities
by induction.

2.8. Construction of intertwining homomorphisms. A technical,
but important point, is to describe explicitly the elements of the space
HomH(F ),ξ(Eπ, Eσ) (that is a complex line, or {0}). Assume for simplic-
ity r = 0, i.e. dim(V ) = dim(W ) + 1. Then HomH(F ),ξ(Eπ, Eσ) =
HomH(F )(Eπ, Eσ). For e ∈ Eπ and ě ∈ Eπ̌, define a coefficient

g 
→< ě, π(g)e >

on G(F ). For e′ ∈ Eσ and ě′ ∈ Eσ̌, define a coefficient

h 
→< σ̌(h)ě′, e′ >

on H(F ). Consider the integral

Lπ,σ(ě, e, ě′, e′) =
∫
H(F )

< ě, π(h)e >< σ̌(h)ě′, e′ > dh.

Assume π and σ are tempered. Then this integral is absolutely convergent.
It defines a linear form Lπ,σ on Eπ̌ ⊗ Eπ ⊗ Eσ̌ ⊗ Eσ. Assume Lπ,σ �= 0.
Fix ě0, e0, ě′0 and e′0 such that Lπ,σ(ě0, e0, ě′0, e

′
0) �= 0. We define a linear

application l : Eπ → E∗
σ̌ by the formula

< ě′, l(e) >= Lπ,σ(ě0, e, ě′, e′0)
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for e ∈ Eπ and ě′ ∈ Eσ̌. It’s easy to prove that l takes values in Eσ ⊂ E∗
σ̌ and

l ∈ HomH(F )(Eπ, Eσ). Because Lπ,σ �= 0, we have also l �= 0. Therefore,
HomH(F )(Eπ, Eσ) �= {0} if Lπ,σ �= 0. The converse is more difficult, but
true, cf. [W2] proposition 5.7.

Proposition. Assume π and σ tempered. Then Lπ,σ �= 0 if and only if
HomH(F )(Eπ, Eσ) �= {0}.

Variant. When π and σ are unitary, in particular when they are tem-
pered, we can fix positive definite hermitian products over the spaces Eπ
and Eσ (linear in the second variable and anti-linear in the first) invariant
by the actions of G(F ) and H(F ), and define

Lπ,σ(e1, e2, e′1, e′2) =
∫
H(F )

(e1, π(h)e2)(σ(h)e′1, e
′
2) dh

for e1, e2 ∈ Eπ and e′1, e
′
2 ∈ Eσ. We have a similar result for this semi-linear

form. Moreover, if we assume HomH(F )(Eπ, Eσ) �= {0} and if we fix some
non-zero element l in this space, we see that there exists some constant c �= 0
such that

(1) Lπ,σ(e1, e2, e′1, e′2) = c(e′1, l(e2))(l(e1), e
′
2).

2.9. The basic computation of the spectral side. Here we assume
that Z is a line as in the Section 1. The Plancherel formula express f as an
integral over the set of tempered irreducible representations of G(F ) of the
traces of f in these representations. Consider an irreducible representation
ρ of G(F ) of the discrete serie. The contribution of ρ to this formula is the
function

g 
→ d(ρ)trace(ρ(g−1)ρ(f)),
where d(ρ) is the formal degree of ρ as defined later. Assume that it is
the only contribution to the Plancherel formula. So f(g) is equal to the
expression above. Then

JN (θσ, f)

(1) = d(ρ)
∫
H(F )\G(F )

∫
H(F )

θσ(h)trace(ρ(g−1h−1g)ρ(f))dhκN (g) dg.

Fix invariant positive definite hermitian products over the spaces Eρ and
Eσ and fix orthonormal basis (ei)i∈I of Eρ and (e′j)j∈J of Eσ. Fix g ∈ G(F ).
For h ∈ H(F ), we have

trace(ρ(g−1h−1g)ρ(f)) =
∑
i∈I

(ei, ρ(g−1h−1g)ρ(f)ei)

=
∑
i∈I

(ρ(g)ei, ρ(h−1g)ρ(f)ei).

Because f is biinvariant by some open compact subgroup, we can restrict
the sum to a finite subset If ⊂ I independent of g. By definition of the
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character θσ, the inner integral of the expression (1) is equal to the trace of
the operator ∫

H(F )
trace(ρ(g−1h−1g)ρ(f))σ(h) dh,

that is

(2)
∑
j∈J

(e′j ,

⎛
⎝∫

H(F )

∑
i∈If

(
ρ(g)ei, ρ(h−1g)ρ(f)ei

)
σ(h)dh

⎞
⎠ e′j).

Fix j ∈ J . The corresponding term above is absolutely convergent and
equal to

(3)
∑
i∈If

∫
H(F )

(ρ(g)ei, ρ(h−1g)ρ(f)ei)(σ(h−1)e′j , e
′
j) dh.

Changing h to h−1, the integral above is Lρ,σ(ρ(g)ei, ρ(g)ρ(f)ei, e′j , e
′
j). If

m(ρ, σ) = 0, the semi-linear form Lρ,σ is 0 by the proposition 2.8. Our
computation shows that JN (θσ, f) = 0. Assume now that m(ρ, σ) = 1.
Fix some non-zero element l ∈ HomH(F )(Eρ, Eσ) and let c be the non-zero
constant such that 2.8(1) is satisfied. Then (3) is equal to∑

i∈If

c(l(ρ(g)ei), e′j)(e
′
j , l(ρ(g)ρ(f)ei))

and (2) is equal to∑
j∈J

∑
i∈If

c(l(ρ(g)ei), e′j)(e
′
j , l(ρ(g)ρ(f)ei)).

Using the equality

l(ρ(g)ρ(f)ei) =
∑
j∈J

(e′j , l(ρ(g)ρ(f)ei))e′j ,

we obtain that (2) is equal to∑
i∈If

c(l(ρ(g)ei), l(ρ(g)ρ(f)ei)).

Fix e∗ ∈ Eρ and e′∗ ∈ Eσ such that (e′∗, l(e∗)) = 1. We can multiply the
expression above by 1 = (e′∗, l(e∗))(l(e∗), e

′
∗). Using 2.8(1), we have

c(l(ρ(g)ei), l(ρ(g)ρ(f)ei))(e′∗, l(e∗)) = Lρ,σ(ρ(g)ei, e∗, e′∗, l(ρ(g)ρ(f)ei)).

Using the definition of this term, (2) becomes equal to∑
i∈If

(l(e∗), e′∗)
∫
H(F )

(σ(h)e′∗, l(ρ(g)ρ(f)ei))(ρ(g)ei, ρ(h)e∗) dh.
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Using once more 2.8(1), we have

(l(e∗), e′∗)(σ(h)e′∗, l(ρ(g)ρ(f)ei)) = c−1Lρ,σ(e∗, ρ(g)ρ(f)ei, σ(h)e′∗, e
′
∗).

Using the definition of this term, (2) becomes equal to

c−1
∑
i∈If

∫
H(F )

(ρ(g)ei, ρ(h)e∗)
∫
H(F )

(σ(h′h)e′∗, e
′
∗)(e∗, ρ(h

′g)ρ(f)ei) dh′ dh.

Coming back to (1), we obtain

JN (θσ, f) = d(ρ)c−1

∫
H(F )\G(F )

∑
i∈If

∫
H(F )

(ρ(g)ei, ρ(h)e∗)

×
∫
H(F )

(σ(h′h)e′∗, e
′
∗)(e∗, ρ(h

′g)ρ(f)ei) dh′ dhκN (g) dg.

Because ρ is of the discrete serie, a tedious computation shows that this
expression is absolutely convergent, even if we suppress the term κN (g). We
obtain first that limN→∞JN (θσ, f) is the same expression where κN (g) is
removed. Next, we can change h to (h′)−1h and the double integration over
g ∈ H(F )\G(F ) and h′ ∈ H(F ) to a unique integration over g ∈ G(F ). So

limN→∞JN (θσ, f) = d(ρ)c−1
∑
i∈If

∫
G(F )

∫
H(F )

(ρ(g)ei, ρ(h)e∗)

× (σ(h)e′∗, e
′
∗)(e∗, ρ(g)ρ(f)ei) dh dg

(4) = c−1
∑
i∈If

∫
H(F )

(σ(h)e′∗, e
′
∗)d(ρ)

×
∫
G(F )

(ρ(g)ei, ρ(h)e∗)(e∗, ρ(g)ρ(f)ei) dg dh.

For every ε1, ε2, ε3, ε4 ∈ Eρ, we have the equality

d(ρ)
∫
G(F )

(ρ(g)ε1, ε2)(ε3, ρ(g)ε4)dg = (ε1, ε4)(ε3, ε2).

In fact, that is the definition of the formal degree of a representation of
the discrete serie. Using this relation, we compute the inner integral of the
expression (4), and we obtain

limN→∞JN (θσ, f) = c−1
∑
i∈If

∫
H(F )

(σ(h)e′∗, e
′
∗)(ei, ρ(f)ei)(e∗, ρ(h)e∗) dh

=
∑
i∈If

(ei, ρ(f)ei))c−1

∫
H(F )

(σ(h)e′∗, e
′
∗)(e∗, ρ(h)e∗) dh.
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The integral is again equal to Lρ,σ(e∗, e∗, e′∗, e′∗). Using 2.8(1) and the defi-
nition of e∗ and e′∗, it is equal to c. Then

limN→∞JN (θσ, f) =
∑
i∈If

(ei, ρ(f)ei)) = trace(ρ(f)).

So we obtain the final formula

limN→∞JN (θσ, f) =
{

0, if m(ρ, σ) = 0,
trace(ρ(f)), if m(ρ, σ) = 1,

in others words

limN→∞JN (θσ, f) = m(ρ, σ)trace(ρ(f)).

It is the formula of 2.7 for our choice of f .

2.10. Intermission: the conjecture of Ichino and Ikeda. We
interrupt our work to give the precise statement of the conjecture of Ichino
and Ikeda quoted in 1.1. It shows the role of the semi-linear form introduced
in Section 2.8. For this section, the ground field is Q again and we assume
d = dim(V ) = dim(W )+1 and d is even. Let V, resp. W, be an irreducible
subspace of the space of cuspidal automorphic forms on G(Q)\G(A), resp.
H(Q)\H(A). Denote by π, resp. σ, the representation of G(A) on V, resp.
of H(A) on W. We decompose π and σ as tensor products, in certain sense,
of representations πv and σv, where v describes the places of Q. For every
v, we denote by Eπv and Eσv the space of smooth vectors of πv and σv (if
v = ∞ is the real place, we add the condition that the elements of Eπ∞ and
Eσ∞ are K-finite, a condition that we don’t explain). Let ϕ ∈ V such that
ϕ � ⊗vev, where ev ∈ Eπv for every v, and similarly let ψ ∈ W such that
ψ � ⊗e′v. Fix a finite set S of places of Q, containing ∞, such that all the
data are unramified for every v �∈ S. That means that for v �∈ S, we can fix
maximal compact subgroups of G(Qv) and H(Qv) that are hyperspecial in
the terminology of Bruhat and Tits and such that ev and e′v are invariant
by these subgroups.

