
Current Developments in Mathematics, 2009

Drawing by Carolyn Snaith, 1981

The Arf-Kervaire Invariant Problem
in Algebraic Topology: Introduction

Michael A. Hill, Michael J. Hopkins, and Douglas C. Ravenel

c© 2010 International Press

23



24 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

Abstract. This paper gives the history and background of one of the
oldest problems in algebraic topology, along with a short summary of
our solution to it and a description of some of the tools we use. More
details of the proof are provided in our second paper in this volume,
The Arf-Kervaire invariant problem in algebraic topology: Sketch of the
proof. A rigorous account can be found in our preprint The non-existence
of elements of Kervaire invariant one on the arXiv and on the third
author’s home page. The latter also has numerous links to related papers
and talks we have given on the subject since announcing our result in
April, 2009.
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Main Theorem. The Arf-Kervaire elements θj ∈ πS
2j+1−2

do not exist
for j ≥ 7.

Here πS
k denotes the kth stable homotopy group of spheres, which will

be defined shortly.
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The kth (for a positive integer k) homotopy group of the topological
space X, denoted by πk(X), is the set of continuous maps to X from the
k-sphere Sk, up to continuous deformation. For technical reasons we require
that each map send a specified point in Sk (called a base point) to a specified
point x0 ∈ X. When X is path connected the choice of these two points
is irrelevant, so it is usually omitted from the notation. When X is not
path connected, we get different collections of maps depending on the path
connected component of the base point.

This set has a natural group structure, which is abelian for k > 1. The
word natural here means that a continuous base point preserving map f :
X → Y induces a homomorphism f∗ : πk(X) → πk(Y ), sometimes denoted
by πk(f).

It is known that the group πn+k(Sn) is independent of n for n > k.
There is a homomorphism E : πn+k(Sn) → πn+k+1(Sn+1) defined as follows.
Sn+1 [Sn+k+1] can be obtained from Sn [Sn+k] by a double cone construc-
tion known as suspension. The cone over Sn is an (n + 1)-dimensional
ball, and gluing two such balls together along there common boundary
gives and (n + 1)-dimensional sphere. A map f : Sn+k → Sn can be
canonically extended (by suspending both its source and target) to a map
Ef : Sn+k+1 → Sn+1, and this leads to the suspension homomorphism E.
The Freudenthal Suspension Theorem [Fre38], proved in 1938, says that it
is onto for k = n and an isomorphism for n > k. For this reason the group
πn+k(Sn) is said to be stable when n > k, and it is denoted by πS

k and called
the stable k-stem.

The Main Theorem above concerns the case k = 2j+1 − 2. The θj in the
theorem is a hypothetical element related a geometric invariant of certain
manifolds studied originally by Pontryagin starting in the 1930s, [Pon38],
[Pon50] and [Pon55]. The problem came into its present form with a
theorem of Browder [Bro69] published in 1969. There were several unsuc-
cessful attempts to solve it in the 1970s. They were all aimed at proving the
opposite of what we have proved, namely that ll of the θj exist.

The θj in the theorem is the name given to a hypothetical map between
spheres for which the Arf-Kervaire invariant is nontrivial. Browder’s theo-
rem says that such things can exist only in dimensions that are 2 less than
a power of 2.

Some homotopy theorists, most notably Mahowald, speculated about
what would happen if θj existed for all j. They derived numerous conse-
quences about homotopy groups of spheres. The possible nonexistence of
the θj for large j was known as the Doomsday Hypothesis.

After 1980, the problem faded into the background because it was thought
to be too hard. In 2009, just a few weeks before we announced our theorm,
Snaith published a book [Sna09] on the problem “to stem the tide of obliv-
ion”. On the difficulty of the problem, he wrote
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In the light of . . . the failure over fifty years to construct
framed manifolds of Arf-Kervaire invariant one this might
turn out to be a book about things which do not exist.
This [is] why the quotations which preface each chapter
contain a preponderance of utterances from the pen of
Lewis Carroll.

Our proof is two giant steps away from anything that was attempted in
the 70s. We now know that the world of homotopy theory is very different
from what they had envisioned then.

1. Background and history

1.1. Pontryagin’s early work on homotopy groups of spheres.
The Arf-Kervaire invariant problem has its origins in Pontryagin’s early
work on a geometric approach to the homotopy groups of spheres, [Pon38],
[Pon50] and [Pon55].

Pontryagin’s approach to maps f : Sn+k → Sn is to assume that f is
smooth and that the base point y0 of the target is a regular value. (Any
continuous f can be continuously deformed to a map with this property.)
This means that f−1(y0) is a closed smooth k-manifold M in Sn+k. Let
Dn be the closure of an open ball around y0. If it is sufficiently small,
then V n+k = f−1(Dn) ⊂ Sn+k is an (n + k)-manifold homeomorphic to
M × Dn with boundary homeomorphic to M × Sn−1. It is also a tubular
neighborhood of Mk and comes equipped with a map p : V n+k → Mk

sending each point to the nearest point in M . For each x ∈ M , p−1(x)
is homeomorphic to a closed n-ball Bn. The pair (p, f |V n+k) defines an
explicit homeomorphism

V n+k
(p,f |V n+k)

≈

�� Mk × Dn.

This structure on Mk is called a framing, and M is said to be framed in
Rn+k. A choice of basis of the tangent space at y0 ∈ Sn pulls back to a set
of linearly independent normal vector fields on M ⊂ Rn+k. These will be
indicated in Figures 1–3 and 6 below.

Conversely, suppose we have a closed sub-k-manifold M ⊂ Rn+k with
a closed tubular neighborhood V and a homeomorphism h to M × Dn as
above. This is called a framed sub-k-manifold of Rn+k. Some remarks are
in order here.

• The existence of a framing puts some restrictions on the topology
of M . All of its charactersitic classes must vanish. In particular it
must be orientable.

• A framing can be twisted by a map g : M → SO(n), where SO(n)
denotes the group of orthogonal n×n matrices with determinant 1.
Such matrices act on Dn in an obvious way. The twisted framing
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is the composite

V
h �� Mk × Dn �� Mk × Dn

(m, x) � �� (m, g(m)(x)).

We will say more about this later.
• If we drop the assumption that M is framed, then the tubular

neighborhood V is a (possibly nontrivial) disk bundle over M . The
map M → y0 needs to be replaced by a map to the classifying
space for such bundles, BO(n). This leads to unoriented bordism
theory, which was analyzed by Thom in [Tho54]. Two helpful ref-
erences for this material are the books by Milnor-Stasheff [MS74]
and Stong [Sto68].

Pontryagin constructs a map P (M, h) : Sn+k → Sn as follows. We re-
gard Sn+k as the one point compactification of Rn+k and Sn as the quotient
Dn/∂Dn. This leads to a diagram

(V, ∂V )� �

��

h �� M × (Dn, ∂Dn)
p2 �� (Dn, ∂Dn)

��
(Rn+k,Rn+k − intV ) �� (Sn+k, Sn+k − intV )

P (M,h) �� (Sn, {∞})

Sn+k − intV
� P (M,h) �� {∞}

The map P (M, h) is the extension of p2h obtained by sending the compli-
ment of V in Sn+k to the point at infinity in Sn. For n > k, the choice of the
embedding (but not the choice of framing) of M into the Euclidean space
is irrelevant. Any two embeddings (with suitably chosen framings) lead to
the same map P (M, h) up to continuous deformation.

To proceed further, we need to be more precise about what we mean by
continuous deformation. Two maps f1, f2 : X → Y are homotopic if there
is a continuous map h : X × [0, 1] → Y (called a homotopy between f1 and
f2) such that

h(x, 0) = f1(x) and h(x, 1) = f2(x).

