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Gauge Theory, Ramification,

And The Geometric Langlands Program

Sergei Gukov and Edward Witten

In the gauge theory approach to the geometric Langlands program, ram-
ification can be described in terms of “surface operators,” which are
supported on two-dimensional surfaces somewhat as Wilson or ’t Hooft
operators are supported on curves. We describe the relevant surface
operators in N = 4 super Yang-Mills theory, and the parameters they
depend on, and analyze how S-duality acts on these parameters. Then,
after compactifying on a Riemann surface, we show that the hypothesis
of S-duality for surface operators leads to a natural extension of the
geometric Langlands program for the case of tame ramification. The
construction involves an action of the affine Weyl group on the coho-
mology of the moduli space of Higgs bundles with ramification, and an
action of the affine braid group on A-branes or B-branes on this space.
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1. Introduction

The Langlands program of number theory [1] relates representa-
tions of the Galois group of a number field to automorphic forms (such
as ordinary modular forms of SL(2,Z)). It has also a geometric ana-
log, involving ordinary Riemann surfaces instead of number fields. This
geometric analog has turned out to be intimately related to quantum
field theory. It has been extensively studied using two-dimensional con-
formal field theory [2]–[6] and more recently via four-dimensional gauge
theory and electric-magnetic duality [8]. Additional explanation and
references can be found in the introduction to [8] and in a recent review
article [9].

The simplest version of the geometric Langlands correspondence in-
volves, on one side, a flat connection on a Riemann surface C, and, on
the other side, a more sophisticated structure known as a D-module.
The problem has a generalization in which one omits finitely many
points p1, p2, . . . , pn from C, and begins with a flat connection on C ′ =
C\{p1, . . . , pn} that has a prescribed singularity near the given points.
This situation gives a geometric analog of what in number theory is
called ramification. Since ramification is almost inescapable in number
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theory, the extension of the geometric Langlands program to the ram-
ified case is an important part of the analogy between number theory
and geometry. There is also an important local version of the problem,
in which one focuses on the behavior near a ramification point.

The goal of the present paper is to extend the gauge theory ap-
proach to the geometric Langlands program to cover the ramified case.
The basic idea is that allowing ramification in the Langlands program
corresponds, in gauge theory, to introducing surface operators, some-
what analogous to Wilson or ’t Hooft operators, but supported on a
two-manifold rather than a one-manifold. The relevant surface opera-
tors are defined by specifying a certain type of singularity on a codimen-
sion two submanifold. Codimension two singularities in gauge theory
of roughly the relevant type have been considered in various contexts,
including the theory of cosmic strings [10], Donaldson theory [11], topo-
logical field theory (see section 5 of [12]), the dynamics of gauge theory
and black holes [13]–[15], the relation of instantons to Seiberg-Witten
theory and integrable systems [16, 17], and string theory, where special
cases of the operators we consider can be constructed via intersecting
branes [18], as we will describe in section 6.4.

Now we will briefly indicate how these gauge theory singularities are
related to the theory of Higgs bundles. The gauge theory approach to
geometric Langlands is based on N = 4 super Yang-Mills theory twisted
and compactified on a Riemann surface. The theory so compactified
reduces at low energies [19, 20] to a sigma model in which the target
space is a hyper-Kahler manifold that is Hitchin’s moduli space of Higgs
bundles [21]. What codimension two singularities can be incorporated
in this picture? The appropriate singularities, in the basic case that
the flat connection on C has only a simple pole, have been described
and analyzed by Simpson [22]. Higgs bundles with a singularity of this
type are what we will call ramified Higgs bundles. (They are also called
Higgs bundles with parabolic structure.) The associated hyper-Kahler
moduli spaces have been constructed by Konno [23] and their topology
clarified by Nakajima [24]. A corresponding theory for Higgs bundles
with poles of higher order has been developed by Biquard and Boalch
[25]. The cases of a simple pole or a pole of higher order correspond
respectively to what is called tame ramification1 and wild ramification
in the context of the Langlands program. In this paper, we concentrate
on tame ramification.

In sections 2, we consider in the context of four-dimensional gauge
theory the singularity corresponding to a simple pole. We make a nat-
ural proposal for how S-duality acts on the parameters. We further

1Sometimes, the term “tame ramification” is used more narrowly to refer to the
case of flat bundles with unipotent monodromy. We will not make this restriction
and consider connections and Higgs bundles with arbitrary simple poles, as described
in eqn. (2.2) and section 3.3.
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explore the classical geometry in section 3. The highlight of this section
is the action of the affine braid group on the cohomology of the moduli
space of ramified Higgs bundles; this action is extended in section 4 to
an action of the affine braid group on A-branes and B-branes. These
phenomena are close cousins of a number of structures found in represen-
tation theory, including the Springer representations of the Weyl group
[26], the Kazhdan-Lusztig theory of representations of the affine Hecke
algebra [27, 28], and the recent extension of this by Bezrukavnikov to an
action of the affine braid group on the derived category of the Springer
resolution [29]. For an exposition of some of this material, see the book
by Chriss and Ginzburg [30]. Interpreting such results in terms of the
parameters of a hyper-Kahler resolution (as we will do in the case of
Higgs bundle moduli space) was first suggested by Atiyah and Bielawski
[31] in the context of coadjoint orbits and Slodowy slices.

Based on our duality proposal, we make in section 4 a proposal for
what the geometric Langlands program should say in the case of tame
ramification. (A similar proposal has been made mathematically, based
on [29] and other results cited in the last paragraph. For an exposition,
see section 9.4 of the survey [7]. Some particular cases have been studied
in detail in forthcoming work [32].) The extension to wild ramification
will be considered elsewhere [33].

In section 5, we use gauge theory to describe the operators (general-
izing the ’t Hooft/Hecke operators studied in [8]) that can act on branes
at a ramification point. This gives a more down-to-earth approach to
some topics treated in section 4. In section 6, we give a more local
description of some aspects of the behavior at a ramification point in
terms of a sigma model whose target is a complex coadjoint orbit en-
dowed with a hyper-Kahler metric. Such metrics were first constructed
for semi-simple or nilpotent orbits in [34, 35] and generalized to arbi-
trary orbits in [36, 37]. This and the related analysis in section 3.8
are the closest we come to analyzing the local case of geometric Lang-
lands. Finally, in section 6, we also briefly describe some string theory
constructions of surface operators of the type considered in this paper.

Using conformal field theory, a proposal has been made [6] for a
unified approach to the geometric Langlands program allowing poles of
any order. This work is surveyed in [7]. Unfortunately, we make contact
here neither with the use of conformal field theory nor with this unified
statement. We hope, of course, to eventually understand more.

Some background in group theory is reviewed in Appendix A. An
index of notation appears in Appendix B. Many facts about Montonen-
Olive duality, Hitchin’s moduli space, etc., that are used in the present
paper are explained more fully in [8].

We thank A. Braverman, D. Gaitsgory, E. Frenkel, and D. Kazh-
dan for patient and extremely helpful explanations. We also thank
J. Andersen, P. Aspinwall, M.F. Atiyah, D. Ben-Zvi, R. Bezrukavnikov,



GAUGE THEORY, RAMIFICATION, . . . 39

R. Bielawski, R. Dijkgraaf, R. Donagi, N. Hitchin, L. Jeffrey, A. Ka-
pustin, P. Kronheimer, Y. Laszlo, H. Nakajima, C. Sorger, and M. Thad-
deus, among others, for a wide variety of helpful comments and ad-
vice. Research of SG was partly supported by DOE grant DE-FG03-
92-ER40701. Research of EW was partly supported by NSF Grant
PHY-0503584.

2. Monodromy And Surface Operators

2.1. Definition Of Surface Operators. Our basic technique in
this paper will be to study how N = 4 super Yang-Mills theory can
be modified along a codimension two submanifold in spacetime. Thus,
we consider N = 4 super Yang-Mills theory on a four-manifold M , but
modified along a two-dimensional submanifold D in such a way that the
four-dimensional fields will have singularities along D. The construc-
tion is thus an analog for surface operators of the usual construction
of ’t Hooft operators via codimension three singularities. For general
background see [38] or section 6.2 of [8].

Our focus will be on the GL-twisted version of N = 4 super Yang-
Mills theory, which is the basis of the gauge theory approach to the
geometric Langlands program. The gauge group is a compact Lie group
G, which we will generally assume to be simple. The most important
bosonic fields are the gauge field A, which is a connection on a G-
bundle E → M , and an ad(E)-valued one-form field φ. Our gauge
theory conventions are those of [8]. In particular, A and φ take values
in the real Lie algebra of G (and so in a unitary representation of G
are represented by anti-hermitian matrices), the covariant derivative is
D = dA = d+A, and the holonomy is P exp

(
−
∫
A
)
.

The fields that will be singular along D are simply the restrictions
of A and φ to the normal bundle to D. Locally, we can model our four-
manifold as M = D ×D′, where D′ is the fiber to the normal bundle,
and the singularity will be at a point in D′, say the origin.

The supersymmetric equations of GL-twisted N = 4 super Yang-
Mills theory depend on a parameter t, as explained in [8]. But upon
reduction to two dimensions this parameter disappears, and we are left
with Hitchin’s equations:

F − φ ∧ φ = 0(2.1)

dAφ = 0

dA ⋆ φ = 0.

(Here ⋆ is the Hodge star operator.) Therefore, we will define a surface
operator by describing an isolated singularity that can arise in a solution
of Hitchin’s equations.

In fact, for this paper, we will only require the simplest type of sin-
gularity. To begin with, let us take D′ = R

2, with Euclidean coordinates
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x1, x2, such that ⋆(dx1) = dx2, ⋆(dx2) = −dx1. We also introduce polar
coordinates with x1 + ix2 = reiθ. We write T for a maximal torus of
G, and we write g, t for the Lie algebras of G and T, respectively. To
describe a solution of Hitchin’s equations with an isolated singularity at
the origin, we pick elements α, β, γ ∈ t, and take

A = αdθ(2.2)

φ = β
dr

r
− γ dθ.

Since α, β, and γ commute (as t is abelian), and the one-forms dθ and
dr/r are closed and co-closed, Hitchin’s equations are obeyed. We define
our surface operator exactly as one usually defines ’t Hooft operators
(see for example [38] or section 6.2 of [8]): we require that near r = 0,
A and φ behave as in (2.2). In a global situation, for a two-dimensional
submanifold D ⊂ M , we define such a surface operator by requiring
that at each point in D, the fields in the normal plane look (in some
gauge) like (2.2), with the specified values of α, β, and γ.

Clearly, we can act with the Weyl group W of G on the trio (α, β, γ)
without changing the theory in an essential way. So the surface operator
that we have defined depends on (α, β, γ) only modulo a Weyl trans-
formation. But there is an additional freedom. If u ∈ t is such that
exp(2πu) = 1, then a gauge transformation by the T-valued function

(2.3) (r, θ) → exp(θu)

shifts α by u. Modulo this transformation, the only invariant of α is the
T-valued monodromy of the connection A around a circle of constant r;
this monodromy is exp(−2πα). Thus, the trio (α, β, γ) takes values in
T × t × t, modulo the action of W.

We will often but not always use an additive notation for α. This
corresponds to thinking of T as the quotient t/Λ for some lattice Λ.
To identify this lattice, note that if T = t/Λ, then Λ = π1(T) =
Hom(U(1),T). We call this the cocharacter lattice ofG, denoted Λcochar.
(See Appendix A for more information.) In fact, Hom(U(1),T) para-
metrizes T-valued magnetic charges, or equivalently, by the basic GNO
duality [39], electric charge of the dual group LG. Λcochar is a sublattice
of the coweight lattice Λcowt. Their quotient is the center Z(G) of G:

(2.4) Z(G) = Λcowt/Λcochar.

Extensions Of Bundles

Let us try to compute the curvature at the origin of the singular
connection A = αdθ. Since d(dθ) = 2πδD (δD is a two-form delta
function supported at the origin in D′ and Poincaré dual to D), we
seem to get

(2.5) F = 2παδD.
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This, however, cannot be a natural formula, since we are free to shift
α by a lattice vector. What has gone wrong with the definition of cur-
vature? We have introduced A as a connection on a G-bundle E, but
because of the singularity along D, this bundle is only naturally de-
fined on the complement of D in M . It is possible to pick an extension
of E over D, but there is no natural extension. The different possi-
ble extensions of E over D correspond to different ways to lift α from
T = t/Λcochar, where it naturally takes values, to t. Once we pick an
extension, it makes sense to compute the curvature at the origin, and
the result is (2.5).

The gauge transformation (r, θ) → exp(θu) that shifts α by a lattice
vector, because of its singularity at the origin, maps one extension of E
over D to another. Though there is no natural way to extend E over D
as a G-bundle, we can do the following. Near D, the structure group of
E naturally reduces to the subgroup T that commutes with the singular
part of A and φ. The singular gauge transformation θ → exp(θu) acts
trivially on T, and hence, though there is no natural G-bundle over D,
there is a natural T-bundle over D. We will assume that the restriction
of A to D is a connection on this T-bundle, and that the curvature F ,
when restricted to D, is likewise t-valued.

Suppose that the gauge group G is not simply-connected; for exam-
ple, it may be a group of adjoint type. Then the gauge transformation
exp(θu) may not lift to a single-valued gauge transformation in the
simply-connected cover G of G; rather, under θ → θ + 2π, it is mul-
tiplied by an element y ∈ Z(G), the center of G. When this is the
case, this gauge transformation changes the topology of the bundle E,
by shifting the characteristic class ξ ∈ H2(M,π1(G)) that measures the
obstruction to lifting E to a G-bundle. If we use an additive notation
for Z(G), the shift is

(2.6) ξ → ξ + y[D],

where [D] is the class Poincaré dual to D. Thus, gauge theories with
different values of ξ and suitably related values of α are equivalent.

A variant of this is as follows. Suppose that the gauge group is in fact
G or some other form in which the gauge transformation by exp(θu) is
not single-valued. This gauge transformation nevertheless makes sense
locally as a symmetry of N = 4 super Yang-Mills theory (in which all
fields are in the adjoint representation). If the global topology is such
that a gauge transformation that looks locally like exp(θu) near D can
be extended globally over M , then N = 4 super Yang-Mills is invariant
to α→ α+ u. Here u may be any element of Λcowt for which y[D] = 0.
More generally, if D is a union of disjoint components Di near which
we make gauge transformations by exp(θiui) with yi = exp(2πui), then
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the condition is

(2.7)
∑

i

yi[Di] = 0.

Non-Trivial Normal Bundle

In motivating this construction, we began with the special case of a
product M = D×D′. However, more generally, for an arbitrary embed-
ded two-manifold D ⊂ M , we consider gauge fields with a singularity
like (2.2) in each normal plane. For simplicity, in this paper, we only
consider the case that M and D are oriented. D may have a non-trivial
normal bundle, and hence a nonzero self-intersection number D ∩ D,
which can be characterized as2

(2.8) D ∩D =

∫

M
δD ∧ δD.

When the self-intersection number is nonzero, it is not possible globally
for α to have arbitrary values. We explain this first for G = U(1). A
connection A which has a singularity A = αdθ near D will have the
property

∫
D F/2π = αD ∩ D mod Z. Since the integrated first Chern

class
∫
D F/2π is always an integer, it will always be that

(2.9) αD ∩D ∈ Z.

For any G, the generalization of this is simply that the same statement
holds in any U(1) subgroup of T. So if α → f(α) is any real-valued
linear function on t that takes integer values on the lattice Λcochar, then

(2.10) f(α)D ∩D ∈ Z.

It is also true that if D ∩D 6= 0, the twisted gauge transformation
that is defined in the normal plane in (2.3) cannot always be defined
globally along D. Only those gauge transformations that shift α in a
way compatible with (2.10) can actually be defined globally.

Singularities along surfaces with D ∩D 6= 0 are important in four-
manifold theory [11], but will be less important in our applications here,
since the geometric Langlands program, in its usual form, deals with a
situation in which D ∩D = 0.

2.2. Geometric Interpretation Of Parameters. We have de-
fined a surface operator supported on a two-manifold D ⊂ M by re-
quiring that the fields behave near D as in (2.2). In general, quantum
mechanically, Hitchin’s equations or even the second order classical field
equations of the theory will not necessarily be obeyed; the definition of
the surface operator only requires that they are obeyed near D. How-
ever, to understand better the meaning of the parameters α, β, γ in
classical geometry, let us consider a situation in which we do want to

2For this and some other assertions made momentarily, see the description of
the Thom class in [40].
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solve Hitchin’s equations on a Riemann surface C (which corresponds
to D′ in the above analysis), with an isolated singularity of the above-
described type near some point p ∈ C. (We will here explain only the
facts about the classical geometry that are needed to motivate the du-
ality conjecture of section 2.4. We will reconsider the classical geometry
in much more detail in section 3.)

Solutions of Hitchin’s equations with the type of singularity de-
scribed in (2.2) have been analyzed in [22]–[24]. Just like smooth so-
lutions of Hitchin’s equations, the moduli space of such solutions is a
hyper-Kahler manifold MH , which we will call the moduli space of rami-
fied Higgs bundles, also known as the moduli space of Higgs bundles with
parabolic structure. (We refer to it as MH(G), MH(C), MH(α, β, γ; p),
etc., if we want to make explicit the gauge group, the Riemann surface,
or the nature and location of a singularity.)

Because of the hyper-Kahler structure, solutions of Hitchin’s equa-
tions can be viewed in different ways. From the standpoint of one com-
plex structure, usually called I, a solution of Hitchin’s equations on
a Riemann surface C describes a Higgs bundle, that is a pair (E,ϕ),
where E is a holomorphic G-bundle and ϕ is a holomorphic section of
KC ⊗ ad(E). (KC denotes the canonical bundle of C.) The Higgs bun-
dle is constructed as follows starting with a solution (A, φ) of Hitchin’s
equations. One interprets the (0, 1) part of the gauge-covariant exterior
derivative dA = d+A as a ∂A operator that gives the bundle E a holo-
morphic structure. And one defines ϕ as the (1, 0) part of φ; that is,
one decomposes φ as ϕ + ϕ, where ϕ is of type (1, 0) and ϕ is of type
(0, 1). Then Hitchin’s equations imply that ϕ is holomorphic, and the
pair (E,ϕ) is a Higgs bundle.

In the present context, setting z = x1 + ix2, we find from (2.2) that

(2.11) ϕ =
1

2
(β + iγ)

dz

z
.

Thus, from the point of view of complex structure I, the surface op-
erator introduces in the Higgs field a pole with residue3 (1/2)(β + iγ).
The characteristic polynomial of ϕ varies holomorphically in complex
structure I, and in particular this is so for the conjugacy class of the
pole in ϕ. (2.11) shows that the conjugacy class of this pole is holomor-
phic in β + iγ, and independent of α. This is part of a more general
statement; the complex structure I varies holomorphically with β + iγ,
and is independent of α. On the other hand, the corresponding Kahler
form ωI that is of type (1, 1) in complex structure I has a cohomology
class that is independent of β and γ and is a linear function of α. These

3This statement holds if β + iγ is a “regular” element of the Lie algebra gC (the
subalgebra of gC that commutes with it is precisely tC). What happens otherwise is
described in section 3.3.
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statements, along with some similar ones below, follow from the con-
struction of the moduli space as a hyper-Kahler quotient [23, 24], as
we will explain in section 3.2. So if we look at MH from the vantage
point of complex structure I, then β + iγ is a complex parameter (on
which I depends holomorphically) and α is a Kahler parameter.

In fact, though we will not require the details in this paper, α has a
natural meaning in pure algebraic geometry (without mentioning Kahler
metrics), but this meaning is a little subtle. MH in complex structure I
parametrizes pairs (E,ϕ), where ϕ has a simple pole whose conjugacy
class is determined by β and γ (as in (2.11)) and moreover the pair
(E,ϕ) is “stable.” The appropriate notion of stability [22] depends on
α.

In complex structure J , the natural complex variable is the GC-
valued connection A = A + iφ, which is flat according to Hitchin’s
equations. The monodromy of A = (α − iγ)dθ around the singularity
at p is

(2.12) U = exp(−2π(α− iγ)).

It depends holomorphically on γ+ iα, and is independent of β. Indeed,
in complex structure J , γ+ iα is a complex parameter and β is a Kahler
parameter.

In complex structure J , MH parametrizes flat GC-bundles over C
with a monodromy around the point p that is in the conjugacy class4

containing U . Like α in complex structure I, β can be interpreted in
complex structure J in purely holomorphic terms (without mentioning
Kahler metrics), but this interpretation is a little elusive (and will play
only a slight role in the present paper). According to [22], β determines
in complex structure J the weights of a monodromy-invariant weighted
filtration of the flat bundle over C\p (that is, C with the point p omitted)
whose connection is A.

Finally, in complex structure K = IJ , the natural complex variable

is the GC-valued connection Ã = A + i ⋆ φ. It is again flat by virtue
of Hitchin’s equations. Its monodromy around the singularity at p is
exp(−2π(α+iβ)). In complex structure K, α+iβ is a complex structure
parameter and γ is a Kahler parameter. The interpretation of γ in
complex structure K is just like the interpretation of β in complex
structure J .

These statements are summarized in Table 1. In the table, one sees
a cyclic symmetry under permutations of I, J,K together with α, β, γ.
(This cyclic symmetry is part of an SO(3) symmetry that appears in
a closely related context; see section 3.8.) If G = U(N), then (α, β, γ)
are called (α, 2b, 2c) in the table on p. 720 of [22]. We have adjusted a
factor of 2 to get the cyclic symmetry.

4As in the previous footnote, this statement holds if U is regular; we postpone
a discussion of the more general case to section 3.3.
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Model Complex Modulus Kahler Modulus

I β + iγ α

J γ + iα β

K α+ iβ γ

Table 1. Complex and Kahler moduli for MH in com-
plex structures I, J , and K. Complex structure I, for
example, depends holomorphically on β + iγ, while the
corresponding Kahler structure depends on α.

2.3. Theta Angles. Quantum mechanically, in addition to α, β,
and γ, an additional parameter is present. One may guess that this will
occur, because so far we have described in each complex structure only
a real Kahler parameter (listed in the last column of Table 1), but in
supersymmetric theories, the Kahler parameters are usually complexi-
fied.

In explaining this, let us assume for the moment that the trio
(α, β, γ) is regular, meaning that the subgroup of G that leaves this
trio invariant is precisely T. Requiring the behavior (2.2) in each nor-
mal plane to a two-manifold D ⊂M means, in particular, that along D
we are given a reduction of the structure group of E from G to T. There-
fore, along D we are doing abelian gauge theory, with gauge group T.
(We explained at the end of section 2.1 that along D, there is a natural
T-bundle, though there is no natural G-bundle.)

In abelian gauge theory in two dimensions, an important role is
played by the “theta-angle.” For example, let the gauge group be U(1).
A U(1)-bundle L → D is classified topologically by its degree d =∫
D c1(L), where c1(L) is the first Chern class.5 The theta angle enters

the theory by a phase exp(iθd) that is included as an extra factor in the
path integral. Here θ takes values in R/2πZ ∼= U(1).

Now let us return to our problem, involving surface operators in
nonabelian gauge theory. Suppose that G has rank r. Then its maximal
torus T is isomorphic to U(1)r, and a two-dimensional gauge theory
with gauge group G will have r theta-angles, taking values in an r-
dimensional torus. Let us see exactly which torus this is. A T-bundle
over a two-manifold D can be constructed uniquely (from a topological
point of view) by starting with a U(1) bundle of degree 1 and then
mapping this to T via some homomorphism ρ : U(1) → T. So T-
bundles over D are classified topologically by a characteristic class m

5For simplicity, we assume D to be closed. Otherwise, in defining the quantum
field theory, one needs a suitable boundary condition on the boundary of D (or at
infinity). With some care, one can then give a suitable definition of c1(L) and of θ.
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that takes values in the lattice Λcochar = Hom(U(1),T). Therefore, the
theta-angle of T gauge theory is a homomorphism η : Λcochar → U(1).

In other words, η takes values in Hom(Λcochar, U(1)). We claim that

(2.13) Hom(Λcochar, U(1)) = L
T,

where L
T is the maximal torus of the dual group LG. In fact, by Pon-

tryagin duality,6 since Λcochar = Hom(U(1),T), (2.13) is equivalent to

(2.14) Hom(U(1),T) = Hom(L
T, U(1)).

But this is a standard characterization of the relation between the group
and the dual group. Indeed, the left hand side classifies magnetic charges
of G, and the right hand side classifies electric charges of LG. The
equality of the two is the basic GNO duality [39].

Just as T = t/Λcochar, we have L
T = Lt/Λchar, with Lt the Lie algebra

of L
T, and Λchar = Hom(T,U(1)) the lattice of electric charges of G. Lt

coincides with t∨, the dual of t. We frequently use an additive notation
for η, thinking of it as an element of t∨/Λchar.

2.4. Electric-Magnetic Duality. N = 4 super Yang-Mills the-
ory has a large discrete group Γ of duality symmetries. Optimistically
assuming that the class of surface operators that we have described is
mapped to itself by Γ, let us determine how Γ acts on the parameters
(α, β, γ, η).

First we consider the fundamental electric-magnetic duality S. It
acts on the coupling parameter τ = θ/2π + 4πi/g2 of the gauge theory
by S : τ → −1/ngτ , where ng is 1 for simply-laced G and otherwise is
2 or 3 (the ratio of the length squared of the long and short roots of
G). It also maps G to LG. How does it transform the parameters of a
surface operator?

Transformation Of β and γ
S acts on β and γ in a very simple way, because β and γ determine a

pole in the characteristic polynomial of the Higgs field, which transforms
very simply under duality (see [8], section 5.4; however, we will adopt
a different normalization from the one used there).

Since β and γ take values in t, while Lβ and Lγ take values in Lt,
the comparison between them depends on a choice of map from t to Lt.
The vector spaces t and Lt are dual (so that we also denote Lt as t∨),
and acted on by the same Weyl group. Any choice of a Weyl-invariant
metric on t gives a Weyl-invariant identification between them.

6Pontryagin duality says that if W is a locally compact abelian group and
V = Hom(W, U(1)), then W = Hom(V, U(1)). In our application, W = Λcochar =
Hom(U(1), T), and V = L

T.
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To prepare the ground for the application to geometric Langlands in
section 4, we will describe in some detail the identification we will use.7

First of all, it is convenient to introduce an invariant quadratic form on
g, normalized so that a short coroot is of length squared 2. We write
this quadratic form as (x, y) = −Trxy, for x, y ∈ g. (The notation is
motivated by the fact that for G = SU(N), Tr is the trace in the N -
dimensional representation.) Similarly, we introduce a quadratic form
on the Lie algebra Lg of LG, normalized so that a short root of G has
length squared 2. We write this as (Lx, Ly) = −LTr LxLy. The quadratic
form on g, when restricted to t, gives a Weyl-invariant map from x ∈ t

to x∗ ∈ Lt (such that x∗(y) = −Trxy), and likewise, the quadratic form
on Lg, restricted to Lt, gives a Weyl-invariant map from Lx ∈ Lt to
Lx∗ ∈ t. As explained in Appendix A, the composition of the two maps
is multiplication by ng, that is,

(2.15) (x∗)∗ = ngx,

or equivalently

(2.16) LTrx∗y∗ = ngTrxy

for any x, y ∈ g. This relation is symmetric between G and LG.
Now as in eqn. (2.8) of [8], we normalize the scalar fields φ of N = 4

super Yang-Mills theory with gauge group G so that their kinetic energy
in Lorentz signature is

(2.17)
Im τ

4π

∫
d4xTrDµφD

µφ,

where Im τ = 4π/e2. Likewise, for the S-dual theory with gauge group
LG, we normalize the scalars Lφ so that their kinetic energy is

(2.18)
Im Lτ

4π

∫
d4xTrDµ

LφDµLφ,

with

(2.19) Lτ = − 1

ngτ
.

In general, there is no local identification between φ and Lφ (but only
between gauge-invariant local operators constructed from these fields).
However, for the sake of finding how β and γ transform under duality,
we can abelianize the problem, as in section 5.1 of [8], and go to a
vacuum in which G or LG is spontaneously broken to its maximal torus
by expectation values of scalar fields. In such an abelian vacuum, the
light scalar fields takes values in t or Lt, and duality acts on them simply
by a linear transformation that we can choose to be Weyl-invariant (and

7For gauge groups G2 or F4, the convention we are about to describe differs from
the most common one in the physics literature [41, 42]. The relation between the
two approaches is explained at the end of Appendix A. See also, for example, [71].
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hence a multiple of the operation φ → φ∗). This transformation must
preserve the kinetic energy, so

(2.20)
Im τ

4π

∫
d4xTrDµφD

µφ =
Im Lτ

4π

∫
d4xTrDµ

LφDµLφ.

Together with (2.19) and (2.16), this implies that in an abelian vacuum
the relation between φ and Lφ is

(2.21) Lφ = |τ |φ∗,
a relation that is completely symmetric between G and LG, as one can
verify using (2.15) and (2.19). Since β and γ parametrize singularities
of φ, and likewise Lβ and Lγ parametrize singularities of Lφ, these pa-
rameters transform in the same way, that is Lβ = |τ |β∗, Lγ = |τ |γ∗, or
more briefly

(2.22) (Lβ, Lγ) = |τ |(β∗, γ∗).
Since the parameters characterize the operator, not the vacuum, this
formula must hold in general, not just in an abelian vacuum.

The basic case of the geometric Langlands program is conveniently
studied by setting Re τ = 0, in which case (2.22) can be more conve-
niently written

(2.23) (Lβ, Lγ) = (Im τ) (β∗, γ∗).

We can also invert this relation:

(2.24) (β, γ) = (Im Lτ) (Lβ∗, Lγ∗).

The two formulas are compatible, since (x∗)∗ = ngx and (for imaginary
τ) Im Lτ = 1/ng Im τ .

β and γ are manifestly unaffected by a shift in the theta-angle,
which as we discuss later gives the second generator T : τ → τ + 1 of
the duality group Γ. So their full transformation under Γ is determined
by (2.22). The result can be described particularly simply if G is simply-
laced, in which case, as explained in Appendix A, the difference between
(β, γ) and (β∗, γ∗) is inessential. In that case, (2.22) together with
invariance of (β, γ) under τ → τ + 1 implies that for a general element(
a b

c d

)
∈ Γ ∼= SL(2,Z), the transformation is (β, γ) → |cτ + d|(β, γ).

A similar result can be written for any G. If one restricts to an index
2 subgroup of Γ that maps G to itself (rather than LG), (2.22) implies
that the pair (β, γ) transforms by rescaling by a positive factor. Other
elements of Γ map (β, γ) to a positive multiple of (β∗, γ∗).