We assume that all local components πv and σv of π and σ are tempered.
We associate to π and σ sets {π1, . . . ,πk} and {σ1, . . . ,σl} as in 1.1. Their
elements are unitary cuspidal automorphic representations of some groups,
say GL(di,A) for πi and GL(d′j ,A) for σj . For two such representations
τ of GL(N,A) and τ ′ of GL(N ′,A), unramified outside S, we consider the
partial L-function LS(τ × τ ′, s), depending of a complex parameter s. For
Re(s) � 0, it is defined by an eulerian product

LS(τ × τ ′, s) =
∏
p �∈S

Lp(τ × τ ′, s).
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For p �∈ S, the theory of Hecke operators associates to πp and σp complex
parameters λ1,p, . . . , λN,p and μ1,p, . . . , μN ′,p and we have

Lp(τ × τ ′, s) =
∏

i=1,...,N ;j=1,...,N ′
(1 − λi,pμj,pp

−s)−1.

The function LS(τ × τ ′, s) is defined by meromorphic continuation on the
whole complex plane. Moreover, it has no pole at s = 1/2. In the case
τ = τ ′, we can decompose this L-function as a product

LS(τ × τ , s) = LS(τ , Sym2, s)LS(τ ,∧2, s).

The two functions are also eulerian products for Re(s) � 0 and, for p �∈ S,
we have

Lp(τ , Sym2, s) =
∏

1≤i≤j≤N
(1 − λi,pλj,pp

−s)−1,

Lp(τ ,∧2, s) =
∏

1≤i<j≤N
(1 − λi,pλj,pp

−s)−1.

The two functions have also meromorphic continuation to the whole complex
plane. Put

LS(π × σ, s) =
∏

i=1,...,k;j=1,...,l

LS(πi × σj , s),

LS(π,Ad, s) =

⎛
⎝ ∏

1≤i<i′≤k
LS(πi × πi′ , s)

⎞
⎠
⎛
⎝ ∏
i=1,...,k

LS(πi,∧2, s)

⎞
⎠ ,

LS(σ,Ad, s) =

⎛
⎝ ∏

1≤j<j′≤l
LS(σj × σj′ , s)

⎞
⎠
⎛
⎝ ∏
j=1,...,l

LS(σi, Sym2, s)

⎞
⎠ .

In the forthcoming paper [A], Arthur will prove that the two last functions
have no poles at s = 1 (and it is know they have no zero at this point). Put

PS(π × σ, s) =
LS(π × σ, s)

LS(π,Ad, s+ 1/2)LS(σ,Ad, s+ 1/2)
.

This function is holomorphic at s = 1/2.
For v ∈ S, we fix some invariant positive hermitian products on the

spaces of Eπv and Eσv and we define the semi-linear form Lπv ,σv as in Section
2.8 (in this section, v was finite, but the definition is the same if v = ∞).

We define the integral J(ψ,ϕ) as in 1.1, and we denote by ||ϕ|| and
||ψ|| the L2-norm of ϕ and ψ. For these definitions, we use the Tamagawa
measures on G(Q)\G(A) and H(Q)\H(A). Remark that, for v ∈ S, a
measure on H(Qv) is used to define the form Lπv ,σv . We assume that the
Tamagawa measure is equal to the product of these measures for v ∈ S and
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of the “unramified” measures for v �∈ S (these measures gives the measure
1 to an hyperspecial compact subgroup). Let

ΔS = ζS(2) . . . ζS(d− 2)LS(δ, d/2),

where ζS(s) is the partial Riemann’s ζ-function and LS(δ, s) is the partial
Dirichlet’s function associated to the quadratic character determined by δ.
At last, let

b =
{
k + l, if all di are even,
k + l − 1, if at least one di is odd.

Then Ichino and Ikeda conjecture the following equality
|J(ψ,ϕ)|2
||ϕ||2||ψ||2 = 2−bΔSPS(π × σ, 1/2)

∏
v∈S

Lπv ,σv(ev, ev, e′v, e
′
v)

(ev, ev)(e′v, e′v)
.

The right member does not depend on the choice of S.

3. An integral formula for ε-factors

3.1. The twisted group GL(d). We come back to a local p-adic
ground field F . We consider the group GL(d) over F , where d ∈ N. Let Jd

be the antidiagonal matrix

Jd =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
−1

1
.

.
(−1)d−1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Let θd be the automorphism g 
→ Jd
tg

−1
J−1
d of GL(d). We introduce the

semi-direct productGL(d)+ = GL(d)�{1, θd} and its connected component
GL(d)θd. We call this component a twisted space over GL(d). As we will
see later, the theory of twisted endoscopy relates the harmonic analysis
on classical groups, in particular on special orthogonal groups, with the
harmonic analysis on such twisted spaces GL(d)θd. It is useful to describe
GL(d)θd in terms of elementary linear algebra. Fix a vector space V over
F of dimension d, with a basis (vi)i=1,...,d. We identify as usual GL(d) with
the group G of automorphims of V. Define a bilinear form θd on V by

θd

⎛
⎝ ∑
i=1,..,d

xivi,
∑

i=1,...,d

yivi

⎞
⎠ = (−1)[(d+1)/2]

∑
i=1,...,d

(−1)ixd+1−iyi.

Let’s remark that θd is symmetric if d is odd and anti-symmetric if d is
even. For g ∈ GL(d), define the bilinear form gθd on V by

(gθd)(v, v′) = θd(g−1v, v′)

for every v, v′ ∈ V. The application gθd 
→ gθd is a bijection between
GL(d)θd and the set G̃ of non-degenerate bilinear forms on V. The right
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and left actions of GL(d) on GL(d)θd become the actions of G on this set
G̃ of bilinear forms given by the formula

(gγg′)(v, v′) = γ(g−1v, g′v),

for every bilinear form γ, every g, g′ ∈ G and every v, v′ ∈ V.
Each γ ∈ G̃ defines an automorphism θγ of G: for g ∈ G, θγ(g) is the

unique element of G such that θγ(g)γ = γg. Let T be a maximal torus
of G defined over F and let B be a Borel subgroup containing T but not
necessarily defined over F . Let T̃ the set of γ ∈ G̃ such that θγ preserves
T and B. It is a principal homogeneous space over T (for the left or right
action), in particular T is well determined by T̃. For γ ∈ T̃, the restriction of
θγ to T does not depend of γ. We denote it by θT̃. By definition, a maximal
twisted subtorus of G̃ is such set T̃ satisfying the condition T̃(F ) �= ∅.
Let AT̃ the maximal subtorus split over F and contained in the subset of
elements of T fixed by θT̃. We say that T̃ is anisotropic if AT̃ = {1}.

3.2. Embedding of twisted spaces. Let d and r be two natural
integers such that 2r + 1 ≤ d. Let V be a vector space over F of dimension
d and let V = W ⊕ Z be a direct decomposition, where dim(Z) = 2r + 1.
Denote G, resp. H, the group of linear automorphisms of V, resp. W, and
denote G̃, resp. H̃, the set of non-degenerate bilinear forms on V, resp. W.
There is an embedding of H in G: we extend every automorphism of W
as an automorphism of V that acts by identity on Z. Fix ν ∈ F× and a
quadratic form ζZ on Z which is a direct sum of hyperbolic spaces and of
the one dimensional form

(x, y) 
→ νxy.

Then there is an embedding of H̃ in G̃: we extend each bilinear form on W
as the direct sum of this form on W and the quadratic form ζZ on Z. The
two embeddings are compatible with the actions of G and H on G̃ and H̃.

3.3. The integral formula for twisted spaces. Let π be a smooth
irreducible representation of GLd(F ). Assume that π ◦ θd � π (we say π is
autodual). Then we can extend π in a representation π+ of GL+

d (F ). There
is two possible extensions and we must choose one. For that, assume that
π is generic. That means that there exists a non-zero linear form φ on the
space Eπ of π such that

φ(π(u)e) = ψF

⎛
⎝ ∑
i=1,...,d−1

ui,i+1

⎞
⎠φ(e)

for every e ∈ Eπ and every unipotent matrix

u =

⎛
⎜⎜⎜⎜⎝

1 u12 u13 . .
0 1 u23 . .
. . . . .
. . . . .
. . 0 0 1

⎞
⎟⎟⎟⎟⎠ .
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Such φ is called a Whittaker’s functional. As it is well know, the space of
Whittaker’s functionals is a line. For each of the two extensions π+, the
operator π+(θd) preserves this line and acts on it by a sign ±1. We choose
π+ such that the sign is +1. Let π̃ be the restriction of π+ to GLd(F )θd.

Similarly, let σ be a smooth irreducible representation ofGLd′(F ), where
d′ = d−2r−1. We assume that σ ◦θd′ � σ and that σ is generic. Then we
define a representation σ+ of G+

d′(F ) and its restriction σ̃ to GLd′(F )θd′ .
By a choice of basis of V and W, we identify GLd(F )θd with G̃(F ) and

GLd′(F )θd′ with H̃(F ).
Consider data (W′,W′′, T̃′, ζW′′) where:

• W′ and W′′ are supplementary subspaces of W;
• denote by H′ the group of automorphisms of W′ and by H̃′ the

set of non-degenerate bilinear forms on W′; then T̃′ is a maximal
twisted subtorus of H̃′;

• ζW′′ is a non-degenerate quadratic form on W′′.
We impose to those data the following conditions:

(1) the dimension of W′ is even;
(2) the torus T̃′ is anisotropic;
(3) the special orthogonal group SO(ζW′′) of the quadratic form ζW′′

is quasi-split over F and the special orthogonal SO(ζV′′) of the
quadratic form ζV′′ = ζW′′ ⊕ ζZ on V′′ = W′′ ⊕ Z is also quasi-
split.

Under those assumptions, we denote by T̃ the subset of H̃ whose elements
are direct sums of ζW′′ on W′′ and a bilinear form on W′ which belongs to
T̃′. This set is like a non-maximal twisted subtorus of H̃.

Denote by T the maximal subtorus of H′ associated to T̃′. The group
T(F ) acts by conjugacy on T̃(F ). We denote by T̃(F )/θ the set of conjugacy
classes. Denote by Tθ the identity component of the subset of elements of
T fixed by θT̃′ . Because of (2), it is an anisotropic torus and we normalize
an Haar measure on Tθ(F ) by mes(Tθ(F )) = 1. Let γ ∈ T̃(F )/θ. The
application

Tθ(F )→ T̃(F )/θ
t 
→ tγ

is a local isomorphism near 1 ∈ Tθ(F ). We define the mesure on T̃(F )/θ
such that it is invariant by translations by T(F ) and that the application
above preserves the measures near 1 ∈ Tθ(F ).

The normalizer NormH(T̃) of T̃ in H contains T × SO(ζW′′). Let

W (H, T̃) = NormH(T̃)(F )/(T(F ) × SO(ζW′′)(F )).