Now suppose X = Sn+k, Y = Sn, and the map h (and hence f1 and f2) is
smooth with y0 as a regular value. Then h−1(y0) is a framed (k+1)-manifold
N whose boundary is the disjoint union of M1 = f−1(y0) and M2 = g−1(y0).
This N is called a framed cobordism between M1 and M2, and when it exists
the two closed manifolds are said to be framed cobordant. An example is
shown in Figure 1.

Let Ωfr
k,n denote the cobordism group of framed k-manifolds in Rn+k.

The above construction leads to Pontryagin’s isomorphism

Ωfr
k,n

≈ �� πn+k(Sn).
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Figure 1. A framed cobordism between M1 = S1
∐

S1 ⊂
R2 and M2 = S1 ⊂ R3 with N ⊂ [0, 1] × R2. The normal
framings on the circles can be chosen so they extend over N .

First consider the case k = 0. Here the 0-dimensional manifold M is a
finite set of points in Rn. Each comes with a framing which can be obtained
from a standard one by an element in the orthogonal group O(n). We attach
a sign to each point corresponding to the sign of the associated determinant.
With these signs we can count the points algebraically and get an integer
called the degree of f . Two framed 0-manifolds are cobordant iff they have
the same degree. Figure 2 shows a cobordism between the empty set and a
pair of points with opposite signs.

Now consider the case k = 1. M is a closed 1-manifold, i.e., a disjoint
union of circles. Two framings on a single circle differ by a map from S1 to
the group SO(n), and it is known that

π1(SO(n)) =

⎧⎨
⎩

0 for n = 1
Z for n = 2
Z/2 for n > 2.

Figure 2 illustrates the two different framings on S1 for n = 2. It turns
about that any disjoint union of framed circles is cobordant to a single
framed circle. This can be used to show that

πn+1(Sn) =

⎧⎨
⎩

0 for n = 1
Z for n = 2
Z/2 for n > 2.

The case k = 2 is more subtle. As in the 1-dimensional case we have
a complete classification of closed 2-manifolds, and it is only necessary to
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consider path connected ones. The existence of a framing implies that the
surface is orientable, so it is characterized by its genus.

Sidebar 1 The Hopf-Whitehead J-homomorphism

Suppose our framed manifold is Sk with a framing that extends to a Dk+1.
This will lead to the trivial element in πn+k(Sn), but twisting the framing
can lead to nontrivial elements. The twist is determined up to homotopy
by an element in πk(SO(n)). Pontryagin’s construction thus leads to the
homomorphism

πk(SO(n)) J �� πn+k(Sn)

introduced by Hopf [Hop35] and Whitehead [Whi42]. Both source and
target known to be independent of n for n > k+1. In this case the source
group for each k (denoted simply by πk(SO) since n is irrelevant) was
determined by Bott [Bot59] in his remarkable periodicity theorem. He
showed

πk(SO) =

⎧⎨
⎩

Z for k ≡ 3 or 7 mod 8
Z/2 for k ≡ 0 or 1 mod 8
0 otherwise.

Here is a table showing these groups for k ≤ 10.
k 1 2 3 4 5 6 7 8 9 10

πk(SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0
In each case where the group is nontrivial, its the image under J of its
generator is known to generate a direct summand. In the jth case we
denote this image by βj and its dimension by φ(j), which is roughly 2j.
The first three of these are the Hopf maps η ∈ πS

1 , ν ∈ πS
3 and σ ∈ πS

7 .
After that we have β4 ∈ πS

8 , β5 ∈ πS
9 , β6 ∈ πS

11 and so on.
For the case π4m−1(SO) = Z, the image under J is known to be a cyclic
group whose order am is the denominator of Bm/4m, where Bm is the
mth Bernoulli number. Details can be found in [Ada66] and [MS74].
Here is a table showing these values for m ≤ 10.

m 1 2 3 4 5 6 7 8 9 10
am 24 240 504 480 264 65,520 24 16,320 28,728 13,200

If the genus is zero, namely if M = S2, then there is a framing which
extends to a 3-dimensional ball. This makes M cobordant to the empty
set, which means that the map is null homotopic (or, more briefly, null),
meaning that it is homotopic to a constant map. Any two framings on S2

differ by an element in π2(SO(n)). This group is known to vanish, so any
two framings on S2 are equivalent, and the map f : Sn+2 → Sn is null.
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Figure 2. The cases k = 0 and k = 1. The indicated 0-
manifold (two points in R with opposite signs) is framed
cobordant (via the yellow line) to the empty set. For k = 1,
the two circles are framed in R3. One normal field on each is
in the plane of the picture as indicated, and the second (not
shown) is pointing out of the plane of the picture toward the
reader. Which of these two framings extends to a disk in R3?

Now suppose the genus is one, as shown in Figure 3. Suppose we can
find an embedded arc as shown on which the framing extends to a disk.
Then there is a cobordism which effectively cuts along the arc and attaches
two disks as shown. This process is called framed surgery. If we can do this,
then we have converted the torus to a 2-sphere and shown that the map
f : Sn+2 → Sn is null.

When can we find such a closed curve in M? It must represent a gener-
ator of H1(M) and carry a trivial framing. This leads to a map

(1) ϕ : H1(M ;Z/2) → Z/2

defined as follows. Each class in H1 can be represented by a closed curve
which is framed either trivially or nontrivially. It can be shown that homol-
ogous curves have the same framing invariant, so ϕ is well defined. At this
point Pontryagin made a famous mistake which went undedected for over a
decade: he assumed that ϕ was a homomorphism. We now know this is
not the case, and we will say more about it below in §1.3. This nonlinearity
is illustrated in Figure 4.

On that basis he argued that ϕ must have a nontrivial kernel, since the
source group is (Z/2)2. Therefore there is a closed curve along which we
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Figure 3. The case k = 2 and genus 1. If the framing on the
embedded arc extends to a disk, then there is a cobordism
(called a framed surgery) that converts the torus to a 2-sphere
as shown.

can do the surgery shown in Figure 3. It follows that M can be surgered
into a 2-sphere, leading to the erroneous conclusion that πn+2(Sn) = 0
for all n. Freudenthal [Fre38] and later George Whitehead [Whi50] both
proved that it is Z/2 for n ≥ 2. Pontryagin corrected his mistake in [Pon50],
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Figure 4. The nonlinearity of ϕ. Even if the framing on the
torus is such that its restrictions to the longitudinal and lat-
itudinal circles each extends to a disk, the resulting framing
on their sum does not.

and in [Pon55] he gave a complete account of the relation between framed
cobordism and homotopy groups of spheres.

1.2. Our main result. Our main theorem can be stated in three dif-
ferent but equivalent ways:

• Manifold formulation: It says that a certain geometrically defined
invariant Φ(M) (the Arf-Kervaire invariant, to be defined later) on
certain manifolds M is always zero.

• Stable homotopy theoretic formulation: It says that certain long
sought hypothetical maps between high dimensional spheres do not
exist.

• Unstable homotopy theoretic formulation: It says something about
the EHP sequence (to be defined below), which has to do with
unstable homotopy groups of spheres.

The problem solved by our theorem is nearly 50 years old. There were
several unsuccessful attempts to solve it in the 1970s. They were all aimed
at proving the opposite of what we have proved.

Here again is the stable homotopy theoretic formulation.

Main Theorem. The Arf-Kervaire elements θj ∈ πS
2j+1−2

do not exist
for j ≥ 7.
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1.3. The manifold formulation. Let λ be a nonsingular anti-
symmetric bilinear form on a free abelian group H of rank 2n with mod 2
reduction H. It is known that H has a basis of the form {ai, bi : 1 ≤ i ≤ n}
with

λ(ai, ai′) = 0 λ(bj , bj′) = 0 and λ(ai, bj) = δi,j .