Transformation Of α and η
The other parameters of a surface operator are α ∈ T and η ∈

L
T. Since S exchanges G and LG, it exchanges T and L

T, strongly
suggesting that it exchanges α and η. This is much more interesting
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than the relatively trivial transformation of β and γ. It will be our
basic hypothesis in the present paper.

In fact, S2 is a central element of the duality group Γ. It acts trivially
on τ , and acts on other fields and parameters by charge conjugation. So
S2 maps (α, η) to (−α,−η). Together with the fact that S exchanges T

and L
T, it follows that up to sign, S must act by

(2.25) S : (α, η) → (η,−α).

Since the duality group Γ contains the central element S2 that re-
verses the sign of the pair (α, η), the overall sign in (2.25) depends on
precisely how we lift S from a symmetry of the upper half τ -plane to
an element of Γ. We specify our lifting in eqn. (2.52) below.

The Abelian Case

For nonabelian G, we cannot prove (2.25), but regard it as the nat-
ural extension to surface operators of the Montonen-Olive duality con-
jecture.8 In the case G = U(1), however, we can directly demonstrate
that S does act in this fashion, as we will now explain. We will follow
the approach to abelian S-duality in [43] (which in turn was modeled
on a similar approach to T -duality in two dimensions [44, 45]).

In abelian gauge theory, the gauge field is locally a real one-form
A (which we can think of as a connection on a principal U(1)-bundle9

R →M) with curvature F = dA. We take the action to be10

I =
1

8π

∫

M
d4x

√
h

(
4π

g2
FmnF

mn − iθ

2π

1

2
ǫmnpqF

mnF pq

)
(2.26)

= − i

8π

∫

M
d4x

√
h
(
τF+

mnF
+ mn − τF−

mnF
−mn

)
,

where h is a metric on M , τ = θ/2π + 4πi/g2, ǫmnpq is the Levi-Civita
antisymmetric tensor, and F± = 1

2(F ± ⋆F ) are the selfdual and anti-
selfdual projections of F . As explained in [43], I is invariant mod 2πiZ
under τ → τ +2 for any closed four-manifold M , and under τ → τ +1 if
M is a spin manifold. Quantum theory depends on the action only mod
2πiZ (since the action enters the path integral via a factor exp(−I)), so
the quantum theory possesses the symmetry τ → τ + 1 or τ → τ + 2,
depending on M .

8In some special cases, (2.25) follows from broader string theory duality conjec-
tures, in view of the constructions explained in section 6.4.

9The Lie algebra of U(1) is real, so a connection on a principal U(1)-bundle
is naturally represented locally by a real one-form. (By contrast, if we view A as a
connection on a unitary complex line bundle L, coming from a unitary representation
of U(1), we would represent it locally by an imaginary one-form.)

10To agree better with conventions used in much of the physics literature as well
as [8] and the present paper (but at the cost of some tension with conventions usually
used in Donaldson theory), we have reversed the sign of θ relative to [43]. This has
the effect of transforming τ → −τ .
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Our interest here is in the more subtle symmetry τ → −1/τ . First
we will review how to see this symmetry in the absence of surface oper-
ators. We add a two-form field k (called G in [43]) which we assume to
be invariant under the usual abelian gauge symmetry A → A− dǫ (for
a zero-form ǫ). But we ask for the extended gauge symmetry

A→ A+ b(2.27)

k → k + db,

where b is any connection on a principal U(1)-bundle T , and db is its
curvature. (The ordinary Maxwell gauge symmetry is a special case of
this with b = −dǫ.) If A is a connection on a principal U(1)-bundle R,
then A+b is a connection on R⊗T , so to get invariance under (2.27), we
will need to sum over all possible choices of R. A transformation (2.27)
can shift the periods of k by integer multiples of 2π; thus, if D ⊂ M is
a two-cycle, we can have

(2.28)

∫

D
k →

∫

D
k + 2πm, m ∈ Z.

An obvious way to find a Lagrangian with the invariance (2.27) is
to set F = F − k and replace F everywhere in the Maxwell Lagrangian
by F . But the resulting theory is trivial, and certainly not equivalent
to Maxwell theory. To get something interesting, we introduce another

field v which is a connection on a principal U(1)-bundle R̃, with curva-
ture V = dv. We add to the action a term

(2.29) Ĩ =
i

8π

∫

M
d4x

√
hǫmnpq

Vmnkpq =
i

2π

∫

M
V ∧ k.

To check the symmetry (2.27), note that if T is topologically trivial, then
the connection b is globally-defined as a one-form, and an integration

by parts shows that Ĩ is invariant under k → k + db. We have chosen

the coefficient in (2.29) so that Ĩ is invariant mod 2πiZ even if T is
topologically non-trivial.

We now define an extended theory with field variables v, k, A and
action
(2.30)

Î(v, k, A) =
i

8π

∫
d4x

√
h
(
ǫmnpq

Vmnkpq − τF+
mnF+ mn + τF−

mnF−mn
)
.

From what has been said, the invariance of Î under (2.27) mod 2πiZ
should be clear. The proof of S-duality of abelian gauge theory comes
by comparing two ways of studying this extended theory.

One approach is to perform first the path integral over v. The part
of the integral that depends on v is

(2.31)
∑

eR

∫
Dv exp

(
− i

2π

∫

M
V ∧ k

)
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where V is the curvature of v. We must sum over U(1)-bundles R̃, and
for each such bundle we must integrate over the space of all connections
on it. The integral gives a delta function setting dk = 0. The sum over
bundles gives a delta function stating that the periods of k take values
in 2πZ. The combined conditions precisely say that k can be set to zero
by a transformation (2.27). After setting k to zero, we are left with the
original abelian gauge theory (2.26) with A as the only field variable.

So the extended theory with action (2.30) is equivalent to the orig-
inal theory with coupling parameter τ . Next, let us consider another
way to study the same theory. We use the extended gauge invariance
(2.27) to set A = 0. After doing this, as the action depends quadrati-
cally on k without any derivatives of k (and the term quadratic in k is
nondegenerate), we can “integrate out” k by simply solving the Euler-
Lagrange equations to determine k in terms of V. (In [43], this process
is described somewhat more precisely at the quantum level.) In this
way, we get an action for V, which is

(2.32) − i

8π

∫

M
d4x

√
h

((
−1

τ

)
(V+)2 −

(
−1

τ

)
(V−)2

)
.

This is the original abelian gauge theory, but with the connection v

instead of A, and the coupling parameter τ replaced by −1/τ . So com-
paring the two ways to analyze the extended theory (2.30) gives us the
τ → −1/τ symmetry of abelian gauge theory.

Now let us introduce a surface operator, supported on a two-mani-
fold D ⊂ M . To keep things simple, we will consider the special case
that this surface operator has α = 0, η 6= 0. This means that in the
path integral of the underlying abelian gauge theory, we want to include
a factor11

(2.33) exp

(
iη

∫

D
F

)
.

This is equivalent to adding to the action a term −iη
∫
D F . To incor-

porate the surface operator in the extended theory, we replace F by F
and add

(2.34) −iη
∫

D
F = −iη

∫

M
δD ∧ F

to the action (2.30). Here δD is a two-form delta function that is
Poincaré dual to D.

The extra term does not depend on v, so if we first integrate over
v, we get back to the abelian gauge theory with the surface operator.
But what happens if we instead use the extended gauge symmetry to

11Though η is an angular variable, we have normalized it to take values in R/Z,
rather than R/2πZ, to avoid unnatural-looking factors of 2π in the transformations
under S-duality. The alternative is to modify the definition of α, β, and γ by a factor
of 2π.
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set A = 0, and then solve for k? The action has two terms linear in k,
which combine to

(2.35)
i

2π

∫

M
(V− 2πηδD) ∧ k.

To get this formula, we used the last expressions given in (2.29) and
(2.34). Moreover, this part of the action is the only part that contains
V. (The rest of the action is quadratic in k and independent of V.) So

the effect of having η 6= 0 is precisely to replace V by V̂ = V− 2πηδD.
Hence when we integrate out k again, we will get the same action as in

(2.32), but with V replaced by V̂:

(2.36) − i

8π

∫

M
d4x

√
h

((
−1

τ

)
(V̂

+
)2 −

(
−1

τ

)
(V̂

−
)2
)
.

This action is potentially divergent because of the delta function

term in V̂. Since the action is quadratic in V̂, with positive definite real
part, the only way to make the action finite is for V to be such as to

cancel the delta function contribution in V̂. Thus, the connections that
contribute to the path integral must obey

(2.37) V = 2πηδD + . . .

where the ellipses refer to terms that are regular near D. But this
is precisely the characterization of a surface operator with parameter
α = η, as should become clear upon comparing (2.37) to (2.5).

So we have shown that the transformation S : τ → −1/τ maps a
surface operator with parameters (α, η) = (0, η) to one with parameters
(η, 0). This is a special case of (2.25). To get the general case, one
replaces F in (2.30) by F − 2παδD, and then repeats the calculation.
After gauging A to zero and integrating out k, one gets back to an action
of the same kind, with τ replaced by −1/τ and α and η exchanged as
in (2.25).

2.5. Shifting The Theta Angle. We now return to the case that
G is a simple non-abelian gauge group. Apart from S : τ → −1/ngτ ,
which we have considered in section 2.4, the other generator of the
duality group is a shift in the four-dimensional theta-angle, which enters
the four-dimensional action via a term

(2.38) Iθ = −iθN
where

(2.39) N = − 1

8π2

∫

M
TrF ∧ F

is the instanton number. Tr is a negative-definite quadratic form on g

such that Trx2 = −2 for x a short coroot. (The notation is motivated
by the fact that for G = SU(N), Tr is the trace in the N -dimensional
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representation.) The normalization ensures that if M is a closed four-
manifold without surface operators, and G is simply-connected, then N

is integer-valued. For example, if G = SU(N), then N = −
∫
M c2(E),

where c2 is the second Chern class. When N is integer-valued, there is a
symmetry T : θ → θ+ 2π, or T : τ → τ + 1. This expresses the familiar
fact that quantum field theory depends on the action I only modulo
2πiZ.

If G is not simply-connected, then N takes values in 1
kZ for some

integer k, and instead of T we consider the symmetry T k : τ → τ + k.
Assuming for notational simplicity that G is simply-connected, let

us study the symmetry T in the presence of a surface operator supported
on a two-manifold D. First, in the presence of the singularity associated
with the surface operator, we have to define precisely what we mean by
the integral defining N. The integral has a bulk contribution, coming
from the integration over the complement of D:

(2.40) N0 = − 1

8π2

∫ ′

M
TrF ∧ F.

The symbol
∫ ′

M means that we integrate over the complement of D,
ignoring possible delta function contributions at D. According to (2.5),
once we pick an extension of the bundle E over D, there is also a delta
function contribution to the integral. This contribution is

(2.41) N′ = − 1

2π

∫

D
TrαF − 1

2
D ∩DTrα2.

To obtain (2.41) (which corresponds to Proposition 5.7 in [11]), we use
the fact that the delta function contribution to F near D is 2παδD. We
have also used (2.8).

The sum
(2.42)

N = N0 + N′ = − 1

8π2

∫ ′

M
TrF ∧ F − 1

2π

∫

D
TrαF − 1

2
D ∩DTrα2

is integer-valued. However, N is not natural in the sense that it depends
on a choice of lifting of α from t/Λcochar, where it naturally takes val-
ues, to t. There is a simple reason for this; the integer-valued invariant∫
M c2(E) (or its analog for groups other than SU(N)) is not determined

by the restriction of E to M\D, but depends on the choice of an exten-
sion of E over D. Integrality of N, however, implies that upon reduction
mod Z, we get

(2.43) N0 = −N′ =
1

2π

∫

D
TrαF +

1

2
D ∩DTrα2 mod Z.

Since N0 does not depend on a lifting of α, the same must be true
mod Z of the right hand side of (2.43). We can verify this as follows.
The restriction of F to D is t-valued, and its integral m =

∫
D F/2π
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is a “magnetic charge,” an element of the lattice Λcochar. This lattice
actually coincides with the root lattice of LG (since we are assumingG to
be simply-connected) or in other words the coroot lattice of G. Because
of the way the trace was normalized, the bilinear function m, m′ →
Tr mm′ takes integer values for m, m′ in this lattice, and takes even
integer values if m = m′. Once an extension of E is picked, α takes
values in t, which is the same as Λcochar ⊗Z R. So we can write

(2.44) N′ = −Trαm − 1

2
D ∩DTrα2

and hence

(2.45) N0 = Trαm +
1

2
D ∩DTrα2 mod Z.

This statement is invariant under shifts of α by a lattice vector, given
the integrality properties of the trace, together with (2.10).

We want to define Iθ to be independent of any choice of extension
of the bundle. The only obvious way to do this is to omit the delta
function contribution from D, and set

(2.46) Iθ = −iθN0.

This does not mean that we will ignore the delta function contribu-
tion. Rather, we will have such a contribution from the two-dimensional
theta-like parameter η that was introduced in section 2.3. In the same
notation, we take the contribution of η to the action to be

(2.47) Iη = −2πiTr ηm − πiD ∩DTrαη.

The term Tr ηm is the expected term for the theta-like angles η. To
this, we have added a c-number term that depends only on α and η and
not on any of the field variables of the theory.

The sum of the two contributions to the action is therefore

(2.48) Î = Iθ + Iη = −iθN0 − 2πiTr ηm − πiD ∩DTrαη.

At this stage, we can more fully justify our definition of Iθ. Adding
to Iθ a multiple of Trαm would have no essential effect, since one can
compensate for this by shifting η. So we may as well define Iθ as we
have.

We will now see that the choice we have made leads to a simple
result for how α and η must transform under θ → θ + 2π. The change
in Iθ is

(2.49) ∆Iθ = −2πiN0 = −2πiTrαm − πiD ∩DTrα2 mod 2πiZ,

where (2.45) has been used.
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To get a symmetry of the theory, Î must be invariant mod 2πiZ. For
this, we let T : θ → θ + 2π act on (α, η) by

η → η − α(2.50)

α→ α.

The variation of Iη then precisely cancels the variation of Iθ mod 2πiZ,

and Î is invariant.
The constant term −πiD∩DTrαη that we included in the action is

not invariant mod 2πi under lattice shifts of α or η. However, the non-
invariance is, like this term itself, independent of the quantum fields.
Geometrically, this means that when D ∩ D is non-zero, the partition
function is not a complex-valued function of α and η but a section of
a complex line bundle over T × L

T. Of course, it would be possible
to omit the c-number term from the action and instead claim that the
symmetry T : τ → τ + 1 holds up to a c-number.

This discussion generalizes straightforwardly to the case that G is
not simply-connected and the instanton number takes values in 1

kZ. One

considers the symmetry T k : τ → τ + k, and the same derivation shows
that it acts as

η → η − kα(2.51)

α→ α.

Let us combine the result (2.50) with our previous result (2.25) for
the action of electric-magnetic duality. First we consider the case that
G is selfdual and simply-laced, so that in particular the duality group
is simply Γ = SL(2,Z). The only simple Lie group that actually has
these properties is E8. In this situation, Γ is generated by the elements

(2.52) S =

(
0 1

−1 0

)
, T =

(
1 1

0 1

)
.

The formulas (2.25) and (2.50) tell us that for M equal to S or T , α
and η transform under M by

(2.53) (α, η) → (α, η)M−1.

This is therefore true for any M ∈ SL(2,Z). In particular, the pair
(α, η) transform naturally under SL(2,Z), and our results for the action
of S and T , though motivated independently, are compatible with each
other.

The generalization to any simple G is as follows. First recall that
electric charge takes values in the character lattice12 Λchar of G, and

12In much of the physics literature, root and coroot lattices are taken here,
because the theory is considered only on R

3,1 or R
4, where the physical electric and

magnetic charges take values in the root and coroot lattices. However, the fact that
the theory could be probed with Wilson and ’t Hooft operators as external charges
shows that it must be possible to refine the usual discussion of duality to the case that
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magnetic charge takes values in the cocharacter lattice Λcochar. So the

full set of charges takes values in the lattice Λ̂ = Λcochar ⊕ Λchar, which
has a natural non-degenerate skew pairing since Λchar and Λcochar are
dual lattices. The duality group Γ acts linearly on this lattice, preserving
the skew pairing, as well as acting naturally on τ = θ/2π+ 4πi/g2. For

example, for E8 we have Λ̂ = Λchar ⊗Z
2, where Z

2 is a rank two lattice,

and Γ = SL(2,Z) acts on Λ̂ via its natural action on Z
2. At any rate,

Γ always acts on the full set of electric and magnetic charges, and thus

on Λ̂. The details are a little complex, however, especially [41, 42] if G
is not simply-laced.

At any rate, the linear action of Γ on Λ̂ induces an action on Λ̂⊗Z R,

and hence on (Λ̂⊗Z R)/Λ̂. But (Λ̂⊗Z R)/Λ̂ is the same as T×L
T. So the

action of Γ on the charges determines an action on T × L
T, where the

pair (α, η) take values. Thus it determines a natural action on (α, η).
For any G, the meaning of (2.25) and (2.50) is that the action of Γ on
(α, η) is precisely the natural action determined by its action on the
electric and magnetic charges. The hypothesis (2.25) asserts that this
is true for S, and it is true for T : τ → τ + 1 since the derivation of
(2.50) was actually a close cousin of the computation [46] of the action
of T : θ → θ + 2π on the charges.

The Dirac String

L

D

Figure 1. A surface operator whose support D has a
boundary L, which turns out to be the world-line of a
magnetic monopole or dyon.

the charges take values in the character and cocharacter lattices. This refinement
is the one relevant here, roughly because the same topological issues arise either
by allowing Wilson and ’t Hooft operators, working on a general four-manifold, or
admitting surface operators such as those considered here.
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Now, leaving some details to the reader, and making use of some
ideas in [14], we are going to explain an informal interpretation of this
result.

Let us ask whether the support D of a surface operator can have a
boundary L as in figure 1. A little thought will show that for this to
occur, L must be the world-line of a magnetic monopole with magnetic
charge α. The gauge field holonomy around D must unwind at the
boundary L, and this unwinding of the holonomy characterizes magnetic
charge.

However, we have not imposed Dirac quantization on the magnetic
charge α. As we consider it to be defined modulo a lattice vector, we
are really interested in the case that Dirac quantization is not obeyed.
According to Dirac, in this case, for gauge-invariance, L must be the
boundary of the world-volume of what is commonly called a “Dirac
string.” In our context, the surface D can be regarded as the world-
volume of the string. Thus, our surface operator can be regarded as
representing the Dirac string associated with improperly quantized mag-
netic charge. Dirac defined the Dirac string in terms of the monodromy
of the gauge field around it, so our surface operator indeed has the right
property to be the world-volume of a Dirac string.

More generally, if η 6= 0, the monopole at the end of the string also
carries electric charge. It is thus a dyon.

Our claim that (α, η) transform under S-duality just like magnetic
and electric charge can be interpreted as a statement that Dirac strings
associated with improperly quantized charges transform under duality
just like properly quantized charges.

We conclude with a related comment, also anticipated in [14]. Phys-
ically, a surface operator might arise if N = 4 super Yang-Mills theory
(or any gauge theory of interest, such as the Standard Model) is embed-
ded in some more complete theory that reduces to it at low energies.
The embedding in a more complete theory might give rise to what in
other contexts are called cosmic strings. Suppose that such a string is
heavy enough that we can consider it to be frozen in position, with a
known orbit in spacetime. It is then appropriate to consider the “low
energy” N = 4 dynamics in the presence of the string. This will involve
studying the N = 4 theory coupled to a surface operator of some kind.
The details depend on the particular type of cosmic string considered.
Strings that produce an Aharonov-Bohm effect, as first explored in [10]
will lead to surface operators of the sort considered in the present pa-
per. In section 6.4, we will consider some surface operators defined by
embedding N = 4 super Yang-Mills theory in a more complete theory
(with the more complete theory being Type IIB superstring theory). In
the theory of cosmic strings, it is familiar that some kinds of string can
break, terminating on magnetic monopoles [47].
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An Illustration

We will now explain in more detail how S-duality acts on the charges
in the case of G = SU(2), LG = SO(3). This will enable us to spell
out a few points that have been hidden in our analysis above. Following
[48] we explain two different ways to view the problem. This discussion
is not used in the rest of the paper, and we will be rather brief on some
points.

SU(2) is simply-connected, so for SU(2) gauge theory, the instanton
number is integer-valued and there is a symmetry T : τ → τ + 1, acting
as in (2.50). On the other hand, for SO(3), the instanton number takes
values in 1

4Z, or in 1
2Z if M is a spin manifold. So the basic shift

symmetry of the theta-angle is T 4 : τ → τ + 4, or T 2 : τ → τ + 2 if M
is spin. These symmetries act as in
eqrefzimax. In addition, there is the symmetry S : τ → −1/τ , which
exchanges SU(2) and SO(3). The group of duality symmetries of SU(2)
gauge theory is generated if M is not spin by

(2.54) T =

(
1 1

0 1

)
, ST 4S−1 =

(
1 0

−4 1

)
.

(ST 4S−1 is a duality symmetry for SU(2), since S−1 maps SU(2) to
SO(3), T 4 is a duality transformation of SO(3), and S maps back to
SU(2).) This duality group, which is known as Γ0(4), is a congruence
subgroup of SL(2,Z). It is a group of duality symmetries of SU(2)
gauge theory on a general M , and acts on α and η according to (2.53).
The group of duality symmetries of SO(3) gauge theory is likewise a
copy of Γ0(4), generated by STS−1 and T 4. And finally, of course, we
have the symmetry S that exchanges the two groups. If M is spin, one
can replace 4 by 2 everywhere, and the duality groups are isomorphic
to Γ0(2).

G = SU(2) and LG = SO(3) have the same Lie algebra, so we can
think of T = t/Λrt and L

T = t/Λwt as quotients of the same space by
different lattices, which are respectively the root and weight lattices Λrt

and Λwt. Λrt is of index two in Λwt. The identity map on t therefore
projects to a natural, two-to-one map from T, where α takes values, to
L
T, where η takes values. This map is implicit in the transformation
T : (α, η) → (α, η + α). The identity map on t does not project to a
natural map of L

T to T, but the map of multiplication by 2 (or any even
integer) does so project. So there is a natural map ST 2S−1 : (α, η) →
(α − 2η, η), which is realized as a duality transformation if M is spin.
Similarly the operation ST 4S−1 : (α, η) → (α − 4η, η), which appears
as a duality transformation for any M , is naturally defined.

This way of describing things is in some tension with the physics lit-
erature, where the duality group is generally considered to be SL(2,Z)
for a simply-laced group such as SU(2). However, the usual analysis



GAUGE THEORY, RAMIFICATION, . . . 59

is made only for M = R
4, and without detailed consideration of Wil-

son and ’t Hooft operators. Under these circumstances, the SO(3) and
SU(2) gauge theories coincide. One can distinguish the two theories on
R

4 by adding a Wilson operator in the two-dimensional representation
to specialize to SU(2), or an ’t Hooft operator with minimal charge to
specialize to SO(3). (One cannot add operators of both types simul-
taneously, as they are not mutually local.) If the SU(2) and SO(3)
theories are elaborated in this way, the appropriate duality groups on
R

4 are precisely those that we have just described on a general spin
manifold.

Actually, there is another formulation of the problem, of which we
will only give an outline, that really gives more information, and in
which the full group SL(2,Z) plays a role. In this approach, we al-
ways take the gauge group to be the adjoint group SO(3) (not its cover
SU(2)), but we specify the second Stieffel-Whitney class ξ = w2(E) of
the bundle E. Summing over all SO(3)-bundles with fixed ξ, we define
a partition function13 Zξ(τ) for each ξ. One then shows [48] that the
Zξ(τ) transform in a unitary representation of SL(2,Z).

To incorporate in this approach a surface operator with parameters
α, η, supported on a surface D, one defines α and η to take values in T,
the maximal torus of the simply-connected group SU(2). Then we have
for each ξ a partition function Zξ(τ ;α, η), and the claim is that this
family of partition functions transforms as a representation of SL(2,Z)
(which acts on τ in the usual fashion, on ξ as described in [48], and on
α and η by the natural action described in (2.53)).

The description by parameters ξ, α, η is slightly redundant. To de-
scribe the redundancy, we use a multiplicative notation for the maximal
torus T (where α and η take values) and recall that this torus con-
tains the element −1 of the center of SU(2). Then shifting α to −α is
equivalent to replacing ξ with ξ + [D] according to (2.6), and shifting

η to −η multiplies the partition function Zξ(τ ;α, η) by (−1)(ξ,D) (this
is essentially explained at the end of section 4.2). This redundancy is
compatible with the action of SL(2,Z), but it seems hard to eliminate
it without making the action of SL(2,Z) look less natural.

2.6. Levi Subgroups And More General Surface Operators.

Now we will describe a simple but important generalization of our defi-
nition of surface operators in which the maximal torus T is replaced by
a more general subgroup L of G that contains T. We assume also that
L can be characterized as the subgroup of G that commutes with some
α ∈ t. Such an L is called a subgroup of G of Levi type. We consider

13Along with a full set of operators, correlation functions, quantum states,
branes, etc., making up a quantum field theory. In a fuller description, the whole
quantum field theory, not just the set of partition functions, is transformed by
SL(2, Z).
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two such groups to be equivalent if they are conjugate in G. The usual
case is that α 6= 0 and L is a proper subgroup of G, but we also will
consider the case α = 0 and L = G. Any Levi subgroup contains T,
so T is a minimal Levi subgroup. A typical example of a non-minimal
Levi subgroup is the subgroup of SU(3) of the form

(2.55)



∗ ∗ 0

∗ ∗ 0

0 0 ∗


 .

This is isomorphic to U(2), and is actually a next-to-minimal Levi sub-
group, since a smaller Levi subgroup would have to be T itself. In gen-
eral, for any G of rank r, a next-to-minimal Levi subgroup is isomorphic
to SU(2) × U(1)r−1 or a quotient of this by Z2.

We now will define what we will call a surface operator of type L.
In this language, the surface operator that we defined originally is an
operator of type T; we will also call it the generic surface operator. To
define a surface operator of type L, we consider a two-manifold D with
a gauge theory singularity labeled classically by the usual parameters
(α, β, γ). But now we require the parameters to be L-invariant. More-
over, when we perform the quantum path integral, we divide by gauge
transformations that are L-valued when restricted to D, not just those
that are T-valued. It is because of this last step that the surface opera-
tor of type L is not just a special case – for L-invariant parameters – of
the surface operator that we defined originally, the operator of type T

in which (α, β, γ) are simply t-valued. The surface operator of type L is
something new, associated with a different path integral. Actually, we
will learn in section 3.6 that if L contains T as a proper subgroup, then
the surface operator of type T becomes singular when the parameters
become L-invariant. So for such special parameters, the operator that
makes sense is the new surface operator of type L.

At the quantum level, there is an additional parameter η, the two-
dimensional theta-angle η of section 2.3. In the present case, with the
group T replaced by L, η takes values not in L

T but in a subgroup. In
fact, we want to define η as a theta-angle of the abelian part of L. To give
a convenient description of where η takes values, it is useful to observe
that Levi subgroups L ⊂ G are in natural correspondence with Levi
subgroups L

L ⊂ LG. One way to describe the correspondence is to make
use of the fact that the Weyl group W of G naturally coincides with the
Weyl group LW of LG. (See Appendix A.) Moreover, the Weyl groups
of L and L

L are subgroups of W and LW. The correspondence between
L and L

L is simply that they have the same Weyl group, which we will
denote as WL. Another way to state the correspondence between L and
L
L is to say that the coroots of L

L (which are a subset of the coroots of
LG) are multiples of the coroots of L – with different multiples for long
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or short coroots. With all this understood, a surface operator of type L

depends on parameters (α, β, γ, η) which take values in the WL-invariant
part of T × t × t × L

T. We are using here the fact that L-invariance of
(α, β, γ) is equivalent to WL-invariance. The formulation in terms of
WL-invariance has an important advantage: it enables us to treat η on
the same footing as the other variables. This is more satisfactory than
saying that (α, β, γ) are L-invariant and η is L

L-invariant. The condition
that η must be WL-invariant is the right one, because it means that η is a
character of the abelian magnetic fluxes of the gauge bundle E restricted
to D; the structure group of this bundle is L, and its characteristic
classes are WL-invariant.

We extend the duality conjecture of section 2.4 to say that a surface
operator of type L maps under duality to a surface operator of type L

L,
with the parameters transforming in the familiar fashion (α, β, γ, η) →
(η, β, γ,−α).

Some More Group Theory

Now we describe some more group theory that will be useful in the
rest of the paper.

Levi subgroups are closely related to what are called parabolic sub-
groups of GC. Let us pick a particular α ∈ t which commutes precisely
with L. We say that such an α is L-regular (and if L = T, we simply say
that α is regular). We let P be the subgroup of GC whose Lie algebra p

is spanned by elements ψ ∈ g that obey

(2.56) [α, ψ] = iλψ, λ ≥ 0.

A group of this form is called a parabolic subgroup of GC. If in (2.56)
we replace the condition λ ≥ 0 by λ > 0, we get the Lie algebra n of a
subgroup N ⊂ P that is known as the unipotent radical of P.

For example, for GC = SL(3,C) and L = T, we can take α =
idiag(y1, y2, y3) with the yi real and y1 > y2 > y3. In this case, the
parabolic group we get is the group of upper triangular matrices

(2.57)



∗ ∗ ∗
0 ∗ ∗
0 0 ∗


 ,

and is called a Borel subgroup B. In this example, the unipotent radical
N consists of matrices of this form:

(2.58)




1 ∗ ∗
0 1 ∗
0 0 1


 ,

A different choice of T-regular (or simply regular) α would be ob-
tained from the one we used by permuting the eigenvalues by a Weyl
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transformation. This leads to a Weyl-conjugate Borel subgroup B′.
More generally, for any G, the parabolic subgroup associated with a
pair (T, α) is called a Borel subgroup B, and is unique up to a Weyl
transformation. B is a minimal parabolic subgroup, just as T is a min-
imal Levi subgroup.

A non-minimal Levi subgroup L may be associated with several
inequivalent parabolic subgroups. For instance, in the example of (2.55),
we can take

(2.59) α = iy




1 0 0

0 1 0

0 0 −2


 ,

with real nonzero y. If y is positive, we get the parabolic subgroup P of
matrices of the form

(2.60)



∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


 ,

but if y is negative, we get an inequivalent parabolic subgroup P′ of
matrices of the form

(2.61)



∗ ∗ 0

∗ ∗ 0

∗ ∗ ∗


 .