It is a finite group.
Now we define some functions almost everywhere on T̃(F ). Let γ ∈

T̃(F ) in general position. The connected centralizer of γ in G is the group
Tθ × SO(ζV′′). Thanks to Clozel, the representations of non-connected
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groups have the same properties as in the connected case. In particular,
they have characters and their characters have near a semi-simple point a
development as in 2.3. Then we can define cπ̃(γ) as we have defined cπ(t)
in 2.4. We define similarly cσ̃(γ). Let tγ the bilinear form deduced by
symmetry from γ: tγ(v, v′) = γ(v′, v). Restrict the two forms γ and tγ to
W′. Consider the quotient

|det(γ|W′ − tγ|W′)|F |det(γ|W′)|−1
F ,

where the determinants are computed respectively to some fixed basis of W′.
It does not depend of the basis and is non-zero for γ in general position.
We let

Δr(γ) = |2|r
2+r+rdim(W′′)
F |det(γ|W′ − tγ|W′)|rF |det(γ|W′)|−r

F .

At last, let

DH̃(γ) = |det((1 − θγ)|h/hγ
)|F ,

where h is the Lie algebra of H and hγ is the Lie algebra of the centralizer
of γ in H.

Consider the set of subsets T̃ obtained by the procedure above. The
group H(F ) acts by conjugacy on this set. Let T a set of representatives of
conjugacy classes. Now we can define

εgeom(π̃, σ̃) =
∑
T̃∈T

|W (H, T̃)|−1

∫
T̃(F )/θ

cπ̃(γ)cσ̃(γ)DH̃(γ)Δr(γ) dγ.

3.4. Computation of some value of ε-factors by an integral
formula. Recall that Jacquet, Piatetski-Shapiro and Shalika have defined
an L-function L(π × σ, s) and an ε-factor ε(π × σ, s, ψF ), where s is a
complex parameter ([JPSS] theorem 2.7). Recall also that π and σ have
central characters ωπ and ωσ. They are quadratic characters because we
have assumed π and σ autodual.

Proposition. Assume π and σ autodual and tempered. Then there is
an equality

ωπ(ν(−1)[d
′/2])ωσ(ν(−1)1+[d/2])ε(π × σ, 1/2, ψF ) = εgeom(π̃, σ̃).

Cf. [W3] théorème 7.1.

Remarks. (1) Because π and σ are tempered, they are also generic and
we can normalize π̃ and σ̃ as in 3.3.

(2) The terms ν and ψF appear explicitely in the left member. But the
right member depends also of ν and ψF : π̃ and σ̃ are normalized using
Whittaker’s functionals, and this notion depends on ψF ; and ν is used to
define the embedding H̃ → G̃.

(3) At the present time, there is a gap in the proof. We use some results
coming from the twisted local trace formula and this formula is not yet
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written in the litterature. We have some reasons to think that it will be
proved soon.

The proof follows the same lines as that of proposition 2.5. I want
explain only why appears the ε-factor. I assume here d′ = d − 1. As for
special orthogonal groups, the space HomH(F )(Eπ, Eσ) plays a crucial role.
Aizenbud, Gourevitch, Rallis and Shiffmann have proved that its dimension
is not greater as 1. We see below that it is equal to 1. Assuming this result,
let l be a non-zero element of this space and let γ be an element of H̃(F ).
The linear form σ̃(γ)−1 ◦ l◦ π̃(γ) does not depend of γ. In fact, if we replace
γ by γ′ = hγ, with h ∈ H(F ), we have

σ̃(γ′)−1 ◦ l ◦ π̃(γ′) = σ̃(γ)−1 ◦ σ(h)−1 ◦ l ◦ π(h) ◦ π̃(γ)

= σ̃(γ)−1 ◦ l ◦ π̃(γ),

because σ(h)−1 ◦ l ◦π(h) = l. It is easy to see that σ̃(γ)−1 ◦ l ◦ π̃(γ) is also
an element of HomH(F )(Eπ, Eσ). So there exists c ∈ C×, independant of γ,
such that

σ̃(γ)−1 ◦ l ◦ π̃(γ) = cl.

A computation similar as that of 2.9 holds, where this constant c plays
the same role as the multiplicity m(ρ, σ) before. But, as we see below, the
constant c is equal to ε(π × σ, 1/2, ψF ), up to elementary terms. To see
that, we must recall some results of Jacquet, Piatetski-Shapiro and Shalika.
At this point, it is more clear to denote ι : H → G and ι̃ : H̃ → G̃ the two
embeddings of 3.2. Fix a basis (vi)i=1,...,d of V such that (vi)i=1,...,d−1 is a
basis of W and vd is a basis of Z. Using those basis, we identify G with
GL(d) and H with GL(d − 1). The embedding ι is

ι : h 
→
(
h 0
0 1

)
.

Fix a Whittaker’s functional φ �= 0 on Eπ. For e ∈ Eπ, we define a function
We on GL(d, F ) by

We(g) = φ(π(g)e).

Similarly, we fix a non-zero Whittaker’s functional on Eσ and, for e′ ∈ Eσ,
we define a function We′ on GL(d − 1, F ). For s ∈ C, let

L(We′ ,We, s) =
∫
GL(d−1,F )

We′(h)We(ι(h))|det(h)|s−1/2
F dh.

Jacquet, Piatetski-Shapiro and Shalika have proved the three following prop-
erties ([JPSS], theorem 2.7):

(4) this integral is absolutely convergent for Re(s) > 0 and can be
extended as a meromorphic function of s on the whole complex plane;

(5) we can choose e and e′ such that L(We′ ,We, 1/2) �= 0;
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(6) let wd be the antidiagonal matrix of rank d with coefficients 1 on
the antidiagonal and define

W̌e(g) = We(wd
tg

−1);

define similarly the function W̌e′ ; then we have the functional equation

L(W̌e′ , W̌e, 1 − s)/L(1 − s,π × σ)

= ωσ(−1)d−1ε(π × σ, s, ψF )L(We′ ,We, s)/L(s,π × σ)

(here, we use the fact that π and σ are unitary and autodual).
Now, fix an invariant definite-positive hermitian form (., .) on Eσ. We

can define a linear application l : Eπ → Eσ by

(e′, l(e)) = L(We′ ,We, 1/2).

We see that l ∈ HomH(F )(Eπ, Eσ). Then the property (5) shows that this
space is non-zero. To compute the constant c, we can choose γ = θd−1, so
that

σ̃(θd−1)−1 ◦ l ◦ π̃(ι̃(θd−1)) = cl.

This relation is equivalent to

(e′1, l(e1)) = c(e′, l(e)),

where
e′1 = σ̃(θd−1)e′

and
e1 = π̃(ι̃(θd−1))e,

or to

(7) L(We′1 ,We1 , 1/2) = cL(We′ ,We, 1/2).

A tedious computation shows that there exists two matrices a, b ∈ GL(d −
1, F ) such that, for every h ∈ GL(d − 1, F ),

We′1(h) = W̌e′(z′ahb), We1(ι(h)) = W̌e(zι(ahb)),

where z′ and z are explicit central matrices of ranks d − 1 and d. The
formulas above are equivalent to

We′1(h) = ωσ(z′)W̌e′(ahb), We1(ι(h)) = ωπ(z)W̌e(ι(ahb)).

By the change of variables h 
→ a−1hb−1, we obtain that

L(We′1 ,We1 , 1/2) = ωσ(z′)ωπ(z)L(W̌e′ , W̌e, 1/2).

Then the relations (6) and (7) imply

c = ωσ(z′)ωπ(z)ωσ(−1)d−1ε(π × σ, 1/2, ψF ).

That is the expected relation between c and the ε-factor.
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4. Endoscopy and twisted endoscopy

4.1. Remark about notations. In the Gross-Prasad conjecture, there
is two special orthogonal groups of two spaces of distinct parities. Some-
times, it is better to use a notation that makes clear what are the bigger
group and the bigger space and what are the smaller group and the smaller
space. In this case, we use the notation of Section 2: G is the bigger group,
V is the bigger space, H is the smaller group and W is the smaller space.
But sometimes, it is better to use a notation that makes clear what is the
even-dimensional space and what is the odd-dimensional space. In this case,
we use the following notation: V is the even-dimensional space, d is its
dimension and G is its special orthogonal group; V ′ is the odd-dimensional
space, d′ is its dimension and G′ is its special orthogonal group. In the
present section, we use this notation.

4.2. Endoscopy in odd dimensional case. Consider a vector space
V ′ over F , of finite odd dimensional dimension d′, with a non-degenerate
quadratic form q′, and denote by G′ its special orthogonal group. Let g ∈
G′(F ) be a strongly regular element (that means its centralizer is a maximal
subtorus ofG′). The eigenvalues in F̄ of g (acting on V ′⊗F F̄ ) are all distinct.
The set Λ(g) of those eigenvalues contains 1 and is invariant by λ 
→ λ−1.
We can write

Λ(g) = {1, λ±1
1 , . . . , λ±1

(d′−1)/2}.
Define the stable conjugacy class Cst(g) of g as the set of g′ ∈ G′(F ) for
which there exists x ∈ G′(F̄ ) such that g′ = x−1gx. Then, for g′ ∈ G′(F ), g′

belongs to Cst(g) if and only if g′ is strongly regular and Λ(g′) = Λ(g). It is
easy to prove that the set of ordinary conjugacy classes by G′(F ) contained
in Cst(g) is finite.

Consider now two others vector spaces V ′
1 and V ′

2 over F , of finite odd
dimension d′1 and d′2, with non-degenerate quadratic forms q′1 and q′2, and
denote by G′

1 and G′
2 their special orthogonal groups. We assume

(1) d′1 + d′2 = d′ + 1;
(2) G′

1 and G′
2 are split over F .

Let g ∈ G′(F ), g1 ∈ G′
1(F ) and g2 ∈ G′

2(F ) three strongly regular ele-
ments. We say that g and (g1, g2) correspond each other, or that Cst(g) and
Cst(g1)×Cst(g2) correspond each other, if and only if Λ(g) = Λ(g1)∪Λ(g2)
(then the intersection of the two last sets is reduced to {1}). It is clear
that, given g1 and g2, there is at most one stable conjugacy class Cst(g)
that corresponds to Cst(g1) × Cst(g2). In the opposite direction, given g,
there is at most a finite set of stable conjugacy classes Cst(g1)×Cst(g2) that
correspond to Cst(g).