In other words, H has a basis for which the bilinear form’s matrix has
the symplectic form ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 0

0 1
1 0

. . .
0 1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x + y) = q(x) + q(y) + λ(x, y)

Its Arf invariant is

Arf(q) =
n∑

i=1

q(ai)q(bi) ∈ Z/2.

In 1941 Arf [Arf41] proved that this invariant (along with the number n)
determines the isomorphism type of q.

An equivalent definition is the “democratic invariant” of Browder. The
elements of H “vote” for either 0 or 1 by the function q. The winner of the
election (which is never a tie) is Arf(q). Here is a table illustrating this for
three possible refinements q, q′ and q′′ when H has rank 2.

x 0 a b a + b Arf invariant
q(x) 0 0 0 1 0
q′(x) 0 1 1 1 1
q′′(x) 0 1 0 0 0

The value each refinement on a + b is determined by those on a and b, and
q′′ is isomorphic to q . Thus the vote is three to one in each case. When H
has rank 4, it is 10 to 6.

Let M be a 2m-connected smooth closed manifold of dimension 4m + 2
with a framed embedding in R4m+2+n. We saw above that this leads to a
map f : Sn+4m+2 → Sn and hence an element in πn+4m+2(Sn).

Let H = H2m+1(M ;Z), the homology group in the middle dimension.
Each x ∈ H is represented by an immersion ix : S2m+1 � M with a stably
trivialized normal bundle. H has an antisymmetric bilinear form λ defined
in terms of intersection numbers.
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In 1960 Kervaire [Ker60] defined a quadratic refinement q on its mod 2
reduction in terms of the trivialization of each sphere’s normal bundle. The
Kervaire invariant Φ(M) is defined to be the Arf invariant of q. In the case
m = 0, when the dimension of the manifold is 2, Kervaire’s q is Pontryagin’s
map ϕ of (1).

What can we say about Φ(M)?

• Kervaire [Ker60] showed it must vanish when k = 2. This enabled
him to construct the first example of a topological manifold (of
dimension 10) without a smooth structure. This is illustrated in
Figure 5. N is a smooth 10-manifold with boundary given as the
union of two copies of the tangnent disk bundle of S5. The bound-
ary is homeomorphic to S9. Thus we can get a closed topological
manifold X by gluing on a 10-ball along its common boundary with
n, or equivalently collapsing ∂N to a point. X then has nontriv-
ial Kervaire invariant. On the other hand, Kervaire proved that
any smooth framed manifold must have trivial Kervaire invariant.
Therefore the topological framed manifold X cannot have a smooth
structure. Equivalently, the boundary ∂N cannot be diffeomorphic
to S9. It must be an exotic 9-sphere.

Figure 5. Kervaire’s example of a nonsmoothable 10-
manifold. The manifold N is a smooth 10-manifold with
boundary homeomorphic to S9. The manifold X obtained
by collapsing the boundary to a point would have Φ(X) = 1
and is therefore not smooth.
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Figure 6. A framing on the torus with nontrivial Kervaire
invariant. The immersion shown in R3 is the linear image
of an embedding in R4. This framing on the torus does not
exted to any manifold bounded by it.

• For k = 0 there is a framing on the torus S1 × S1 ⊂ R4 with
nontrivial Kervaire invariant. Pontryagin used it in [Pon50] (after
some false starts in the 30s) to show πn+2(Sn) = Z/2 for all n ≥ 2.
It is illustrated in Figure 6. That picture shows a torus immersed
in R3. This immersion is the linear image of an embedding in R4.

• There are similar constructions for k = 1 and k = 3, where the
framed manifolds are S3×S3 and S7×S7 respectively. Like S1, S3

and S7 are both parallelizable, meaning that their trivial tangent
bundles are trivial. The framings can be twisted in such a way as
to yield a nontrivial Kervaire invariant.

• Brown-Peterson [BP66] showed that it vanishes for all positive
even k. This means that apart from the 2-dimensioanl case, any
smooth framed manifold with nontrivail Kervaire invariant must a
dimension congruent to 6 modulo 8.

• Browder [Bro69] showed that it can be nontrivial only if k =
2j−1 − 1 for some positive integer j. This happens iff the element
h2

j is a permanent cycle in the Adams spectral sequence, which was
originally introduced in [Ada58]. (More information about it can
be found below in §3.7) in [Rav86] and [Rav04].) The correspond-
ing element in πS

n+2j+1−2
is θj , the subject of our theorem. This is

the stable homotopy theoretic formulation of the problem.
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• θj is known to exist for 1 ≤ j ≤ 3, i.e., in dimensions 2, 6, and
14. In these cases the relevant framed manifold is S2j−1 × S2j−1

with a twisted framing as discussed above. The framings on S2j−1

represent the elements hj in the Adams spectral sequence. The
Hopf invariant one theorem of Adams [Ada60] says that for j > 3,
hj is not a permanent cycle in the Adams spectral sequence because
it supports a nontrivial differential. (His original proof was not
written in this language, but had to do with secondary cohomlogy
operations.) This means that for j > 3, a smooth framed manifold
representing θj (i.e., having a nontrivial Kervaire invariant) cannot
have the form S2j−1 × S2j−1.

• θj is also known to exist for j = 4 and j = 5, i.e., in dimensions 30
and 62. In both cases the existence was first established by purely
homotopy theoretic means, without constructing a suitable framed
manifold. For j = 4 this was done by Barratt, Mahowald and Tan-
gora in [MT67] and [BMT70]. A framed 30-manifold with non-
trivial Kervaire invariant was later constructed by Jones [Jon78].
For j =5 the homotopy theory was done in 1985 by Barratt-Jones-
Mahowald in [BJM84].

• Our theorem says θj does not exist for j ≥ 7. The case j = 6 is
still open.

Figure 7 illustrates Kervaire’s construction of a framed (4k + 2)-manifold
with nontrivial Kervaire invariant. In all cases except k = 0, 1 or 3, any
framing of this manifold will do because the tangent bundle of S2k+1 is
nontrivial and leads to a nontrivial invariant. What the picture does not
tell us is whether the bounding sphere S4k+1 is diffeomorphic to the standard
sphere. If it is, then attaching a (4k + 2)-disk to it will produce a smooth
framed manifold with nontrival Kervaire invariant. If it is not, then we
have an exotic (4k + 1)-sphere bounding a framed manifold and hence not
detected by framed cobordism.

1.4. The unstable formulation. Assume all spaces in sight are lo-
calized and the prime 2. For each n > 0 there is a fiber sequence (see §3.1)
due to James, [Jam55], [Jam56a], [Jam56b] and [Jam57]

(2) Sn E �� ΩSn+1 H �� ΩS2n+1.

Here ΩX = Ω1X where ΩkX denotes the space of continuous base point
preserving maps to X from the k-sphere Sk, known as the kth loop space of
X. This leads to a long exact sequence of homotopy groups

. . . �� πm+n(Sn)
E �� πm+n+1(S

n+1)
H �� πm+n+1(S

2n+1)
P �� πm+n−1(S

n) �� . . .

Here
• E stands for E inhängung, the German word for suspension.
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Figure 7. Kervaire’s example for general k. N is a smooth
framed (4k + 2)-manifold whose boundary is homeomorphic
to S4k+1. If ∂N is diffeomorphic to S4k+1, then X is a closed
smooth framed (4k + 2)-manifold with nontrivial Kervaire
invariant. We now know this is the case only when k = 0, 1,
3, 7, 15 and possibly 31. Otherwise ∂N is an exotic (4k +1)-
sphere that is a framed boundary.

• H stands for Hopf invariant.
• P stands forWhitehead product.