The unipotent radicals N and N′ consist of matrices of the form

(2.62)




1 0 ∗
0 1 ∗
0 0 1


 ,

or

(2.63)




1 0 0

0 1 0

∗ ∗ 1


 .

Maximal Levi Subgroup

If α = 0, we get a special case of the above construction in which
L = G, P = GC, and N = 1. It is most convenient to allow this special
case and to regard G itself as a maximal Levi subgroup.

In the above, we have been a little imprecise about whether α and
η are Lie algebra-valued or torus-valued. The torus-valued case leads
to a more general construction, since the space of WL-invariant α or
η may not be connected. We will spell this out for the case L = G.
The condition for α to be G-invariant says that it takes values in the
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center of G, which we denote Z(G). Thus, what it means to have a
surface operator of type G supported on a surface D is that the gauge
field is defined on M\D and has monodromy around D labeled by a
prescribed element α ∈ Z(G). The dual of the choice of α is that a
G-bundle on D is classified topologically by a characteristic class ξ ∈
H2(D,π1(G)) ∼= π1(G), and the path integral can be weighted by the
choice of a discrete η-angle valued in Hom(π1(G), U(1)). The finite
groups Z(G) and Hom(π1(G), U(1)) are exchanged by duality, and the
natural duality conjecture states that the discrete versions of α and η
are exchanged in the usual way.

Though our duality conjecture for surface operators of type L is
meant to include the disconnected components, we will not consider
them in any detail in this paper.

3. More On The Classical Geometry

In this section, we will reconsider the construction of section 2.2
and describe aspects that require understanding the classical geometry
of MH in more depth. We aim for a relatively simple – but certainly
not mathematically complete – introduction to aspects that are or may
become useful for the geometric Langlands program. Most of the topics
we consider have been treated much more fully in the mathematical
literature, but a few points may be new, notably the action of the affine
Weyl group on the cohomology of MH (section 3.7), the linearity of the
cohomology classes of the symplectic forms (section 3.2), and the nature
of the local singularities of MH at non-regular points (section 3.6).

Many of the most significant phenomena that we will describe have
local models involving hyper-Kahler metrics on complex coadjoint or-
bits, constructed in [34]–[37]. We defer this to section 3.8.

3.1. Hyper-Kahler Quotient. One of the most basic properties
of the moduli space MH(G,C) of Higgs bundles on a Riemann surface C
is that it can be constructed as a hyper-Kahler quotient [21]. We recall
first the construction in the absence of singularities. Picking a smooth
G-bundle E → C, we denote as W the space of pairs (A, φ), with A
a connection on E and φ ∈ Ω1(C, ad(E)). W is a flat hyper-Kahler
manifold; for a detailed account see section 4.1 of [8]. Let G be the group
of gauge transformations of E. Then G acts on W, preserving the hyper-
Kahler structure, with hyper-Kahler moment map ~µ = (µI , µJ , µK):

µI = − 1

2π

∫

C
Tr ǫ(F − φ ∧ φ),(3.1)

µJ = − 1

2π

∫

C
|d2z|Tr ǫ (Dzφz +Dzφz) ,

µK = − i

2π

∫

C
|d2z|Tr ǫ (Dzφz −Dzφz) .
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Here ǫ ∈ Ω0(C, ad(E)) is an element of the Lie algebra of G; ~µ is linear
in ǫ. Given a hyper-Kahler manifold W and a group G that acts on W,
preserving the hyper-Kahler structure, with moment map ~µ, the hyper-
Kahler quotient W///G is defined in general [49] as ~µ−1(0)/G. This
hyper-Kahler quotient is a hyper-Kahler manifold. In the present case,
the equations ~µ = 0 (for all ǫ) are precisely Hitchin’s equations (2.1).
The hyper-Kahler quotient W///G is hence precisely the moduli space
MH of solutions of Hitchin’s equations.

This story can be repeated for Higgs bundles with an isolated sin-
gularity of the familiar sort [23], [24]. We pick a point p ∈ C, and a
reduction of the structure group of the bundle E at p to a torus T, and
we denote as Gp the subgroup of G consisting of gauge transformations
whose restriction to p lies in T. We also pick a trio14 (α, β, γ) ∈ t, the Lie
algebra of T. Picking coordinates r, θ near p, we denote as W(α, β, γ; p)
the space of pairs (A, φ) with the familiar sort of singularity near p:

A = αdθ + . . .(3.2)

φ = β
dr

r
− γ dθ + . . . .

The ellipses refer to terms less singular than 1/r. And we denote as
Gp the group of gauge transformations of the bundle E which at p take
values in T. These are the gauge transformations that preserve the con-
dition (3.2). Then the moduli space MH(α, β, γ; p) is the hyper-Kahler
quotient W(α, β, γ; p)///Gp. We call this the moduli space of Higgs bun-
dles with ramification at the point p. One can similarly construct as
a hyper-Kahler quotient the analogous moduli space of Higgs bundles
with ramification at several points, that is, the moduli space of solutions
of Hitchin’s equations with singularities at several points p1, . . . , ps ∈ C,
labeled by parameters (αi, βi, γi) ∈ t, i = 1, . . . , s. To keep the notation
simple, we formulate the present section mainly for the case of ramifi-
cation at one point, but all statements have direct analogs for the more
general case.

A hyper-Kahler manifold, with complex structures I, J, and K, has
corresponding Kahler forms ωI , ωJ , and ωK . In the present case, these

14As explained in section 2.1, MH really depends on α only via its image in
t/Λcochar = T.
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can be written, just as in the absence of singularities,15

ωI = − i

2π

∫

C
|d2z|Tr (δAz ∧ δAz − δφz ∧ δφz)(3.3)

= − 1

4π

∫

C
Tr (δA ∧ δA− δφ ∧ δφ)

ωJ =
1

2π

∫

C
|d2z|Tr (δφz ∧ δAz + δφz ∧ δAz)

ωK =
i

2π

∫

C
|d2z|Tr (δφz ∧ δAz − δφz ∧ δAz)

=
1

2π

∫

C
Tr δφ ∧ δA.

Just as in the absence of singularities (see section 4.1 of [8]), ωI is
cohomologous to

(3.4) ω′
I = − i

2π

∫

C
|d2z|Tr (δAz ∧ δAz) = − 1

4π

∫

C
Tr (δA ∧ δA) ,

which depends only on A and so is a pullback from the moduli space M

of G-bundles. Indeed, let λI = 1
4π

∫
C Trφ ∧ δφ. λI is gauge-invariant,

and vanishes (after integration by parts and use of Hitchin’s equations) if
contracted with a generator of gauge-transformations, δA = −dAǫ, δφ =
[ǫ, φ]. So it is the pullback of a one-form on MH , and the formula
ωI − ω′

I = δλI shows that ωI and ω′
I are cohomologous.

In the absence of singularities, the cohomology classes of ωJ and ωK

vanish. For example, one proves this for ωK by writing ωK = δλK , where
λK = 1

2π

∫
C Trφ ∧ δA. This still works in the presence of singularities

as long as γ = 0, but for γ 6= 0, λK does not vanish if contracted
with the generator of a gauge transformation so is not the pullback of
a one-form on MH . In fact, contraction with the generator of a gauge
transformation maps ωK to 1

2π

∫
C Trφ ∧ (−dAǫ) = Tr γǫ(p), where we

have integrated by parts and used the fact that dAφ = −2πγδp. So the
cohomology class of ωK is nonzero for γ 6= 0. Similarly, the cohomology
class of ωJ is nonzero for β 6= 0. We will describe all of these cohomology
classes in section 3.6.

Generalization Of Type L

We can readily extend this to incorporate a general Levi subgroup
L.

We restrict the parameters (α, β, γ) to be L-invariant. We define
Gp to be the group of gauge transformations whose restriction to p
lies in L (rather than in T, as above). The hyper-Kahler quotient
W(α, β, γ; p)///Gp, carried out exactly as above, now gives us what we
will call MH,L, the moduli space of Higgs bundles with ramified structure

15As in [8], we write δ for the exterior derivative on W, and d for the exterior
derivative on C.
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of type L. See [23] for a rigorous construction. When we do not indicate
the ramified type explicitly, this means that we are taking L = T.

One has to be careful in defining MH,L and require that the solution
deviate from the asymptotic form determined by (α, β, γ) by terms that
are small compared to 1/r ln r, not just small compared to 1/r. The
purpose of this is to avoid the type of asymptotic behavior shown in
eqn. (3.101) below.

The reason that we have introduced a special notation for MH,L(α, β,
γ; p) is that, as will hopefully be clear in section 3.6, it is not the limit
of MH(α, β, γ; p) (defined for a regular triple (α, β, γ)) as (α, β, γ) ap-
proach L-invariant values. The two spaces do not even have the same
dimension. Rather, their relation turns out to be that, when the trio
(α, β, γ) becomes L-invariant, MH,L is a locus of singularities of MH .

A special case of this definition is the case L = G. Ramified struc-
ture of type G can be no ramification at all, since the group of gauge
transformations that at p take values in G is simply the group of all
gauge transformations. However, as discussed at the end of section
(2.6), if G has a non-trivial center Z, our definitions lead to a slight
generalization. Indeed, the triple (α, β, γ) ∈ T × t × t is G-invariant
precisely if β = γ = 0 and α is an element of Z. Thus MH,G is a union
of components labeled by Z. One of these components (corresponding
to the identity element of Z) is the moduli space MH of ordinary Higgs
bundles with no singularity at p.

The opposite extreme is L = T. In this case, MH,L(α, β, γ; p) is
what we usually denote simply as MH(α, β, γ; p). This is the generic
case that we have in mind when we speak of ramified Higgs bundles
without specifying L.

Our point of view is that a surface operator supported on a surface
D is defined by the choice of the group L of Levi type. A particular
surface operator leads to a particular quantum field theory problem and
a particular moduli space MH,L of ramified Higgs bundles. In the theory
of MH,L, an emphasis is sometimes placed on the parabolic structure,
a notion that we will explain in section 3.4. As we will see (and as one
may anticipate from the definition of parabolic subgroups in section
(2.6)), the interpretation in terms of parabolic structure depends on α
having an L-regular value. One can [24] interpolate from one parabolic
type to another, keeping L fixed, without meeting a singularity, by
varying β and γ as well as α. So the same surface operator can lead to
different kinds of parabolic structure, and it is better to label the surface
operators by the Levi type rather than the parabolic type. That is why
we prefer to speak of the moduli space of ramified Higgs bundles, rather
than the moduli space of parabolic Higgs bundles. We will, however,
speak of parabolic Higgs bundles when emphasizing the role of complex
structure I, where this terminology is standard.
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3.2. Complex Viewpoint. One can often [49] learn more about
a hyper-Kahler quotient by focusing on one of the complex structures,
for example I. The function νI = µJ + iµK is holomorphic in complex
structure I. The hyper-Kahler quotient W///Gp is the same as the sym-

plectic quotient of ν−1
I (0) by Gp. (This symplectic quotient is defined

by setting to zero the ordinary moment map µI , restricted to ν−1
I (0),

and then dividing by Gp. At this point, one has set to zero both νI

and µI , giving the hyper-Kahler quotient.) Via the usual relation of
symplectic and complex analytic quotients, the symplectic quotient of
ν−1

I (0) by Gp can also be obtained as a geometric invariant theory quo-

tient ν−1
I (0)/Gp,C, where Gp,C is the complexification of Gp. (Because W

is an affine space with linear action of Gp, the complexification Gp,C of
Gp has a natural action on W once one selects one of the complex struc-
tures of W.) All of these statements have analogs if complex structure
I is replaced by any one of the complex structures that form part of the
hyper-Kahler structure of W.

In the present case, ν−1
I (0)/Gp,C can be given a holomorphic descrip-

tion, as a moduli space of stable parabolic Higgs bundles (E,ϕ). This
is explained in [22], [23]. For our purposes, we do not really need the
details, but we do need the fact that such a description exists. Roughly,
a parabolic Higgs bundle, with parabolic structure at a specified point
p ∈ C, is a Higgs bundle (E,ϕ), where E is a holomorphic GC-bundle
over C, and ϕ is a section of KC ⊗ ad(E) that is holomorphic away
from p, and has a simple pole at p that obeys a certain condition. If
σ = 1

2(β + iγ) is regular, meaning that it commutes precisely with T

(or more generally with L), the condition can be anticipated from eqn.
(2.11) and is that the polar part of ϕ is conjugate to σ dz/z. (Here z is
a local holomorphic parameter near p.) We postpone to section 3.3 an
explanation of what happens if σ is not regular.

The condition for a parabolic Higgs bundle to be stable depends on
α in general, but is independent of α if σ is generic [24]. In Kahler
geometry, one would expect wall-crossing phenomena at special values
of α, but in hyper-Kahler geometry this is avoided for generic σ, as we
explain in section 3.6.

The moduli space of stable parabolic Higgs bundles, which we tem-

porarily denote M̃H , is a complex symplectic manifold, with holomor-
phic symplectic form ΩI = ωJ + iωK . Moreover, the complex structure

of M̃H and the cohomology class of ΩI are manifestly holomorphic in
β + iγ. They are also manifestly independent of α (because α only
affects the stability condition) if σ is generic.

Since MH(α, β, γ; p), viewed as a complex manifold in complex struc-

ture I, is the same as M̃H , all of these statements have immediate im-
plications for MH(α, β, γ; p). They explain certain claims made in the
table in section 2.2. In particular, complex structure I on MH varies
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holomorphically with β + iγ, and is independent of α. Moreover, if we
write [ω] for the cohomology class of a closed differential form ω, then
the cohomology class [ΩI ] varies holomorphically with β+iγ and is inde-
pendent of α. In particular, the classes [ωJ ] and [ωK ] are independent
of α.

Analog In Other Complex Structures

Of course, there is a similar story in complex structure J . The
quotient ν−1

J (0)/Gp,C can be given a holomorphic interpretation as the
moduli space of stable parabolic (or filtered) local systems. A parabolic
local system is a GC-valued flat connection on C\p (C with the point
p omitted), with a constraint on the monodromy around p. We call
this monodromy V . If the element U = exp(−2π(α − iγ)) of GC is
regular (which means that the subgroup of GC that commutes with it is
precisely the torus T), the constraint on the monodromy is that V must
be conjugate to U , as we would expect from eqn. (2.12). Otherwise,
one needs a more careful description, which we postpone to section 3.3.
The condition for a parabolic local system to be stable depends on β in
general, but is independent of β if γ + iα is generic [24].

The moduli space M̂H of stable parabolic local systems is a complex
symplectic manifold, with holomorphic symplectic form ΩJ = ωK +
iωI . We now make the same argument as in complex structure I. The
fact that MH , viewed as a complex manifold in complex structure J ,

is the same as M̂H , makes obvious certain claims made in the table
in section 2.2. In particular, the complex structure J on MH varies
holomorphically with γ + iα and is independent of β. Similarly, the
cohomology class [ΩJ ] is holomorphic in γ + iα, and independent of β.
Therefore [ωK ] and [ωI ] are independent of β.

We can apply the same reasoning, of course, in complex structure
K, to show that the complex structure K and symplectic structure ΩK

of MH are holomorphic in α + iβ and independent of γ. In particular,
therefore, the cohomology classes [ωI ] and [ωJ ] are independent of γ.
This completes the justification of the claims made in the table in section
2.2.

Linearity of The Cohomology Classes

We can get considerably farther using the fact that the same rea-
soning applies for any of the complex structures that make up the
hyper-Kahler structure of MH . These are complex structures of the

form Î = pI + qJ + rK, with real parameters p, q, and r obeying
p2 + q2 + r2 = 1. All statements in the table of section 2.2 have analogs

for any Î. Indeed, these statements remain valid if we make an SO(3)
rotation of the space spanned by the complex structures I, J,K, along
with the same rotation of the spaces spanned by the three symplectic
structures ωI , ωJ , and ωK and by the three variables α, β, and γ. This
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SO(3) is not a symmetry of MH , but it is a symmetry of the reasoning
we have used in deducing the statements in the table.

This makes possible some simple inferences about the cohomology
classes [ωI ], [ωJ ], and [ωK ]. Let us write xi, i = 1, 2, 3, for those coho-
mology classes. Thus the xi take values in the vector space H2(MH ,R).
They are functions of α, β, and γ, which we will denote as yi, i = 1, 2, 3.
Then what we have established so far is that

(3.5)
∂xi

∂yj
= 0, i 6= j.

However, by making the same argument in a generic complex structure

Î, we learn that (3.5) also holds after making an SO(3) rotation on
~x = (x1, x2, x3) along with ~y = (y1, y2, y3). This implies that

(3.6)
∂xi

∂yj
= δijv

for some function v (which takes values in H2(MH ,R)).16 By differen-
tiating again, we learn from (3.6) that

(3.7) δij
∂v

∂xk
= δik

∂v

∂xj
.

But this implies (by considering the case i = j, i 6= k) that ∂v/∂xk = 0
for all k, so that v is constant.

Since v is a constant, (3.6) implies that the xi are linear functions
of the yj . In particular, [ωI ], which we already know to depend only on
α, is actually a linear function of α. Thus

(3.8) [ωI ] = a+ Trαh

with some constants a and h. (a takes values in H2(MH ,R), and h in
H2(MH ,R)⊗ t.) Similarly, we already know that [ωJ ] only depends on
β and vanishes at β = 0; we can now deduce from (3.6) that

(3.9) [ωJ ] = Trβh

with the same h as in (3.8). And by the same token,

(3.10) [ωK ] = Tr γh.

We will describe a and h in sections 3.5 and 3.6.

MH As A Symplectic Variety

As we have just seen, the cohomology class [ωK ] is independent
of α and β. If MH were compact, it would follow that MH as a real
symplectic variety with symplectic structure ωK is independent of α
and β. Since MH is noncompact, this conclusion does not follow just

16This is equivalent to the statement that for any complex structure bI = pI+qJ+
rK, the cohomology class of the corresponding holomorphic (2, 0)-form ΩbI (which is
obtained from ΩI by a suitable SO(3) rotation) is independent of the Kahler form
(which is a multiple of pα + qβ + rγ).
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from constancy of the cohomology class of the symplectic form, but it
does follow by considering more carefully the facts we used to prove this
constancy.

To change α without changing the real symplectic variety (MH , ωK),
we simply view MH in complex structure I. Because of the interpreta-
tion via parabolic Higgs bundles, this complex structure and the corre-
sponding holomorphic two-form ΩI = ωJ + iωK are independent of α,
as long as certain singularities are avoided. So we can vary α keeping
fixed the real symplectic variety (MH , ωK).

Similarly, to vary β without changing the real symplectic variety
(MH , ωK), we view MH in complex structure J . Because of the in-
terpretation via filtered local systems, this complex structure and the
corresponding holomorphic two-form ΩJ = ωK + iωI are independent of
β, as long as certain singularities are avoided. So we can vary β keeping
fixed the real symplectic variety (MH , ωK).

The singularities that have to be avoided in this process are de-
scribed in section 3.6 and are of real codimension at least two. So we
conclude that the real symplectic variety (MH , ωK) is independent of α
and β, an important result for applications to the geometric Langlands
program.

An important point is that the isomorphism given by this argument
is not canonical but depends on the path by which α and β are varied.
The reason is simply that we keep one structure fixed in varying α and a
different structure fixed in varying β. If we vary both α and β, no struc-
ture except ωK is held fixed, and MH varies by a symplectomorphism.
In varying α and β around a closed loop that avoids the singularities,
one will in general get a symplectomorphism of MH that is “topolog-
ically” non-trivial, that is, it cannot be deformed to the identity by a
family of symplectomorphisms. We will develop this idea systemati-
cally in sections 3.7 and 4.5 to get an action of the affine braid group
on branes on MH .

C
∗ Action

The SO(3) group that rotates the space of complex or symplectic
structures of MH is not a symmetry of MH . However, a subgroup of
it is a symmetry, just as for ordinary Higgs bundles without parabolic
structure, where this is described in [21], pp. 107-8.

Let us first consider the case that β = γ = 0. Let the group U1
∼=

U(1) act on (A, φ) by leaving A invariant and transforming ϕ → λϕ,
with |λ| = 1. Since φ = ϕ + ϕ (where ϕ and ϕ are of type (1, 0) and
(0, 1)), this determines the transformation of φ:

(3.11) φ→ λϕ+ λϕ.

The action of U1 leaves invariant the characterization (3.13) of the sin-
gularity (as long as β = γ = 0). It leaves invariant the moment map µI ,
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while rotating the µJ − µK plane. So it gives a manifest symmetry of
the hyper-Kahler moment map construction, and a group of symmetries
of the hyper-Kahler metric on MH . In fact, U1 is an SO(2) subgroup
of the SO(3) that rotates the three complex structures. It acts on the

family of complex structures Î = pI + qJ + rK by leaving p fixed and
rotating the q − r plane. Alternatively, if we parametrize the family of
complex structures by a complex variable w, setting

(3.12) Iw =
1 − ww

1 + ww
I +

i(w − w)

1 + ww
J +

w + w

1 + ww
K,

then C
∗ acts on the parameter w by w → λ−1w.

If we relax the condition |λ| = 1, we no longer get a symmetry of
the hyper-Kahler metric of MH . However, exactly as in [21], we get a
group U ∼= C

∗ that acts on MH preserving the complex structure I and
transforming the family Iw by w → λ−1w, just as for |λ| = 1. The fixed
points are w = 0, Iw = I, and w = ∞, Iw = −I. All other complex
structures Iw are equivalent under the action of U .

All this carries over to the case β, γ 6= 0, except that the parameters
β and γ must be transformed by (β + iγ) → λ(β + iγ). This follows
for |λ| = 1 by observing that the transformation (3.11) leaves fixed the
singularity (3.13) if β and γ are transformed as claimed.

3.3. The Non-Regular Case. Now we will describe what hap-
pens to some of the above statements when the pair (α, γ) or the pair
(β, γ) is non-regular. This may help the reader understand the con-
structions of [22], and is useful background in some of the applications
to the geometric Langlands program.

Complex Structure J
We begin with complex structure J , in which a solution of Hitchin’s

equations corresponds to a parabolic local system. Also, for simplicity,
we consider first the basic case that the Levi subgroup used to define
our surface operator is L = T.

We consider a solution of Hitchin’s equations with an isolated sin-
gularity at a point p ∈ C. We pick coordinates near p as in section 2.1
(so p is defined by z = 0 where z = x1 + ix2 = reiθ), and we assume a
solution that behaves near r = 0 as

A = αdθ + . . .(3.13)

φ = β
dr

r
− γ dθ + . . . ,

where the ellipses refer to terms that are less singular than 1/r as r → 0.
Hitchin’s equations ensure that the GC-valued connection A = A + iφ
is flat.

For b > 0 (but small enough so that the coordinates r, θ are defined
for r ≤ b), let Cb be the circle r = b, and let Vb be the monodromy
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around Cb of the flat connection A. The Vb have two basic properties:
(1) The conjugacy class of Vb is independent of b. This is so because
the connection is flat. Since we only care about the monodromy up
to conjugacy, we pick any one of the Vb and call it V , the monodromy
around the singularity. (2) If we set U = exp (−2π(α− iγ)), then

(3.14) lim
b→0

Vb = U.

This is so because in the limit of b→ 0, we can compute the holonomy
just from the most singular terms in A and φ, and if we do so then the
result is U .

If U is regular, the two properties imply that V is conjugate to U .
For SL(2,C), we can prove this as follows. The two properties imply
that TrU = TrV (where the trace is taken in the two-dimensional
representation); if U is regular, this implies that U and V are conjugate.
Similar reasoning holds for any G, with the trace replaced by a full set of
invariant functions. If U is not regular, U and V need not be conjugate.
For example, for G = SL(2,C), let us consider the non-regular element
U = 1, which corresponds to α = γ = 0. For U = 1, we can satisfy the
two conditions with

(3.15) Vb =

(
1 b

0 1

)
.

The Vb for b > 0 are all conjugate, and limb→0 Vb = 1. An element V of
this form is called unipotent (this means simply that V −1 is nilpotent).

So it is possible for a solution of Hitchin’s equations with α = γ = 0,
β 6= 0 to have monodromy that is unipotent but not equal to 1. Not
only is this possible, but it is the generic behavior, simply because the
condition for V to be unipotent is one complex condition (which one
can formulate as TrV = 2), while for V to equal 1 is three complex
conditions. Comparing these dimensions, one might think that if α =
γ = 0, then those Higgs bundles for which V is actually 1 would be a
family of complex codimension 2. A more careful analysis shows that
this is correct if β = 0 (in which case the Higgs bundles with V = 1
are a locus of A1 orbifold singularities), but that for β 6= 0 the locus
with V = 1 is “blown up,” and is of complex codimension 1. The
statements about the generic behavior, the singularity, and the blowup
should become clearer below, especially in section 3.6. The blowup is
described by specifying what Simpson [22] calls a “filtration” of the
local system.

Let C be the conjugacy class in GC containing U . There is, for any
G and any choice of C, a finite set of conjugacy classes Cλ, λ = 1, . . . , s,
with the property that a family of elements Vb ∈ Cλ can have a limit
in C for b → 0. Differently put, C is in the closure of Cλ. We call
the Cλ the conjugacy classes that are affiliated to C. For example, if U
is regular, the only affiliated conjugacy class is C itself. At the other
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extreme, if U = 1, the affiliated conjugacy classes are precisely the ones
that parametrize unipotent elements of G. For G of large rank, there
are many such classes (given for SL(N,C) by block triangular matrices
with 1’s on the diagonal and blocks of different sizes).

In any event, there is always a unique affiliated conjugacy class C∗ of
maximal dimension, in fact of dimension dimG− r, where r is the rank
of G. It is called a regular conjugacy class, because it parametrizes ele-
ments that are regular, that is they commute with only an r-dimensional
subgroup of GC.

The class C may not be regular, but it has another distinguishing
property. Among the affiliated conjugacy classes, C is the unique one
that is “semi-simple,” that is, it parametrizes group elements that are
semi-simple (they can be conjugated to the maximal torus). C is cer-
tainly semi-simple, since it contains U = exp(−2π(α− iγ)), which is an
element of T.

But if U is not regular, then C 6= C∗, and elements of the regular
conjugacy class affiliated to U are not semi-simple. For example, if
G = SU(N) and U = 1, then the regular conjugacy class affiliated to U
contains the “principal unipotent element”

(3.16) V =




1 1 0 . . . 0

0 1 1 . . . 0
...

0 0 0 . . . 1



,

with 1’s on and just above the main diagonal and zeroes elsewhere.
For any α and γ, the generic Higgs bundle gives a local system whose
monodromy is in the regular conjugacy class associated to U .

Complex Structure I
Now we consider complex structure I, in which a solution of Hitchin’s

equations is a parabolic Higgs bundle.
Here it will be helpful to begin by considering in detail the example

of SL(2,C). We take β = γ = 0 (this being the only non-regular choice
of β and γ for SL(2,C)), and as we want to assume that α is regular,
we take

(3.17) α = iy

(
1 0

0 −1

)
,

with 0 < y < 1/2. (The reason for the factor of i is that as α takes
values in the real Lie algebra of SU(2), it is anti-hermitian in a unitary
representation.) The limiting form of the solution of Hitchin’s equations
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for r → 0 is therefore

A = iy dθ

(
1 0

0 −1

)
(3.18)

φ = 0.

We want to see what sort of pole ϕ, defined as the (1, 0) part of φ, can
acquire when we replace (3.18) with a more general solution of Hitchin’s
equations that has the same asymptotic behavior as r → 0.

At first sight, it might appear that no pole at all is possible. By
definition, we want to perturb the limiting solution (3.18) by terms that
are less singular than 1/r. So it may seem that ϕ will not be sufficiently
singular to have a pole. However, to decide whether ϕ has a pole, we
need to trivialize the holomorphic structure of the bundle E near the
singular point p. It turns out that once this is done, ϕ can have a pole.

When we expand Hitchin’s equations around the solution (3.18), the
linearized equations have a solution

(3.19) φ = ǫ
dz

z
(zz)y

(
0 1

0 0

)
,

with ǫ a small parameter. This solution is less singular than 1/r, so
including this perturbation is compatible with the asymptotic behavior
(3.18). (Of course, to get a real solution for φ, one must subtract the
hermitian conjugate solution. The (1, 0) part of φ must be upper trian-
gular, since otherwise an analogous solution is more singular than 1/r
at r = 0.)

To trivialize the holomorphic bundle E near r = 0, we write down
the appropriate ∂A operator that defines the holomorphic structure of
E:

(3.20) ∂A = dz

(
∂

∂z
+Az

)
= dz

(
∂

∂z
− y

2z

(
1 0

0 −1

))
.

We can write this as

(3.21) ∂A = f∂f−1,

where ∂ = dz∂/∂z is the standard ∂ operator, and

(3.22) f =

(
(zz)y/2 0

0 (zz)−y/2

)
.

So if ∂Aϕ = 0 (which is part of Hitchin’s equations), then ∂(f−1ϕf) = 0.
But

(3.23) f−1ϕf = ǫ
dz

z

(
0 1

0 0

)
.
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So the conclusion is that ϕ can have a pole, relative to the trivialization
of the bundle E, but the residue of this pole is strictly upper triangular
(in a basis in which −iα is diagonal with decreasing eigenvalues along
the diagonal).

In this discussion, we started with β = γ = 0, so σ = 1
2(β + iγ) also

vanishes. The residue of the pole in ϕ turned out to be

(3.24) τ = ǫ

(
0 1

0 0

)
.

The conjugacy class of τ is independent of ǫ, and the limit of τ for
ǫ → 0 is σ. These properties imply that all invariant polynomials take
the same value for σ and τ ; for SL(2,C), this simply means that Trσ2 =
Tr τ2 = 0.

In general, for any G, let c be the orbit or conjugacy class in the
Lie algebra gC that contains σ = 1

2(β + iγ). This conjugacy class
parametrizes semi-simple elements of gC (that is, elements that can
be conjugated to a maximal torus) since σ itself is semi-simple. We say
that a conjugacy class cλ is affiliated to c if a sequence of elements of cλ

can converge to an element of c, or in other words if c is in the closure
of cλ. In general, there are finitely many conjugacy classes affiliated to
c. The residue τ of the pole of the Higgs field always takes values in an
affiliated conjugacy class. This is true by reasoning similar to what we
have explained in the above example.

If σ is regular as well as semi-simple, then c itself is the only affiliated
conjugacy class, and in particular τ is conjugate to σ. At the opposite
extreme, if σ = 0, then the conjugacy classes affiliated to c are precisely
the classes of nilpotent elements of gC.