Let g, g1 and g2 be as above, assume that g corresponds to (g1, g2). Then
Langlands and Shelstad have defined a transfer factor ΔG′

1×G′
2,G

′(g1, g2; g) ∈
C×. The general definition gives such factor only up to homothety, but in our
particular case, there is a natural normalization which gives a well defined
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transfer factor. It is a sign ΔG′
1×G′

2,G
′(g1, g2; g) ∈ {±1}. As function of

(g1, g2), it depends only of the stable conjugacy classes Cst(g1)×Cst(g2). It
is more subtle as function of g. It depends only of the ordinary conjugacy
class by G′(F ) of g. The set of ordinary conjugacy classes contained in
Cst(g) has a natural structure of principal homogeneous space over some
cohomology group, which is isomorphic to a finite product of copies of Z/2Z.
The datum (g1, g2) determines some character of this group and the function
g 
→ ΔG′

1×G′
2,G

′(g1, g2; g) transforms according to this character.
Now consider a function θ onG′(F ) which is a finite linear combination of

characters of irreducible smooth representations of G′(F ). Consider similar
functions θ1 on G′

1(F ) and θ2 on G′
2(F ). Such functions are invariant by

ordinary conjugacy. Assume that θ1 and θ2 are stable, that means they are
constant on every stable conjugacy class. We say that θ is a transfert of
θ1 × θ2 if and only if, for every strongly regular g ∈ G′(F ), we have the
equality

(3) DG′
(g)1/2θ(g) =

∑
(g1,g2)

DG′
1(g1)1/2DG′

2(g2)1/2

× ΔG′
1×G′

2,G
′(g1, g2; g)θ1(g1)θ2(g2),

where the sum is over the pairs (g1, g2) up to stable conjugacy such that
Cst(g) and Cst(g1)×Cst(g2) correspond each other, and the functions DG′

,
DG′

1 and DG′
2 are defined as in 2.4. For instance

DG′
(g) = |det((ad(g) − 1)|g′(F )/g′g(F ))|F .

Remark. We can reverse the order of G′
1 and G′

2. If g corresponds to
(g1, g2) ∈ G′

1(F ) × G′
2(F ), it is clear that g corresponds also to (g2, g1) ∈

G′
2(F ) × G′

1(F ). But ΔG′
1×G′

2,G
′(g1, g2; g) is not always equal to

ΔG′
2×G′

1,G
′(g2, g1; g). In fact, we have

(4) ΔG′
2×G′

1,G
′(g2, g1; g) = μ(G′)ΔG′

1×G′
2,G

′(g1, g2; g),

where

μ(G′) =
{

1, if G′ is split;
−1, if G′ is not split.

In certain sense, we can consider that G′
1 ×G′

2 and G′
2 ×G′

1 are equivalent,
but for us, it is better to distinguish the two pairs.

4.3. Twisted endoscopy in the odd dimensional case. Let V ′, q′

and G′ be as in the preceding section. Here, we assume that G′ is split.
There are two useful cases of twisted endoscopy. Let’s begin with the most
usual. Let V be a vector space over F of even dimension d = d′ − 1. As
in 3.1, we define the group G = GL(V) and the twisted space G̃ of non-
degenerate bilinear forms on V. For γ ∈ G̃(F ), let xγ : V → V∗ and
x∗γ : V → V∗ be the two dual isomorphisms such that

γ(v, v′) =< v, xγ(v′) >=< x∗γ(v), v
′ >
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for every v, v′ ∈ V, where < ., . > is the natural pairing between V and V∗.
Define an automorphism yγ of V by yγ = (x∗γ)

−1xγ . We say that γ is strongly
regular if and only if the centralizer of Gγ in G is a maximal subtorus of
G. It is equivalent to say that yγ is strongly regular (its centralizer in G is
a maximal subtorus). In this case, let Λ(γ) be the set of eigenvalues in F̄
of yγ . It is invariant by λ 
→ λ−1. Define the stable conjugacy class of γ as
the set of γ′ ∈ G̃(F ) for which there exists x ∈ G(F̄ ) such that γ′ = x−1γx.
An element γ′ ∈ G̃(F ) belongs to Cst(γ) if and only if γ′ is strongly regular
and Λ(γ′) = Λ(γ).

Let γ ∈ G̃(F ) and g ∈ G′(F ) two strongly regular elements. We say
that γ and g correspond each other, or that Cst(γ) and Cst(g) correspond
each other if and only if they satisfy the equality

Λ(γ) = {−λ;λ ∈ Λ(g), λ �= 1}.
The change of signs is related to the fact that the basic element θd is sym-
plectic. This correspondence is a bijection between stable conjugacy classes
of strongly regular elements in G̃(F ) and in G′(F ).

Let γ and g as before, assume they correspond each other. Then Kot-
twitz and Shelstad have defined a transfer factor which is a sign ΔG′,G̃(g, γ) ∈
{±1}. In fact, in our situation, it is always 1. Consider a function θ on G′(F )
which is a finite linear combination of characters of smooth irreducible rep-
resentations of G′(F ) (we apologize for the double meaning of the symbol
θ). Assume θ is stable. As in 3.1, we can identify G̃ with a component of the
non-connected group GL(d)+. Consider a function θ̃ on G̃(F ) which is the
restriction to G̃(F ) of a finite linear combination of characters of smooth
irreducible representations of GL(d)+(F ). We say that θ̃ is a transfer of θ
if and only if for every strongly regular γ ∈ G̃(F ), we have the equality

(1) |2|aFDG̃(γ)1/2θ̃(γ) =
∑
g

DG′
(g)1/2ΔG′,G̃(g; γ)θ(g),

where the sum is over the strongly regular elements g ∈ G′(F ), up to stable
conjugacy, that correspond to γ, where the functions DG̃ and DG′

are as in
3.3 and 2.4 and where a = −(d−1)/4. Because the correspondence between
stable conjugacy classes is a bijection, the sum in g is in fact reduced to a
unique term.

Remark. Let T be the centralizer of Gγ in G. Then we have

|2|aF = |det((1 − θγ)|t/gγ
)|−1
F .

Now consider the second useful case of twisted endoscopy. Let V′ be a
vector space over F of odd dimension d′ = d′. We introduce similarly the
group G′ = GL(V′) and the twisted space G̃′. For γ ∈ G̃′(F ) we define as
before the set Λ(γ) and, if γ is strongly regular, the stable conjugacy class
Cst(γ). In this case, the set Λ(γ) contains always 1. Let γ ∈ G̃′(F ) and
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g ∈ G′(F ) two strongly regular elements. We say that γ and g correspond
each other, or that Cst(γ) and Cst(g) correspond each other if and only if
they satisfy the equality Λ(g) = Λ(γ). There is no sign here because θd′ is
now symmetric.

Let γ and g as before, assume they correspond each other. Then Kot-
twitz and Shelstad have defined a transfer factor which is a sign ΔG′,G̃′

(g, γ) ∈ {±1}. It is more complicated as in the preceding case. The fac-
tor ΔG′,G̃′(g; γ) depends only of the stable conjugacy class of g and of the
ordinary conjugacy class by G′(F ) of γ. As in the preceding section, the
set of ordinary conjugacy classes contained in Cst(γ) has a natural struc-
ture of principal homogeneous space over some cohomology group, which is
isomorphic to a finite product of copies of Z/2Z. The datum g determines
some character of this group and the function γ 
→ ΔG′,G̃′(g; γ) transforms
according to this character.

Consider a function θ on G′(F ) and a function θ̃ on G̃′(F ) satisfying
similar properties as above. We say that θ̃ is a transfer of θ if and only if
for every strongly regular γ ∈ G̃(F ), we have the equality (1), where now
a = −(d+ 1)/4 (the sum in g is again reduced to a unique term).

4.4. Endoscopy in the even dimensional case. Consider a vector
space V over F , of finite even dimension d, provided with a non-degenerate
quadratic form q, and let G be its special orthogonal group. Let g ∈ G(F )
be a strongly regular element. The eigenvalues in F̄ of g are all distinct.
The set Λ(g) of those eigenvalues is of the form

Λ(g) = {λ±1
1 , . . . , λ±1

d/2}.

Define the stable conjugacy class Cst(g) of g as in 4.2 . Then, if g′ belongs
to Cst(g), we have Λ(g′) = Λ(g). But this condition is not sufficient. In
fact the set of strongly regular g′ ∈ G(F ) such that Λ(g′) = Λ(g) is the
union of two stable conjugacy classes, which are conjugate by an element of
determinant −1 of the full orthogonal group.

Consider two others vector spaces V1 and V2 over F , of finite even dimen-
sion d1 and d2, with non-degenerate quadratic forms q1 and q2, and denote
by G1 and G2 their special orthogonal groups. We assume

(1) d1 + d2 = d;
(2) G1 and G2 are quasi-split over F ;
(3) δ = δ1δ2, where δ, δ1, δ2 ∈ F×/F×,2 are the discriminants of q, q1

and q2 (by convention, δi = 1 if di = 0 for i = 1 or 2).
Let g ∈ G(F ), g1 ∈ G1(F ) and g2 ∈ G2(F ) three strongly regular elements.
In first approximation, we can say that g and (g1, g2) correspond each other,
or that Cst(g) and Cst(g1) × Cst(g2) correspond each other, if and only if
Λ(g) = Λ(g1)∪Λ(g2).But this correspondence is not sufficiently fine, because
the sets of eigenvalues does not determine the stable conjugacy classes. We
must define a finer correspondence. I will give very briefly the definition.
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We fix once for all maximal subtori T of G, T1 of G1, T2 of G2, defined over
F̄ . Consider the group X∗(T ) of algebraic characters of T , defined over F̄ .
We can fix a basis B of X∗(T ) over Z such that, for every t ∈ T (F̄ ), the set
of eigenvalues of the action of t in V ⊗F F̄ is

{(x∗(t))±1;x∗ ∈ B}.
We fix similarly basis B1 of X∗(T1) and B2 of X∗(T2). Next, fix a bijection
between B and B1 
 B2. By linearity, it defined an isomorphism X∗(T ) →
X∗(T1) ⊕ X∗(T2), then an isomorphism ι : T1 × T2 → T , defined over F̄ .
Denote by W the Weyl group of G relative to T . Our element g is conjugate
in G(F̄ ) to an element t ∈ T (F̄ ). Similarly, g1 and g2 are conjugate to
t1 ∈ T1(F̄ ) and t2 ∈ T2(F̄ ). Then we say that g and (g1, g2) correspond each
other if and only if the images of t and of ι(t1, t2) in T/W are equal.

This correspondence has similar properties as in the odd dimensional
case.

As we said in 4.2, the general definition of transfer factor gives only a
function up to homothety. To normalize it, some choice are needed. I don’t
explain that, but it appears that the choice of an element ν ∈ F×/F×,2

is sufficient to normalize the transfer factor. Then, we choose such ν and
we have a transfer factor ΔG1×G2,G(g1, g2; g) ∈ {±1}, g, g1 and g2 being as
above, assuming that g corresponds to (g1, g2).

It is convenient to define a sign μ(G) similar to the sign defined in
4.2. The definition depends now on ν. Consider the line Z(ν) = F with
the quadratic form qZ(ν)(x, x1) = −2νxx1. Denote by G′(ν) the special
orthogonal group of the orthogonal sum V ⊕ Z(ν). We define

μ(G) =
{

1, if G′(ν) is split over F ;
−1, if G′(ν) is not split over F.

Recall that the elementary theory of quadratic forms over local fields says
that V is always the orthogonal direct sum of hyperbolic planes and of an
anisotropic space of dimension dan = 0, 2 or 4. When dan = 0, then G is
split and G′(ν) is also split whatever ν. When dan = 4, then G is not quasi-
split and G′(ν) is not split whatever ν. But if dan = 2, then G is quasi-split
and G′(ν) can be split or not split according to ν.