Assembling these for fixed m and various n leads to a diagram

πm+n+1(S
2n−1)

P��

πm+n+2(S
2n+1)

P��

πm+n+3(S
2n+3)

P��
. . . E �� πm+n−1(S

n−1)
E ��

H��

πm+n(Sn)
E ��

H��

πm+n+1(S
n+1)

E ��

H��

. . .

πm+n−1(S
2n−3) πm+n(S2n−1) πm+n+1(S

2n+1)

where

• Sequences of arrows labeled H, P , E, H (or any subset thereof) in
that order are exact.

• The groups in the top and bottom rows are inductively known, and
we can compute those in the middle row by induction on n.

• The groups in the top and bottom rows vanish for large n, making
E an isomorphism.

• An element in the middle row has trivial suspension (is killed by
E) iff it is in the image of P .



38 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

• It desusupends (is in the image of E) iff its Hopf invariant (image
under H) is trivial.

When m = n − 1 this diagram is

π2n+1(S
n+1)

H��
π2n(S2n−1)

P��

Z

P��

0

P��
. . . E �� π2n−2(S

n−1)
E ��

H��

π2n−1(S
n)

E ��

H��

π2n(Sn+1)
E ��

H��

. . .

π2n−2(S
2n−3) Z 0

The image under P of the generator of the upper Z is denoted by wn ∈
π2n−1(Sn) and is called the Whitehead square.

• When n is even, H(wn) = 2 and wn has infinite order.
• wn is trivial for n = 1, 3 and 7. In those cases the generator of the

upper Z is the Hopf invariant (image under H) of one of the three
Hopf maps in π2n+1(Sn+1),

S3
η �� S2, S7 ν �� S4 and S15 σ �� S8.

• For other odd values of n, twice the generator of the upper Z is
H(wn+1), so wn has order 2.

• It turns out that wn is divisible by 2 iff n = 2j+1 − 1 and θj exists,
in which case wn = 2θj .

• Each Whitehead square w2n+1 ∈ π4n+1(S2n+1) (except the cases
n = 0, 1 and 3) desuspends to a lower sphere until we get an
element with a nontrivial Hopf invariant, which is always some βj

(see Sidebar 1). More precisely we have

H(w(2s+1)2j−1) = βj

for each j > 0 and s ≥ 0. This result is essentially Adams’ 1962
solution to the vector field problem [Ada62].

Recall the EHP sequence

. . . �� πm+n(Sn)
E �� πm+n+1(S

n+1)
H �� πm+n+1(S

2n+1)
P �� πm+n−1(S

n) �� . . .

Given some βj ∈ πφ(j)+2n+1(S2n+1) for φ(j) < 2n, one can ask about
the Hopf invariant of its image under P , which vanishes when βj is in the
image of H. In most cases the answer is known and is due to Mahowald,
[Mah67] and [Mah82]. The remaining cases have to do with θj . The answer
that he had hoped for is the following, which can be found in [Mah67].
(To our knowledge, Mahowald never referred to this as the World Without
End Hypothesis. We chose that term to emphasize its contrast with the
Doomsday Hypothesis.)

World Without End Hypothesis (Mahowald 1967).
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• The Arf-Kervaire element θj ∈ πS
2j+1−2

exists for all j > 0.
• It desuspends to S2j+1−1−φ(j) and its Hopf invariant is βj.
• Let j, s > 0 and suppose that m = 2j+2(s + 1) − 4 − φ(j) and

n = 2j+1(s + 1) − 2 − φ(j). Then P (βj) has Hopf invariant θj.

This describes the systematic behavior in the EHP sequence of elements
related to the image of J , and the θj are an essential part of the picture.
Because of our theorem, we now know that this hypothesis is incorrect.

1.5. Questions raised by our theorem. EHP sequence formulation.
The World Without End Hypothesis was the nicest possible statement of
its kind given all that was known prior to our theorem. Now we know it
cannot be true since θj does not exist for j ≥ 7. This means the behavior of
the indicated elements P (βj) for j ≥ 7 is a mystery.

Adams spectral sequence formulation. (See §3.7.) We now know that the
h2

j for j ≥ 7 are not permanent cycles, so they have to support nontrivial
differentials. We have no idea what their targets are.

Manifold formulation. Here our result does not lead to any obvious new
questions. It appears rather to be the final page in the story.

Our method of proof offers a new tool for studying the stable homotopy
groups of spheres. We look forward to learning more with it in the future.

2. Our strategy

2.1. Ingredients of the proof. Our proof has several ingredients.

• It uses methods of stable homotopy theory, which means it uses
spectra instead of topological spaces. For more information about
this see §4. Recall that a space X has a homotopy group πk(X) for
each positive integer k. A spectrum X has an abelian homotopy
group πk(X) defined for every integer k. For the sphere spectrum
S0, πk(S0) is the stable k-stem homotopy group πS

k . The hypothet-
ical θj is an element of this group for k = 2j+1 − 2.

• It uses complex cobordism theory. This is a branch of algebraic
topology having deep connections with algebraic geometry and
number theory. It includes some highly developed computational
techniques that began with work by Milnor [Mil60], Novikov
([Nov60], [Nov62] and [Nov67]) and Quillen [Qui69] in the 60s.
A pivotal tool in the subject is the theory of formal group laws. On
this subject the definitive reference is Hazewinkel’s book [Haz78].
A much briefer account covering the most relevant aspects of the
subject can be found in [Rav86, Appendix 2].
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• It also makes use of newer less familiar methods from equivariant
stable homotopy theory. A helpful introduction to this subject
is the paper of Greenlees-May [GM95]. This means there is a
finite group G (a cyclic 2-group) acting on all spaces in sight, and
all maps are required to commute with these actions. When we
pass to spectra, we get homotopy groups indexed not just by the
integers Z, but by RO(G), the orthogonal representation ring of G.
Our calculations make use of this richer structure.

2.2. The spectrum Ω. We will produce a map S0 → Ω, where Ω is
a nonconnective spectrum (meaning that it has nontrivial homotopy groups
in arbitrarily large negative dimensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence
(which is a device for calculating homotopy groups) in which the
image of each θj is nontrivial. This means that if θj exists, we will
see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that πk(Ω) de-
pends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk(Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice spectral
sequence.

If θ7 ∈ π254(S0) exists, (i) implies it has a nontrivial image in π254(Ω).
On the other hand, (ii) and (iii) imply that π254(Ω) = 0, so θ7 cannot
exist. The argument for θj for larger j is similar, since |θj | = 2j+1 − 2 ≡
−2 mod 256 for j ≥ 7.

2.3. How we construct Ω. Our spectrum Ω will be the fixed point
spectrum for the action of C8 (the cyclic group of order 8) on an equivariant
spectrum Ω̃.

To construct it we start with the complex cobordism spectrum MU . It
can be thought of as the set of complex points of an algebraic variety defined
over the real numbers. This means that it has an action of C2 defined by
complex conjugation. The fixed point set of this action is the set of real
points, known to topologists as MO, the unoriented cobordism spectrum.
In this notation, U and O stand for the unitary and orthogonal groups.

To get a C8-spectrum, we use the following general construction for
getting from a space or spectrum X acted on by a group H to one acted on
by a larger group G containing H as a subgroup. Let

Y = MapH(G, X),

the space (or spectrum) of H-equivariant maps from G to X. Here the
action of H on G is by right multiplication, and the resulting object has an
action of G by left multiplication. As a set, Y = X |G/H|, the |G/H|-fold
Cartesian power of X. A general element of G permutes these factors, each
of which is left invariant by the subgroup H.
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In particular we get a C8-spectrum

MU (4) = MapC2
(C8, MU).

This spectrum is not periodic, but it has a close relative Ω̃ which is.