For every c, there is a unique affiliated conjugacy class c∗ of maximal
dimension, in fact dimension dim(G) − r. It parametrizes regular ele-
ments of gC, that is, elements that commute with only an r-dimensional
subgroup of GC. For example, if σ = 0 and G = SU(N), then the
affiliated regular conjugacy class contains the element v = V − 1, where
V was defined in (3.16). For any σ, the generic parabolic Higgs bundle
has a pole whose residue τ is in the regular affiliated conjugacy class c∗.

We can summarize much of this by saying that conjugacy classes
in the Lie algebra gC behave in many relevant respects like conjugacy
classes in the group GC.

Reformulation

Going back to the SU(2) example, our result about the polar be-
havior of ϕ for the case β = γ = 0 can be described as follows. For
G = SU(2), the only possible Levi subgroup is L = T, which is the
case considered in the above discussion. The choice of α determines a
parabolic subgroup P and a unipotent radical N. In the above example,
P is the group of upper triangular matrices and N is the group whose
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Lie algebra n consists of strictly upper triangular matrices. The result
(3.23) says that the polar residue of ϕ takes values in n. The mechanism
by which this came about is simply that in order for φ (in the differential
geometric description) to be less singular than 1/r, its polar residue τ
(in the holomorphic description) must obey −i[α, τ ] = λτ , λ > 0. The
analog for G of higher rank, still assuming β = γ = 0, is that τ must
be a linear combination of elements of g that obey this condition. So
in other words, τ takes values in n. This holds for any choice of Levi
subgroup L and any L-regular α.

Going back to SU(2), and without changing α, let us perturb β and
γ to be nonzero, say 1

2(β + iγ) = diag(q,−q) for some q ∈ C. What
happens in this case? We must set φ = β(dr/r) − γ dθ plus terms that
are less singular at r = 0. One possibility is to have φ = β(dr/r)− γ dθ
exactly. This corresponds to ϕ = (dz/z)diag(q,−q). But just as in
(3.19), we can make an upper triangular deformation17 of ϕ, so the
general possibility for the polar part of ϕ is

(3.25) ϕ ∼ dz

z

(
q ∗
0 −q

)
.

The upper right element denoted ∗ does not affect the conjugacy class
of the residue of the pole if q 6= 0. Note that if ϕ and ϕ̃ are two Higgs
fields with a pole of this kind, then ϕ − ϕ̃ has a pole with n-valued
residue:

(3.26) ϕ− ϕ̃ ∼ dz

z

(
0 ∗
0 0

)
.

By similar reasoning, this is so not just for SL(2,C), but for any
gauge group G, with any choice of Levi subgroup L and any L-regular
α. The general statement is that the polar residue of ϕ takes values in
p, the Lie algebra of P, and is equal to σ = 1

2(β+ iγ) modulo an element
of n. The last statement can be informally summarized by saying that
the “eigenvalues” of the polar residue coincide with those of σ.

More On Complex Structure J
There is an asymmetry in our discussion of the non-regular behav-

ior in complex structures J and I. In complex structure J , we reasoned
somewhat abstractly about the closures of conjugacy classes, but in com-
plex structure I, we analyzed the behavior of perturbations of Hitchin’s
equations. Of course, by analyzing Hitchin’s equations, we can be more
explicit about what happens in complex structure J . This will also
enable us to get more information.

17For q 6= 0, the details of the solution are more complicated, and it is necessary
to also modify A. The appropriate solution is described by Nahm’s equations; see
section 3.8. It remains true, as at q = 0, that a lower-triangular modification of ϕ is
more singular than 1/r.



GAUGE THEORY, RAMIFICATION, . . . 77

We carry out the discussion for any gauge group G and Levi sub-
group L. To begin with, we take α = γ = 0, but we take β to be generic
or in other words L-regular. This corresponds to a solution of Hitchin’s
equations with

(3.27) A = 0, φ = β
dr

r
.

We perturb this to

A = a(r) dθ,(3.28)

φ = β
dr

r
+ c(r) dθ,

where a and cmust vanish at r = 0 (since the deviation from the limiting
solution (3.27) must be less singular than 1/r) and we will work to first
order in a and c. The resulting equations can be written

(3.29) r
d

dr
(a+ ic) = [−iβ, a+ ic].

For a+ ic to vanish at r = 0, it must take values in n, the subspace of
g spanned by vectors ψ with −i[β, ψ] = λψ, λ > 0. Hence, the mon-
odromy of the flat connection A = A+ iφ, which in this approximation
is U = exp(−2π(a+ ic)), takes values in N, the unipotent radical of the
parabolic subgroup determined by β.

Every element of N is a unipotent element of GC. In the theory of
semi-simple Lie groups, it is shown that the generic element of N lies in
a unipotent conjugacy class in GC called the Richardson class CL. From
the definition, it seems that the Richardson class depends on P, and thus
β, but it can be shown that the Richardson class is actually determined
by L. (In general, distinct L’s can lead to the same Richardson class.)
The monodromy U found in the last paragraph is unconstrained except
for taking values in N, so generically it takes values in the conjugacy
class CL.

For example, if L = T, then CL is the regular unipotent conjugacy
class described for SL(N,C) in (3.16). An N ×N matrix U such that
U − 1 is strictly upper triangular is generically in this conjugacy class.
To give another example, for SL(3,C), if L consists of matrices of the
form

(3.30)



∗ ∗ 0

∗ ∗ 0

0 0 ∗




and α is such that the unipotent radical N consists of matrices

(3.31)




1 0 ∗
0 1 ∗
0 0 1


 ,
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then a generic element of N is conjugate under L to

(3.32)




1 0 0

0 1 1

0 0 1


 .

This is a representative of the Richardson conjugacy class CL. In general,
for SL(N,C), every unipotent conjugacy class is a Richardson class, but
this is not true for other groups.

This discussion can be generalized to the case that α, γ 6= 0. If
U = exp(−2π(α−iγ)) is L-regular, then the monodromy V is conjugate
to U . In general, it takes the form V = UN , where N takes values in the
unipotent radical N. Equivalently, the monodromy lies in a conjugacy
class in P whose closure includes U . Moreover, up to conjugacy of V ,
one can assume that U and N commute. Generically, N is then simply
a general element of N that commutes with U .

If N is of this form, then the orbit in GC of the element V = UN
of P has the same dimension as GC/LC, which is the orbit in GC of a
generic L-regular element of TC. We call elements of P that have this
property L-regular, so in particular, for any U , the generic monodromy
V = UN of the local system in complex structure J is L-regular.

For instance, Richardson orbits are L-regular. In the above SL(3,C)
example, the dimension of GC/LC is 4, which is also the dimension of
the Richardson orbit described in eqn. (3.32). If a given unipotent orbit
is the Richardson orbit of several different Levi subgroups Li, then it is
Li-regular for each i.

3.4. Parabolic Bundles. At this point, we should perhaps ex-
plain a notion that is usually taken as the starting point in the mathe-
matical theory, but that we have hidden so far. This is the notion of a
parabolic bundle (as opposed to a parabolic Higgs bundle). All state-
ments have obvious analogs with parabolic structure at several points,
but for simplicity we consider mainly the case of one point. Until further
notice, we consider only gauge theory, without the Higgs field.

For motivation, we return to the SU(2) example of section 3.3. A
holomorphic section s of the bundle ad(E) is an ad(E)-valued function
annihilated by the ∂A operator. Given the explicit form (3.20) of this
operator, this means that near z = 0,

(3.33) s =

(
u v(zz)y

w(zz)−y −u

)
,

where u, v, and w are ordinary holomorphic functions. If we want |s|
to be bounded for z → 0, we require that w(0) = 0. Hence at z = 0,
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s̃ = f−1sf takes the form

(3.34) s̃ =

(
∗ ∗
0 ∗

)
.

From a holomorphic point of view, what is happening is that the
choice of α determines in the fiber of ad(E) at p a Borel subalgebra b,
spanned by vectors ψ ∈ g with −i[α, ψ] = λψ, λ ≥ 0. Eqn. (3.34) says
that s̃(p) takes values in b. In this form, the result holds for any G: if
α is regular, then s̃(p) takes values in the Borel subgroup determined
by α. More generally, if we pick a Levi subgroup L and α is L-regular,
then by the same sort of reasoning, s̃(p) takes values in the Lie algebra
p of the parabolic subgroup P determined by the pair (L, α).

A choice of parabolic structure for a G-bundle E → C at a point
p is simply a reduction of the structure group of E at p to a parabolic
subgroup P. What we have just seen is that a bundle with a singularity
that in differential geometry is described by A = αdθ+ . . . near a point
p ∈ C, for L-regular α, corresponds in complex geometry to a bundle
with a choice of parabolic structure at p.

A theorem of Mehta and Seshadri [50] (which generalizes a theorem
of Narashimhan and Seshadri [51] in the absence of parabolic struc-
ture) puts this in a systematic framework. This theorem establishes
a one-to-one correspondence between stable parabolic GC-bundles and
flat G-bundles with the familiar singularity A = αdθ + . . . . On the
left hand side of this correspondence, one considers a holomorphic GC-
bundle with a reduction of its structure group at a point p ∈ C to a
parabolic subgroup P. We let L be the Levi subgroup of P, and we pick
an α such that P is determined in the usual way by the pair (L, α).
We assume that α is generic enough so that the subgroup of G that
commutes with U = exp(−2πα) is precisely L. We say that such an
α is strictly L-regular. For each such α, there is a natural notion of
stability for bundles with parabolic structure of type P.18 We will not
describe the stability condition here, though it is fundamental in the
mathematical theory. On the right hand side of the correspondence,
one considers flat G-bundles on C\p with monodromy around p conju-
gate to U = exp(−2πα). Equivalently, one considers solutions of the
familiar equation

(3.35) F = 2παδp

modulo gauge transformations that take values in L at the point p.
We denote as M(α; p) the moduli space of such flat bundles with mon-
odromy. The theorem of Mehta and Seshadri is that the moduli space
of stable parabolic GC-bundles is the same as M(α; p). The analogous

18Moreover, up to equivalence, this notion is invariant under shifts of α by a
lattice vector. The equivalence in question involves a Hecke modification of the
bundle.
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theorem [51] in the absence of parabolic structure says that the moduli
space M of stable GC-bundles over C is the same as the moduli space
of flat G-bundles.

Both results are natural from the point of view of the symplectic
quotient of the space of gauge fields by the group of gauge transforma-
tions [52]. The space of connections (or connections with a singularity
A = αdθ + . . . ) is a symplectic manifold with symplectic form

(3.36) ω = − 1

4π

∫

C
Tr δA ∧ δA

and moment map

(3.37) µ = − 1

2π

∫

C
Tr ǫF.

The symplectic quotient of the space of connections (or connections with
singularity) by the appropriate group of gauge transformations is M (or
M(α; p)). By reinterpreting the symplectic quotient as a quotient by the
group GC of complex-valued gauge transformations, these spaces can be
alternatively interpreted as moduli spaces of stable bundles, or stable
bundles with parabolic structure. The reasoning is similar to what we
described in detail for Higgs bundles in sections 3.1, 3.2.

The notation M(α; p) for the moduli space of flat bundles on C\p
with monodromy U = exp(−2πα) around p is slightly misleading, be-
cause M(α; p) does not vary smoothly with α. Its dimension depends on
the subgroup of G that commutes with U . M(α; p) varies smoothly with
α only if α is constrained to be strictly L-regular for some fixed L. To
emphasize this, we consider L as part of the definition and denote this
space as ML(α; p). For given L, the space of strictly L-regular α’s has
distinct connected components (which in general are associated with
non-isomorphic parabolic subgroups, as we learned in section (2.6)).
When we do not write L explicitly, it will mean that we are taking
L = T.

Parabolic Higgs Bundles

Now we include the Higgs field and consider the analogous concept
for Higgs bundles.

In the mathematical theory, the concept of a parabolic Higgs bundle
(E,ϕ) is usually defined as follows. E is a parabolic bundle in the above
sense, with a reduction of the structure group to P at the point p. And
the differential ϕ has a pole at p with a residue that is required to take
values in the corresponding Lie algebra p; moreover, this polar residue
has the same “eigenvalues” as σ = 1

2(β + iγ), and in fact, it equals σ
modulo n. (See (3.25) for a concrete illustration of this.)

If α and β + iγ are regular, it is not necessary to make explicit the
concept of parabolic structure. For generic (α, β, γ), it is enough to
give the bundle E together with the differential ϕ, which is required
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to have a pole at p with residue conjugate to 1
2(β + iγ). Then α is

determined in terms of ϕ, since it must commute with β and γ and its
conjugacy class is known.19 So the parabolic structure is determined,
and for generic parameters, we can define a parabolic Higgs bundle
without ever explaining what it means for a bundle to have parabolic
structure. That is essentially what we have done in our initial approach
to the subject.

3.5. Topology Of ML(α; p). We next use some of these ideas to
get a rough understanding of the topology of ML(α; p). We aim to give
a first orientation to the topology of these spaces for readers who have
never encountered them before. And we aim to develop the necessary
background for certain results about MH described in sections 3.6 and
3.7. Hopefully, the very incomplete explanations we give will suffice for
these particular goals.

Suppose we are given a particular GC-bundle E → C, and a par-
abolic subgroup P of GC, and we wish to pick parabolic structure of
type P at a point p ∈ C. We have to pick at p a subgroup of GC that
is conjugate to P. The space of all such subgroups is isomorphic to
GC/P. This suggests that ML(α; p) should be a fiber bundle with fiber
GC/P over M, the moduli space of stable G-bundles (without parabolic
structure):

(3.38)

GC/P → ML(α; p)

↓
M.

To the extent that it is valid (which we discuss shortly), this fibration
elucidates the complex structure of ML(α; p); the fiber and base are
both complex manifolds, and the fibration is holomorphic.

In addition, ML (α; p) has a natural symplectic structure, which
is conveniently understood from its interpretation as the moduli
space of flat G-bundles with monodromy. The symplectic form is
ω = − 1

4π

∫
C Tr δA ∧ δA. The complex and symplectic structures of

M(α; p) combine to a Kahler structure. To see the symplectic structure
of M(α; p), a variant of (3.38) is more helpful. A basic fact in the
theory of complex Lie groups is that the quotient GC/P is the same
as G/L, where L = G ∩ P is a Levi subgroup of G that is a maximal
compact subgroup of P. So instead of (3.38) we can exhibit ML(α; p)

19The action of the Weyl group introduces no ambiguity, since it acts diagonally
on the triple (α, β, γ).
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as a fibration of symplectic manifolds:

(3.39)

G/L → ML(α; p)

↓
M.

Here the base and fiber are symplectic and the fibration will be used
below to describe the symplectic structure of ML(α; p).

In fact, the fibrations (3.38) and (3.39) are valid precisely to the
extent that we can assume that every point in M is represented by
a stable (and not just semi-stable) bundle. Otherwise, it is possible
to have a stable parabolic bundle (E,P), where the underlying bundle
E is not stable. In that case, the fibration breaks down, since it is
not possible to construct the moduli space ML(α; p) of stable parabolic
bundles by first picking the bundle E and then endowing it with all
possible parabolic structures. The fibrations (3.38) and (3.39) do hold
away from singularities of M and give a good first approximation to the
topology of ML(α; p).

There is one important and widely studied case in which all semi-
stable bundles are stable, and therefore the fibrations (3.41) and (3.42)
are precisely valid. This occurs if G = PSU(N) and E is a bundle
whose characteristic class in H2(C; ZN ) is of order N . In general, the
codimension at which the fibrations breaks down increases when the
genus gC of C or the rank r of G is increased. For example, the real
codimension exceeds 2 if gC > 2 or gC = 2, r > 1.

If the singularities do not play an important role, then we can use
(3.38) or (3.39) to describe the second cohomology group of ML(α; p).
(We do this because it will eventually help us understand the symplectic
structure of MH and give a concrete illustration of the action of the affine
Weyl group on its cohomology.) We will do this mainly assuming that
G is simply-connected. In this case, the Leray spectral sequence for the
cohomology of ML(α; p) begins with

(3.40)

2 H2(G/L; Z) 0 ∗ ∗
1 0 0 0 0

0 Z 0 H2(M; Z) ∗
0 1 2 3

(We have plotted the qth cohomology of M with values in the pth coho-
mology of G/T, with q = 0, 1, 2, 3 running horizontally and p = 0, 1, 2
running vertically. The precise form of the groups labeled ∗ will not be
important.) In dimension two, as we will explain later, the differentials
in the spectral sequence vanish if G is simply-connected, so the spectral
sequence for the fibration reduces to an exact sequence

(3.41) 0 → H2(M; Z) → H2(ML(α; p); Z) → H2(G/L; Z) → 0.
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Moreover H2(M; Z) ∼= Z for simply-connected G, generated [53], [54]
by the first Chern class of a line bundle L that we will loosely call
the determinant line bundle (for G = SU(N), L can be defined as the
determinant line bundle of a Dirac operator). So the exact sequence
becomes

(3.42) 0 → Z → H2(ML(α; p); Z) → H2(G/L; Z) → 0.

For simply-connected G, the spectral sequence for the fibration

(3.43)

L → G

↓
G/L

gives H2(G/L; Z) = H1(L; Z). For L = T, this gives

(3.44) H2(G/T; Z) = H1(T; Z) = Λwt,

with Λwt the weight lattice of G. This particular result (with the same
lattice Λwt) holds whether G is simply-connected or not, since if we
replace G by a finite cover of itself, then G/T is unchanged (the cover
extends T in the same way, and cancels out of the quotient G/T).

By virtue of (3.44), (3.42) is equivalent, for L = T, to

(3.45) 0 → Z → H2(M(α; p); Z) → Λwt → 0.

For more general L, a similar reasoning gives instead

(3.46) 0 → Z → H2(ML(α; p); Z) → Λwt,L → 0,

where Λwt,L is the sublattice of Λwt that is invariant under the Weyl
group of L.

Like any exact sequence of lattices, (3.45) can be split to give

(3.47) H2(M(α; p); Z) = Z ⊕ Λwt.

This result is the theorem stated (in terms of the Picard group) in
section (1.1) of [54]. The theorem is stated there for the case of parabolic
structure at several points p1, . . . , ps. In this case, one has a fibration
like that considered above, with a copy of G/T at each of the points pi,
so a similar analysis gives

(3.48) H2(M(α1, p1; . . . ;αs, ps); Z) = Z ⊕ (⊕s
i=1Λwt,i) ,

with s copies of the weight lattices.
A splitting of lattices such as (3.47) is in general non-canonical, but

in this case there is a canonical splitting. One way to see this is to start
with the universal bundle Ead → M × C in the adjoint representation.
Upon restriction to M × p, this gives a Gad-bundle Ead,p → M. When
pulled back to M(α; p) → M, the structure group of this bundle reduces
to T, so it splits as a sum of line bundles. The first Chern classes of
these line bundles generate rationally the summand Λwt in (3.47). This
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gives the splitting, which is also evident in the interpretation we give
below via the affine weight lattice.

In our derivation of (3.47), we have made use of the approximate
fibration (3.38). Actually, the singularities that we have neglected are
not important for the second cohomology except at special values of α
at which a vanishing cycle collapses and the second Betti number of
M(α; p) is smaller. For a description of the values of α at which this
happens for G = SU(2), see [55]. Alternatively, if one considers the
cohomology of the “stack” of parabolic bundles (rather than the moduli
space M(α; p) of stable parabolic bundles), no jumping occurs. This
is actually the right thing for gauge theory, since the starting point is
the space of all gauge fields, which is a differential-geometric analog
of what in algebraic geometry is the stack of all bundles or parabolic
bundles. (In sigma models, branes supported on a vanishing cycle do
not disappear when the vanishing cycle collapses; they simply become
branes supported on the resulting singularity.) In down to earth terms,
the drop that occurs in the second cohomology of ML(α; p) at certain
values of α is inessential for our applications, for the following reasons.
When we describe the cohomology classes of the symplectic forms ωI ,
ωJ , and ωK of MH , the jumping just means that certain periods must
vanish at certain values of α, as will be manifest in the formula we give.
Alternatively, when we describe the action of the affine Weyl group on
the cohomology of MH , we will avoid the bad values of the parameters.

The above description of the second cohomology of M(α; p) will
make it possible to usefully describe the cohomology class of the sym-
plectic form of this space. The symplectic form

(3.49) ω = − 1

4π

∫

C
Tr δA ∧ δA

of M(α; p) takes values in H2(M(α; p); R) = H2(M(α; p); Z) ⊗ R = R ⊕
t∨. Its cohomology class is described in Theorem 3.2 and Proposition
3.7 of [56]; for a proof for SU(2) using gluing arguments, see [57], and
for a more general argument based on realizing M(α; p) as a symplectic
quotient with α as a parameter in the moment map, see [58]. We will
explain the formula after a few preliminaries.

The Affine Weyl Group

We recall that, up to equivalence, α takes values in T/W, where W
is the Weyl group. Alternatively, we can lift α to t, but then there is
an equivalence in transforming α by elements of the cocharacter lattice
Λcochar. Since we have assumed that G is simply-connected, the cochar-
acter lattice is the same as the coroot lattice Λcort. The combined group

(3.50) Waff = Λcort ⋊ W
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of lattice shifts and Weyl transformations is known as the affine Weyl
group. It is the Weyl group of the Kac-Moody or affine Lie algebra of
G. So we can think of α as taking values in t/Waff .

t can be usefully divided as follows into fundamental domains for
the action of Waff . On certain hyperplanes in t, U = exp(−2πα) is
non-regular (it commutes with a nonabelian subgroup of G). Each such
hyperplane is a locus of fixed points of some element of Waff . These
hyperplanes divide t into fundamental domains for the action of the
affine Weyl group.

For example, in the case of G = SU(N), generalizing (3.17), we
can think of α as a diagonal matrix idiag(y1, . . . , yN ), with

∑
a ya = 0.

W acts by permutations, and Λcort acts by integer shifts preserving the
vanishing of the sum of the ya. The condition for U = exp(−2πα) to be
non-regular is that n = ya − yb is an integer for some a and b, in which
case α is invariant under the affine Weyl transformation ya → yb + n,
yb → ya − n. The hyperplanes n = ya − yb divide t into fundamental
domains of Waff .

The ordinary Weyl group has, once we pick a set of positive roots, a
distinguished fundamental domain in t called the positive Weyl chamber.
It is the region in which 〈α,w〉 > 0 for every fundamental weight w. For
G = SU(N), this chamber is described by y1 ≥ y2 ≥ · · · ≥ yN . Upon
intersecting it with the above-mentioned hyperplanes, the positive Weyl
chamber decomposes as a union of infinitely many fundamental domains
for the affine Weyl group. There is a distinguished one, which we will call
D, whose closure contains α = 0. For G = SU(N), D is characterized by
y1 − yN ≤ 1 (or y1 − yN < 1 if one wishes U to be regular), generalizing
the condition y < 1/2 in (3.17).

Now we can explain the above-mentioned formula for the cohomol-
ogy class of the symplectic form ω of M(α; p). We write the formula for
α in the distinguished affine Weyl chamber of t, as just described. Then
the cohomology class [ω/2π] is

(3.51)
[ ω
2π

]
= e⊕ (−α∗).

Here we use the fact that [ω/2π] takes values in R ⊕ t∨. In (3.51),
e ∈ H2(M; R) ∼= R is the pullback to M(α; p) of the first Chern class of
the determinant line bundle L → M (equivalently, the pullback of the
cohomology class of the symplectic form ω/2π of M). And in the second
summand on the right, α∗ ∈ t∨ is (as in section 2.4) the image of α ∈ t

under the map from t to t∨ that comes from the quadratic form −Tr.
Rather than summarize here the arguments of [57], [58] leading to

this formula, we give a brief explanation using four-dimensional gauge
theory. To determine the cohomology class of ω, we need to compute
periods

∫
Σ ω, for Σ ⊂ M(α; p) a closed two-manifold. Given a choice of

Σ, we set M to be the four-manifold M = Σ × C, and make our usual
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construction on M . Let Σp = Σ × p. Each point in Σ determines a flat
G-bundle over C\p with monodromy around p ∈ C; these fit together
to a G-bundle E →M\Σp with a monodromy around Σp. (E may only
exist as a Gad-bundle, but this does not affect the following derivation.)
The relation between the symplectic form of M(α; p) and gauge theory
in four dimensions is

(3.52)

∫

Σ

ω

2π
=

∫

M

TrF ∧ F
8π2

.

This is shown exactly like the corresponding statement without para-
bolic structure; see eqn. (4.18) of [8]. Now using (2.41) (and observing
that Σp ∩ Σp = 0) we have

(3.53)

∫

Σ

ω

2π
=

∫

Σp

Trα
F

2π
= −〈α∗,m〉 mod Z,

where m ∈ H2(Σp, π1(T)) ∼= Λcort is the cohomology class of F/2π, and
〈 , 〉 is the natural pairing between t and t∨. This is equivalent to (3.51).
We also see that the homology cycles with which the symplectic form
can naturally be paired are labeled by Λcort, the dual of Λwt.

This description of the symplectic form of M(α; p) has an obvious
similarity to our claims in section 3.2 about Higgs bundles. For Higgs
bundles, we expect the cohomology classes such as [ωI ] to vary linearly,
as claimed in (3.8), while for ordinary bundles we have the linearity seen
in (3.51). We explain the relation between these results in section 3.6.

However, in the case of Higgs bundles, the argument leading to (3.8)
is valid for all α, while the analogous statement (3.51) for bundles holds
only for α in a fundamental affine Weyl chamber. For bundles, there is
no obvious way to continue the formula (3.51) beyond the fundamental
affine Weyl chamber, since on the boundary of D, the manifold M(α; p)
collapses to a manifold of lower dimension, as we will see in section 3.5.
For Higgs bundles, as we describe in sections 3.6 and 3.7, we can take
β, γ 6= 0 and smoothly continue beyond the boundaries of the affine
Weyl chamber.

In this discussion, we have implicitly taken the Levi subgroup to
be L = T. However, the same result holds for any L, with the same
derivation; one merely has to restrict α to be L-invariant.

The Affine Weight Lattice

Let us reconsider the description (3.47) of the second cohomology
of M(α; p) for the case L = T:

(3.54) H2(M(α; p); Z) = Z ⊕ Λwt.

We can describe this by saying that H2(M(α; p); Z) is the affine weight
lattice of G, that is, the weight lattice of the affine Lie algebra or Kac-
Moody algebra or centrally extended loop group associated to G. This
description is natural in the existing mathematical theory [54], where
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(3.54) is obtained via the theory of loop groups. We will sketch the idea
in a physical language in the context of Chern-Simons gauge theory in
2+1 dimensions [59]. Let k be a positive integer, and let w ∈ Λwt be the
highest weight of an integrable representation of the Kac-Moody algebra
of G at level k. Using the quadratic form −Tr to identify t∨ = Lt with
t, w ∈ Lt maps to an element w∗ ∈ t. We consider Chern-Simons gauge
theory on C with a single marked point p labeled by a representation of
G with highest weight w. The classical phase space is M(α; p) with α =
w∗/k. Quantization is carried out by taking the global sections of a line
bundle Lk whose first Chern class is represented in de Rham cohomology
by kω/2π where ω = − 1

4π

∫
C Tr δA∧ δA. (Lk is not really the kth power

of a line bundle unless w = 0, but we write it as Lk because of the factor
of k in the rational first Chern class.) Consequently, the class kω/2π in
de Rham cohomology lifts to an element in the lattice H2(M(α; p); Z).
Accordingly, this lattice must contain a point corresponding to the pair
(k,w), that is, it must contain the affine weight lattice of G. These
points have distinct images in de Rham cohomology, in view of the
formula (3.51) for the cohomology class of [ω/2π]. At this point, it
is also clear that the differentials in the spectral sequence (3.40) for
H2(M(α; p); Z) do vanish (as we assumed in our above discussion), or
that cohomology group could not contain the affine weight lattice.

Since H2(M(α; p); Z) is the affine weight lattice of G, it admits a
natural action of the affine Weyl group of G, although this action has
no evident meaning in terms of the geometry of M(α; p). In section
3.7, we will explain more conceptually why H2(M(α, p); Z) admits this
action of the affine Weyl group. We will also describe the action more
precisely.

What happens if we relax the assumption that G is simply-connect-
ed? The argument via Kac-Moody algebras shows for any G, not nec-
essarily simply-connected, that the lattice H2(M(α, p;G); Z) modulo
torsion contains the affine character lattice of G as a sublattice. By the
affine character lattice of a simple but perhaps not simply-connected
group G, we mean

(3.55) Λaff char = Z ⊕ Λchar(G),

where Z classifies central extensions20 of the loop group ofG. We suspect
that for generic α, H2(M(α, p;G); Z) mod torsion is always precisely this
lattice:

(3.56) H2(M(α; p)) = Z ⊕ Λchar(G).

20Some care is needed here. Let G be the universal cover of G. Related to
the fact that instanton number is Z-valued for G but not for G, not every central
extension of the loop group of G corresponds to one for G. The summand Z in (3.55)
is naturally understood as a proper subgroup of the summand Z in (3.54).
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At any rate, we will show in section 3.7 that a natural symmetry group of
this lattice acts on H2(M(α, p;G); Z). It will turn out that, if we restrict
ourselves to a connected component of M(α, p;G), then the group that
acts on the cohomology is the same affine Weyl group whether G is
simply-connected or not.

Alternative Point Of View

The approximate fibration (3.39) can also be seen from a purely
topological or symplectic point of view, without mentioning parabolic
structure (for example, see the brief summary in [56]). Pick on the
Riemann surface C a standard set of A- and B-cycles. Let Ai and Bi

be the monodromies of a flat G-bundle around these cycles. They obey

(3.57)

g∏

i=1

[Ai, Bi] = 1,

where [A,B] = ABA−1B−1. The moduli space M of flat bundles is
the space of solutions of this equation, modulo conjugation. Pick an
element U of G that is close to the identity and replace (3.57) by

(3.58)

g∏

i=1

[Ai, Bi] = U.

A solution of this equation describes a flat bundle over C\p with mon-
odromy U around p. As long as we do not encounter singularities of M,
the solution spaces of (3.57) and (3.58) are topologically the same, for
U sufficiently close to 1. Now suppose that we want to specify only the
conjugacy class of U , which we assume to be semi-simple and, again,
sufficiently close to 1. Then the conjugacy class of U contains an ele-
ment exp(−2πα), where α is an element of t close to the origin. Let
L be the subgroup of G that commutes with α or equivalently with U ;
then L is a Levi subgroup. The possible choices of U in its conjugacy
class are parametrized by a copy of G/L, and so the solution space of
(3.58) is a G/L-bundle over the solution space of (3.57). This remains
so after dividing both spaces by conjugation by G, so we arrive again
at the fibration (3.39):

(3.59)

G/L → ML(α; p)

↓
M.