Now consider a function θ on G(F ) which is a finite linear combination of
characters of irreducible smooth representations of G(F ). Consider similar
functions θ1 on G1(F ) and θ2 on G2(F ). Assume that θ1 and θ2 are stable.
We say that θ is a transfert of θ1×θ2 if and only if, for every strongly regular
g ∈ G(F ), we have an equality similar to 4.2 (3).

Remark. As in the odd-dimensional case, we can reverse the order of
G1 and G2. An equality similar to 4.2 (4) remains true.

4.5. Twisted endoscopy in the even-dimensional case. Let V , q
and G be as in the preceding section. Here, we assume that G is quasi-split.
Let V be a vector space over F of dimension d = d. We introduce the
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group G = GL(V) and the twisted space G̃. For a strongly regular element
γ ∈ G̃(F ), we define the set Λ(γ) as in 4.3 .

Let γ ∈ G̃(F ) and g ∈ G(F ) two strongly regular elements. We say that
γ and g corresponds each other, or that Cst(γ) and Cst(g) corresponds each
other if and only if they satisfy the equality

Λ(γ) = {−λ;λ ∈ Λ(g)}.

In fact, for each Cst(g), there is a unique corresponding Cst(γ). The
application Cst(g) 
→ Cst(γ) is not surjective. On its image, the fibers
have two elements (the two stable conjugacy classes determined by the set
of eigenvalues).

Let γ and g as before, assume they correspond each other. Then Kot-
twitz and Shelstad have defined a transfer factor ΔG,G̃(g, γ) ∈ {±1} (that
is not always 1). Consider a function θ on G(F ) which is a finite linear
combination of characters of smooth irreducible representations of G(F ).
Assume θ is stable. Consider a function θ̃ on G̃(F ) which is, as in 4.3, the
restriction to G̃(F ) of a finite linear combination of characters of smooth
irreducible representations of GL(d)+(F ). We say that θ̃ is a transfer of θ
if and only if for every strongly regular γ ∈ G̃(F ), an equality similar to 4.3
(1) is satisfied, where a = −d/4.

4.6. Parametrization and endoscopy: the odd-dimensional case.
We can now state more a precise version of the conjectures of 1.3. Let V ′, q′,
G′ be as in 4.2 (d′ is odd). We use the definitions and notations of 1.3. Let
ϕ′ ∈ Φorth

temp(d
′). The central elements ±1 of Sp(d′ − 1,C) are contained in

S(ϕ′). Denote by zϕ′ the image of −1 in S(ϕ′)/S(ϕ′)0. For μ ∈ {±1}, denote
by Eμ(ϕ′) the set of characters ε′ of S(ϕ′)/S(ϕ′)0 such that ε′(zϕ′) = μ. We
have stated that to ϕ′ is associated a packet ΠG′

(ϕ′) of irreducible tempered
representations of G′(F ). We add now that there is a bijection

(1) Eμ(G′)(ϕ′)→ ΠG′
(ϕ′)

ε′ 
→π(ϕ′, ε′).

Let’s remark that E−(ϕ′) can be empty (when the center of Sp(d′ − 1,C) in
included in S(ϕ′)0). In this case, ΠG′

(ϕ′) is empty if μ(G′) = −1.
For s′ ∈ S(ϕ′)/S(ϕ′)0, we define the following linear combination of

characters of irreducible representations

(2) θG
′
(ϕ′, s′) =

∑
ε′∈Eμ(G′)(ϕ′)

ε′(s′)θπ(ϕ′,ε′).

Assume μ(G′) = 1. Then G′ is split. In this case, a first required
property is

(3) the functions θG
′
(ϕ′, 1ϕ′) is stable, where 1ϕ′ is the identity element

of S(ϕ′)/S(ϕ′)0.
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Denote by ϕ′ :WDF → GL(d′ − 1,C) the composition of ϕ′ and of the
natural embedding Sp(d′ − 1,C) → GL(d′ − 1,C). The local conjecture of
Langlands for the group GL(d′ − 1) has been proved by Harris-Taylor and
Henniart ([HT], [H]). It associates to ϕ′ an irreducible representation π(ϕ′)
of GL(d′ − 1, F ). This representation is tempered and autodual, so we can
extend it as in 3.3 in a representation π(ϕ′)+ of GL(d′−1)+(F ). We denote
by π̃(ϕ′) its restriction to GL(d′ − 1, F )θd−1. Introducing a space V of
dimension d = d′ − 1 as in 4.3, we identify θπ̃(ϕ′) to a function on G̃(F ).
We require

(4) there is some scalar c(ϕ′) ∈ C such that |c(ϕ′)| = 1 and that
c(ϕ′)θπ̃(ϕ′) is the transfer of θG

′
(ϕ′, 1ϕ′).

Denote by ϕ′
> : WDF → GL(d′,C) the direct sum of ϕ′ and of the triv-

ial one-dimensional representation of WDF . We define similarly the func-
tion θπ̃(ϕ′

>) on G̃′(F ), where G̃′ is as in 4.3 (then G′ � GL(d′)). We
require

(5) there is some scalar c>(ϕ′) ∈ C such that |c>(ϕ′)| = 1 and that
c>(ϕ′)θπ̃(ϕ′

>) is the transfer of θG
′
(ϕ′, 1ϕ′).

We have stated the assertion (4) because it is the most usual form of
twisted endoscopy for odd-dimensional special orthogonal groups. But for
our problem, we use only the assertion (5).

Now we remove the assumption μ(G′) = 1. Consider two groups G′
1 and

G′
2 as in 4.2. Let ϕ′

1 ∈ Φorth
temp(d

′
1) and ϕ′

2 ∈ Φorth
temp(d

′
2). There is a natural

embedding

Sp(d′1 − 1,C) × Sp(d′2 − 1,C) → Sp(d′ − 1,C)

well defined up to conjugacy. Assume that ϕ′ is equal to the composition
of (ϕ′

1, ϕ
′
2) with this embedding. Consider the image in Sp(d′ − 1,C) of

the product of the central element 1 ∈ Sp(d′1 − 1,C) and of the central
element −1 ∈ Sp(d′2 − 1,C). It belongs to S(ϕ′). Denote by s′ its image in
S(ϕ′)/S(ϕ′)0. Then we require

(6) for every μ ∈ {±1}, there is some scalar γμ(ϕ′
1, ϕ

′
2) ∈ C such

that |γμ(ϕ′
1, ϕ

′
2)| = 1 and that γμ(G′)(ϕ′

1, ϕ
′
2)θ

G′
(ϕ′, s′) is the transfer of

θG
′
1(ϕ′

1, 1ϕ′
1
) × θG

′
2(ϕ′

2, 1ϕ′
2
).

Let’s remark that the scalars c(ϕ′) and c>(ϕ′) of (4) and (5) are well
determined. But the assertion (6) is less precise: we can change the scalar
γμ(ϕ′

1, ϕ
′
2) if we change the bijections (1). In the opposite direction, if we

fix the scalars γμ(ϕ′, ϕ′′) for all possible μ, G′
1, G

′
2, ϕ

′
1, ϕ

′
2, the bijections (1)

is well determined. In fact, assuming the preceding assertions, the following
proposition fix the scalars.

Proposition. The scalars c>(ϕ′) of (5) are equal to 1. Up to change
of the bijections (1), we can assume that the scalars γμ(ϕ′

1, ϕ
′
2) of (6) are

equal to μ.
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It is convenient to state here this proposition, but we prove it at the
same time as the main theorem 5.4 below.

4.7. Parametrization and endoscopy: the even-dimensional
case. Let V , q, G be as in 4.4 . The dimension d is even. We must consider
the complex group SO(d,C) as the Langlands dual of G. This statement
contains some implicit data. In practice, those data are as follows. We fix
a maximal subtorus T of G defined over F̄ and a basis B of X∗(T ) satis-
fying the same properties as in 4.4 . The group SO(d,C) is a subgroup of
GL(d,C) and acts on Cd. Fix a maximal subtorus T̂ of SO(d,C) and a basis
B̂ of X∗(T̂ ) such that, for every t̂ ∈ T̂ , the set of eigenvalues of the action
of t̂ in Cd is

{(x∗(t̂))±1;x∗ ∈ B̂}.
The essential data is a perfect duality between X∗(T ) and X∗(T̂ ) for which
B and B̂ are dual basis.

Recall that δ ∈ F×/F×,2 is the discriminant of q. Let ϕ ∈ Φorth
temp(d, δ).

The central elements ±1 of SO(d,C) are contained in S(ϕ). Denote by zϕ
the image of −1 in S(ϕ)/S(ϕ)0. For μ ∈ {±1}, denote by Eμ(ϕ) the set
of characters ε of S(ϕ)/S(ϕ)0 such that ε(zϕ) = μ. To ϕ is associated a
packet ΠG(ϕ) of irreducible tempered representations of G(F ). We require
that there exists a bijection

(1) Eμ(G)(ϕ)→ ΠG(ϕ)
ε 
→π(ϕ, ε).

Remark. We have said in 4.4 that, if dan(V ) = 0, resp. 4, μ(G) = 1,
resp. −1. In this case, the set Eμ(G)(ϕ) is well defined. But, if dan(V ) = 2,
μ(G) can be ±1 according to the choice of ν. Then, according to this choice,
the same set ΠG(ϕ) can be parametrized by the two distinct sets E+(ϕ) or
E−(ϕ).

For s ∈ S(ϕ)/S(ϕ)0, we define θG(ϕ, s) by an equality similar to 4.6 (2).
Assume first μ(G) = 1. Then G is quasi-split. As in 4.6, we require
(2) the functions θG(ϕ, 1ϕ) is stable.
Denote by ϕ : WDF → GL(d,C) the composition of ϕ with of the natural

embedding O(d,C) → GL(d,C). As in 4.6, we define a function θπ̃(ϕ) on
G̃(F ), where G̃ is as in 4.5. We require

(3) there is some scalar c(ϕ) ∈ C such that |c(ϕ)| = 1 and that c(ϕ)θπ̃(ϕ)

is the transfer of θG(ϕ, 1ϕ).
Now we remove the assumption μ(G) = 1. Consider two groups G1 and

G2 as in 4.4. Let ϕ1 ∈ Φorth
temp(d1, δ1) and ϕ2 ∈ Φorth

temp(d2, δ2). There is a
natural embedding

(4) O(d1,C) ×O(d2,C) → O(d,C),

but well defined only up to conjugacy by the full orthogonal group O(d,C).
We need to be more precise. We have fixed above some data: T , B, T̂ , B̂ and
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a perfect duality between X∗(T ) and X∗(T̂ ). Of course, we assume fixed
similar data T1, B1 etc. . . for the other groups. In 4.4, we have fixed data
T , B, T1 etc. . . We assume there are the same as before. Then, using the
three perfect dualities, the isomorphism ι : T1 × T2 → T of 4.4 defines an
isomorphism ι̂ : T̂ → T̂1 × T̂2. We choose the embedding (4) such that its
restriction to T̂1 × T̂2 is ι̂−1.