3. Some classical algebraic topology

3.1. Fibrations. A map p : E → B is a fibration (sometimes called a
Hurewicz fibration [Hur35][Hur36]) if the following commutuative diagram
can always be completed:

(3) x�

��

X

i
��

f̃0 �� E

p

��
(x, 0) X × I

f ��

f̃
��������
B,

where I denotes the closed unit interval [0, 1]. In other words, given maps
f and f̃0 as shown, one can always find a map f̃ such that f̃ i = f̃0 and
pf̃ = f . This is called the homotopy lifting property because it says that if
one end of the homotopy f can be lifted from B to E via f̃0, then we can
find a liftingf̃ of the entire homotopy.

Experience has shown that it often suffices to assume (3) holds only in
the case where X is an n-dimensional disk Dn for any n. In this case p
is called a Serre fibration [Ser51]. It is enough to establish the long exact
sequence of homotopy groups (4).

One example of a fibration is a fiber bundle [Ste99], a map for which
(i) the preimage p−1(b) for each b ∈ B is homeomorphic to a space F

called the fiber of p and
(ii) each b ∈ B has a neighborhood U such that p−1(U) is homeomor-

phic to U × F in such a way that the composition of p with the
homeomorphism is projection onto U .

In this case there is a long exact sequence of homotopy groups

(4) · · · �� πn(F )
i∗ �� πn(E)

p∗ �� πn(B) ∂ �� πn−1(F ) �� · · ·

where i : F → E is the inclusion of the fiber and ∂ is a certain boundary
homomorphism. More details can be found in any textbook on algebraic
topology, such as Hatcher [Hat02], May [May99] or Gray [Gra75].

There is a way to replace any map p : E → B by a fibration between
homotopy equivalent spaces and construct a homotopy theoretic fiber. First
we replace B by the mapping cylinder B̃ = Mp, which is the quotient of the
disjoint union

(E × I)
⋃

B

obtained by identifying (e, 1) ∈ E × I with p(e) ∈ B. For technical reasons
it is convenient to assume that E and B have base points e0 and b0 with
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p(e0) = b0, and to collapse {e0}×I to a point which becomes the base point
in B̃. The inclusion of B into B̃ is a homotopy equivalence.

Next we replace E by the space Ẽ of paths (continuous maps from the
unit interval I) in B̃ that begin in E × {0}. The inclusion of E into Ẽ via
paths of the form t 	→ (e, t) is again a homotopy equivalence. Finally we
define p̃ : Ẽ → B̃ by sending a path to its endpoint. Then the diagram

E

p

��

� �� Ẽ

p̃

��
B

� �� B̃

commutes, the horizontal maps are homotopy equivalences, and p̃ is a fibra-
tion.

Now let F̃ ⊂ Ẽ be the space of paths starting in E × {0} and ending
at the base point; we denote the inclusion map by ĩ. This is the homotopy
theoretic fiber of p and there is a long exact sequence similar to (4),

· · · �� πn(F̃ )
ĩ∗ �� πn(Ẽ)

p̃∗ �� πn(B̃)
∂̃ �� πn−1(F̃ ) �� · · ·

A fiber sequence (such as (2)) is any composite

W
f �� X

g �� Y

where f is equivalent to the inclusion of the homotopy theoretic fiber of g.
When the map p is inclusion of the base point b0 of B, we find that

• B̃ = B,
• Ẽ = PB, the space of paths in B starting at b0, which is con-

tractible, and
• F̃ = ΩB, the space of closed path starting and ending at b0, which

is called the loop space of B.
This is called the path fibration of B. The long exact sequence in this case
gives an isomorphism

πn(ΩB) ≈ πn+1(B).
When we apply this constuction to the map d̃, we find that its homotopy

theoretic fiber is equivalent to ΩB. The homotopy theoretic fiber of the map
ΩB → F̃ is equivalent to ΩE, and so on.

3.2. Cofibrations. A cofibration is a map i : A → X satisfying a
diagram dual to (3), namely

(5) ω(0) Y X
f̃

���
�

�
�

�

f̃0��

ω
�

��

Y I

p0

��

A
f��

i

��
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Sidebar 2 CW complexes

A CW-complex (first introduced by Henry Whitehead in [Whi49]) X is
a space constructed as a union of skeleta Xn defined as follows. X0 is a
discrete set. Xn is obtained from Xn−1 by attaching a collection of n-disks
{Dn

α} by identifying points on their boundaries with points in Xn−1 using
maps fα : ∂Dn

α → Xn−1 called attaching maps. Xn is the cofiber (see
§3.2) of the map to Xn−1 from the disjoint union of the (n − 1)-spheres
∂Dn

α. The n-disks are called n-cells. A CW-complex is said to be finite if
its has only a finite number of cells altogether, and to have finite type if
it has only finitely many in each dimension.

This collection of spaces is general enough to include all manifolds and
all real and complex algebraic varieties. Indeed most homotopy theorists
never have to deal with spaces that are not at least homotopy equivalent
to CW-complexes. They have the following convenient properties:

• The product of two CW-complexes is a CW-complex.
• A map f : X → Y of CW-complexes is a homotopy equivalence

(which means there is a map g : Y → X such that fg and gf are
homotopic to the identities maps on Y and X) iff it is a weak
homotopy equivalence, meaning that it induces an isomorphism
in all homotopy groups.

• Any such map is homotopic to one that sends Xn to Y n for all
n.

• The space of maps X → Y , while not a CW-complex itself in
general, always has the homotopy type of one by a theorem of
Milnor [Mil59]. The same holds if one requires that certain sub-
complexes of X map to certain subcomplexes of Y . For example,
ΩSn+1 is equivalent to a CW-complex with a single cell in each
dimension divisible by n, and no others.

• H∗(X) can be computed in terms of a cellular chain complex
C∗(X) in which the nth chain group Cn(X) is free abelian on
the n-cells of X.

Here Y I denotes the space of maps ω : I → Y , i.e., all paths in Y . The
map f : A → Y I is formally equivalent to a homotopy A × I → Y . f̃0 is an
extension of one end of it to X and the hypothetical f̃ is an extension of all
of it to X, so this is called the homotopy extension property.

The inclusion i of a subcomplex A into a CW-complex X (see Sidebar 2)
is always a cofibration. It has a cofiber Ci (also know as the mapping cone),
which, like the mapping cylinder above, is the quotient of the disjoint union

(A × I)
⋃

X
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obtained by identifying (a, 1) ∈ A × I with i(a) ∈ X (as in the mapping
cylinder) and by collapsing all of A × {0} to a point. As before, if a base
point is desired, it can be obtained by collapsing the path along the base
point of A to a point. We denote the inclusion map X → Ci by j .

Then the reduced homology H∗(Ci) of the cofiber is the same as the
relative homology H∗(X, A). There is a long exact sequence
(6)

· · · �� Hn(A)
i∗ �� Hn(X)

j∗ �� Hn(Ci)
∂ �� Hn−1(A) �� · · ·

The procedure for replacing an arbitrary map i : A → X by a homotopy
equivalent cofibration is easier here than it was for fibrations above. All
we have to do is replace X by the mapping cylinder X̃ = Mi. This makes
the evident inclusion ĩ : A → X̃ a cofibration, and the mapping cone Ci is
its cofiber. The simplicity of this construction renders the term “homotopy
theoretic cofiber” unnecessary. Ci is called the simply the cofiber of the map
i. The cofiber of the map j : Mi → Ci is easily seen to be the suspension
ΣA.

A cofiber sequence is any composite

W
f �� X

g �� Y

where g is equivalent to the map j to Cf . One has similar notions in the
category of spectra, to be defined in §4. In that world fiber sequence and
cofiber sequences are the same: W is equivalent to the fiber of g iff Y is
equivalent to the cofiber of f . This means we have long exact sequences in
both homotopy and homology.