Suppose that we want to delete points p1, . . . , ps from C, and denote
as U1, . . . , Us the monodromies about these points. The analog of (3.57)
is

(3.60)

g∏

i=1

[Ai, Bi] =
s∏

a=1

Ua.



GAUGE THEORY, RAMIFICATION, . . . 89

If the Ua are close enough to the identity and commute with Levi sub-
groups La, a similar reasoning to the above leads to a fibration with
a factor of G/La for each puncture (and this for instance leads to the
description of the second cohomology of M(α1, p1; . . . ;αs, ps) in eqn.
(3.48)). However, we want to consider another issue aimed at later
applications. Let ya, a = 1, . . . , s take values in the center of G and
suppose that

(3.61)
s∏

a=1

ya = 1.

Then eqn. (3.60) is completely invariant under

(3.62) Ua → yaUa, a = 1, . . . , s.

If Ua is conjugate to exp(−2παa) for some αa ∈ t, and ya = exp(−2πua)
for some ua ∈ Λcowt, then the transformation (3.62) amounts to

(3.63) αa → αa + ua.

And (3.61) is equivalent to

(3.64)
∑

a

ua ∈ Λcochar ⊂ Λcowt.

This is an illustration of the situation that was described in eqns. (2.6)
and (2.7). The shifts αa → αa + ua individually would shift the char-
acteristic class ξ of the Gad bundle derived from E, and the condition
(3.61) or (3.64) ensures that globally ξ is actually unchanged.

Let us return now for simplicity to the case of one puncture. If
U = exp(−2πα) is regular, which we can achieve by placing α in the
interior of the distinguished affine Weyl chamber D, then the fibration
(3.59) takes the form

(3.65)

G/T → M(α; p)

↓
M.

Now suppose that α approaches a boundary point α of D. Then U
ceases to be regular, and its orbit under conjugation is a copy of G/L
for some L, rather than G/T. So now the fibration takes the form in
(3.59):

(3.66)

G/L → ML(α; p)

↓
M.

What happens as α→ α? G/T is fibered over G/L with fiber L/T. As
α → α, the orbit of U collapses from a copy of G/T to a copy of G/L
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and we get a fibration

(3.67)

L/T → M(α; p)

↓
ML(α; p).

The fibers L/T are symplectic manifolds, and they collapse to points
as α → α. So this is what happens to M(α; p) as α approaches a
non-regular value α: it collapses to a variety of lower dimension, with
vanishing cycles L/T.

Generically, a boundary point α is contained in only one of the
hyperplanes that mark the boundary of D, and L/T = SU(2)/U(1) =
CP

1 = S2. For example, for G = SU(N), we have α = idiag(y1, y2, . . . ,
yN ), with y1 ≥ y2 ≥ y3 . . . ,≥ yN , y1 − yN ≤ 1, and

∑
ya = 1. At a

generic boundary point, precisely one of the inequalities is an equality,
and then L = U(2) × U(1)N−3, and L/T = U(2)/U(1)2 = CP

1 = S2.
So as α approaches a generic boundary point of D, M(α; p) is fibered
by vanishing two-spheres, that is, two-spheres that shrink to points. In
general, the rank of the semi-simple part of L is the number of boundary
hyperplanes that contain α.

More generally, we can consider a pair of Levi subgroups L1 and L2,
with L1 a proper subgroup of L2 but not necessarily equal to T. The
same sort of reasoning as above applies. If U = exp(−2πα1), where α1

is L1-regular, we get a fibration

(3.68)

G/L1 → ML1
(α1; p)

↓
M.

If α2 is L2-regular, then for U = exp(−2πα2), the fibration looks like

(3.69)

G/L2 → ML2
(α2; p)

↓
M.

As α1 approaches α2 through L1-regular values, the orbit G/L1 of U
degenerates to G/L2. G/L1 maps to G/L2 with fiber L2/L1, and for α1

approaching α2 we get, away from singularities, a fibration

(3.70)

L2/L1 → ML1
(α1; p)

↓
ML2

(α2; p).

The fibers L2/L1 are vanishing cycles for α1 → α2.
As one might expect, there is also a natural description of the limit-

ing behavior in terms of complex geometry. The pair (L1, α1) determines
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a parabolic subgroup P1, and the pair (L2, α2) determines a parabolic
subgroup P2 that contains P1. From a holomorphic point of view, ac-
cording to the theorem of Mehta and Seshadri, ML1

(α1; p) or ML2
(α2; p)

parametrizes bundles with parabolic structure at p of type P1 or P2, re-
spectively. After reducing the structure group of a bundle to P2, the
ways of further reducing it to the subgroup P1 are parameterized by
P2/P1. So from a holomorphic point of view, we get a fibration

(3.71)

P2/P1 → ML1
(α1; p)

↓
ML2

(α2; p).

This is in accord with (3.70), since P2/P1 = L2/L1. This fibration is
Proposition 3.4 in [60].

3.6. Topology Of MH . In section 3.5, we explored the topology
of the moduli space M(α; p) of bundles with parabolic structure. Here
we will consider the analogous questions for Higgs bundles.

If we simply set φ = 0, then Hitchin’s equations reduce to the equa-
tions F = 0 for a flat unitary G-bundle. The moduli space of such
flat bundles is isomorphic, by a theorem of Narasimhan and Seshadri
mentioned above [51], to the moduli space of stable G-bundles over C,
which we call M(G,C), or M when the context is clear.

The moduli space MH , viewed in complex structure I, parametrizes
stable pairs (E,ϕ). We can define a “foliation” of MH by forgetting ϕ
and remembering only the holomorphic type of E. For a generic stable
(or semistable) pair (E,ϕ), E is a stable (or semistable) bundle, and
the foliation gives a meromorphic map ψ : MH → M (in [8], this was
called Hitchin’s second fibration). The fiber of this map is a linear space
parametrized by ϕ ∈ H0(C,K ⊗ ad(E)), which (if E is stable) is the
cotangent space to M at the point defined by E. Moreover, the map
ψ has a natural section (holomorphic in complex structure I), because
we can embed M in MH as the space of solutions of Hitchin’s equations
with ϕ = 0. So birationally in complex structure I, MH is the cotangent
bundle T ∗M:

(3.72) MH
∼= T ∗M.

More specifically, MH contains T ∗M as a dense open set. Somewhat
like the fibrations considered in section 3.5, this gives a useful first ap-
proximation to the topology of MH if the genus gC of C and the rank
r of G are large enough. For example, it is good enough for discussing
the second cohomology of MH if gC ≥ 2.

This has an analog for ramified Higgs bundles if the parameter α
is L-regular. Given a point in MH,L(α, β, γ; p) associated with a stable
or semistable ramified Higgs bundle (E,ϕ), we can forget ϕ and simply
think of E as a GC-bundle with the parabolic structure determined by
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α. Generically, this parabolic bundle is stable, and thus defines a point
in ML(α; p). So we get a meromorphic map ψ : MH,L(α, β, γ; p) →
ML(α; p). If β = γ = 0, the story is exactly as it was above. The fiber
of the map ψ is a space of Higgs fields with a nilpotent pole that takes
values in n, the Lie algebra of the unipotent radical of the parabolic
subgroup P determined by (L, α). This is precisely the cotangent space
to ML(α; p). Moreover, ML(α; p) can be embedded holomorphically in
MH,L(α, 0, 0; p) as the space of solutions of Hitchin’s equations with
ϕ = 0. We can think of this as the zero section of the cotangent bundle.
So MH,L(α, 0, 0; p) contains the cotangent bundle to ML(α; p) as a dense
open subspace

(3.73) MH,L(α, 0, 0; p) ∼= T ∗ML(α; p),

and the two are birational in complex structure I.
For β, γ 6= 0, this requires some modification. We can still forget ϕ

and thus define the meromorphic map

(3.74) ψ : MH,L(α, β, γ; p) → ML(α; p).

However, we cannot set ϕ to zero, since its polar part has eigenvalues de-
termined by β and γ. So the map ψ has no holomorphic section. Hence,
MH,L(α, β, γ; p) is not birational to a vector bundle over ML(α; p), but

to an “affine bundle.” This means that the fibers of ψ are copies of C
N

for some N , but the structure group of the fibration is a group of affine
transformations x → ax + b (not just linear transformations x → ax).
Related to this, the polar part of ϕ is not nilpotent, and so ϕ does not
represent a cotangent vector to MH,L(α; p). But if ϕ and ϕ̃ are two
Higgs fields (with the same bundle E) then, as we saw in eqn. (3.26),
their difference ϕ− ϕ̃ has a polar part valued in n and hence represents
a cotangent vector to MH(α; p). The upshot is that MH(α, β, γ; p), for
general β and γ, and regular α, contains a dense open set that is an
“affine deformation” of the cotangent bundle of M(α; p).

In making this statement, we require α to be L-regular, since oth-
erwise M(α; p) collapses to a manifold of lower dimension. However, as
long as β and γ are generic, the topology of MH(α, β, γ; p) is indepen-
dent of α whether α is regular or not [24], so we get a rough description
of the topology for any α and generic β, γ. The topology does change
in real codimension three when the triple (α, β, γ) is non-regular, as we
explain presently.

An immediate application of the relation between MH and M is
that we can describe the second cohomology of MH and determine the
unknown constants in the formula (3.8) for the cohomology class of
the symplectic form ωI . First of all, the second cohomology of MH

is isomorphic to that of M, because MH , being an affine bundle, is
contractible to M (away from a codimension that is too high to affect
the second cohomology, barring special cases of small genus and rank
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that we will not consider). So

(3.75) H2(MH ; Z) = Z ⊕ Λwt

is the affine weight lattice of G, just like H2(M; Z). Also, according to
eqn. (3.4), ωI = ψ∗(ω), where ω is the usual symplectic form of M,
whose cohomology class was described in eqn. (3.51). So we can simply
borrow the result of eqn. (3.51) and write

(3.76)
[ωI

2π

]
= e⊕ (−α∗).

(This formula actually holds for every L; it makes sense because α∗

always takes values in the L-invariant part of Λwt ⊗Z R.) From (3.9)
and (3.10), we have therefore

(3.77)
[ωJ

2π

]
= 0 ⊕ (−β∗),

[ωK

2π

]
= 0 ⊕ (−γ∗).

After some discussion of the singularities of MH(α, β, γ; p), we will be
able to draw some interesting conclusions from these formulas.

Singularity At Special Values Of (α, β, γ)
Even without ramification, the moduli space M of GC bundles and

the moduli space MH of Higgs bundles can have singularities at points
that correspond to reducible bundles or Higgs bundles. Such singulari-
ties involve the global behavior on C, and occur in high codimension if
the genus of C is large.

Parabolic structure at a point p ∈ C introduces a new kind of sin-
gularity, which depends only on the parameters characterizing the ram-
ification. These parameters are α ∈ T in the case of bundles, or the
trio (α, β, γ) ∈ T × t × t in the case of Higgs bundles. These singular-
ities depend only on the local behavior at p and their codimension is
independent of the genus of C. They will be much more prominent in
applications to the geometric Langlands program than the singularities
that are global in nature.

For bundles, we described this kind of singularity in section 3.5.
The result is described in eqns. (3.67) and (3.71). Suppose that α
approaches a value α that is not L-regular, but is L

′-regular, where
L
′ is a Levi group that contains L as a proper subgroup. And let

the corresponding parabolic subgroups be P and P′. Then as α → α,
ML(α; p) is fibered by vanishing cycles of the form L

′/L (or P′/P). The
fibers collapse everywhere, so the codimension of the singularity is zero.
The picture looks like

(3.78)

P′/P → ML(α; p)

↓
ML′(α; p),
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with the fibers collapsing as α → α. This is a local singularity, in the
sense that it has only to do with the value of α and the behavior near
the point p. It has nothing to do with a global problem such as finding
a semistable bundle or a reducible flat connection.

Now what does this imply for ramified Higgs bundles? First let
us see what happens if β and γ have the most special possible val-
ues, namely 0. But we begin with an L-regular value of α. (See [61]
for a mathematical discussion of these issues, justifying many state-
ments below from a different point of view.) As we have discussed,
MH,L(α, 0, 0; p) is generically the cotangent bundle of ML(α; p). Like-
wise, if L

′ is a Levi subgroup that properly contains L and α is L
′-

regular, then MH,L′(α, 0, 0; p) is generically the cotangent bundle of
ML′(α; p). To go from parabolic bundles to ramified Higgs bundles,
we just replace everything in (3.78) with its cotangent bundle. So for α
near α, MH,L(α, 0, 0; p) is generically fibered over MH,L′(α, 0, 0; p):

(3.79)

T ∗(P′/P) = T ∗(L′/L) → MH,L(α, 0, 0; p)

↓
MH,L′(α, 0, 0; p).

We have used the fact that P′/P = L
′/L. When α approaches α, L

′/L
becomes a “vanishing cycle” and collapses to a point. The codimension
of L

′/L inside its cotangent bundle is equal to the dimension of L
′/L.

So this is the codimension of the vanishing cycle that MH,L(α, 0, 0; p)
acquires as α approaches a nonregular value α. At α = α, the vanishing
cycle collapses to a point, and MH acquires a singularity of whose codi-
mension is twice as great. We call this a local singularity, since it only
depends on the local behavior near p (which is determined by the pa-
rameters (α, β, γ)) and not on solving any global problem. For example,
if L = T and if α is a generic nonregular value, then L

′/L = CP
1 = S2,

as we have seen in section 3.5. So the vanishing cycle in this case has
real codimension two.

Because MH,L(α, 0, 0; p) is hyper-Kahler, the geometry near the van-
ishing cycle is highly constrained. The highly curved geometry near an
almost vanishing cycle (for α near α) must itself be hyper-Kahler, in
order for it to be possible for MH,L(α, 0, 0; p) to be hyper-Kahler. It is
possible to see explicitly how this happens. In fact, a family of hyper-
Kahler metrics on T ∗(L′/L) can be constructed [34] using Nahm’s or
Hitchin’s equations. This is part of the construction of hyper-Kahler
metrics on coadjoint orbits of the complex Lie group L

′
C
; we review this

construction in section 3.8.

Rather than use this full machinery, we will consider in some de-
tail the case that L = T, and α is a generic non-regular value, so that
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L
′/L = CP

1. In this case, the relevant family of hyper-Kahler met-
rics on T ∗(L′/L) = T ∗(CP

1) is a more familiar family of metrics first
constructed by Calabi and by Eguchi and Hansen.

As the area of CP
1 converges to zero, T ∗

CP
1 converges, in the

Calabi-Eguchi-Hansen metric, to R
4/Z2 = C

2/Z2, that is, to an A1

singularity. Hence, in the limit α = α, MH,L(α, 0, 0; p) (which is the
same as MH(α, 0, 0; p), since we have set L = T) has a family of A1

singularities. The singular locus is precisely the hyper-Kahler manifold
MH,L′(α, 0, 0; p), embedded inside MH(α, 0, 0; p). This follows from the
fibration (3.79), since when the fiber T ∗(L′/L) degenerates to C

2/Z2,
which has an isolated singularity, the singular locus of MH(α, 0, 0; p) be-
comes a section of the fibration or in other words a copy of MH,L′(α, 0, 0;
p). We will also explain below a slightly different approach to this result
(see the discussion of eqn. (3.82)). If α is close to but not equal to α,
or α = α but β and γ are not quite zero, then the local singularity is
deformed or resolved, and the behavior near the singularity is described
by the Calabi-Eguchi-Hansen metric. These assertions will hopefully
become clear below and in section 3.8.

It will help to recall a few facts about the R
4/Z2 singularity. If we

single out one complex structure (which in our application corresponds
to the complex structure I of MH), then R

4/Z2 can be described as the
complex singularity a2

1 +a2
2 +a2

3 = 0. It can be deformed to the smooth
complex manifold

(3.80) a2
1 + a2

2 + a2
3 = ǫ.

It also can be resolved to make the cotangent bundle T ∗
CP

1, with the
exceptional cycle having an area r. Moreover, the deformation and res-
olution can be made simultaneously. The Calabi-Eguchi-Hansen metric
depends on the real parameter r as well as the complex parameter ǫ.
The A1 singularity appears precisely if r = ǫ = 0; otherwise the manifold
is smooth. The picture can be described very naturally by constructing
R

4/Z2 and its smooth deformations via hyper-Kahler quotients of a Eu-
clidean space [62]. Alternatively, it is a special case of the construction
based on Nahm’s equations that we review in section 3.8.

Now let us apply this to MH . In complex structure I, α is a Kahler
parameter, as asserted in the table in section 2.2. So when α is varied,
MH can change only by a birational transformation, and this only when
a vanishing cycle appears (as occurs when the triple (α, β, γ) becomes
nonregular). Hence varying α will give us the blowup parameter r of
the A1 singularity. To see the complex parameter ǫ, we must vary β
and γ.
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Analysis For G = SU(2)
To see what happens in varying β and γ, we will, to keep things

simple, take G = SU(2). A point in MH corresponds in complex struc-
ture I to a Higgs bundle (E,ϕ). ϕ takes values in V = H0(C,KC ⊗
ad(E) ⊗O(p)); thus, it is a section of KC ⊗ ad(E) with a possible pole
at p. The space V has dimension 3gC . ϕ is constrained to obey

(3.81) Trϕ2 = Trσ2(dz/z)2 + . . . ,

where σ = 1
2(β + iγ).

Pick a basis bi, i = 1, 2, 3, of the fiber of ad(E) at p, normalized so
that Tr bibj = δij . For i = 1, 2, 3, pick an element ϕi ∈ V whose polar
part is ϕi ∼ bi(dz/z). And complete the ϕi to a basis ϕ1, . . . , ϕ3gC of
V , such that the ϕi, i > 3, have no pole at p. Now introduce com-
plex parameters ai, i = 1, . . . , 3g, and expand ϕ as ϕ =

∑3gC
i=1 aiϕi.

MH(α, β, γ; p) is parametrized by the choice of a bundle E (3gC − 3
parameters) and the coefficients ai (3gC parameters), subject to the
equation (3.81), so its dimension is 6gC − 4. The equation (3.81) tells
us that

(3.82)
3∑

i=1

a2
i = Trσ2.

This equation describes the deformation of the A1 singularity, with Trσ2

playing the role of the parameter ǫ in (3.80).
At σ = 0, we potentially recover the A1 singularity, but now we

must remember the parameter α that controls the Kahler structure. For
generic α, we get the resolution of the A1 singularity. The reason that
this occurs is simply that when the polar part of ϕ is nonzero, it (plus
the specification of the conjugacy class of α) fixes what α must be. But
when ϕ has no pole, there is a family of possible choices of α that (since
the conjugacy class of α is fixed) is parametrized by CP

1. Since the locus
at which ϕ has no pole is precisely where the A1 singularity would be,
taking into account the choice of α replaces the A1 singularity in each
transverse slice with a copy of CP

1. This operation is the resolution of
the singularity. If, however, α = 0, then MH does develop a family of
A1 singularities.

If we set α = σ = 0, then the locus of A1 singularities is given
by a1 = a2 = a3 = 0. This condition ensures that ϕ has no pole, so
that (E,ϕ) is an ordinary Higgs bundle, without ramified structure.
Thus, the locus of A1 singularities in this example is simply MH ⊂
MH(0, 0, 0; p).

This is a special case of the general description of local singular-
ities of MH,L(α, β, γ; p). If we set (α, β, γ) to a triple (α, β, γ) that
is not L-regular but is L

′-regular, where L
′ properly contains L, then
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MH,L(α, β, γ; p) contains MH,L′(α, β, γ; p) as a locus of local singular-
ities. For given L, all possible L

′ that properly include L can occur,
including L

′ = G.

3.7. Action Of The Affine Weyl Group. To keep things simple,
we begin this section with the assumption that G is simply-connected
and the Levi group is L = T.

The parameters (α, β, γ) in general take values in T× t× t, modulo
the action of the Weyl group W. Equivalently, we can take a slightly
different point of view and think of (α, β, γ) as taking values in t× t× t

modulo the action of the affine Weyl group Waff . We recall that Waff is
an extension of W by the coroot lattice of G:

(3.83) 0 → Λcort → Waff → W → 1.

We let Waff act on the trio (α, β, γ) by acting on α in the natural fashion,
while acting on β and γ via the quotient W. With this action of Waff ,
we have

(3.84) (t × t × t)/Waff = (T × t × t)/W,

simply because T = t/Λcort for simply-connected G. We call an element
of a space acted on by W regular if it is not left invariant by any element
of W except the identity, and likewise for an element of a space acted
on by Waff . (α, β, γ) ∈ t3 is regular for the action of Waff if and only if
its projection to T × t × t is regular for the action of W.

Now before dividing by Waff , we would like to omit from t × t × t

the points on which MH(α, β, γ; p) develops a singularity. We analyzed
in section 3.6 the local singularities, which depend only on the behavior
near p. These occur precisely when the triple (α, β, γ) ∈ t× t× t is non-
regular for the action of Waff (in the discussion in section 3.6, the more
natural criterion is the equivalent one that the projection to T × t × t

is nonregular in the usual sense). This happens in real codimension
three, because being invariant under some element x ∈ Waff that has a
nonzero image in W places a non-trivial condition on each of α, β, and
γ separately. (And an element of Λcort acts freely on α and hence has
no fixed points at all.)

There also are global singularities, which arise at values of (α, β, γ)
at which there are reducible solutions of Hitchin’s equations. Even
after we have suitably adjusted the triple (α, β, γ) so that such solutions
exist, they occur on MH only in high codimension if the genus of C is
large. (This contrasts with local singularities, which generically are A1

singularities, of real codimension four, as we saw in section 3.6.) The
values of (α, β, γ) at which these singularities occur can be described
precisely [24]. They arise on a discrete set of affine linear spaces in t3 of
real codimension three. (Actually, the analysis shows that for the case
of precisely one parabolic point, there are no global singularities for a
regular triple (α, β, γ), but for two or more parabolic points, there can
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be global singularities with each triple being regular.) The basic reason
that the global singularities are in real codimension three is the same
as for the local singularities: the hyper-Kahler nature of MH . Viewing
MH as a complex manifold in one of its complex structures, to obtain a
singularity one must always adjust at least one complex parameter that
controls the complex structure and one real parameter that controls the
Kahler metric, making three real parameters in all.

Let us omit from t3 all of the codimension three affine linear spaces
on which a local or global singularity occurs. Call what remains X. X is
connected and simply-connected, since t3 is a linear space, and what we
have omitted is of codimension three. The topology of MH(α, β, γ; p)
does not change when we vary the parameters without meeting a sin-
gularity. So it does not change if we vary the parameters in X. Since X

is connected, the varieties MH(α, β, γ; p) are independent of α, β, and
γ topologically, as long as we restrict ourselves to (α, β, γ) ∈ X. This
statement is one of the main results of [24].

We can learn more by observing that the group Waff acts freely on
X, since all triples (α, β, γ) ∈ X are regular. So X/Waff is a smooth man-
ifold, with fundamental group Waff . The cohomology of MH(α, β, γ; p)
varies as the fiber of a flat bundle over X/Waff . Taking the monodromy
of the flat bundle, we get an action of Waff on the cohomology of
MH(α, β, γ; p). Similarly, Waff acts on, for example, the K-theory of
this space.

This result is somewhat analogous to the Springer representations of
the Weyl group [26], which are also naturally understood, as suggested
in [31], by varying the parameters of hyper-Kahler metrics on coadjoint
orbits and their Slodowy slices [35]. (We review the framework for
this in section 3.8.) The Springer representations have been generalized
to an action of the affine Hecke algebra on equivariant K-theory [27],
[28] and more recently to an action of the affine braid group on certain
derived categories [29] of sheaves on the Springer resolution. See the
book by Chriss and Ginzburg [30] for an exposition of some of these
results. The affine Weyl group action on cohomology or K-theory of
MH is enriched to an affine braid group action on the categories of A-
branes or B-branes, as we will see in section 4.5. As for whether one can
see the affine Hecke algebra in the context of MH , to attempt to do so,
we would set β = γ = 0, whereupon MH admits an action of C

∗, and
one can define its equivariant cohomology or K-theory. These may well
admit an action of the affine Hecke algebra, which would improve the
analogy between the “global” problem involving MH and the “local”
problem involving complex coadjoint orbits.

Example

The affine Weyl group acts on the cohomology of MH in all dimen-
sions. However, we can describe this action explicitly if we restrict to



GAUGE THEORY, RAMIFICATION, . . . 99

the two-dimensional cohomology, which we described in eqn. (3.75):

(3.85) H2(MH(α, β, γ; p); Z) = Z ⊕ Λwt.

The right hand side is the affine weight lattice of G, and so admits a
natural action of Waff . To justify the obvious guess that Waff actually
does act on H2(MH) in this natural way, we use the result (3.76) for
the cohomology class of the symplectic form ωI :

(3.86)
[ωI

2π

]
= e⊕ (−α∗).

The cohomology class of ωI must be invariant under the combined action
of Waff on α and on H2(MH(α, β, γ; p); Z). This uniquely determines
the action of Waff on H2(MH(α, β, γ; p); Z) to be its natural action on
the affine weight lattice. This means that the subgroup W ⊂ Waff acts
trivially on Z and in the usual fashion on Λwt. And m ∈ Λcort acts by

(3.87) e→ e⊕ m∗,

while acting trivially on Λwt. Clearly, the right hand side of (3.86) is
invariant under this transformation together with α→ α+ m.

Several Ramification Points

We can readily generalize this to the case of several ramification
points p1, . . . , ps. Associated with each such point is a triple (αi, βi, γi) ∈
t3, with its own action of Waff . Thus a group (Waff)s acts on the col-
lection of s triples, taking values in (t3)s = t3s.

The corresponding moduli space MH(α1, β1, γ1, p1; . . . ;αs, βs, γs, ps)
of ramified Higgs bundles is a smooth manifold if the triples (αi, βi, γi)
take values in a suitable parameter space Xs. This space is obtained
from t3s by omitting certain affine linear spaces of codimension three. To
avoid local singularities, one must require that each triple (αi, βi, γi) is
separately regular. To avoid global singularities, one must omit certain
additional affine linear spaces described in [24].

The group (Waff)s acts freely on Xs, since in defining Xs, we require
each triple to be separately regular. Hence, by the same logic as before,
we get an action of (Waff)s on the cohomology, K-theory, etc., of MH .

As before, we can describe this action explicitly if we specialize to
the two-dimensional cohomology, which was described in (3.48):

(3.88) H2(M(α1, p1; . . . ;αs, ps); Z) = Z ⊕ (⊕s
i=1Λwt,i) .

s copies of the ordinary Weyl group act on the s copies of Λwt. And the
lattices act by a generalization of (3.87),

(3.89) e→ e⊕ (⊕s
i=1m

∗
i ) .

That this is the right action of (Waff)s actually follows from the analog
of (3.86), which is [ωI/2π] = e⊕ (⊕i(−α∗

i )).
One might be puzzled by these results, since a slightly larger group

could act on the lattice (3.88). Instead of shifting e by ⊕s
i=1m

∗
i for a
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collection of coroots mi, why not simply shift it by ⊕s
i=1wi for an arbi-

trary set of weights w1, . . . , ws ∈ Λwt, without worrying about whether
wi is of the form m∗

i for a coroot mi? In fact, in the case of several ram-
ification points, a group smaller than this but larger than we have so
far described does act naturally on the cohomology of MH(α1, . . . , ps).
According to (3.63) and (3.64), there is a symmetry αi → αi + ui for
any family of coweights ui, i = 1, . . . , n, such that

∑s
i=1 ui is a coroot.

(We demonstrated the symmetry for parabolic bundles, but the same
reasoning applies for ramified Higgs bundles.) So the cohomology of
MH(α1, . . . , ps) must admit the action of the group Λ∗

⋊ (W)s, where
Λ∗ is the sublattice of ⊕n

i=1Λcowt,i consisting of elements u1 ⊕ · · · ⊕ us,
with all ui ∈ Λcowt and

∑
i ui ∈ Λcort. Since Λ∗ has ⊕s

i=1Λcort,i, whose
action we have already described, as a sublattice of finite index, its
action must be given by the same formula:

(3.90) e→ e⊕ (⊕s
i=1u

∗
i ) .

This makes sense because the map u → u∗ does map Λcowt to Λwt, as
explained in Appendix A.

Non-Simply-Connected G
What happens if G is not simply-connected? α now takes values

in T = t/Λcochar, and it might seem that the group that would act on
cohomology or K-theory of MH would be now Λcochar ⋊ W.

Whether this is correct depends on precisely what one means. When
G is not simply-connected, MH has #π1(G) components, labeled by the
value of the characteristic class ξ(E) that measures the obstruction to
lifting E to a bundle with simply-connected structure group G. The
action of Λcochar permutes the components, as discussed in eqn. (2.6).
The subgroup that acts on the cohomology of one given component is
Λcort. Hence if we restrict our attention to one fixed component, the
group that acts on the cohomology, for the case of one parabolic point,
is Waff = Λcort ⋊ W, just as if G is simply-connected. Similarly, with
s parabolic points, the group that acts on the cohomology of a single
component of MH is Λ∗

⋊ (W)s, whether G is simply-connected or not.
But the larger group acts if one wants to include transformations that
permute the components.

Ramification Of Type L

We can consider in a similar fashion a point p endowed with a singu-
larity labeled by an arbitrary Levi subgroup L. The parameters (α, β, γ)
labeling such a point are invariant under L, and a local singularity is
avoided precisely if this triple is L-regular. The group that naturally
acts is the subgroup of Waff that commutes with L. Let us call this
group Waff,L.
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The same reasoning as above shows that Waff,L acts on the coho-
mology (or K-theory, etc.) of MH,L. In the extreme case that L = G,
this statement becomes trivial, as Waff,L is then the trivial group.

Generalization To Four-Dimensional Gauge Theory And Sigma Models

In applications to the geometric Langlands program, we really care
not about the variety MH , but about a two-dimensional sigma model in
which the target space is MH . This sigma model arises as a low energy
approximation to a four-dimensional gauge theory. More relevant than
whether the classical variety is smooth is whether the sigma model is
smooth. We call the sigma model smooth when its spectrum, correlation
functions, etc., vary smoothly with the parameters.

When MH is smooth, the sigma model is certainly smooth. However,
the sigma model may remain smooth even when classically MH has
a singularity. Typically, in two-dimensional sigma models with (4, 4)
supersymmetry, to get a singularity of the quantum theory, one must
adjust four parameters, not just three. Three parameters control the
classical geometry, and the fourth controls a theta-angle of the sigma
model.