Assume that ϕ is equal to the composition of (ϕ1, ϕ2) and this embed-
ding. Consider the image in SO(d,C) of the product of the central element
1 ∈ SO(d1,C) and of the central element −1 ∈ SO(d2,C). It belongs to
S(ϕ). Denote by s its image in S(ϕ)/S(ϕ)0. Then we require

(5) for every μ ∈ {±1}, there is some scalar γμ(ϕ1, ϕ2) ∈ C such that
|γμ(ϕ1, ϕ2)| = 1 and that γμ(G)(ϕ1, ϕ2)θG(ϕ, s) is the transfer of θG1(ϕ1,
1ϕ1) × θG2(ϕ2, 1ϕ2).

As in 4.6, we can be more precise concerning the scalars. Recall that
the center of G(F ) is {±1} if d �= 2 and, in any case, contains {±1}. Then,
for every irreducible smooth representation π of G(F ), the value ωπ(−1) of
the central character of π at the central element −1 is well defined, and, of
course, it is a sign ±1.

Proposition. (i) For every ϕ ∈ Φorth
temp(d, δ), there is a sign ζ(ϕ) = ±1

such that for every π ∈ ΠG(ϕ), we have ωπ(−1) = ζ(ϕ) (independently of
μ(G)).

(ii) The scalar c(ϕ) of (3) is equal to ζ(ϕ)ε(π(ϕ), 1/2, ψF )−1.
(iii) Up to change of the bijections (1), we can assume that the scalars

γμ(ϕ1, ϕ2) of (5) are all equal to 1.

The first assertion is proved directly. The two others are proved at the
same time as the main theorem.

Remark. (6) As in 3.4, it is reasonable that the scalar c(ϕ) depends on
ψF because the normalization of π̃(ϕ) depends on it.

(7) ε(π(ϕ), 1/2, ψF ) is always a four root of unity, but not always ±1.
So the same holds for the scalar c(ϕ).

4.8. The present state of the conjectures. Arthur has now proved
a substantial part of the conjectures stated in the Sections 4.2 to 4.7. The
proofs will appear in the forthcoming paper [A]. More precisely, in the odd-
dimensional case, he has proved all conjectures for split groups G′. There is
no doubt that the same methods can be used in the non-split case, and may
be the final Arthur’s article will include this case. In the even-dimensional
case, there is a slight problem: it is difficult to distinguish two represen-
tations of G(F ) that are not equivalent but are conjugate by an element
of the full orthogonal group. Similarly, it is difficult to distinguish two
parameters ϕ that are not equivalent modulo conjugacy by SO(d,C), but
becomes equivalent modulo conjugacy by O(d,C). It is possible to state
weaker conjectures where we identify two representations of G(F ) conjugate
by an element of the full orthogonal group and, similarly, we identify two
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parameters conjugate by an element of O(d,C). Arthur prove this weaker
conjecture when the group G is quasi-split. As in the odd-dimensional case,
the same proof holds certainly if G is not quasi-split. I don’t know if it is
possible to prove the stronger form of the conjectures without substantial
additional work.

5. The precise form of the Gross-Prasad conjecture

5.1. Description of some centralizers. Let N ≥ 1 be an integer
and let ϕ : WDF → GL(N,C) be a continuous semi-simple homomorphism
whose restriction to SL(2,C) is algebraic. Assume that either the image of
ϕ in contained in O(N,C), or N is even and the image of ϕ is contained
in Sp(N,C). Then ϕ is conjugate to the homomorphism w 
→ ϕθ(w) =
tϕ(w)−1. Consider an irreducible component ψ of ϕ, which takes its values
in some group GL(Nψ,C). Then ψθ is also such irreducible component.
If ψθ � ψ, its implies that, up to conjugacy, either ψ takes its values in
O(Nψ,C), or Nψ is even and ψ takes its values in Sp(Nψ,C) (the two cases
are disjoint). Then we can decompose ϕ as

ϕ = (⊕i∈Iorth liϕi) ⊕ (⊕i∈Isymp liϕi) ⊕ (⊕j∈J lj(ϕj ⊕ϕθj)),
where:

• Iorth, Isymp and J are finite disjoint sets;
• for i ∈ Iorth, ϕi is an irreducible homomorphism fromWDF to some
O(Ni,C) and li ≥ 1 is its multiplicity; if i �= i′, ϕi is not equivalent
to ϕi′ ;

• for i ∈ Isymp, ϕi is an irreducible homomorphism from WDF to
some Sp(Ni,C) with Ni even, and li ≥ 1 is its multiplicity; if i �= i′,
ϕi is not equivalent to ϕi′ ;

• for j ∈ J , ϕj is an irreducible homomorphism from WDF to some
GL(Nj ,C) and ϕθj is not equivalent to ϕj ; lj ≥ 1 is its multiplicity;
if j �= j′, ϕj is equivalent neither to ϕj′ nor to ϕθj′ .

It is easy to compute the centralizer in GL(N,C) of the image of ϕ. It is
isomorphic to⎛
⎝ ∏
i∈Iorth

GL(li,C)

⎞
⎠×

( ∏
i∈Isymp

GL(li,C)

)
×

⎛
⎝∏
j∈J

(GL(lj ,C) ×GL(lj ,C))

⎞
⎠ .

Consider more precisely the case where N is even and ϕ takes its values
in Sp(N,C). The centralizer in Sp(N,C) of the image of ϕ is the intersection
with Sp(N,C) of the group above. Let i ∈ Iorth. The group GL(li,C) that
appears is in fact the group of automorphisms of the space Ui of intertwining
homomorphisms from ϕi to ϕ. Because the space of ϕi is provided with a
quadratic form and the one of ϕ is provided with a symplectic form, there
is a natural symplectic form on Ui. This imply first that li is even. Then
the intersection of GL(li,C) with Sp(N,C) is the symplectic group of this
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symplectic form, in other words a group Sp(li,C). Now let i ∈ Isymp. For
the same reason, the space Ui defined as before is provided with a quadratic
form, and the intersection of GL(li,C) with Sp(N,C) is isomorphic to the
orthogonal group of this quadratic form, in other words to a group O(li,C).
Lastly, let j ∈ J . Then the group GL(lj ,C) ×GL(lj ,C) that appears is the
product of the groups of automorphisms of two spaces Uj and U θj , where
Uj , resp. U θj , is the space of intertwining homomorphisms from ϕj , resp.
ϕθj , to ϕ. The symplectic form of the space of ϕ induces a duality between
Uj and U θj . The intersection of GL(lj ,C) ×GL(lj ,C) with Sp(N,C) is the
subgroup of elements compatible with this duality. Its group is isomorphic
with GL(li,C). We obtain that the centralizer in Sp(N,C) of the image
of ϕ is ⎛

⎝ ∏
i∈Iorth

Sp(li,C)

⎞
⎠×

( ∏
i∈Isymp

O(li,C)

)
×

⎛
⎝∏
j∈J

GL(lj ,C)

⎞
⎠ .

Its group of connected components is therefore isomorphic to {±1}Isymp
.

Assume now that ϕ takes its values in O(N,C). A similar computation
holds for the centralizer in O(N,C) of the image of ϕ. We obtain⎛

⎝ ∏
i∈Iorth

O(li,C)

⎞
⎠×

( ∏
i∈Isymp

Sp(li,C)

)
×

⎛
⎝∏
j∈J

GL(lj ,C)

⎞
⎠ .

But we are more interested by the centralizer in SO(N,C) and not in the
full orthogonal group. A little computation shows that it is the subgroup of
elements x such that, if (xi)i∈Iorth are the components of x in the first prod-
uct, we have

∏
i∈Iorth det(xi)Ni = 1. The group of connected components

of this centralizer is therefore isomorphic to the subgroup of the elements
s = (si)i∈Iorth ∈ {±1}Iorth such that

∏
i∈Iorth,Ni odd si = 1.

5.2. Definition of some sign. Let N and N ′ be two natural integers,
with N ′ even. Let ϕ : WDF → GL(N,C) and ϕ′ : WDF → GL(N ′,C) be
two homomorphisms as in the preceding section. Assume the image of ϕ
is contained in O(N,C) and the image of ϕ′ is contained in Sp(N ′,C). By
the Langlands correspondence, we associate to these homomorphisms the
representations π(ϕ) of GL(N,F ) and π(ϕ′) of GL(N ′, F ). As in 1.3, we
denote by δϕ the quadratic character of WDF defined by δϕ = det ◦ ϕ. By
Kummer’s theory, we can see δϕ as a quadratic character of F×. Define

E(ϕ,ϕ′) = δϕ(−1)N
′/2ε(π(ϕ) × π(ϕ′), 1/2, ψF ).

Lemma. The number E(ϕ,ϕ′) belongs to {±1} and does not depend
of ψF .
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5.3. Definition of some character. Let d and d′ be two natural
numbers, with d even and d′ odd. Let δ ∈ F×/F×,2, ϕ ∈ Φorth(d, δ) and
ϕ′ ∈ Φorth(d′). As in the preceding sections, we denote by ϕ the composition
of ϕ with the embedding O(d,C) → GL(d,C) and by ϕ′ the composition
of ϕ′ with the embedding Sp(d′ − 1,C) → GL(d′ − 1,C). We apply the
constructions of 5.1 , denoting by Iorth, Isymp etc. . . the data relative to ϕ
and by I ′orth, I ′symp etc. . . those relative to ϕ′. Then we obtain

S(ϕ′)/S(ϕ′)0 = {±1}I′
symp

and
S(ϕ)/S(ϕ)0 ⊂ {±1}Iorth

.

Denote by < ., . > the duality between {±1} and itself, that is

< η, η′ >=
{

−1, if η = η′ = −1,
1, otherwise.

Define a character ε′ of S(ϕ′)/S(ϕ′)0 = {±1}I′symp

by

ε′(s′) =
∏

i′∈I′symp

< s′i′ , E(ϕ,ϕ′
i′) >

for every s′ = (s′i′)i′∈I′symp ∈ {±1}I′symp

. Define a character ε of
{±1}Iorth

by

ε(s) =
∏

i∈Iorth

< si, E(ϕi,ϕ
′) >

for every s = (si)i∈Iorth ∈ {±1}Iorth
. By restriction to S(ϕ)/S(ϕ)0, we

obtain a character of this group, also denoted by ε.
We have defined in 4.6 and 4.7 two elements zϕ ∈ S(ϕ)/S(ϕ)0 and

zϕ′ ∈ S(ϕ′)/S(ϕ′)0. A little computation shows that

(1) ε(zϕ) = ε′(zϕ′) = E(ϕ,ϕ′).

5.4. Statement of the local Gross-Prasad conjecture. Let’s come
back to the situation of 2.1, but changing the notation as explained in 4.1.
So the data d = dim(V ), G, dim(W ), H of 2.1 become d, G, d′, G′, if the
bigger space is even-dimensional, and become d′, G′, d, G if the bigger space
is odd-dimensional. For smooth irreducible representations π of G(F ) and
π′ of G′(F ), we denote by m(π, π′) the multiplicity defined in 2.1 if the first
case and the multiplicity denoted in 2.1 by m(π′, π) in 2.1 in the other case.