3.3. Eilenberg-Mac Lane spaces and cohomology operations.

Theorem 1. Eilenberg-Mac Lane spaces and cohomology. For
any CW-complex X, positive integer n and discrete abelian group A, there
is a natural isomorphism between the cohomology group Hn(X; A) and the
group of homotopy classes of maps [X, K(A, n)],

(7) Hn(X; A) ≈ [X, K(A, n)]

where K(A, n) is the Eilenberg-Mac Lane space constructed in Sidebar 3.

The group structure on the set of homotopy classes arises from a map
K(A, n) × K(A, n) → K(A, n) with suitable properties. This isomorphism
holds if X is also an Eilenberg-Mac Lane space. When it is K(A, n), we get
the identity map on the right corresponds to a canonical element ιn on the
left called the fundamental class.

Let θ ∈ Hn+k(K(A, n); A′) and x ∈ Hn(X; A) for k ≥ 0. (The case
k < 0 is uninteresting because the cohomology group is trivial.) Using (7),
these correspond to maps

X
x �� K(A, n) θ �� K(A′, n + k),
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so the composite θx corresponds to an element in Hn+k(X; A′). Hence θ
gives us a natural transformation from the functor Hn(·; A) to Hn+k(·; A′)
called a cohomology operation. It may or may not be a group homomor-
phism. When it is, we say it is additive.

Now assume that all cohomology groups have coefficients in Z/2 and
let Kn = K(Z/2, n). Let sn : ΣKn → Kn+1 be adjoint to the equivalence
Kn → ΩKn+1. It induces a homomorphism

Hn+k+1(Kn+1)
s∗n �� Hn+k+1(ΣKn) Hn+k(Kn) � θ

It is known that θ is additive iff it is in the image of s∗n. In that case it is
also in the image of a similar map from Hn+k+t(Kn+t) for any t > 0, and
there is a way to choose these preimages canonically. Such an operation θ
is said to be stable.

3.4. The Steenrod algebra. Here is an important example of a mod
2 stabel operation. Let θ = ι2n ∈ H2n(Kn). The corresponding cohomology
operation sends x to x2, which is additive since we are working mod 2. Since
it is additive, it is stable and we have similar operations

Hn+t(X)
Sqn

�� H2n+t(X)

for all t ≥ 0. This is called the nth Steenrod squaring operation [Ste62].
These operations have been studied extensively and it is known that any
mod 2 stable operation can be expressed in terms of them. They have the
following properties:

Theorem 2. Properties of mod 2 Steenrod operations
(i) Sq0 is the identity map.
(ii) Cartan formula.

Sqn(xy) =
∑

0≤i≤n

Sqi(x)Sqn−i(y).

(iii) Adem relation. For 0 < a < 2b,

SqaSqb =
j=[a/2]∏

j=0

(
b − i − 2j

a − 2j

)
Sqa+b−jSqj .

(iv) Unstable condition. Sqn(x) = x2 for x ∈ Hn and Sqn(x) = 0
for x ∈ H i with i < n.

For n > 0, the Adem relation gives Sq2n+1 = Sq1Sq2n and

Sq(2n+1)2k+1
= Sq2k+1

Sq2k+2n + Sq2k+2n+2k
Sq2k

for k ≥ 0,

so Sqi is decomposable unless i is a power of 2.
A monomial SqI = Sqi1Sqi2 · · ·Sqim is admissible if

(8) i1 ≥ 2i2, i2 ≥ 2i3, . . . , im−1 ≥ 2im.
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Repeated use of the Adem relation will convert any monomial to a sum of
admissible ones.

The mod 2 Steenrod algebra A is the algebra of all mod 2 stable cohomol-
ogy operations. It is the associative algebra generated by the Sqn for n > 0
and subject to the Adem relation. The admissible monomials form a basis
for it (the Adem basis) and it is generated as an algebra by the elements
Sq2j

for j ≥ 0.
For any space X, H∗(X) is an A-module subject to the Cartan for-

mula and the unstable condition. For a spectrum X, these restrictions are
vacuous, so we just get an A-module.

We will now describe H∗(Kn) for all n. The excess of an admissible
monomial SqI as in (8) is

e(I) = (i1 − 2i2) + (i2 − 2i3) + · · · + (im−1 − 2im) = i1 − i2 − i3 − · · · − im.

Theorem 3. Mod 2 cohomology of mod 2 Eilenberg-Mac Lane
spaces.

H∗(Kn) = Z/2[SqIιn : e(I) < n, I admissible].

The only admissible monomial with excess 0 is 1, so the theorem says

H∗(K1) = Z/2[ι1],

which is consistent with the fact that K1 = RP∞.
The set of admissible monomials with excess 1 is{

Sq1, Sq2Sq1, Sq4Sq2Sq1, Sq8Sq4Sq2Sq1, . . .
}

,

which leads to
H∗(K2) = Z/2[x2, x3, . . . , x1+2k , . . . ]

where x2 = ι2 and x1+2k+1 = Sq2k
x1+2k .

This entire discussion has an odd primary analog, but we do not need it
here.

3.5. Milnor’s formulation. The results of this section are due to
Milnor [Mil58].

The Cartan formula (Theorem 2 (ii)) leads to a coproduct

A �� A⊗A

Sqn � ��
∑

0≤i≤n Sqi ⊗ Sqn−i

which is an algebra map and is cocommutative. This leads to a commutative
algebra structure on the dual

A∗ = HomZ/2(A,Z/2).

The noncommutative product on A, which is a map A⊗A → A, translates
to a noncommutative coproduct on A∗ which we denote by Δ.
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Theorem 4. The structure of the dual Steenrod algebra. As an
algebra,

A∗ = Z/2[ξ1, ξ2, . . . ]

where the dimension of ξj is 2j − 1. The coproduct is

Δ(ξn) =
∑

0≤i≤n

ξ2i

n−i ⊗ ξi where ξ0 = 1.

This coproduct formula is equivalent to (and much easier to remember
than) the Adem relation, but proving this explicitly is difficult.

3.6. Serre’s method of computing homotopy groups. Let X be
a (n− 1)-connected space for n > 1 with πn(X), nontrivial, and let L0 =
K(πn(X), n). The Hurewicz theorem [Hur35] [Hur36] says that πn(X)
is isomorphic to Hn(X;Z), and Theorem 1 then implies there is a map
f0 : X → L0 inducing an isomorphism in πn. Let X1 be its fiber as explained
in 3.1. The the long exact sequence of homotopy groups (4) implies that

πi(X1) =
{

0 for i ≤ n
πi(X) otherwise

The Serre spectral sequence of [Ser51] is a device for computing the homol-
ogy of one of the spaces in a fiber sequence in terms of the other two. In
theory we can use it to find the homology of X1 and hence its first nontrivial
homotopy group, which lies somewhere above dimension n. Then we can
treat X1 the same way we treated X and find a map f1 : X1 → L1 where
L1 is the appropriate Eilenberg-Mac Lane space. Then we could use the
Serre spectral sequence to find the homology of the fiber X2, and so on.
Continuing in this manner we could get a diagram

(9) X

f0

��

X1

f1

��

g0

�� X2

f2

��

g1

�� X3

f3

��

g2

�� · · ·
g3

��

L0 L1 L2 L3

where

(i) each Li is an Eilenberg-Mac Lane space,
(ii) fi induces an isomorphism in the first nontrivial homotopy group

of Xi and
(ii) Xi+1 is the fiber of fi.