As we learned in section 2.3, in addition to the parameters (α, β, γ) ∈
T× t× t, the gauge theory depends on another parameter, a theta-angle
η ∈ L

T. So the parameters labeling a point with ramified structure are
really a quartet21 (α, β, γ, η) ∈ T× t× t×L

T, with an equivalence under
the action of the Weyl group on all four variables. This makes sense
because G and LG have the same Weyl group!

By a local singularity of the sigma model with target MH , we mean
a singularity whose position only depends on the parameters (α, β, γ, η)
labeling a single ramification point. Global singularities are those whose
positions depend on the parameters of two or more points.

We recall that a point in a space acted on by W is regular if no
non-trivial element of W leaves the point fixed. To keep this discus-
sion simple, we begin with the case of one ramification point, and use
the fact that in this case MH is singular only for non-regular triples
(α, β, γ) ∈ T × t × t. It follows that the sigma model is smooth if
(α, β, γ) is regular. However, the gauge theory also has the S-duality
transformation τ → −1/τ which exchanges α and η, as we discussed
in section 2.4. The smoothness of the sigma model must be invariant
under this transformation, so we learn that the sigma model is smooth
if the triple (η, β, γ) is regular.

More generally, we have an infinite discrete duality group Γ acting
on α, η as in (2.53). If G is simply-laced or we restrict to an index two
subgroup of Γ, then β, γ transform by multiplication by a positive real

21If we wish, we can lift α and η to be t-valued. Then the group by which we
must divide is not the affine Weyl group but an extension of W by the product of a
pair of lattices, which act by shifting α and η, as we discuss in section 4.5.
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number (note the discussion following (2.24)). Such a rescaling does not
affect the question of whether a triple (α, β, γ) is regular. For example,
for G = E8, the duality group is SL(2,Z), and contains a transformation
that maps α to mα+ nη, for any relatively prime integers m,n. So the
sigma model is smooth if (mα + nη, β, γ) is regular. The fact that
this is so for all pairs m,n implies that actually, the sigma model is
smooth if the quartet (α, β, γ, η) is regular. We would still reach the
same conclusion if we replace SL(2,Z) by a congruence subgroup. For
any G, the duality group contains a congruence subgroup of SL(2,Z)
that acts as just described, so it is always the case that the sigma model
is smooth if the quartet (α, β, γ, η) is regular.

For the case of ramification at several points pi, we can similarly con-
sider global singularities, which we can define to be simply singularities
whose positions depend upon the parameters (αi, βi, γi, ηi) associated
with more than one point. The duality symmetry can now be used to
show that the conditions found in [24] can be extended by an additional
condition involving the η’s, so the global singularities now occur in real
codimension four.

3.8. Nahm’s Equations And Local Singularity Of MH . Gauge
theory and Nahm’s equations can be used to obtain hyper-Kahler met-
rics on coadjoint orbits of complex Lie groups. See [34], [35] for the
original constructions, [36], [37] for generalizations to arbitrary orbits,
and [63], [31] for reviews and further references. Our interest in these
metrics is that they give the behavior of MH(α, β, γ; p) near a local
singularity.

There are several routes to the construction of these hyper-Kahler
metrics. For us, it is most convenient to consider Hitchin’s equations on
a punctured disc C, defined as the region of the complex z-plane with
|z| ≤ 1, and z 6= 0. We write as usual z = reiθ. On C, we consider
solutions of Hitchin’s equations that are invariant under rotations of the
disc and have the familiar singularity near r = 0:

A = αdθ + . . .(3.91)

φ = β
dr

r
− γ dθ + . . . .

We suppose that the triple (α, β, γ) is regular, that is, that the subgroup
of G that commutes with this triple is precisely the torus T. We let GC,p

be the group of rotation-invariant gauge transformations g : C → G that
equal 1 for |z| = 1 and take values in T at z = 0. The space of rotation-
invariant solutions of Hitchin’s equations, with the boundary condition
(3.91), and modulo the action of GC,p, is a hyper-Kahler manifold that
we will call Q(α, β, γ).

In fact, it can be constructed as the hyper-Kahler quotient by GC,p

of the space of rotation-invariant pairs (A, φ). Such a pair is given in
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general by

A = a(r) dθ + h(r)
dr

r
(3.92)

φ = b(r)
dr

r
− c(r) dθ

with g-valued functions a, b, c, and h. The functions a, b, and c are
related in a fairly obvious way to the usual parameters α, β, and γ,
but rotational symmetry allows a fourth function h. Though h can be
gauged away, it is more convenient not to do so for the moment. The
space of solutions of Hitchin’s equations that are of this form has a
hyper-Kahler structure that is the usual one appropriate to Hitchin’s
equations, specialized to this case. One way to describe it is to think of
the functions (h, a, b, c) as giving a map from the open unit interval to
the quaternions H ∼= R

4, tensored with g. The hyper-Kahler structure
comes from the hyper-Kahler structure on H. Concretely, in one com-
plex structure, which we will call I, the complex variables are h − ia
and b+ ic. The others can be obtained by applying an SO(3) rotation
to the triple (a, b, c).

If we set s = − ln r and D/Ds = d/ds+ [h, · ], then Hitchin’s equa-
tions become

Da

Ds
= [b, c](3.93)

Db

Ds
= [c, a]

Dc

Ds
= [a, b].

These become Nahm’s equations [64] if we set h to zero, which we can
do locally by a gauge transformation.

To elucidate the nature of the moduli space Q(α, β, γ) of solutions
of these equations, first note that a linear combination of two of the
equations gives

(3.94)
d

ds
(b+ ic) = −[h− ia, b+ ic].

This implies that the conjugacy class of b + ic in gC is independent of
s. We also have the boundary condition lims→∞(b + ic) = β + iγ. If
σ = 1

2(β + iγ) is regular, this implies that τ = 1
2(b + ic) is everywhere

in the conjugacy class c that contains σ. In particular,

(3.95) τ =
1

2
(b(0) + ic(0))

is contained in this conjugacy class. τ is also gauge-invariant (since we
only allow gauge transformations that equal 1 at s = 0). So by mapping
a solution of Nahm’s equations to the corresponding value of τ , we get
a map Φ : Q → c that is holomorphic in complex structure I. By
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interpreting the remaining part of Nahm’s equations as a moment map
condition, it is shown in [34] that this map is an isomorphism.

By definition, c is the orbit under conjugation of the vector σ ∈ gC

(or equally well in the dual space g∨
C
, since the quadratic form −Tr

gives a GC-invariant identification between gC and g∨
C
). It is known as

an adjoint (or co-adjoint) orbit. For regular σ, the subgroup in GC that
leaves σ invariant is precisely TC, the complexification of the torus T.
Hence c is isomorphic to GC/TC.

If σ is not regular, then τ is in one of the affiliated orbits cλ, described
in section 3.3. All possibilities occur, but for a generic point in Q, τ
takes values in the affiliated orbit of maximal dimension, which is the
regular orbit c∗. To get some insight about what happens when σ is
non-regular, let us go to the extreme case σ = 0. Then the equations
and boundary conditions enable us to find solutions in which b and
c identically vanish. The equations collapse to Da/Ds = 0, so the
conjugacy class of a is independent of s and equal to that of α. This
conjugacy class must be regular, since we have assumed that (α, β, γ)
is regular and we have set β = γ = 0. We can now reason somewhat as
before. a(0) is gauge-invariant and is conjugate to α. Moreover, modulo
the gauge group, a(0) is the only invariant of a solution with b = c = 0.
Finally, a(0) can be any element of the orbit of α ∈ g. That orbit is
(for regular α) a copy of G/T, which is a Kahler manifold, known as
the flag manifold. To include b and c, we note that from a holomorphic
point of view in complex structure I, b+ic is characterized by the linear
equation (3.94). Thus Q is a holomorphic vector bundle over G/T. For
Q to be a complex symplectic manifold (and actually hyper-Kahler),
this bundle must be the cotangent bundle.

So when β = γ = 0 but α is generic, Q in complex structure I is
the cotangent bundle of G/T :

(3.96) Q ∼= T ∗(G/T).

If we deform to β, γ 6= 0, the cotangent bundle is deformed to an affine
bundle over G/T. When σ = 1

2(β + iγ) is regular, the affine bundle is
isomorphic to the GC-orbit of σ ∈ gC.

Analog Of Type L

This construction can be repeated with T replaced by any Levi sub-
group L of G.

We require the triple (α, β, γ) to be L-regular (that is, it com-
mutes precisely with L), and we modify the definition of GC,p so that
it comprises gauge transformations that at p take values in L. We
write QL(α, β, γ) for the space of solutions of the equations (3.93), with
boundary conditions set by α, β, and γ, modulo the action of GC,p.
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The same reasoning as above shows that if σ = 1
2(β+iγ) is L-regular,

then

(3.97) QL
∼= GC/LC

is the orbit of σ ∈ gC under the adjoint action of GC. At the other
extreme, if σ = 0 but α is generic,

(3.98) QL
∼= T ∗(G/L).

In general, QL is an affine deformation of T ∗(G/L). If we replace G by
a general semi-simple Lie group L

′ containing L as a Levi subgroup, the
same construction based on gauge theory with gauge group L

′ gives a
family of hyper-Kahler metrics on

(3.99) QL′,L
∼= T ∗(L′/L)

and its affine deformations.

Local Model Of MH

Many properties that we have described for Hitchin’s moduli space
MH have local analogs involving the hyper-Kahler metrics Q.

For example, the cohomology classes of the symplectic forms of MH

are linear functions of the parameters α, β, and γ. A similar linearity
holds for Q, as stated in Theorem 2.6 of [34].

To give another example, just as the affine Weyl group acts on the
cohomology of MH , the ordinary Weyl group similarly acts on the co-
homology of Q. The framework for proving this is described in section
5 of [31], using the action of the Weyl group on the parameters (α, β, γ)
and the fact that the singularities are in codimension three – in other
words, the same facts that we used in section 3.7 to construct an affine
Weyl group action on cohomology of MH . Actually, what is considered
in [31] is a somewhat larger class of hyper-Kahler varieties constructed
in [35] and involving Slodowy slices. (These more general varieties are
constructed by solving the same equations as above but with different
asymptotic behavior at s = 0.) The Weyl group representations that
arise for these varieties are known as the Springer representations. They
can be understood geometrically in a relatively elementary construction
[65]without hyper-Kahler metrics; perhaps this has also an analog for
MH .

The basic reason that the hyper-Kahler manifolds Q give local mod-
els for many properties of MH is that they do in fact describe the behav-
ior of the moduli space of ramified Higgs bundles near a local singularity.
For example, as in (3.79), the local behavior of MH,L(α, 0, 0; p) when α
approaches a value α that is not L-regular is modeled by T ∗(L′/L) for
some Levi group L

′ that properly contains L. To get a local model
of the situation, we need a suitable family of hyper-Kahler metrics on
T ∗(L′/L) (and its affine deformations with β, γ 6= 0). This is what we
get from the construction summarized above, as noted in (3.99), if we
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take the gauge group to be L
′. There is a simple rationale for using L

′

gauge theory rather than G gauge theory to construct the local model:
the boundary conditions at the singularity, defined in this case by the
trio (α, 0, 0), are invariant only under L

′, not G, so a theory with L
′ as

the gauge symmetry suffices for describing the singularity.

Detailed Analysis For SU(2)
To understand more fully why the varieties Q give a good description

of local singularities of MH , we will examine more closely the behavior
of Q near a non-regular point. To keep things simple, we concentrate
on G = SU(2) for illustration.

The only nonregular value of the triple (α, β, γ) for G = SU(2) is
α = β = γ = 0. At α = β = γ = 0, Q describes solutions of Hitchin’s
equations on the disc |z| ≤ 1 that are rotation-invariant and less singular
than 1/r at r = 0.

Equivalently, taking the gauge h = 0, we need solutions of Nahm’s
equations

da

ds
= [b, c](3.100)

db

ds
= [c, a]

dc

ds
= [a, b],

on the half-line [0,∞), with a, b, c→ 0 for s→ ∞.
Obviously, one such solution is a = b = c = 0. Another simple

solution, which is the starting point in [35], is

a = −1

s
t1(3.101)

b = −1

s
t2

c = −1

s
t3,

where t1, t2, and t3 are fixed elements of sl(2,C) obeying [t1, t2] = t3,
and cyclic permutations thereof.

In complex structure I, this solution describes a Higgs bundle (E,ϕ)
in which ϕ has a pole with nilpotent residue. (Notice that b + ic =
−s−1(t2 + it3) is in fact nilpotent for all s.) In complex structure J , it
describes a flat bundle with monodromy around the point r = 0 that is
unipotent but not equal to 1. These results are what one might expect
from section 3.3.
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A slight generalization is to introduce a positive constant f and take

a = − 1

s+ f−1
t1(3.102)

b = − 1

s+ f−1
t2

c = − 1

s+ f−1
t3,

We have parametrized the solutions in this particular way, because
(3.102) actually has a limit for f → 0, namely the trivial solution
a = b = c = 0. So f takes values in R≥0 = [0,∞). In our applica-
tion, we will be concerned with small f . We can also pick an element
R ∈ SO(3) and generalize (3.102) to

a = − 1

s+ f−1
Rt1R

−1(3.103)

b = − 1

s+ f−1
Rt2R

−1

c = − 1

s+ f−1
Rt3R

−1.

The parameter space of this family is thus R≥0 × SO(3) = R
4/Z2,

where Z2 acts by a reflection on all four coordinates of R
4. This is the

A1 singularity. In particular, the natural metric on this family Q of
solutions of Nahm’s or Hitchin’s equations, obtained by integrating the
L2 norm of the variation of the fields (A, φ) over the disc r ≤ 1, is the flat
metric on R

4/Z2; all modes are square-integrable, thanks to the factor
of 1/s = 1/(− ln r), and f = 0 is at finite distance. For nonzero α, β, γ,
we get instead the Eguchi-Hansen metric, describing the deformation
and resolution of the A1 singularity.

Now we can explain the basic reason that Nahm’s equations and
Kronheimer’s construction give a good model for local singularities of
MH . The singularity of Q occurs at f = 0 and corresponds to the trivial
solution a = b = c = 0. A point in Q near the singularity corresponds
to a solution with very small f . When Nahm’s equations are embedded
in Hitchin’s equations, there is an extra factor of 1/r, visible in eqn.
(3.92). This means that for small f , all fields are very small except for
r . f . This continues to be the case if we perturb α, β, γ to be nonzero
but of order f . Because of this, we can start with an arbitrary Higgs
bundle (E,ϕ) without ramification, and “glue in” the above family of
solutions, to get a family of ramified Higgs bundles. We use the old
solution for r ≫ f , and the exact solution (3.103) for r . f . The
family of solutions obtained this way acquires an A1 singularity if one
sets f = 0, whereupon the “new” solutions reduce to the old ones.

Of course, the gluing operation does not give an exact solution.
The set of fields obtained by gluing must be modified to get an exact



108 S. GUKOV AND E. WITTEN

solution, but the requisite modification is small if f is small. This is
somewhat analogous to the construction [66] of Yang-Mills instanton
solutions on a four-manifold by gluing in an exact solution from R

4

that has its support mainly on a very small region in R
4. However,

in contrast to instanton moduli space, the deformation theory of Higgs
bundles is unobstructed (as long as we keep away from reducible Higgs
bundles) so there is no analog of the topological conditions described
in [66] that can potentially obstruct the process of deforming the glued
fields to an exact solution.

Thus we get a more precise way to see what was argued in section 3.6:
for α, β, γ → 0, MH(α, β, γ; p) develops an A1 singularity, the singular
locus being precisely MH , the moduli space of unramified Higgs bundles.
This specific result is of course special to G = SU(2). For G of higher
rank, as we have argued, a similar construction leads in general to more
complicated singularities whose resolution is T ∗(L′/L) for various L

′

and L.

3.9. The Hitchin Fibration. Now we describe the Hitchin fibra-
tion and complete integrability in the context of Higgs bundles with
ramification. All of these matters have been understood in the litera-
ture in much more detail; for example, see [67], [68].

We begin with the example of SL(2,C), from section 3.3. Up to
conjugacy, the local behavior of ϕ near a parabolic point with σ 6= 0 is

(3.104) ϕ =
dz

z
σ(1 + O(z)).

This implies that

(3.105) Trϕ2 = Trσ2

(
dz

z

)2

(1 + O(z)).

This statement is actually true uniformly for all σ, zero or not. Indeed,
for σ = 0, the polar part of ϕ is nilpotent, but in a general solution
ϕ also has regular terms. After trivializing the holomorphic structure
near z = 0, we have up to conjugacy

(3.106) ϕ =
dz

z

((
0 1

0 0

)
+ az + bz2 + . . .

)
,

with a, b ∈ sl(2,C). Hence the quadratic differential Trϕ2 may have
a simple pole at z = 0, but no double pole, showing that (3.105) also
holds for σ = 0.

The reason that this is important is that the quadratic differential
Trϕ2 is the key to the complete integrability of MH as a complex man-
ifold in complex structure I. In the absence of ramification, MH has
(complex) dimension equal, for GC = SL(2,C), to 6gC − 6, where gC is
the genus of C. To establish complete integrability, one requires 3gC −3
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commuting Hamiltonians. These are precisely the components of Trϕ2,
which takes values in the space of quadratic differentials on C. The
dimension of that space is 3gC − 3. (For a very brief explanation of
complete integrability of Hitchin systems, see section 4.3 of [8].)

Let us carry out the analogous computation in the presence of ram-
ification. For simplicity in the exposition, we suppose that there is just
one ramified point p. A Higgs bundle is a pair (E,ϕ), where E is an
SL(2,C)-bundle over C and ϕ ∈ H0(C,KC ⊗ ad(E) ⊗ O(p)). Here we
include the factor of O(p) (the bundle whose sections are functions that
may have a simple pole at p), since ϕ is allowed to have a pole at p. The
number of parameters required to specify the bundle E is 3gC − 3. By
Riemann-Roch, the dimension of H0(C,KC⊗ad(E)⊗O(p)) is 3gC . (In-
deed, H0(C,KC ⊗ ad(E)) is the cotangent space to the moduli space of
stable bundles and has dimension 3gC−3; tensoring with O(p) adds 3 to
the dimension, since KC ⊗ad(E) has rank 3.) However, ϕ obeys the one
constraint (3.106). So the choice of ϕ depends on 3gC − 1 parameters,
and the dimension of MH(α, β, γ; p) is (3gC − 3) + (3gC − 1) = 6gC − 4.
So we need 3gC − 2 commuting Hamiltonians to establish complete in-
tegrability.

These are precisely the components of Trϕ2. In general, Trϕ2 is a
quadratic differential with a double pole. The space of such quadratic
differentials has dimension 3gC −1, but one parameter is determined by
(3.105), so Trϕ2 lives in a 3gC − 2 dimensional space. This gives the
3gC − 2 parameters needed for complete integrability of MH(α, β, γ; p).

All generalities about the Hitchin fibration of MH , complete inte-
grability, etc., have natural analogs for Higgs bundles with ramification.
We write B for the space of quadratic differentials with double pole at p
obeying (3.105). The Hitchin fibration is a map π : MH(α, β, γ; p) → B

which is holomorphic in complex structure I. It is defined by mapping
a Higgs bundle (E,ϕ) to the point in B defined by Trϕ2. The functions
on B are the commuting Hamiltonians, and the fibers are complex La-
grangian submanifolds (that is, they are Lagrangian from the point of
view of the holomorphic two-form ΩI). The generic fiber is an abelian
variety. Moreover, all this remains true if one has ramification at several
points, not just one.

For any G, the analog of this is as follows. Let r be the rank of
G. The ring of invariant polynomials on the Lie algebra g is freely
generated by r polynomials Pi, which are homogeneous of degree di for
some integers di. These integers obey

(3.107)
r∑

i=1

(2di − 1) = dim(G).
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Instead of the quadratic differential Trϕ2, we consider its analogs Pi(ϕ),

which are holomorphic sections of Kdi
C . They obey

(3.108) Pi(ϕ) = Pi(σ)

(
dz

z

)di

(1 + O(z)).

These conditions hold for all σ, and, for L = T, the differentials Pi(ϕ)
otherwise have arbitrary poles of degree di at z = 0. For other L, there
are additional conditions on the poles. We will concentrate here on the
case L = T. B is defined by saying that a point in B is a collection of di-
differentials, i = 1, . . . , r, that are holomorphic away from ramification
points and behave like (3.108) near such a point. The dimension of B

(for the case of one ramified point) is (gC − 1)dim(G) +
∑r

i=1(di − 1),
as one can prove with the help of (3.107).

The dimension of MH is computed as we did for SU(2). The choice
of a G-bundle E depends on (gC − 1)dim(G) parameters. The dimen-
sion of H0(C,KC ⊗ ad(E) ⊗ O(p)) is gCdim(G), but ϕ is subject to r
constraints (3.108), so it depends on gCdim(G) − r parameters. The
dimension of MH(α, β, γ; p) is thus

dim(MH(α, β, γ; p)) = (2gC − 1) dim(G) − r(3.109)

= (2gC − 2) dim(G) +
r∑

i=1

(2di − 2)

= dim(MH) + dim(G) − r.

The number of commuting Hamiltonians needed to establish complete
integrability is therefore (gC − 1)dim(G) +

∑r
i=1(di − 1). This is pre-

cisely the dimension of B. The Hitchin fibration π : MH(α, β, γ; p) →
B, defined by mapping a pair (E,ϕ) to the point in B defined by
(P1(ϕ), . . . ,Pr(ϕ)), has all the key properties that we described for
G = SL(2,C).

The formula (3.109) for the (complex) dimension of MH(α, β, γ; p)
is, of course, compatible with the existence, in a suitable limit, of the
generic fibration (3.79). For a more general Levi subgroup L, there is a
natural modification of this, with a suitable extension of the constraints
(3.108).

4. Geometric Langlands With Tame Ramification

4.1. Review Of Unramified Case. The basic steps to get from
N = 4 Yang-Mills theory to geometric Langlands are described in [8],
beginning in section 3. We briefly review them, since the same procedure
applies in the presence of ramification.

One first makes a certain topological twist of the N = 4 theory, the
GL twist. The twisting depends on a complex parameter t, and leads
to a family of four-dimensional topological field theories parametrized
by CP

1. It is convenient to think of this CP
1 as the complex Ψ plane
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plus a point at infinity. Ψ is a certain combination of t and the gauge
coupling parameter τ = θ/2π+4πi/e2. A duality transformation of the
N = 4 theory that acts on τ by τ → (aτ + b)/(cτ + d) acts likewise
on Ψ by Ψ → (aΨ + b)/(cΨ + d). In particular, the duality operation
S : τ → −1/ngτ maps Ψ = ∞ to Ψ = 0. The usual form of the
geometric Langlands program involves these two values of Ψ and the
duality between them.

The next step [19], [20] is to consider the theory on a four-manifold
M = Σ × C, where C is the Riemann surface on which one wishes to
study the geometric Langlands program. In an appropriate limit of Σ
much larger than C, or in the topological field theory (in which distances
are irrelevant), the compactified theory can be described in terms of a
sigma model on Σ in which the target is the moduli space MH(G,C) of
Higgs bundles on C.

At Ψ = ∞, as explained in section 5 of [8], the resulting two-
dimensional theory is the B-model of MH in complex structure J . It
varies holomorphically in α+ iγ, and is locally independent of β and η.
At Ψ = 0, it is the A-model with symplectic structure

(4.1) ω = (Im τ)ωK ,

where the factor of Im τ = 4π/e2 comes from the normalization of the
kinetic energy. We call these models the B-model of type J and the
A-model of type K. Each of these models is independent of the four-
dimensional gauge coupling e2, and hence can be studied at weak cou-
pling.

The next step is to let Σ have a boundary, labeled by a brane B.
S-duality automatically exchanges B-branes of type J with A-branes
of type K. This is the basic geometric Langlands duality. To get the
usual formulation of geometric Langlands duality, one must incorporate
Wilson and ’t Hooft operators and the duality between them (sections
6,8,9, and 10 of [8]), and one must reinterpret the A-model of type K
in terms of D-modules on M(G,C) (section 11).

4.2. Sigma Model With Ramification. We now begin to de-
scribe an analogous program in the presence of ramified structure at
a point p ∈ C. (To keep the notation simple, we consider the case
of one ramification point, except when it is essential to allow several.)
We consider gauge theory on M = Σ × C, with gauge group LG, in
the presence of a “surface operator” supported on Σp = Σ × p. For
tame ramification, which is the subject of this paper, we take the sur-
face operator to be of the familiar type, labeled by the parameters
( Lα,Lβ,Lγ,Lη) ∈ L

T× t∨ × t∨ × T. L
T and T are exchanged, of course,

relative to most of our previous discussion, since we take the gauge
group to be LG. Until further notice, we take the Levi subgroup to be
L = T.
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The duality transformation S : τ → −1/ngτ maps the LG theory
with coupling Lτ to a theory with gauge group G and coupling τ =
−1/ng

Lτ . To get the basic geometric Langlands duality, it is convenient
to take Lτ to be imaginary and to take the twisting parameter of the LG
theory to be t = i. This gives the B-model at Ψ = ∞, and is mapped by
S to a model with t = 1 and imaginary τ . The latter gives a convenient
description of the A-model at Ψ = 0.

A surface operator with parameters ( Lα,Lβ,Lγ,Lη) maps to a surface
operator of the same type but with different parameters (α, β, γ, η). The
relation among the parameters was analyzed in section 2.4:

(α, η) = (Lη,−Lα)(4.2)

(β, γ) = (Im Lτ) (Lβ∗,Lγ∗).

The second formula is eqn. (2.24), and can be inverted as in (2.23):

(4.3) (Lβ, Lγ) = (Im τ)(β∗, γ∗).

Our goal is to adapt the steps that were summarized in section 4.1.
The four-dimensional theory on M = Σ×C reduces in this situation to
a two-dimensional sigma model with target the moduli space of ramified
Higgs bundles. Just as in the absence of ramification, this sigma model
has (4, 4) supersymmetry, since the target space is hyper-Kahler.

The surface parameters (α, β, γ) enter the classical geometry of the
moduli space. The remaining surface parameter η was introduced in
section 2.3 by analogy with theta-angles of two-dimensional gauge the-
ory. Indeed, for G of rank r (and barring some exceptional cases of small
r and small gC), MH(α, β, γ; p) has second Betti number r + 1, so the
sigma model has room for r + 1 theta-angles. One such angle descends
from the theta-angle θ of the underlying four-dimensional gauge theory,
by precisely the reasoning described in eqn. (4.18) of [8]. The other
r theta-angles of the effective two-dimensional theory are derived from
η. As we see in (4.2), S-duality exchanges theta-angles and geometrical
parameters.

Discrete Electric and Magnetic Fluxes

The sigma model additionally depends on discrete electric and mag-
netic fluxes (see section 7 of [8], where a somewhat different point of
view is taken). We describe them in some detail, since otherwise it
is impossible to give a completely precise description of the action of
electric-magnetic duality.

The bundle E → M = Σ × C has a characteristic class ξ(E) ∈
H2(M,π1(G)). We write m0 for the restriction of this class to q × C,
for q a generic point in Σ. m0 takes values in H2(C, π1(G)) ∼= π1(G),
and MH has components labeled by m0.

Discrete electric flux needs more explanation. We introduce a slight
twist into G gauge theory to allow bundles E → M = Σ × C with
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structure group Gad but with the property that, when restricted to q×C
(for q a point in Σ), E can be lifted to a G-bundle. Thus, locally along
Σ but globally along C, the theory has gauge group G, but globally
along Σ there may be a “twist” that prevents lifting E to a G-bundle.
A bundle of this type, restricted to Σ × r for generic r ∈ C, has a
characteristic class a0 ∈ H2(Σ, π1(Gad)).

Now in performing the path integral, we introduce a discrete theta-
angle e0 and include in the path integral a phase factor

(4.4) exp(2πi〈e0,a0〉).
Thus, e0 (though written additively) is a character of π1(Gad). However,
in G gauge theory, it is natural to consider only e0 that annihilate
π1(G) ⊂ π1(Gad) (so that e0 is only sensitive to the “twist”). Thus e0

is a character of π1(Gad)/π1(G) (this is the same as the center of G,
Z(G)). Equivalently,

(4.5) e0 ∈ Λchar/Λrt.

If we restrict e0 in this way, we can project a0 to

(4.6) π1(Gad)/π1(G) = Λcowt/Λcochar.

The duality transformation S : τ → −1/ngτ exchanges e0 and m0. This
is possible because π1(

LG) = π1(Gad)/π1(G), and similarly with LG and
G exchanged.

Ramification does not substantially change the definition of m0 and
e0. However, their role is qualitatively different in the presence of ram-
ification. As we observed in discussing eqn. (2.6), m0 can be changed
by shifting α. Dually, as we will now explain, e0 can be changed by
shifting η. The effect of η in the path integral is a factor

(4.7) exp(2πi〈η,m〉),
where m is the characteristic class of the T-bundle obtained by restrict-
ing E to Σ × p, for p ∈ C. In standard G gauge theory, m takes values
in Λcochar, but the “twist” means that in the present context m takes
values in Λcowt. Indeed, we have

(4.8) m ∼= a0 mod Λcochar.

This is a general fact about the two-dimensional characteristic class of
a Gad-bundle whose structure group reduces to the torus Tad.

Because m does not necessarily take values in Λcochar, the usual
symmetry η → η + v for v ∈ Λchar does not necessarily hold. Rather,
comparing (4.4) to (4.7) and using (4.8), we find that η → η + v is
equivalent to e0 → e0 + v, where v is the image of v in Λchar/Λrt. The
shifts of η that do not change e0 are by Λrt.

This mirrors the corresponding statement for α, which is that the
shifts that do not change m0 are precisely those by Λcort. The par-
allelism remains if there are several ramification points p1, . . . , ps. As
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in the discussion of eqn. (3.90), the shifts of (α1, . . . , αs) that do not
change m0 are αi → αi + ui, with ui ∈ Λcowt and

∑
i ui ∈ Λcort. Like-

wise, the shifts in (η1, . . . , ηs) that do not change e0 are ηi → ηi + vi,
where vi ∈ Λwt and

∑
i vi ∈ Λrt.

4.3. Branes. Now we specialize to the topological field theories
that arise at Ψ = ∞ with gauge group LG or at Ψ = 0 with gauge group
G.

At Ψ = ∞, we get the B-model in complex structure J . In this com-
plex structure, MH(Lα,Lβ,Lγ; p) parametrizes flat LGC-bundles E →
C\p whose monodromy V around the point p obeys a condition that
depends on Lα and Lγ.