Some element ν ∈ F×/F×,2 occurs in 2.1 when we write explicitely the
quadratic form of the space Z. In 4.4, we use some element ν to define
μ(G). And this sign is used to parametrize the tempered representations of
G(F ). We assume now that the two elements ν of 2.1 and 4.4 are the same.
The space V ⊕ Z(ν) of 4.4 is the same as V ′, up to addition of hyperbolic
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planes. Then G′(ν) is split if and only if G′ is split. The definitions imply
the equality

μ(G) = μ(G′).

Let ϕ ∈ Φorth
temp(d, δ) and let ϕ′ ∈ Φorth

temp(d
′), where as before δ is the dis-

criminant of the quadratic form on the even-dimensional space. To those
parameters are associated packets ΠG(ϕ) and ΠG′

(ϕ′) of tempered represen-
tations of G(F ) and G′(F ). Those packets are themselves parametrized by
the sets of characters Eμ(G)(ϕ) and Eμ(G′)(ϕ′).

Remark. We assume the parametrizations fixed such that the equalities
of propositions 4.6 and 4.7 are satisfied. There is no logical problem here:
these propositions and the theorem below follow from the same proof, but
the propositions are proved firstly.

Applying the contructions of 5.3, we define two characters ε and ε′. The
equality 5.3(1) and the equality above show that there are two possibilities:

(1) if E(ϕ,ϕ′) = μ(G) = μ(G′), then ε belongs to Eμ(G)(ϕ) and ε′

belongs to Eμ(G′)(ϕ′);
(2) if E(ϕ,ϕ′) = −μ(G) = −μ(G′), then ε does not belong to Eμ(G)(ϕ)

and ε′ does not belong to Eμ(G′)(ϕ′).

Theorem. (i) If E(ϕ,ϕ′) = μ(G) = μ(G′), then m(π(ϕ, ε), π(ϕ′, ε′)) =
1 and m(π, π′) = 0 for every (π, π′) ∈ ΠG(ϕ) × ΠG′

(ϕ′) such that (π, π′) �=
(π(ϕ, ε), π(ϕ′, ε′)).

(ii) If E(ϕ,ϕ′) = −μ(G) = −μ(G′), then m(π, π′) = 0 for every
(π, π′) ∈ ΠG(ϕ) × ΠG′

(ϕ′).

Cf. [W4] théorème 4.9. Let’s recall the theorem is conditional: we
assume true the conjectures of Section 4, and in addition some results coming
from the twisted local trace formula.

The theorem proves the local Gross-Prasad conjecture. Of course, it
implies the theorem A and B of 1.5 and 1.6. There is two pairs (Gi, Hi)
and (Ga, Ha) of groups in these theorems, and not one as in the statement
above. We explain that in the remark 2 of the following section.

5.5. An idea of the proof. To state the preceding theorem, we started
from given groups G and G′. In order to prove it, it is better to start from
more abstract data. Those data are:

• an element ν ∈ F×/F×,2 fixed once and for all;
• two natural integers d and d′, with d even and d′ odd;
• an element δ ∈ F×/F×,2, with δ = 1 if d = 0;
• a sign μ ∈ {±1}.
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Let ϕ ∈ Φorth
temp(d, δ), ϕ

′ ∈ Φorth
temp(d

′), ε ∈ Eμ(ϕ) and ε′ ∈ Eμ(ϕ′). We
can define the multiplicity m(ϕ, ε;ϕ′, ε′) as follows. Using the elementary
classification’s theory of quadratic forms over local fields, we see that, up
to isometry, there exists exactly two spaces provided with non-degenerate
quadratic forms satisfying the conditions of 2.1, where ν is our choosen ν,
such that the even-dimensional space has dimension d and discriminant δ,
the odd-dimensional space has dimension d′ and the special orthogonal group
G′ of the odd-dimensional space is split if μ = 1 and non-split if μ = −1.
We apply the constructions of the preceding sections to those spaces. The
pairs (ϕ, ε) and (ϕ′, ε′) defines representations π(ϕ, ε) of G(F ) and π(ϕ′, ε′)
of G′(F ) and we let

m(ϕ, ε;ϕ′, ε′) = m(π(ϕ, ε), π(ϕ′, ε′)).

Remarks. (1) For defining the representation π(ϕ, ε) of G(F ), we need
to consider SO(d,C) as the Langlands dual group of G and for that rea-
son, we need to fix some additional data, cf. 4.7. To change those data
can replace π(ϕ, ε) by a representation conjugate by an element of the full
orthogonal group. But fortunately, we see easily that the multiplicity above
does not change. So the additional data are not necessary for our problem.

(2) To obtain the situation of theorems A and B, we fix only ν, d, d′

and δ. Choosing μ = 1, the preceding construction gives two groups that
we denote by Gi and G′

i (or Gi and Hi with the notation of Section 1).
Choosing μ = −1, the construction gives other groups Ga and G′

a. The
group Gi is quasi-split and the group G′

i is split. The group Ga is an inner
form of Gi (that can be also quasi-split and in this case isomorphic to Gi)
and the group G′

a is a non-quasi-split inner form of G′
i.

The problem is to compute m(ϕ, ε;ϕ′, ε′) in terms of ε-factors. Let ϕ
and ϕ′ be as before and let s ∈ S(ϕ)/S(ϕ)0 and s′ ∈ S(ϕ′)/S(ϕ′)0. Define

mμ(ϕ, s;ϕ′, s′) =
∑

ε∈Eμ(ϕ),ε′∈Eμ(ϕ′)

ε(s)ε′(s′)m(ϕ, ε;ϕ′, ε′).

By elementary Fourier’s inversion, to compute all terms m(ϕ, ε;ϕ′, ε′) is
equivalent to compute all terms mμ(ϕ, s;ϕ′, s′). Let d1, d2, d

′
1, d

′
2 be four

integers such that d1 and d2 are even and d1 + d2 = d, d′1 and d′2 are odd
and d′1 + d′2 = d′ + 1, and let δ1, δ2 be two elements of F×/F×,2 such that
δ1δ2 = δ and, if di = 0 for i = 1 or 2, then δi = 1. For i = 1 or 2,
let ϕi ∈ Φorth

temp(di, δi) and ϕ′
i ∈ Φorth

temp(d
′
i). To (ϕ1, ϕ2), we associate as in

4.7 an element ϕ ∈ Φorth
temp(d, δ) and an element s ∈ S(ϕ)/S(ϕ)0 (as above,

we need to choose some additional data, but this choice is inessential). To
(ϕ′

1, ϕ
′
2), we associate as in 4.6 an element ϕ′ ∈ Φorth

temp(d
′) and an element s′ ∈

S(ϕ′)/S(ϕ′)0. The application that, to the data d1, d2, . . . , ϕ
′
2, associates the

data ϕ, s, ϕ′, s′ is surjective (not injective, but this doesn’t matter). Then, in
order to compute mμ(ϕ, s;ϕ′, s′), we can assume that ϕ, s, . . . are deduced
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from fixed data d1, d2, . . . , ϕ
′
2. For i, j ∈ {1, 2}, Define

S(ϕi, ϕ′
j) = 2m+(ϕi, 1ϕi ;ϕ

′
j , 1ϕ′

j
) − 1.

Recall we have introduced some scalars γμ(ϕ1, ϕ2) and γμ(ϕ′
1, ϕ

′
2) in 4.6

and 4.7.

Proposition. We have the equality

γμ(ϕ1, ϕ2)γμ(ϕ′
1, ϕ

′
2)m

μ(ϕ, s;ϕ′, s′)

=
1
2
(S(ϕ1, ϕ

′
1)S(ϕ2, ϕ

′
2) + μS(ϕ1, ϕ

′
2)S(ϕ2, ϕ

′
1)).

Sketch of the proof. We associate to ϕ and ϕ′ some groups G and
G′ as above. We associate to d1, d2, δ1 and δ2 the groups G1 and G2 of 4.7
and to d′1 and d′2 the groups G′

1 and G′
2 of 4.6. The term mμ(ϕ, s;ϕ′, s′) is a

weighted sum of multiplicities that can be computed by the integral formula
of 2.5. Then the whole term mμ(ϕ, s;ϕ′, s′) is a sum over tori of integrals of
functions, that are weighted sums of the functions appearing in 2.5. In fact,
those weighted sums are ∑

ε∈Eμ(ϕ)

ε(s)cπ(ϕ,ε),

and ∑
ε′∈Eμ(ϕ′)

ε′(s′)cπ(ϕ′,ε′).

They can be deduced from the characters θG(ϕ, s) and θG
′
(ϕ′, s′) introduced

in 4.6 and 4.7. Using the conjectures of these sections, they can be computed
in terms of the characters θG1(ϕ1, 1ϕ1) × θG2(ϕ2, 1ϕ2) and θG

′
1(ϕ′

1, 1ϕ′
1
) ×

θG
′
2(ϕ′

2, 1ϕ′
2
) (here we need to slip the scalars γμ(ϕ1, ϕ2) and γμ(ϕ′

1, ϕ
′
2)). We

obtain an integral formula computing the left member of the proposition,
using those characters. The same thing holds for the right member, applying
the same methods to the four pairs of groups (G1, G

′
1), (G2, G

′
2), (G1, G

′
2)

and (G2, G
′
1). The proposition results from comparison of the two integral

formulas obtained in this way

Remark. Stictly speaking, it is not always possible to attach to G1,
G2, G′

1 and G′
2 spaces V1, V2, V ′

1 , V
′
2 , provided with quadratic forms, such

that the assumptions of 2.1 are satisfied for the four pairs (Vi, V ′
j ), i, j =

1, 2. That is, we cannot use the same ν for the four pairs. But a term
S(ϕi, ϕ′

j) depends only on the L-packets ΠGi(ϕi) and ΠG′
j (ϕ′

j) and not on
the parametrizations of those packets. That is, it does not depend on ν.

We must to compute the terms S(ϕi, ϕ′
j). For that, we can forget the

indices i and j and to compute S(ϕ,ϕ′) defined as above by

S(ϕ,ϕ′) = 2m+(ϕ, 1ϕ;ϕ′, 1ϕ′) − 1.
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So μ = 1 and the underlying groups are quasi-split. We introduce as in 4.6
and 4.7 the representations π(ϕ′

>) of GL(d′, F ) and π(ϕ) of GL(d, F ), and
the scalars c>(ϕ′) and c(ϕ). Recall the scalar ζ(ϕ) of the first assertion of
proposition 4.7 (that is proved directly).

Proposition. We have the equality

S(ϕ,ϕ′) = ζ(ϕ)c(ϕ)c>(ϕ′)ε(π(ϕ) × π(ϕ′
>), 1/2, ψF ).