This method requires knowing the homology of all spaces in sight, at
least through the range of dimensions in which one hopes to compute. It was
used with brilliant effect by Serre in [Ser51] to calculate many previously
unknown homotopy groups of spheres, but a few years later Adams found a
better method [Ada58] for doing this.
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Before turning to it, we need to make one observation about the Serre
spectral sequence. In each of the fiber sequences in (9), below dimension 2n
it simplifies to a long exact sequence
(10)

· · · �� Hi(Xs+1)
(gs+1)∗ �� Hi(Xs)

fs∗ �� Hi(Ls)
∂ �� Hi−1(Xs+1) �� · · ·

3.7. The Adams spectral sequence. In this section we return to our
convention that all cohomology groups are reduced and have coefficients in
Z/2.

We modify Serre’s diagram (9) below dimension 2n in the following ways:

(i) Each Ls is a product of mod 2 Eilenberg-Mac Lane spaces Km,
with possibly different values of m (all at least n) for the various
factors. Theorem 3 implies that in our range H∗(Km) = ΣmA, the
mth suspension of the Steenrod algebra.

(ii) Ls and fs are chosen so that the induced map in cohomology is
onto. This can always be done, but not uniquely. Choose a set of
elements in H∗(Xs) which generate it as an A-module. Each one
corresponds to a map to some Km, so collectively they give a map
to the product of Kms, which is Ls.

A diagram of the form (9) having these two properties is called a mod
2 Adams resolution for X. When X is a CW-complex of finite type, it
leads to a method for computing π∗(X) modulo odd primary torsion below
dimension 2n.

The requirement on H∗(fs) means that H∗(gs+1) is trivial, and the co-
homological analog of (10) reduces to a short exact sequence of A-modules

0 �� H∗(ΣXs+1) �� H∗(Ls)
f∗

s �� H∗(Xs) �� 0

where H∗(Ls) is free. These can be spliced together for various s, giving us
a long exact sequence

(11) 0 H∗(X)�� H∗(L0)�� H∗(ΣL1)�� H∗(Σ2L2)�� · · ·��

This is a free A-resolution of H∗(X). We can recover π∗(Ls) from its coho-
mology by applying the functor HomA(·,Z/2). Doing this to (11) gives us
a cochain complex

(12) π∗(L0) �� π∗(ΣL1) �� π∗(Σ2L2) �� · · ·

Theorem 5. The Adams spectral sequence. For an (n−1)-connected
space X, in dimensons less than 2n the cohomology of (12) is independent
of the choices of the Ls, and is by definition ExtA (H∗(X),Z/2). This is the
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E2-term of the Adams spectral sequence, which converges to π∗(X) modulo
odd torsion. More specifically,

Es,t
2 = Exts,t

A (H∗(X),Z/2) ,

dr : Es,t
r → Es+r,t+r−1

r , and Es,t
∞ is a subquotient of πt−s(X).

This theorem is crying out to be reformulated in term of spectra (to be
defined in the next section), which is how it is usually stated. Then the
caveats about n can be eliminated, provided X is connective and of finite
type.

The example of interest to us is the sphere spectrum, for which E∗,∗
2 =

Ext∗,∗A (Z/2,Z/2). This group is difficult to compute but has been studied
extensively, and we will abbreviate it simply by Ext∗,∗. Here is the first
stage of the free resolution of (11) in this case.

0 Z/2�� Aε�� A{xj : j ≥ 0}�� · · ·��

Sq2j xj
���

We know that ker ε is generated as an A-module by {xj : j ≥ 0} because
these elements generate A as an algebra.

This leads to elements hj ∈ Ext1,2j
, and they are known to form a basis

of Ext1. The group Ext has a ring structure, and the following set forms a
basis of Ext2:

{hjhk : 0 ≤ j ≤ k, k 
= j + 1} .

The following facts are known about these elements.

• The hj for 0 ≤ j ≤ 3 are nontrivial permanent cycles, meaning that
they detects elements in πS

∗ . h0 detects the degree 2 map in πS
0 ,

and the other three detect maps constructed by Hopf in [Hop30]
and [Hop35].

• Adams [Ada60] showed that the hj for j > 3 do not detect homo-
topy elements. Instead they support nontrivial differentials, namely
d2(hj) = h0h

2
j−1.

• Browder’s theorem [Bro69] says there is a framed manifold with
non trivial Kervaire invariant in dimension 2j+1 − 2 iff h2

j is a per-
manent cycle, in which case it detects the corresponding homotopy
element, θj .
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Here is a chart showing Exts,t for t − s ≤ 20.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

ι

h0 h1 h2 h3

c0

Ph1 Ph2

h2
3

d0

h4

Pc0

e0

P 2h1

f0

P 2h2

c1

g

Here lines going up and to the right indicate multiplication by h0, h1 and
h2, and lines going up and to the left lines indicate differentials. For more
information we refer the reader to [Rav86].

4. Spectra and equivariant spectra

In this section we will define ordinary and equivariant spectra, the ob-
jects of study in stable homotopy theory and equivariant stable homotopy
theory.

4.1. An informal definition of spectra. Informally, a prespectrum
D is a collection of pointed spaces (spaces equipped with base points that are
preserved by all maps in sight) {Dn : n � 0} with structure maps ΣDn →
Dn+1. Here ΣX denotes the suspension or double cone on X, wth the cone
line through the basepoint x0 ∈ X collapsed to be the base point of ΣX.
Then we can define

πi(D) = lim
→

πn+i(Dn) and Hi(D) = lim
→

Hn+i(Dn).

A map ΣX → Y is equivalent (adjoint) to a map X → ΩY , where ΩY
is the loop space of Y , the space of base point preserving map to Y from
the circle S1.

Thus the adjoint of the structure map is a map Dn → ΩDn+1. A
spectrum is a prespectrum for which this map is a homeomorphism for each
n. We can always get a spectrum E = {En : n ∈ Z} from the prespectrum
D by defining

En = lim→
k

ΩkDn+k
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This makes En = ΩEn+1 and infinite loop space. The evident map D → E
does not alter homotopy or homology and is thus a weak homotopy equiva-
lence.

A spectrum E can be suspended or desuspended by defining

(ΣjE)n = Ej+n for any integer j,

and we have

πk(ΣjE) = πn−j(E) and Hk(ΣjE) = Hn−j(E).

We can make similar statements about looping, defining

(ΩjE)n = ΩjEn = En−j ,

so ΩjE = Σ−jE. Hence a spectrum can be desuspended or delooped any
number of times.

Here are two examples:
(i) For a given pointed space X, let Dn = ΣnX, the nth iterated sus-

pension of X. Then D is the suspension prespectrum of X, denoted
by Σ∞X or (abusively but commonly) simply by X. The homol-
ogy of Σ∞X is the reduced homology the space X. Converting to
a spectrum as described above does not change its homotopy or
homology. When the space X is S0, we get the sphere spectrum,
whose kth homotopy group is πS

k .
(ii) For an abelian group A, let K(A, n) be the Eilenberg-Mac Lane

space (see Sidebar 3) characterized (up to homotopy equivalence)
by

πk(K(A, n)) =
{

A for k = n
0 otherwise.

Then K(A, n) is equivalent to ΩK(A, n+1). We define a spectrum
D by Dn = K(A, n) with structure map ΣK(A, n) → K(A, n + 1)
being the adjoint of this equivalence. In this case En is equivalent
to Dn. The resulting spectrum is denoted by HA, the Eilenberg-
Mac Lane spectrum for A.

4.2. Orthogonal spectra. Let T denote the category of compactly
generated [ML71, VII.8] weak Hausdorff [McC69, §2] pointed topological
spaces. Compactly generated means that a subset is closed iff its intersection
with every compact subspace is closed. Weak Hausdorff means that the
continuous image of every compact space is closed. These are technical
conditions designed to keep us out of trouble, as explained in the references
cited.