As explained most fully in section 3.3, the condition is that the
orbit of V under conjugation contains in its closure the element U =
exp(−2π(Lα − iLγ)). If U is regular, this means that V is conjugate to
U . If, at the other extreme, U = 1, this means that V is unipotent. At
any rate, for any V ∈ LGC, there is a choice of Lα and Lγ, unique up to
a Weyl transformation, such that a flat connection with monodromy V
represents a point in MH(Lα,Lβ,Lγ; p). We simply choose Lα and Lγ so
that U is contained in the closure of the orbit of V .

So if we want to use the B-model in complex structure J to say
something about a flat bundle with a given monodromy, then Lα and Lγ
are uniquely determined. But Lβ and Lη are arbitrary, since from the
point of view of complex structure J , they are Kahler parameters. The
B-model in complex structure J , of course, varies holomorphically with
Lγ + iLα, but it is locally independent of Lβ and Lη. Globally, when we
vary Lβ and Lη, the B-model has monodromies, which we will study in
section 4.5.

In the geometric Langlands program with tame ramification, we
begin with a flat LGC-bundle E → C\p with monodromy V . Roughly
speaking, at the right value of Lα and Lγ, E determines a zerobrane BE

on MH(Lα, Lβ, Lγ; p). (When V is non-regular, this statement requires
some elaboration, which we provide in section 4.6.)

Now we apply the S-duality transformation S : Ψ → −1/ngΨ. The
gauge group is transformed from LG to G. Ψ is mapped from ∞ to 0;
the resulting model at Ψ = 0 is the A-model with symplectic struc-
ture ω = (Im τ)ωK . The parameters (α, β, γ, η) of the model with
gauge group G are expressed in (4.2) in terms of the LG parameters
(Lα, Lβ, Lγ, Lη). In particular, Lγ + iLα, on which the model at Ψ = ∞
depends holomorphically, is equal according to (4.3) to (Im τ)γ∗ − iη.
So we expect the A-model at Ψ = 0 to vary holomorphically in that
variable. Indeed, (Im τ)γ∗− iη is the complexified Kahler class from the
standpoint of complex structureK. (The symplectic form ω = (Im τ)ωK

has cohomology class proportional to (Im τ)γ∗, in view of (3.77), while η
supplies the imaginary part of the complexified Kahler class.) Likewise,
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since the model at Ψ = ∞ with gauge group LG is locally independent of
Lβ and Lη, we expect the dual model at Ψ = 0 with gauge group G to be
locally independent of α and β. This is in accord with the fact that, as a
symplectic variety with symplectic structure ωK , MH is independent of
α and β. The A-model depends only on this symplectic variety with its
complexified Kahler form (Im τ)γ∗−iη. On the other hand, the complex
structure K, which is irrelevant in the A-model, varies holomorphically
in α+ iβ.

The duality transformation S maps branes in the B-model of type
J to branes in the A-model of type K. So in particular, the zerobrane
BE that is determined by a ramified flat bundle E is mapped to an

A-brane B̂E . We can see quite concretely what sort of A-brane this
will be. With or without ramification, MH admits the Hitchin fibration
π : MH → B, as we described in section 3.9. The generic fibers of the
Hitchin fibration are complex tori, holomorphic in complex structure
I. S-duality acts via T -duality on the fibers of the Hitchin fibration,
according to the same reasoning as in sections 5.4 and 5.5 of [8]. (This
duality has been studied mathematically from several points of view,
including applications to the geometric Langlands program [69]–[71].)
T -duality on the fibers of a torus fibration maps a zero-brane to a brane
wrapped on a fiber, and endowed with a flat Chan-Paton line bundle L.
So just as in the absence of ramification, the S-dual of a zerobrane is a
brane of this type. Such a brane is called in [8] a brane of type F.

Now we can make a preliminary statement of the geometric Lang-
lands duality. In stating it, we think of MH not just as a classical space
but as defining a quantum sigma model, so we will include η when we
list its parameters. Also, in making the statement, we make the gauge
groups explicit, recalling that electric-magnetic duality exchanges G and
LG.

Our first statement of geometric Langlands duality is that for ev-
ery zerobrane in the sigma model with target MH(Lα,Lβ,Lγ,Lη, p; LG),
there is a corresponding brane of type F in the sigma model with tar-
get MH(α, β, γ, η, p;G); as usual, the parameters are related by (4.2).
More generally, for every B-brane of type J (that is, every brane of
the B-model in complex structure J) in the sigma model with target
MH(Lα,Lβ,Lγ,Lη, p; LG), there is a naturally corresponding A-brane of
type K in the sigma model with target MH(α, β, γ, η, p;G). This cor-
respondence extends to a natural correspondence between all of the
structures of the B-model on one side and all of the structures of the
A-model on the other side.

The analogs of Wilson and ’t Hooft operators are described in sec-
tion 4.5, and some details will be clarified in section 4.6. But the most
pressing problem is that the geometric Langlands correspondence is usu-
ally stated with B-branes of type J on the left hand side (just as in the
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last paragraph), but with D-modules of an appropriate sort, rather than
A-branes of type K, on the right hand side. To reconcile the two points
of view, we will follow the approach of section 11 of [8], which the reader
may want to consult.

4.4. Twisted D-Modules. In our formulation, the right hand side
of the geometric Langlands correspondence involves a brane in the topo-
logical field theory at Ψ = 0. As in [8], a convenient way to get to Ψ = 0
is to take the twisting parameter t to equal 1, and to take the four-
dimensional theta-angle θ = 2πRe τ to vanish. The branes at Ψ = 0
are branes of the A-model of type K.

The usual statement of the geometric Langlands duality involves D-
modules on the moduli space M(α, p;G) of parabolic bundles. To rec-
oncile the two formulations, we must associate to every A-brane of type
K on MH(α, β, γ, η, p;G) a D-module of a suitable type on M(α, p;G).
When confusion is unlikely, to make the notation less clumsy, we will
generally omit to specify the gauge group G.

As explained in section 3.6, precisely if β = γ = 0 and α is regular,
MH(α, β, γ, η; p) is birational in complex structure I to the cotangent
bundle of M(α; p). More precisely, for sufficiently large gC , away from
high codimension, MH contains the cotangent bundle as a dense open
set:

(4.9) T ∗M(α, p;G) ⊂ MH(α, 0, 0, η; p).

Setting β to zero and assuming that α is regular are not severe restric-
tions, since the A-model of type K is independent of these parameters.
But the A-model does depend on γ, so we will want to restore the γ
dependence later.

Also, taking α to be regular means choosing an affine Weyl chamber
that contains α. This in a sense reduces the symmetry of the model.
So one could argue that the description of the duality in terms of D-
modules, which depends on this choice, is less natural than the descrip-
tion in terms of mirror symmetry between an A-model and a B-model.22

However, the description by D-modules is motivated by an analogy with
number theory, and we want to see how it comes about.

LetX be any hyper-Kahler manifold with complex structures I, J,K
and symplectic forms ωI , ωJ , ωK such that [ωJ ] = 0 (we recall that [ω]
denotes the cohomology class of a closed form ω). Pick a positive real
number Im τ , and consider the A-model on X with symplectic struc-
ture ω = (Im τ)ωK . There is as explained in section 11.1 of [8] a
distinguished space-filling A-brane. Its Chan-Paton line bundle is a

22One could argue the same based on the fact that the mirror symmetry preserves
the full supersymmetry of branes on both sides of the duality, while the description in
terms of D-modules does not. For an explanation of this point, see the introduction
to section 5.
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trivial line bundle endowed with a connection whose curvature form is
F = (Im τ)ωJ . This formula ensures that (ω)−1F is a complex struc-
ture, indeed the one that we have called I. This is the condition for a
coisotropic brane in the sense of [72]. We call this brane the c.c. or
canonical coisotropic brane, and denote it as Bc.c.. For Bc.c. to exist, the
cohomology class [ωJ ] must vanish, so that it is possible for a trivial
line bundle to have a connection form F = (Im τ)ωJ . Indeed, [ωJ ] = 0
precisely if β = 0, as was explained most directly at the end of section
3.1. At any rate, we have already set β = 0 to ensure the relationship
of MH to T ∗M.

For any brane B, the (B,B) strings form a ring. To all orders in
sigma model perturbation theory, one can “localize” the (B,B) strings,
by considering wavefunctions that are regular in an open set U ⊂ X.
The open strings that are regular in U form a ring, and by letting U
vary, one gets, to all orders in perturbation theory, a sheaf of rings
over X. In general, this construction of a sheaf of rings is only valid
to all orders in perturbation theory, not as an exact statement. How-
ever, as explained in [8] (and as is certainly known in the mathematical
literature; for a much deeper analysis, see [73]), one can under certain
conditions go beyond perturbation theory in a very special way in the
case of the canonical coisotropic brane Bc.c. of a hyper-Kahler manifold
X. The requisite conditions are that X should contain as a dense open
set a cotangent bundle T ∗M (for some Kahler manifold M), where
this identification is holomorphic in complex structure I and ωK is the
imaginary part of the natural holomorphic two-form of the cotangent
bundle. In this case, one can associate a ring of (Bc.c.,Bc.c.) strings to
each open set in X that is of the form T ∗U for U an open set in M. This
association gives a sheaf of rings over M. This sheaf of rings is precisely
the sheaf of differential operators on M acting on sections of some line
bundle23 L. We write DL for this sheaf of rings.

L can be identified in a particularly simple way if the sigma model
of X has time-reversal symmetry, which is the case if its theta-angles
vanish. IfKM denotes the canonical line bundle of M, then time-reversal

symmetry implies that L = K
1/2
M

and the sheaf of rings is D
K

1/2

M

.

To apply this to our problem, we want the theta-angles of the sigma
model with target MH(α, β, γ, η; p) to vanish. We have already set the
four-dimensional parameter θ to zero; the remaining theta-angles of the
sigma model are precisely η. So we achieve the time-reversal symmetry

23More generally, as reviewed in section 11.1 of [8], L may be a complex power
of a line bundle, or a tensor product of such complex powers. The sheaf of rings DL

is invariant under twisting L by a flat line bundle, and as a result makes sense in
this greater generality [74]. For the same reason, in what follows it does not matter

if K
1/2

M
exists or is unique as a line bundle. It actually does exist but is not always

unique.
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by setting η = 0. We have already simplified the problem by setting
γ = 0, so our combined condition is equivalent to the vanishing of
the complexified Kahler class (Im τ)γ∗ − iη. The condition η = 0 is
equivalent, of course, to Lα = 0.

The fact that the sheaf of (Bc.c.,Bc.c.) strings coincides with the sheaf
of rings D

K
1/2

M

makes possible a very general construction. Let B′ by any

A-brane on X of type K. To B′, we can associate the sheaf of (Bc.c.,B′)
strings. It is automatically a sheaf of modules for the (Bc.c.,Bc.c.) strings,
that is, for D

K
1/2

M

. So we get a natural way to associate a D
K

1/2

M

-module

to every A-brane of type K.
Combining this with what we learned from S-duality, we see that a

B-brane of type J on MH(0, Lβ, 0, Lη, p; LG) is naturally associated to a
sheaf of modules for the sheaf of rings D

K
1/2

M

over M(α, p;G) (with as

usual α = Lη). This is essentially24 the usual statement of the geometric
Langlands program with tame ramification, for the case Lα = Lγ = 0,
or in other words for flat LG bundles with unipotent monodromy.

As in [8], the fact that the (Bc.c.,Bc.c.) strings are the differential

operators on K
1/2
M

(rather than on some more general line bundle) can
be seen more explicitly, without relying on time-reversal symmetry. For
this, we make use of another important brane on MH : the brane B′

supported at ϕ = 0, that is, on the zero section of the cotangent bundle
T ∗M, and endowed with a trivial Chan-Paton line bundle. Quantization

of the (Bc.c.,B′) strings shows that they are sections of K
1/2
M

. Since they
also furnish a sheaf of modules for the (Bc.c.,Bc.c.) strings, the latter are

the differential operators acting on sections of K
1/2
M

.

Restoring The Parameters

The case γ = η = 0 is the case that U = exp(−2π(Lα − iLγ)) is
equal to 1. Being limited to this case would mean describing geometric
Langlands only for the case of unipotent monodromy. To get beyond
this case, we must restore the dependence on γ and η.

As we will see, incorporating either γ or η has the effect of replacing

differential operators that act on K
1/2
M

by differential operators that act
on S, where loosely speaking S is a more general line bundle – more
precisely, it is a tensor product of complex powers of line bundles. The
sheaf of differential operators acting on such an S makes sense, though
S itself cannot be defined as a line bundle. We aim to (i) justify the
claim that for any γ and η, the A-branes on MH of type K are naturally

24The usual statement involves the sheaf of rings D, that is the sheaf of differen-
tial operators acting on functions. This sheaf of rings is Morita-equivalent to D

K
1/2

M

.

There are some subtleties that we will not consider here involving the dependence of
this Morita-equivalence on a choice of spin structure on C.
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associated with modules for some sheaf of rings of this type, and (ii)
identify S.

Let us first justify the claim (i). Let us consider the effect of having
γ 6= 0, with η still vanishing. The result of this, as explained in section
3.6, is that MH is no longer birational to T ∗M. Rather, it contains as
a dense open set an affine deformation of T ∗M (giving us a situation
similar to the case of θ 6= 0, as analyzed in section 11.3 of [8]). By
itself, replacing the cotangent bundle with an affine deformation of it
does not modify the definition of the c.c. brane Bc.c. (as long as we
keep β = 0; see below). Nor does it modify the argument that the
sheaf of (Bc.c.,Bc.c.) strings is the sheaf of differential operators acting
on some “line bundle” S. However, it does spoil the use of time-reversal

symmetry to show that S = K
1/2
M

. Indeed, the definition of the relevant
time-reversal operation requires that MH should have a symmetry ϕ→
−ϕ (acting holomorphically in complex structure I); this symmetry
is absent when T ∗M is deformed to an affine bundle. The alternative
argument for the identification S ∼= K

1/2
M

uses the brane B′ supported on
M ⊂ T ∗M, which is precisely the zero-section of the cotangent bundle.
This argument also fails for γ 6= 0, since the affine deformation of T ∗M

admits no holomorphic section.

Now let us consider the effect of having η 6= 0, with γ zero or
nonzero. Because of holomorphy in (Im τ)γ∗ − iη, the effect of η must
be similar to that of γ, but it is interesting to see how this comes about.
Having η 6= 0 causes the B-field of the sigma model, which we simply
call B, to be nonzero. As a result, some care is needed in defining the
canonical coisotropic brane. Let F denote the curvature of the Chan-
Paton bundle L of this brane. In the presence of a B-field, the condition
for a coisotropic brane is that ω−1(F + B) should be an integrable
complex structure, which we will take to be I. We achieve this by
taking F + B = (Im τ)ωJ . We will still assume that L is topologically
trivial. This requires at the level of cohomology classes that [F ] = 0, so
[B] = (Im τ)[ωJ ]. Since [ωJ/2π] = −β∗, as we learned in (3.77), and
[B/2π] = η, the c.c brane can be defined only for β∗ = −(Im τ)−1η. So
for nonzero η, we must have β 6= 0, and hence again MH is birational
to an affine deformation of T ∗M, not to T ∗M itself.

We assumed here that L is topologically trivial, but we can also
construct branes with non-trivial L. As we explain below, the results
that can be obtained this way are Morita-equivalent to what we can
learn from the case that L is topologically trivial.

As before, once the brane Bc.c. is defined, the standard arguments
show that the sheaf of (Bc.c.,Bc.c.) strings is the sheaf of differential
operators acting on some “line bundle” S → M. However, as in the

case of deforming γ, we cannot argue that S = K
1/2
M

. We cannot use
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time-reversal invariance to prove that S = K
1/2
M

, because having η 6= 0
violates time-reversal symmetry. What happens if we try to argue using
the brane B′ is described later.

To determine S, we proceed as follows. We already know that at

γ = η = 0, S = K
1/2
M

. So we write S = K
1/2
M

⊗S ′, where S ′ is trivial for
γ = η = 0. As a tensor product of complex powers of line bundles over
M, S ′ has a first Chern class w ∈ H2(M,C). (Concretely, if S ′ = ⊗iLgi

i
with ordinary line bundles Li and gi ∈ C, then w =

∑
i gic1(Li).) We

formally write S ′ = Lw to express the statement that the first Chern
class of S ′ is w. We wish to determine w.

Actually, w is linear in the Kahler parameter z = (Im τ)γ∗−iη. This
follows by precisely the reasoning that was used in section 11.3 of [8]
to show that an analogous exponent f(θ) depends linearly on the four-
dimensional parameter θ. The idea is to calculate for weak coupling,
taking e2 = 4π/Im τ to be small with z fixed. Then w can be computed
in perturbation theory in z/Im τ . Concretely, perturbation theory is
used to compute the cocycle that enters in an explicit description of
the ring structure of the sheaf of (Bc.c.,Bc.c.) strings. The structure of
perturbation theory is such that only a linear term in z can appear. For
more detail, see the discussion of eqn. (11.39) in [8].

It remains to determine exactly which linear function of (Im τ)γ∗−iη
is equal to w. w takes values in the second cohomology of M(α, p) with
complex coefficients. According to (3.47) and (3.56), this is (Z⊕Λchar)⊗
C. As η+i(Im τ)γ∗ takes values in Λchar⊗C, there is a naturally defined
linear function

(4.10) w(γ, η) = 0 ⊕ (−η − i(Im τ)γ∗),

and we claim that this is the right result.
By analogy with the treatment of dependence on Ψ or θ in section

11.3 of [8], we will justify this result by showing that it holds when γ = 0
and η is equal to a lattice vector v ∈ Λchar. The key step is to define
the brane B′ that is, roughly speaking, supported on the zero section of
the cotangent bundle M ⊂ T ∗M ⊂ MH . Once we find this brane, the
(Bc.c.,B′) strings give a natural sheaf of modules for the sheaf of rings
provided by the (Bc.c.,Bc.c.) strings. By identifying this module, we can
identify the sheaf of rings.

In carrying out this program, we run into an important detail. To
define the brane Bc.c at η 6= 0, assuming that its Chan-Paton bundle L
is trivial, we need to set β∗ = −(Im τ)−1η, as we explained above. This
means that from a holomorphic point of view in complex structure I,
MH is not birational to T ∗M, but to an affine deformation thereof, and
hence we do not have a holomorphic embedding M ⊂ MH . This may
appear to obstruct the definition of the brane B′, which is supported on
M.
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However, for our present purposes, we are not interested in what
happens holomorphically in complex structure I. Rather, our concern
is the A-model of type K, in which the target space is MH understood
as a symplectic variety with symplectic structure a multiple of ωK . As
we explained in section 3.2, as a symplectic variety with symplectic
structure ωK , MH is naturally independent of β. The β-independence
is established by thinking of MH as a moduli space of flat bundles in
complex structure J .

For β 6= 0, we do not have an embedding M ⊂ MH that is holo-
morphic in complex structure I, but we do have such an embedding
that is Lagrangian with respect to the symplectic structure ωK . To
get such an embedding, we start at β = 0 with the usual embedding
M ⊂ T ∗M ⊂ MH , holomorphic in complex structure I. Defined this
way, M is a complex Lagrangian submanifold in complex structure I
– that is, it is holomorphic in complex structure I and Lagrangian for
the holomorphic symplectic form ΩI = ωJ + iωK . In particular, M is
Lagrangian with respect to ωK .

Now we change our point of view and think of MH as a complex
symplectic manifold with complex structure J . From this point of view,
MH is canonically independent of β. (We encounter no singularities in
varying β, since we are taking α regular in order to aim for an answer
involving D-modules on M(α, p).) When β is varied, we do not change
the holomorphic symplectic structure ΩJ = ωK + iωI . So in particular,
we vary β keeping fixed the symplectic structure ωK . So the subman-
ifold M ⊂ MH found in the last paragraph, if understood merely as a
Lagrangian submanifold of type K, is naturally defined for any β. We
take it to be literally independent of β, if β is varied keeping fixed the
ramified flat bundle determined (in complex structure J) by a point in
MH .

To get an A-brane B′ supported on M, we need a unitary line bundle
L′ → M whose curvature F obeys F + B|M = 0. L′ will be the Chan-
Paton line bundle of the brane B′. Here B is the B-field which (since
we assume that θ = 0) is determined by η. In fact, B is a closed two-
form on MH whose cohomology class is 0 ⊕ η ⊂ (Z ⊕ Λchar) ⊗Z R =
H2(M(α, p); R). For generic η, this cohomology class is not a lattice
vector, and hence no suitable line bundle L′ or brane B′ exists. However,
if η = v for some v ∈ Λchar, then we can take 25 L′ = L−v, that is, L′ is
a line bundle with first Chern class 0 ⊕ (−v).

Having thus defined an A-brane B′ of type K, we now consider the
(Bc.c.,B′) strings, which will furnish a sheaf of modules for the sheaf of
rings derived from the (Bc.c.,Bc.c.) strings. In quantizing the (Bc.c.,B′)

25The minus sign in the exponent of the following formula arises as follows. There
is no minus sign in the relation between B and η: [B/2π] = η. So as [F + B] = 0,
we have [F/2π] = −η. Hence if η = v, the first Chern class of the Chan-Paton line
bundle is −v.
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strings, the only thing that is new, compared to the case η = 0, is that
the Chan-Paton line bundle of the brane B′, instead of being trivial, is
now L′ = L−v. This means that the sheaf of (Bc.c.,B′) strings, instead

of being the sheaf of sections of K
1/2
M

, is now the sheaf of sections of

K
1/2
M

⊗ L−v. This shows that (4.10) is valid for γ = 0, η ∈ Λchar, and
hence for all γ, η.

We can now restate the geometric Langlands duality for tamely ram-
ified flat bundles in terms of D-modules rather than mirror symmetry.
On the left hand side of the geometric Langlands correspondence, we
consider a ramified flat bundle E → C with structure group LG and
monodromy whose orbit contains in its closure the semisimple element
U = exp(−2π(Lα − iLγ)). On the right hand side, the dual of such a
ramified flat bundle is a sheaf of modules for the sheaf of differential
operators on M(α, p;G) twisted by K

1/2
M

⊗ L−(η+i(Im τ)γ∗), which is the

same as K
1/2
M

⊗ LLα−iLγ . Thus, the “exponent” of the line bundle is
the same as the “eigenvalue” of the monodromy. S-duality establishes a
natural correspondence between objects of these two kinds. (For a flat
bundle with non-regular monodromy, this statement needs some clari-
fication, which we defer to section 4.6.) This version of the geometric
Langlands duality has been conjectured mathematically. See the survey
in section 9.4 of [7], and additional references in the introduction.

Informal Explanation

The explanation that we have just given is the most precise one that
we know. However, some readers may prefer an alternative explanation
that we will just present informally.

Consider any complex variety M and let X = T ∗M, endowed with
its natural holomorphic symplectic form ΩX . Quantization ofX leads to

differential operators on M twisted by K
1/2
M

. Now let us replace X by a
variety Y that is an affine deformation of the cotangent bundle, meaning
that there is a holomorphic fibration π : Y → M, whose fibers are those
of the cotangent bundle, but π admits no holomorphic section. Locally,
one can pick a holomorphic section and identify Y with X; globally,
the obstruction to this is determined by an element w ∈ H1(M, T ∗M).
Let us furthermore require that Y admits a holomorphic symplectic
form ΩY that locally (once we pick a local holomorphic section of π,
giving a local identification of Y with X) coincides with ΩX . This is
equivalent to saying that w can be represented by a complex-valued
(1, 1)-form on M that is annihilated by both the ∂ and ∂ operators
and hence in particular by d = ∂ + ∂. This is automatically so if M
is a compact Kahler manifold. In this situation, it is natural to claim
that quantization of Y with symplectic form ΩY leads to differential

operators on M twisted by K
1/2
M ⊗Lw, where Lw is symbolically a “line

bundle” with first Chern class w.
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A convenient way to characterize the twisting parameter w is as fol-
lows. The holomorphic symplectic form ΩX has vanishing cohomology
class. Indeed, if qα are local coordinates on M and pα are the canonical
momenta, then ΩX =

∑
α dpα ∧ dqα = d(

∑
α pα dq

α). Here the one-
form λ =

∑
α pα dq

α is globally defined, so [ΩX ] = 0. By contrast, it is
a standard result that the cohomology class of ΩY is equal to the class
in H2(M,C) of the closed (1, 1)-form w (or more precisely, the pullback
of this class to Y ). We will simply write w for this cohomology class.

Now in our problem, MH in complex structure I is (away from a set
of high codimension) an affine deformation of the cotangent bundle of
M, with holomorphic symplectic form Ω = (Im τ)ΩI = (Im τ)(ωJ+iωK).
According to (3.77), the cohomology class of Ω is w = −(Im τ)(β∗+iγ∗).
To construct the c.c. brane that is needed to relate the category of A-
branes to D-modules, we had to take β∗ = −(Im τ)−1η, so the twisting
parameter is actually w = η − i(Im τ) γ∗, as found above.

The reason that we consider this explanation heuristic, even if per-
haps more understandable for some readers, is that we are not entitled
to arbitrarily postulate what properties the c.c. brane should have. This
should be deduced as part of the standard framework of quantum field
theory. The arguments given above, together with those in section 11
of [8], are an attempt to do this.

Symmetry Of Lattice Shift

One might now ask why have we not, in the above derivation, seen
the symmetry of shifting η by a lattice vector, say η → η + v0 for
v0 ∈ Λchar. In fact, we lost this symmetry by assuming that the Chan-
Paton bundle L of the c.c. brane was trivial. The lattice shift η → η+v0
acts on all branes by tensoring their Chan-Paton bundle with L−v0 . To
restore the symmetry, we simply add additional coisotropic branes Bv0

c.c.

constructed from Bc.c. by shifting η by v0 and tensoring the Chan-Paton
bundle with L−v0 . We do not need to introduce any more B′ branes.
In fact, the full set of B′ branes constructed above already has the shift
symmetry, as these branes were defined for all possible lattice vectors v
and all β.

From a mathematical point of view, what we learn by contemplating
the shift symmetry is something called Morita-equivalence. If Lv0 is an
honest line bundle (rather than a complex power of line bundles), then

the sheaf of differential operators acting on sections of K
1/2
M

⊗Lw⊗Lv0 is
Morita-equivalent to the sheaf of differential operators acting on sections

of K
1/2
M

⊗ Lw. The Morita-equivalence is established by considering a
“bimodule” which in the present context is the sheaf of (Bc.c.,Bv0

c.c.)
strings.



124 S. GUKOV AND E. WITTEN

Analog of Type L

Everything that we have said has a direct analog for an arbitrary
Levi subgroup L, as opposed to the case L = T that we have considered
so far. We write WL for the Weyl group of L.

For general L, the parameters (α, β, γ, η) are restricted to be WL-
invariant. With this understood, the statement of the duality as a rela-
tion between a B-model at Ψ = ∞ and an A-model at Ψ = 0 requires
no essential modification. The duality establishes a natural correspon-
dence between B-branes of MH,LL(Lα, Lβ, Lγ, Lη; p, LG) and A-branes of
MH,L(α, β, γ, η; p,G), with the usual relation among the parameters.

To express the duality in terms of D-modules, we must assume that
α is L-regular. Then we denote as P the parabolic subgroup determined
by the pair (L, α), and we introduce ML(α; p,G), the moduli space of
G-bundles over C with parabolic structure of type P at the point p. For
β = γ = 0, the Higgs bundle moduli space26 MH,L(α, β, γ; p,G) contains
T ∗ML(α; p,G) as a dense open subspace, as we observed in (3.73). For
β, γ 6= 0, MH,L(α, β, γ; p,G) contains as a dense open subspace an affine
deformation of the cotangent bundle.

These geometrical facts and the existence of a canonical coisotropic
brane can be used exactly as above to get a natural map from an A-
brane of MH,L(α, β, γ, η; p,G) to a D-module. All the key statements
and arguments are the same. The only changes are that the statements
now refer to MH,L and ML (rather than MH and M), and the parameters
are WL-invariant.

In one sense, the statement for general L is slightly less natural
than the statement for L = T. Different choices of L-regular α (which
correspond of course to different choices of Lη) lead to different choices
of P. They therefore lead to D-modules over moduli spaces of bundles
with parabolic structures of different types. The parabolic structure is
of type P, where P can be any parabolic subgroup of GC that contains
L as a Levi subgroup. These different spaces, however, are birationally
equivalent.

4.5. Line Operators And Monodromies. In the absence of ram-
ification, line operators, supported at a point q ∈ C (times a line in Σ
that runs along its boundary), act in a natural way on branes. This is
explained in section 6.4 of [8].

At Ψ = ∞, the natural line operators are the Wilson operators,
which are classified by a choice of representation of the gauge group.
We take the gauge group at Ψ = ∞ to be LG, so a Wilson operator is
labeled by a representation of that group. In general, Wilson operators
can change the discrete electric flux e0. The Wilson operators that
leave fixed e0 are those that are derived from representations of LGad,
the adjoint form of LG.

26We omit η here as it does not enter the classical geometry.
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At Ψ = 0, the natural line operators are ’t Hooft operators, and
the gauge group is G. The ’t Hooft operators of G gauge theory are
constructed using singular BPS monopoles and again are classified by
representations of LG. In general, ’t Hooft operators change the dis-
crete magnetic flux m0 (into which e0 transforms under the duality).
The ’t Hooft operators that leave m0 fixed are those associated with
representations of LGad.

So at either Ψ = ∞ or Ψ = 0, the line operators that act at a given
point q ∈ C, in the absence of ramification, correspond to representa-
tions of LG, or of LGad if we want only operators that leave the discrete
fluxes fixed. The composition of these Wilson or ’t Hooft operators cor-
responds to the tensor product of representations. A central statement
of the geometric Langlands program is that the duality between LG and
G maps a Wilson operator labeled by a representation of LG to an ’t
Hooft operator labeled by the same representation.

Now suppose that p ∈ C is a ramification point. We want to deter-
mine what structure at p replaces the action of the Wilson or ’t Hooft
line operators at a generic point. We will show that the answer to this
question can be described in terms of the monodromies in the space of
ramification parameters.

Duality-Symmetric Monodromies

We begin by repeating the reasoning of section 3.7 in a duality
symmetric way. For simplicity, we start with the case that the Levi
subgroup is L = T.

For gauge group G, the definition of ramified structure at a point
p depends on a choice of parameters (α, β, γ, η) ∈ t3 × t∨, modulo the
action of a certain group of equivalences. This group is generated by (i)
the translations of α by the lattice Λcochar; (ii) the translations of η by
the dual lattice Λchar; and (iii) the Weyl group W. So the group that
acts on the parameters is an extension

(4.11) V̂ = (Λcochar ⊕ Λchar) ⋊ W.