Sketch of the proof. We associate to ϕ and ϕ′ the same groups
G and G′ as above. The left member S(ϕ,ϕ′) can again be computed by
an integral formula where appear functions deduced from the characters
θG(ϕ, 1ϕ) and θG

′
(ϕ′, 1ϕ′). As in 4.5, we associate to G a group G and

a twisted space G̃, then to ϕ the function θπ̃(ϕ) on G̃(F ). As in 4.4, we
associate to G′ a group G′ and a twisted space G̃′, then to ϕ′ the function
θπ̃(ϕ′

>) on G̃′(F ). Using the conjectures of 4.6 and 4.7, we can replace the
characters θG(ϕ, 1ϕ) and θG

′
(ϕ′, 1ϕ′) by c(ϕ)θπ̃(ϕ) and c>(ϕ′)θπ̃(ϕ′

>). Then
S(ϕ,ϕ′) is computed by an integral formula where appear functions deduced
from these last characters. Using the proposition 3.4, we see that the same
is true for the right member of the proposition. The equality of the two
members results from comparison of the two integral formulas obtained in
this way.

Remark. In a first step, this proof gives a more complicated formula
because an auxiliary parameter ν appears in proposition 3.4. But we can
choose arbitrarily this parameter. Because the final formula cannot depend
on this choice, this implies some relations between the various characters
appearing in the formula and these relations can be used to simplify the
formula as in the above statement.

Using the two preceding propositions, we obtain an equality between
mμ(ϕ, s;ϕ′, s′) and an expression that contains some ε-factors and various
scalars as γμ(ϕ1, ϕ2), c(ϕ1), etc. . . To determine the scalars, we consider
particular cases where some terms can be computed. For instance, assume
d = 0, d′2 = 1 and μ = +1. Then all terms depending on ϕ, ϕ1, ϕ2 and
ϕ′

2 disappears. The only scalars that appear are c>(ϕ′) and γ+(ϕ′,−) (the
term ϕ′

2 disappears and ϕ′ = ϕ′
1). The transfer from G′

1 = G′ to G′ is the
identity and this implies that γ+(ϕ′,−) = 1. The ε-factors are associate to
pairs of representations of linear groups, where at least one of the groups is
GL(0). Then these ε-factors are equal to 1. Our equality reduces to

m+(−,−;ϕ′, 1ϕ′) = c>(ϕ′).

But, by definition, the left member is a true sum of multiplicities, then is a
natural integer. And the right member is a complex number of absolute value
1. Then the two members are equal to 1, proving c>(ϕ′) = 1. More com-
plicated particular cases can be used to determine the others scalars. After
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computation of these scalars, our formula becomes and equality expressing
mμ(ϕ, s;ϕ′, s′) in terms of ε-factors and some computations prove that it is
equivalent to the formula of the theorem 5.4.

Remark. As above, we can apply the constructions to the cases d = 0
or d′ = 1. We obtain the following results. Assume μ(G′) = 1 and denote by
ε′1 the identity element of (S(ϕ′)/S(ϕ′)0)∨. Then the representation π(ϕ′, ε′1)
is the unique element of ΠG′

(ϕ′) that is generic (cf. 6.2 for the definition).
Assume μ(G) = 1 and denote by ε1 the identity element of (S(ϕ)/S(ϕ)0)∨.
Then the representation π(ϕ, ε1) is the unique element of ΠG(ϕ) that is
generic, for a type of Whittaker model depending on ν.

6. The case of generic packets

6.1. Definition of non-tempered packets. Let V , q, G be as in
4.4. Let ϕ ∈ Φorth(d, δ). We don’t assume ϕ tempered. There exists
a Levi subgroup M̂ of SO(d,C), in the sense of 2.7, an homomorphism
ϕtemp :WDF → M̂ that is tempered (ϕtemp(WF ) is relatively compact), and
an homomorphism χ̂ from WDF to the center Z(M̂), such that:

• the homomorphism χ̂ is positive; that means that for every rational
character x∗ :Z(M̂) → C×, x∗ ◦ χ̂ takes real positive values; this
implies χ̂ is in fact defined on the quotient WF /IF of WDF ;

• the homomorphism ϕ is equivalent to χ̂⊗ ϕtemp;
• if another triple M̂1, ϕtemp,1 and χ̂1 satisfy the same properties,

then M̂1 ⊂ M̂ .

In general, the group M̂ defines by duality a Levi subgroup M of G. It is
not true in some particular case. We ignore temporarily this difficulty. The
group M is a product of groups GL(n) and (possibly) one special orthogo-
nal group of the even-dimensional case. We can apply to this last group the
conjecture of 4.7 and to the components GL(n) the known correspondence
of Langlands. Then the homomorphism ϕtemp defines a packet ΠM (ϕtemp)
of smooth irreducible tempered representations of M(F ). The character χ̂
defines a character χM of M(F ). We can choose a parabolic subgroup P of
G, of Levi component M , such that χ̂ satisfies relatively to P the positiv-
ity condition required for applying the Langlands quotient theorem. Then
this theorem says that, for all τ ∈ ΠM (ϕtemp), the induced representation
IndGP (χM⊗τ) has a unique irreducible quotient. Denote L(χM⊗τ) this quo-
tient. By definition, the L-packet ΠG(ϕ) is the set of such representations
L(χM ⊗ τ), when τ describes ΠM (ϕtemp).

Let’s come back to the particular case where M does not exist. This case
happens when G is not quasi-split and M̂ is a product of groups GL(n,C)
only, without a special orthogonal group. In this case, we define ΠG(ϕ) = ∅.

We see easily that S(ϕ) is equal to the centralizer of the image of ϕtemp
in M̂ . Then ΠG(ϕ) is still parametrized by Eμ(G)(ϕ).
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Now let V ′, q′, G′ be as in 4.3 and let ϕ′ ∈ Φorth(d′). We define the
packet ΠG′

(ϕ′) by a similar construction.

6.2. Definition of generic packets. We consider two sets of data V ′
i ,

q′i, G
′
i and V ′

a, q
′
a, G

′
a as in 4.3, of the same odd dimension d′ and the same

discriminant, and we assume μ(G′
i) = 1, μ(G′

a) = −1 (in other words, G′
i

is split and G′
a is not-split). Let ϕ′ ∈ Φorth(d′). The L-packet ΠG′

i(ϕ′)
is parametrized by E+(ϕ′) and the L-packet ΠG′

a(ϕ′) is parametrized by
E−(ϕ′). As in 1.3, let Π(ϕ′) = ΠG′

i(ϕ′) 
 ΠG′
a(ϕ′).

Because G′
i is split, we can fix a Borel subgroup B′ of G′

i, defined over F .
Denote by U ′ the unipotent radical of B′. Fix a character ψ of U ′(F ). We
assume that, for all parabolic subgroup P ′ of G′

i defined over F such that
B′ ⊂ P ′ �= G′

i, ψ is not trivial on UP
′
(F ), where UP

′
is the unipotent radical

of P ′. Define the space Wψ of locally constant functions f : G′
i(F ) → C

such that f(ug) = ψ(u)f(g) for all u ∈ U ′(F ) and g ∈ G′
i(F ) and such

that |f | is of compact support on U ′(F )\G′
i(F ). The group G′

i(F ) acts by
right translations on this space. For a smooth irreducible representation
π′ of G′

i(F ), we say π′ is generic if it is equivalent to a representation in
a subspace of Wψ. This notion does not depend on ψ because all ψ’s are
conjugate by the action of B′(F ). We say that Π(ϕ′) is generic if ΠG′

i(ϕ′)
contains a generic representation.

Now, we consider two sets of data Vi, qi, Gi and Va, qa, Ga as in 4.4,
of the same even dimension d and the same discriminant δ, and we assume
μ(Gi) = 1, μ(Ga) = −1 (the parameter ν used in the definition of these
signs being always fixed). The group G′

i is quasi-split. Let ϕ ∈ Φorth(d, δ)
and let Π(ϕ) = ΠGi(ϕ)
ΠGa(ϕ). Suppressing the ′, we define as before the
notion of genericity of a smooth irreducible representation of Gi(F ) or of
the packet Π(ϕ). Here, there is a problem because the possible characters ψ
are not all conjugate by the action of B(F ). A representation of Gi(F ) can
be generic for one choice of ψ and not generic for another choice. But there
is no problem for the packets: we see that, if the packet ΠGi(ϕ) contains
a representation generic for one choice, then for any choice, it contains a
generic representation.

6.3. The theorem for generic L-packets. We consider the same
data as in 5.4, but we remove the assumption that ϕ and ϕ′ are tempered.
So we have only ϕ ∈ Φorth(d, δ) and ϕ′ ∈ Φorth(d′). Using the definitions of
6.1, the statement of theorem 5.5 has still a meaning. Without additional
assumptions, this theorem is false.

Theorem (joint with Moeglin). The assertions of theorem 5.5 become
true if Π(ϕ) and Π(ϕ′) are generic.

That is the theorem C of 1.6. Note that a tempered L-packet is generic:
as explained in the last remark of 5.5, that follows from theorem 5.5 applied
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to the cases d = 0 or d′ = 1. So the preceding theorem is stronger as
theorem 5.5.

I give a sketch of the proof. To ϕ, we associate as in 6.1 an homomor-
phism ϕtemp and, for an index � = i or a, a Levi subgroup M�, a parabolic
subgroup P� of G� and a character χM� of M�(F ) (assuming that M� exists).
Similarly, to ϕ′, we associate ϕ′

temp, M
′
�, P

′
� and χM

′
� .

We have a first result. Let τ ∈ ΠM�(ϕtemp) and τ ′ ∈ ΠM ′
�(ϕ′

temp).

Assume the representations Ind
G�

P�
(χM� ⊗ τ) and Ind

G′
�

P ′
�
(χM

′
� ⊗ τ ′) are

irreducible. Then

m(IndG�

P�
(χM� ⊗ τ), Ind

G′
�

P ′
�
(χM

′
� ⊗ τ ′)) = m(τ, τ ′),

the last multiplicity being defined as in 2.7. This comes easily, using the
proposition 2.8.

The second ingredient is more subtle. We fix a character ψ as in 6.2.
Because ϕtemp is tempered, there is a unique representation in ΠMi(ϕtemp)
that is generic. Denote it by τWh.

Theorem. The three conditions are equivalent:
(i) Π(ϕ) is generic;
(ii) the representation IndGi

Pi
(χMi ⊗ τWh) is irreducible;

(iii) for � = i or a and for all τ ∈ ΠM�(ϕtemp), the representation
Ind

G�

P�
(χM� ⊗ τ) is irreducible.

Cf. [MW] corollary 2.14. The equivalence between (i) and (ii) was a
conjecture of Shahidi, and was proved by Heiermann and Muic ([HM]). The
new point is the equivalence with (iii). The rather winding proof uses the fine
study by Moeglin of the relations between Jacquet modules and endoscopy.

A similar result holds for the groups G′
�.

Now, assume Π(ϕ) and Π(ϕ′) are generic. By the two results above, we
have the equality

m(L(χM� ⊗ τ),L(χM
′
� ⊗ τ ′)) = m(τ, τ ′)

for � = i or a and for all τ ∈ ΠM�(ϕtemp) and τ ′ ∈ ΠM ′
�(ϕ′

temp). Then the
theorem above comes from the theorem 5.5 of the tempered case.
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