Following [May80, §5] we define an orthogonal spectrum to be a functor
to this category from an indexing category I . Its objects are are finite
dimensional real inner product spaces V . When V ⊂ W , we will denote the
orthogonal compliment of V in W by W − V .
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The category I is enriched over T [Kel82] , which means that the “set”
I (V, W ) of morphisms from V to W is actually a pointed topological space,
to be defined shortly. T is enriched over itself; the set of continuous pointed
maps X → Y can be given the compact-open topology with the constant
map as base point. A functor of enriched categories D : I → T is required
to induce a continuous pointed map from I (V, W ) → T (DV , DW ) for each
V and W in I .

To define I (V, W ), let O(V, W ) be the (possibly empty) Stiefel manifold
of orthogonal embeddings f : V → W . The space

{(f, w) ∈ O(V, W ) × W : w ∈ W − f(V )}
is a vector bundle over O(V, W ), and I (V, W ) is defined to be its one point
compactification or Thom space. As a set it is

(13) I (V, W ) =
∨

f∈O(V,W )

SW−f(V )

where SV denotes the one point compactification of V .
In particular, I (V, V ) = O(V )+, the orthogonal group of V with a

disjoint base point. Hence the functor D gives a base point preserving action
of O(V ) on the pointed space DV . If V and W have the same dimension, then
a choice of isomorphism between them leads to identifications of I (V, W )
and I (W, V ) with O(V )+ and to homeomorphisms between DV and DW .
Hence the topology of the pointed space DV depends only on the dimension
of V .

If V ⊂ W is a proper subspace, then I (V, W ) ⊃ SW−V by (13), and we
get a structure map SW−V ∧ DV → DW as in 4.1.

4.3. Equivariant orthogonal spectra. Here we define equivariant
orthogonal spectra following [MM02].

For a group G, let TG denote the category of compactly generated weak
Hausdorff pointed topological G-spaces, i.e., spaces with an action of G by
base point preserving maps. The base point is always fixed by G. When
we encounter a G-space X without a fixed point, we adjoin a disjoint base
point and denote it by X+. The groups we will be concerned with in this
paper are finite cyclic 2-groups C2n .

Like T , TG is enriched over itself. The space TG(X, Y ) = Map∗(X, Y ) of
all pointed maps X → Y (not just the equivariant ones) is itself a pointed
G-space, with the constant map as base point and the action of a group
element γ ∈ G on a map f : X → Y is given by (γf)(x) = γf(γ−1x). The
fixed point set TG(X, Y )G is the space of equivariant maps.

One could define another category with the same objects as TG but
enriched instead over T in which the morphism space is TG(X, Y )G. Both
enriched categories have underlying ordinary categories in which the spaces
of morphisms are replaced by the corresponding sets.
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Sidebar 3 Classifying spaces

The join X ∗ Y of topological spaces X and Y is the topological quotient
of X × I × Y obtained by identifying (x, 0, y) with (x′, 0, y) and (x, 1, y)
with (x, 1, y′) for x, x′ ∈ X and y, y′ ∈ Y . (meaning that its homotopy
groups vanish below dimension m) and Y is n-connected, then X ∗ Y is
(m + n)-connected, e.g. Sm ∗ Sn = Sm+n+1. This construction can be
iterated, namely it is possible to define the n-fold join

X0 ∗ X1 ∗ · · · ∗ Xn

as a quotient of the space⎧⎨
⎩((t0, . . . , tn), (x0, . . . , xn)) ∈ In+1 ×

∏
0≤i≤n

Xi :
∑

0≤i≤n

ti = 1

⎫⎬
⎭ .

When ti = 0, the coordinate xi is irrelevant. The set of points with tn = 0
is the (n − 1)-fold join X0 ∗ · · · ∗ Xn−1.

For a topological group G, let EnG be the n-fold join of G with itself. It
is (n− 1)-connected, even if G itself is not path connected. It is also a G-
space, with G acting by left multiplication on the coordinates in G. This
action is free; no point is left fixed by any nontrivial element of G. Using
the inclusion maps EnG → En+1G (which commute with the G-action)
we can let n go to ∞ and obtain a contractible free G-space EG. Its orbit
space is denoted by BG and is called the classifying space of G. This
construction is due to Milnor [Mil56]. It has the following properties.

(i) BG is path connected and G is homotopy equivalent to ΩBG,
which means that πi(G) = πi+1(BG). If G is discrete, then

πi(BG) =
{

G for i = 1
0 otherwise.

(ii) BG is functorial in G, meaning the a group homomorphism φ :
G → H induces a map Bφ : BG → BH. If A is a abelian group,
the multiplication map A × A → A is a homomorphism leading
to a map BA × BA → BA. It is known that this makes BA
itself into a topological abelian group, so the classifying space
construction can be iterated. If A is discrete, then

πi(BnA) =
{

A for i = n
0 otherwise,

so BnA is the Eilenberg-Mac Lane space K(A, n).
(iii) Let G be the n-dimensional orthogonal group O(n) or the n-

dimensional unitary group U(n). There is an n-dimensional
real [complex] vector bundle ξn

R over BO(n) [ξn
C over BU(n)]

with the following universal property: any such bundle over a
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Sidebar 3 Continued

paracompact space X is induced by a unique (up to homotopy)
from X to the classifying space, and the bundles over X induced
by two such maps are isomorphic iff the maps are homotopic.
Details can be found in [MS74].

We will use an indexing category I G whose objects are finite dimen-
sional orthogonal representations V of G. There is an obvious forgetful
functor I G → I . We define I G(V, W ) to be the space I (V, W ) equipped
with the evident G-action. Its fixed point space is

I G(V, W )G = I (V G, WG) ∧ O(V ⊥, W⊥)G
+,

where V ⊥ denotes the orthogonal compliment of the invariant subspace V G

of V .
We define an equivariant orthogonal G-spectrum to be a functor

E : I G → TG

enriched over G-spaces and equivariant maps. This means that for each
representation V we get a pointed G-space EV , and for each V and W we
get a continuous pointed equivariant map

I G(V, W ) → TG(EV , EW ).

As before we have structure maps

SV ∧ EW → EV +W

which are equivariant. Here SV is the one point compactification of the
representation V , which has its own action of G determined by the repre-
sentation.

We denote the category of equivariant orthogonal G-spectra by SG. It is
an enriched functor category [ML71, II.4] in which objects are continuous
functors I G → TG as described above, and morphisms are natural transfor-
mations. Thus a morphism of equivariant orthogonal G-spectra g : D → E
consists of continuous equivariant maps gV : DV → EV for each V ∈ I G

such that for each V, W ∈ I G the following diagram commutes

I G(V, W )

E
��

D �� TG(DV , DW )

TG(DV ,gW )
��

TG(EV , EW )
TG(gV ,EW ) �� TG(DV , EW ).

Here the vertical and horizontal arrows pointing toward TG(DV , EW ) are
respectively composition with gW and precomposition with gV .
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For each virtual representation U−W there is a spectrum SU−W defined
by

(SU−W )V = T (SW , SU+V ).

The group of homotopy classes of equivariant maps πG
V −W (X) = [SV −W , X]

depends only on the isomorphism class of V − W , which is an element in
the orthogonal representation ring RO(G). Thus we get homotopy groups
graded over RO(G) rather than the integers. These groups are collectively
denoted by πG


 (X), with the five pointed star � in place of the usual six
pointed asterisk ∗.

For any subgroup H ⊂ G, there is a restriction functor iGH : SG → SH , so
we also have homotopy groups πH


 (X) graded over RO(H). In the case of the
trivial subgroup we denote this by πu

∗ (X), the homotopy of the underlying
(nonequivariant) spectrum of X. For each subgroup H, when the subscript
is an ordinary integer (meaning a trivial representation of H), we are looking
at H-equivariant maps from spheres fixed by H, so we have

πH
∗ (X) = π∗(XH)

where XH is the fixed point spectrum of H.
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