The quotient (t3 × t∨)/V̂ is the same as (T × t × t ×L
T)/W.

If we want to restrict to translations of α and η that do not shift the
discrete fluxes m0 and e0, we should replace Λcochar by Λcort and Λchar

by Λrt. Then we get a smaller group

(4.12) V = (Λcort ⊕ Λrt) ⋊ W.

V is a sort of duality-symmetric version of the affine Weyl group Waff ,
since the affine Weyl group ofG is Λcort⋊W, and the affine Weyl group of
LG is Λrt ⋊ W. The relationship between V and V̂ is extremely simple.
The quotient Λcochar/Λcort is π1(G), and likewise Λchar/Λrt = π(LG).
The Weyl group acts trivially on each of these, so we have a group
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extension

(4.13) 1 → V → V̂ → π1(G) × π1(
LG) → 1.

We say that a point (α, β, γ, η) ∈ t3 × t∨ is V-regular if it is not
invariant under any non-trivial element of V. According to section 3.6,
the points that are not regular in this sense are the points at which the
sigma model with target MH(α, β, γ, η; p) has a local singularity. We let
Y denote the complement of the non-V-regular points in t3 × t∨. (With
two or more ramification points, we would also omit the locus of global
singularities in defining Y; this has real codimension four and will not
affect the argument.) The group V acts freely on Y so the quotient Y/V
is a smooth manifold.

We have therefore a family of smooth (4, 4) sigma models parametr-
ized by the manifold Y/V (as well as other data, such as the gauge
coupling parameter τ). We can now make an argument that is a sort
of quantum version of the reasoning in section 3.7. A basic fact about
branes is that every brane has a charge or K-theory class, taking values
roughly speaking in the complex K-theory of the target space MH .
K(MH) varies with (α, β, γ, η) as the fiber of a flat bundle over Y/V.
Taking monodromies, we get an action of V on K(MH).

To be more precise about this, we must recall that MH has distinct
topological components labeled by m0. Also, for each e0, one defines a
space of twisted branes, whose charge takes values in a twisted version27

of K-theory that we might call Ke0
(MH). Let Ke0

(MH ;m0) be the e0-
twisted K-theory of the component of MH defined by m0. The above
argument shows that V acts on Ke0

(MH ;m0) for each choice of e0

and m0. The larger group V̂ also acts, by a slight extension of this
reasoning; its action, of course, permutes the possible values of e0 and
m0. In particular, as an abelian group, Ke0

(MH ;m0) is independent of
e0 and m0 up to isomorphism.

We can understand in a relatively concrete way how V (or its exten-

sion V̂) acts on K(MH). The action of the subgroup Waff = Λcort ⋊ W
was already described in section 3.7.

On the other hand, the shift η → η + v, for v ∈ Λrt, is a shift of
the world-sheet B-field that changes its periods by integer multiples of
2π. Such a shift acts on a brane B by tensoring the Chan-Paton vector
bundle of B by the line bundle Lv whose first Chern class is v. The
associated action on K-theory is thus simply the tensor product with
Lv, for v ∈ Λrt. Since this action is clear classically, the fact that V acts
on K(MH) does not by itself tell us much beyond the action of Waff ,
which we already know from section 3.7.

27This is the K-theory of twisted vector bundles, which are described in the
present context in section 7.1 of [8]. The idea is that e0 defines a flat gerbe over MH ,
and Ke0

(MH) is the twisted K-theory defined relative to this gerbe.
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What does appear to give more information is, however, the action
of S : τ → −1/ngτ . This exchanges K(MH(LG,C)) with K(MH(G,C))
while exchanging Λrt with Λcort (and e0 with m0). So it exchanges
the action of Λrt via twisting by a line bundle with the action of Λcort

via monodromy. This symmetry of the K-theory of MH is not obvious
classically.

We will briefly indicate a simple example of how this works. The
identity element of the multiplicative structure of K(MH) is the K-
theory class of a brane B whose support is all of MH and whose Chan-
Paton line bundle is trivial. This brane varies continuously when we
vary α, β, and γ, so its K-theory class is invariant under the action of
the affine Weyl group Waff = Λcort ⋊ W. So the duality operation S

must transform it into a brane B̃ that is invariant under the action of
Λrt. In other words, the K-theory class of B̃ must be invariant under

the operation of tensoring the Chan-Paton bundle of B̃ by a line bundle
of the form Lv. This statement means that Lv must be (topologically)

trivial when restricted to the support of B̃. Actually, B̃ is a brane sup-
ported on a section of the Hitchin fibration, so its support is isomorphic
to the base B of this fibration. As this is a contractible space (isomor-
phic to C

N for some integer N), any line bundle Lv is indeed trivial

when restricted to the support of B̃.

Monodromies Of The A-Model

What we have said so far is hopefully interesting, but may not seem
to get us very close to finding the analog of Wilson and ’t Hooft opera-
tors.

To get farther, we must discuss, not branes in general, but specific
kinds of branes. For example, let us discuss the branes of the A-model
of type K, with gauge group G. This is the relevant model at Ψ = 0.
The definition of this model depends on the parameters γ and η. So
to study branes of the A-model, we should keep γ and η fixed. On the
other hand, the A-model is locally independent of α and β. So the group
of monodromies that we obtain by varying α and β will be a symmetry
group of the A-model. This group will depend on γ and η.

The process of varying α and β while keeping MH fixed as a sym-
plectic variety with symplectic structure ωK was discussed in section
3.2. From this discussion, we know that when one goes around a loop in
α− β space, avoiding singularities and keeping γ fixed, MH changes by
a symplectomorphism. Thus, the group of symmetries of the A-model
that we are about to analyze is simply a group of classical symplecto-
morphisms (or rather a group of components of the group of symplecto-
morphisms). This contrasts with the dual monodromies of the B-model,
which involve varying the quantum parameter η, and so only make sense
quantum mechanically.
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Now let us discuss the action of V. Since Λrt acts only on η, which
is held fixed in studying the A-model and its monodromies, it will play
no interesting role. We may as well divide by Λrt and replace the pair
γ, η by Y = exp(−2π(η− iγ)). Y takes values in, roughly speaking, the
complex maximal torus L

TC of LGC. To be more precise, since we have
only divided by Λrt, not Λchar, Y takes values in the maximal torus of
LGC, the simply-connected cover of LGC. Since the A-model depends
on Y , we are not interested in monodromies that involve varying Y . So
the relevant part of the Weyl group is the subgroup that leaves Y fixed.
We call this WY .

The subgroup of V that acts only on α and β is an extension of WY

by Λcort:

(4.14) VY = Λcort ⋊ WY .

So if Y = 1, VY is just the affine Weyl group. We say that a pair (α, β) ∈
t×t is VY -regular if it is not left fixed by any element of VY other than the
identity. The pairs that are not VY -regular correspond to non-regular
quadruples (α, β, γ, η), and therefore to local singularities of MH . We
define ZY to be the space of VY -regular pairs. The group VY acts freely
on ZY , so we get a family of smooth sigma models parametrized by
ZY /VY . If we pass from the sigma model to the associated A-model
of type K, the family becomes locally constant, since this A-model is
locally independent of the parameters α and β. So the fundamental
group BY = π1(ZY /VY ) acts as a group of automorphisms of the A-
model. (B loosely stands for “braid,” as will be clearer in a moment.)

This reasoning is similar to what we presented earlier in discussing
the actions of both Waff and V. However, there are two notable differ-
ences:

(A) The pairs (α, β) that are not VY -regular are in general of real
codimension two, simply because we are considering only two vari-
ables α and β. (By contrast, nonregular triples (α, β, γ) or quadru-
ples (α, β, γ, η) are of real codimension three or four, respectively.) As
a result, the space ZY of VY -regular pairs is not necessarily simply-
connected, and the fundamental group BY of the quotient ZY /VY is in
general not equal to VY . We do, however, get an exact sequence

(4.15) 1 → π1(ZY ) → BY → VY → 1.

(B) Related to this, in the case of two or more ramification points,
the global singularities are of real codimension two and might play a
role in a complete treatment. They can be avoided if one considers only
branes supported for Higgs bundles (E,ϕ) such that the underlying
bundle E, forgetting its parabolic structure, is stable. In this paper, we
will not be concerned with the global singularities.

A useful alternative description is to divide first by the action of
Λcort on α. Modulo this action, the pair (α, β) combine to the element
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T = exp(−2π(α+iβ)) ∈ TC, the maximal torus of the simply-connected
cover GC of GC. We say that T is WY -regular if it is not invariant under
any non-trivial element of WY . We write QY for the space of WY -regular
elements of TC. Then WY acts freely on QY , and BY = π1(QY /WY ).

As usual, to get some understanding of the group BY , it is helpful
to consider the cases that Y is regular or Y = 1. Other cases are
intermediate between these two. In the extreme cases, we have:

(1) If Y is regular, then WY = 1, and QY = TC. Then BY =
π1(QY /WY ) = π1(QY ) = Λcort.

(2) Alternatively, if Y = 1, then WY = W. So QY is the space of
regular points in TC, and QY /WY = QY /W is the space of regular con-
jugacy classes in GC. The fundamental group of this space is called the
affine braid group28 of LG. We denote it as Baff(LG). So the monodromy
group for Y = 1 is B1 = Baff(LG). Now, for Y = 1, VY = Λcort ⋊ W is
the affine Weyl group of LG. (4.15) in this case gives an exact sequence

(4.16) 1 → π1(Z) → Baff(LG) → Waff(LG) → 1,

where Z = Z1 is the space of regular pairs (α, β) ∈ T× t, or equivalently
Waff -regular pairs (α, β) ∈ t × t.

The affine braid group was introduced in [29] in the context of,
roughly speaking, a local version of the present problem. We have dis-
cussed the relationship in section 3.8 and return to it in section 6.

The group BY that we have defined is the group of monodromy
transformations of the ramification parameters of the A-model that
leave fixed m0. We can relax this condition and consider an extended
group B̂Y = BY ⋊ Z(G) that includes transformations that shift m0.

For regular Y , B̂Y = Λcochar, and for Y = 1, it is an extension

(4.17) B̂aff(LG) = Baff(LG) ⋊ Z(G).

We have carried out this analysis at Ψ = 0. Obviously we could
make a similar analysis for the B-model with complex structure J , which
corresponds to Ψ = ∞. This exchanges the roles of α and η along with
G and LG. The net effect is that the group of monodromies acting
on the branes of the A-model of type K with gauge group G is the
same as the group of monodromies of the B-model of type J with gauge
group LG. (However, as we noted above, the monodromy group of the
A-model acts by classical symplectomorphisms, while that of the B-
model is highly non-classical.) As we will now discuss, this generalizes
the correspondence between ’t Hooft operators in one case and Wilson
operators in the other case.

28The motivation for the name “affine braid group” is as follows. The ordinary
braid group on n letters is the fundamental group of the space of unordered n-plets of
distinct points in C. If we replace C by C

∗, we get the affine braid group of GL(n, C),
since an unordered n-plet in C

∗ is equivalent to a regular semisimple conjugacy class
of GL(n, C).
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Relation To Line Operators

We have expressed all this in terms of a group VY that acts on the
B-branes at Ψ = ∞ or A-branes at Ψ = 0. More generally, since we
can take the direct sum of two branes or multiply a brane by a positive
integer, positive integer linear combinations of elements of VY can act
on branes. Such linear combinations form what we will call the group
semiring of VY .

We will here mainly consider the case of regular Y . Then VY = Λcort,

and V̂Y = Λcochar. Let B be a brane with Chan-Paton bundle U . We
found above that Λcort and Λcochar act on B by U → Lv⊗U , for v ∈ Λcort

or v ∈ Λcochar. So the group semiring acts by tensor product with a
direct sum of such line bundles

(4.18) U → (⊕w
i=1Lvi) ⊗ U .

Now we are going to show, for the case of regular Y , exactly how
this structure is related to the line operators that exist in the absence
of ramification. We express this in the language of the B-model. (For
background, see sections 7 and 8 of [8].) Let LR be a representation of
LG. Let (E , ϕ̂) be the universal Higgs bundle over MH(LG,C)×C, and
let ELR be the associated bundle29 in the representation LR. Let ELR|q
denote the restriction of ELR to MH ×q for q a point in C. Now consider
a Wilson operator Wq(

LR) at the point q in the representation LR. Its
action on a brane B is as follows. If U is the Chan-Paton vector bundle
of a brane B, then the brane obtained by acting on B with Wq(

LR) has
Chan-Paton bundle ELR|q ⊗ U .

Now let q approach a ramification point p for which Y is regular.
At p, the structure group of the LG-bundle E is reduced to the maximal
torus L

T, and accordingly the fiber at p of the LG bundle E → C splits
as a direct sum of subspaces corresponding to representations of L

T.
Accordingly, the vector bundle ELR|q breaks up, for q = p, as a direct
sum of line bundles Lv for v ∈ Λchar. The tensor product with such a
sum of line bundles is an example of the action of an element of the
group semiring, as described in (4.18).

So we have shown that, at least for regular Y , what we get at a
generic point q from Wilson or ’t Hooft operators is, in the limit that
q approaches a ramification point p, a special case of what we get from
monodromies of the B- or A-model. The exact sequence (4.15) shows
that it is tricky to generalize this to non-regular Y . The Wilson line
operator W (LR) gives, similarly to what we have seen above, an element
of the group semiring of VY = Λchar(

LG) ⋊ WY . But there is no unique
way to lift this to the group semiring of BY . In fact, the “direction” in

29If the center of LG acts nontrivially in the representation LR, then ELR is a
twisted vector bundle rather than an ordinary one, and the corresponding Wilson
operator shifts e0.
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which q approaches p (on the Riemann surface C) affects the limit of
the Wilson operator, as has been analyzed in another language [75]

The explanation we have given may seem rather abstract. In section
5, we re-examine these questions more directly in gauge theory. We will
get a fairly satisfactory description for the A-model, and some insight
for the B-model.

Generalization For Any L

All this has a natural generalization to any Levi subgroup L of G.
All we have to do is to include L in all statements.

To begin with, of course, we require the parameters (α, β, γ, η) to
be invariant under the Weyl group WL of L. Focusing for simplicity
on the A-model, to describe its monodromies we must keep fixed Y =
exp(−2π(η − iγ)). We denote as WY,L the subgroup of the Weyl group
of G that normalizes WL and commutes with Y . This is the subgroup
that acts on (α, β), preserving their L-invariance and keeping Y fixed.
In shifting α, we should restrict ourselves to the WL-invariant sublattice
ΛL

cort ⊂ Λcort. So the analog of (4.14) is that the group that acts only
on α and β is now

(4.19) VY,L = ΛL
cort ⋊ WY,L.

We denote as ZY,L the space of L-invariant pairs (α, β) ∈ t × t that
are not left fixed by any element of VY,L. The group VY,L acts freely
on ZY,L, so we get a family of smooth A-models parametrized by the
quotient ZY,L/VY,L. This family is locally constant, so the fundamental
group BY,L = π1(ZY,L/VY,L) acts as a group of automorphisms of the
A-model. This statement has an immediate analog for the B-model.

4.6. Representations And Branes. In the absence of ramifica-
tion, an irreducible flat LG-bundle E → C corresponds to a smooth
point xE ∈ MH . The B-model of MH is independent of the Kahler
metric, which is controlled by the gauge coupling parameter τ = θ/2π+
4πi/e2. By taking Im τ large, we can go to a region in which the B-
model can be treated semiclassically. Then there is a zerobrane BE

supported at the smooth point xE ∈ MH . It is an eigenbrane for the
action of the Wilson line operators, and is a primary object of study in
the geometric Langlands program.

The role here of irreduciblity of E is that it keeps us away from the
singularities of MH . If E is reducible (but semistable), it still corre-
sponds to a point xE ∈ MH , but a singular point. We can still consider
branes that are supported at xE , but the theory of such branes is more
complicated. There is not, in general, a unique, canonically determined,
brane associated with E. Instead, we can define a space or “category” of
branes supported at xE ; it can be argued that this space is closed under
the action of the Wilson operators. This complication is a geometrical
analog of a phenomenon that is known in number theory.
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We want to discuss the analogous question for the ramified case, that
is, for a flat bundle over C\p (or more generally over C\{p1, . . . , ps} for
some finite set {p1, . . . , ps}), with monodromy around p. Let E be such
a bundle, and let V denote its monodromy around p. We assume that
E is irreducible, as otherwise we would meet a global singularity just as
in the absence of ramification. Our goal here is to consider the role of
local singularities that depend only on the conjugacy class of V .

For any V , we pick Lα and Lγ such that U = exp(−2π(Lα − iLγ))
is in the closure of the orbit of V . After making some choice of Lβ,
we want to associate a brane on MH(Lα, Lβ, Lγ; p) with the given flat
bundle E → C\p. If V (and therefore U) is regular and semisimple,
then there is no problem. MH(Lα, Lβ, Lγ; p) is smooth (for any Lβ), and
we can treat it semi-classically by taking Im τ large. The flat bundle E
determines a zerobrane BE , for any choices of Lβ and Lη.

Since U is semi-simple, the monodromies studied in section 4.5 are
abelian and act by tensoring the Chan-Paton bundle of a brane with a
line bundle Lv. But Lv is trivial when restricted to a point. So BE is
an eigenbrane for the abelian group of monodromies. It likewise is an
eigenbrane for Wilson line operators acting at a generic point q ∈ C.
This follows by the same reasoning as in the absence of ramification; see
section 8.2 of [8]. As an eigenbrane for all relevant operations, BE is a
good analog of a zerobrane supported at a smooth point in the absence
of ramification.

So in short, for regular semi-simple V , we are in essentially the same
situation as in the absence of ramification. Now let us suppose that V
ceases to be semi-simple, but is still regular. An example to keep in mind
is that V might be a regular unipotent element of LGC, for example,
the element

(4.20) V =




1 1 0 . . . 0

0 1 1 . . . 0
...

0 0 0 . . . 1




of SL(N,C). If V is not semi-simple, then the pair (Lα, Lγ) is non-
regular; for example, Lα = Lγ = 0 if V is unipotent. Then MH(Lα, Lβ, γ;
p) may, depending on Lβ, have a local singularity as described in sec-
tions 3.6 and 3.8. This will happen precisely if the triple (Lα, Lβ, Lγ) is
nonregular.

Even if MH(Lα, Lβ, Lγ; p) has a local singularity, the point xE is away
from this singularity if V is regular. This means that there is no problem
in defining the brane BE . Since it is defined in a natural and unique
way, it is also an eigenbrane for all of the monodromy operations. So
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again, for regular V , we are in essentially the same situation as in the
absence of ramification.

A problem does occur if V is non-regular. Then, if we take Lβ = 0,
the point xE is contained in the locus of local singularities. This gives
us a problem in defining the brane BE . We can resolve the singularity
by taking Lβ 6= 0 and generic enough so that the triple (Lα, Lβ, Lγ) is
regular. Lβ is a Kahler parameter in complex structure J , and tak-
ing sufficiently generic Lβ has the effect of blowing up the locus of lo-
cal singularities. (This gives us a global version of what locally is the
Springer resolution of the nilpotent cone.) This makes MH(Lα, Lβ, Lγ)
non-singular, but the blow-up replaces the point xE by a variety ΥE of
positive dimension. The best we can do is to associate to E the whole
family or “category” of branes supported on ΥE . The monodromy group
acts on this category, possibly in a way that is in some sense irreducible.

Alternatively, we can keep Lβ = 0 (or sufficiently special to avoid
blowing up the point xE), and make the sigma model smooth by taking
Lη to be sufficiently generic. Such a choice of Lη may enable us to define
a zerobrane BE,Lη. But the possible choices of sufficiently generic Lη
are divided into “chambers.” We suspect that if it is possible to use a
choice of Lη to define a zerobrane BE,Lη, then this zerobrane depends on

the “chamber” containing Lη.
For example, in the case Lα = Lγ = 0 of unipotent monodromy, if we

also keep Lβ = 0 to avoid resolving singularities, then the condition on Lη
to avoid a singularity of the sigma model is that Lη must be regular. But
the space of regular Lη’s is not connected, as the non-regular Lη’s divide
L
T into affine Weyl chambers. If we try to pass from one chamber to

another by varying Lβ so as to go around the singularities that separate
between the different chambers, we will run into the monodromies that
were used to define the group VU .

The result is that for non-regular V , we can define a family or “cat-
egory” of branes on Higgs bundle moduli space, associated with the flat
bundle E → C\p, and supported at xE or its blowup. This category
is acted on by the nonabelian group VU . All branes in this category
are eigenbranes for Wilson operators acting at points away from p. But
there is no apparent way to pick a particular brane in this family. It
might be that in some sense the group VU acts irreducibly on this family.

Applying the duality transformation S : τ → −1/ngτ , we get the
same sort of picture in the A-model of gauge group G: a family of A-
branes that are acted on by VU , and are eigenbranes for ’t Hooft/Hecke
operators acting away from p. Finally, using the c.c. brane, we can map
this family to a family of twisted D-modules over M(α, p;G), related in
the same way to the Hecke operators and the group VU .

Accordingly, for non-regular V , the geometric Langlands program
can be expressed as a duality that maps a family of B-branes, acted
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on by VU , to a family of A-branes or D-modules, acted on by the same
group.

Searching For The Canonical Zerobrane

We have just seen that the duality statement that one can deduce
using the standard surface operator associated with the maximal torus
T ⊂ G becomes more involved when the ramified flat bundle E has a
non-regular monodromy V . Although this complication will probably
surprise most physicists who have gotten this far, if any, it will come as
no surprise to geometers, since it is expected based on an analogy with
number theory.

We can, however, ask the following question. Given a flat bundle
E → C\p with non-regular monodromy V , can we find another duality
statement involving this flat bundle that involves a canonical zerobrane
rather than a whole category? It is not clear that there is anything
wrong if the answer is “no,” but if the answer is “yes,” we would like to
find out.

For some conjugacy classes of V , we can answer this question simply
by using the surface operator based on a general Levi subgroup L, rather
than the generic surface operator that we have used so far. In the pres-
ence of a surface operator of type L, a solution of Hitchin’s equations
describes in complex structure J a flat bundle E → C\p whose possible
monodromy V was analyzed at the end of section 3.3. This monodromy
is conjugate to an element of P, the parabolic subgroup that is deter-
mined by the pair (L, Lα). Generically the monodromy is L-regular (in
a sense described in section 3.3). Precisely if V is L-regular, the rami-
fied flat bundle E corresponds to a smooth point on MH,L, and hence
to a canonical zerobrane BE in the sigma model of target MH,L. This
canonical zerobrane is an eigenbrane for all of the relevant Wilson oper-
ators and monodromies by the same arguments as above. Applying to
it S-duality, we get a brane of the A-model with symplectic structure
ωK (and gauge group G rather than LG), and then using the relation
between A-branes and D-modules, we associate to E a D-module on the
moduli space ML(α; p,G) of parabolic bundles.

So in short, if the monodromy is L-regular for some L, we can re-
duce to a situation as simple as the unramified case by considering
the theory with a surface operator of type L. For instance, referring
back to the Levi subgroup described in eqn. (3.30) with G = SL(3,C),
typical examples of L-regular conjugacy classes are the semi-simple con-
jugacy class containing the element diag(λ, λ, λ−2) with λ3 6= 1, and the
Richardson conjugacy class with a representative given in eqn. (3.32).

For G = SL(N,C), every conjugacy class is L-regular for some L.
Given V ∈ SL(N,C), we simply let U ∈ T be contained in the closure of
the orbit of V , and we let L be the subgroup of SL(N,C) that commutes
with U . However, for other groups, this is not the case. For example,
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semi-simple Lie groups other than SL(N,C) contain rigid noncentral
orbits. (An orbit is called rigid if it cannot be deformed to any nearby
orbit, usually because all nearby orbits have greater dimension.) Such
an orbit is not L-regular for any L.

We suspect that it may be possible to define additional supersym-
metric surface operators in N = 4 super Yang-Mills theory with the
following properties. For every ramified flat bundle E → C\p, we hope
to be able to pick a surface operator such that, in the presence of this
surface operator, E corresponds to a canonical zerobrane BE in the
B-model at Ψ = ∞. Moreover, this surface operator should have an
S-dual (which would be a surface operator of a roughly similar type).
S-duality applied to the zerobrane BE would give an A-brane in the
dual model at Ψ = 0. However, the new surface operators will not be
related to parabolic subgroups, so in the presence of such an operator,
we do not expect MH to be related in the usual fashion to a cotan-
gent bundle. Consequently, it would not be possible to relate the dual
A-brane to a D-module, and the duality will have to be expressed as
a mirror symmetry or S-duality between the B-model of MH(LG) and
an A-model of MH(G), rather than a relation between coherent sheaves
(or B-branes) on MH and D-modules on some other space. The lack
of an interpretation via D-modules might mean that this more general
duality, if it exists, will not be relevant to number theory, but it might
still give an elegant application of S-duality and mirror symmetry.

5. Line Operators And Ramification

In section 4.5, we described the analog of Wilson and ’t Hooft op-
erators at ramification points. The description may have seemed rather
abstract, and the answer – especially in the case of unipotent mon-
odromy – is surprisingly complicated. By contrast, the Wilson and ’t
Hooft operators that act at a generic point on C are usually defined
using quite different methods of gauge theory.

It is unsatisfying to describe the two cases with completely different
methods, so in the present section we will attempt to give a gauge theory
definition in the ramified case. This has another advantage: it will help
us understand the full supersymmetry of these operators.

The topological field theory that arises at Ψ = ∞, after compact-
ifying to two dimensions, is the B-model with target MH in complex
structure J . This supersymmetry is preserved by the monodromies
considered in section 4.5. However, the relevant Wilson operators at an
unramified point preserve a greater supersymmetry. They have super-
symmetry of type (B,B,B); that is, they preserve the supersymmetry
of the B-model in any of the complex structures that make up the
hyper-Kahler structure of MH .
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Similarly, at Ψ = 0, the relevant topological field theory is the A-
model of MH with symplectic structure ωK . The appropriate supersym-
metry is preserved by the monodromies studied in section 4.5. However,
the relevant ’t Hooft operators actually preserve supersymmetry of type
(B,A,A); that is, they preserve the supersymmetry of the B-model of
type I and of the A-model of type J or K.

We will aim to use gauge theory to show that the appropriate opera-
tors acting at a ramification point really have the same supersymmetry
as the Wilson and ’t Hooft operators at a generic point. We will be able
to achieve this for the A-model, and partially for the B-model.

5.1. General Framework. For simplicity, we will work on a four-
manifold M = Σ×C. As usual, C is the Riemann surface on which we
study the geometric Langlands program. We take Σ = R × I, where R

parametrizes the “time,” and I is a closed interval. We thus can also
write M = R ×W , where W = I × C is a three-manifold. Branes are
chosen to define boundary conditions on the boundary of W .

C

B
S

y1

y2

y3

p

Figure 2. A time zero slice of a time-independent con-
figuration. The support D of a surface operator inter-
sects the time zero slice on the line S. The supports Li

of several line operators intersect the time zero slice at
points yi, i = 1, 2, 3.

For simplicity, we take our line and surface operators to have time-
independent support. Therefore, we can describe any configuration of
line and surface operators by indicating what is happening in W . A
time-independent surface operator is supported on a two-manifold D =
R × S, for S a curve in W . For applications to the ramified case of
geometric Langlands, we take S = I × p for p a point in C. We also
include line operators with time-independent support Li = R × yi for
some points yi ∈ W . We will denote these line operators simply as Li.
This configuration is sketched in fig. 2.

The line operators can be understood as operators acting on branes,
as explained in detail in section 6.4 of [8]. For example, using the
topological invariance, we can move the points yi to approach the right
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boundary in fig. 2, which is labeled by the brane B. As yi approaches
the boundary, the corresponding line operator Li acts on B to give a
new brane Bi which we describe symbolically as Li · B. By contrast,
because S = I × p ends on the boundary of W , the surface operator
with support on D = R × S must be included as part of the definition
of what we mean by a brane; it does not really give in this situation an
operator acting on branes.30

Topological invariance means that there is a natural flat connection
such that a line operator supported at a point yi ∈ W is naturally
equivalent to one supported at a nearby point y′i. This implies that line
operators commute with each other, since the space of configurations
of distinct points in a small open set in a three-manifold is connected
and simply-connected. The connectedness means that we can move two
line operators past each other without any singularity, and the simple
connectivity means that there is (up to homotopy) no ambiguity about
how to do this.

Line Operators Supported On A Surface

B

C

y1 y2 y3

p
S

Figure 3. Line operators Li supported on a surface D.
Sketched is the time zero slice of a time-independent sit-
uation. At time zero, D is represented by the indicated
line S, and the line operators are represented by points
yi ∈ S.

Now, however, consider the case that some of the points yi are actu-
ally contained in the curve S. In the situation just considered, this will
occur if we take yi = ui × p where ui ∈ I and p is the ramification point
in C (fig. 3). In this case, of course, the line Li = R × yi is contained
in the surface D = R× S, so what we have is a line operator supported
on a surface. Of course, what kinds of line operator are possible on the
support of a given surface operator is one question that we will have to
address.

30A line or surface operator whose support is of finite extent in the time direction
will give an operator acting on branes.
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Line operators supported on a surface are quite different from generic
line operators in four-space, because, granted suitable orientations, they
have a natural ordering. This is shown in fig. 3, in which the ordering is
y1 < y2 < y3. A line operator with support R × yi gives us an operator
that acts on branes, since we can move the points yi to the right, where-
upon the corresponding line operators act on the brane B. However, in
general, we should not expect line operators supported on branes to
commute with each other, since they have a definite ordering and there
is no way to move them past one another without meeting a singularity.

Thus, at a generic point q ∈ C, we get a commutative algebra Sq of
Wilson or ’t Hooft operators that act on branes. But at a ramification

point p, we get instead in general a noncommutative algebra Ŝp.

Although Ŝp is in general noncommutative, it commutes with the
algebra Sq of Wilson or ’t Hooft operators supported at a generic point
q ∈ C. This is so simply because, as long as q is not a ramification
point, a line operator that acts at q can be freely moved to the left or
right, without encountering a singularity.

Of course, a noncommutative algebra may contain a large center.

We can map Sq to the center of Ŝp by taking the limit as q approaches
p. In a topological field theory, this limit will exist since the distance
between q and p is anyway irrelevant. However, generically there will be
a monodromy as q is circled around p, and if so, the limit of an element
of Sq as q → p depends on the direction from which the limit is taken.
This is obvious for the B-model, as we note in section 5.2, and has been
analyzed in [75] for the A-model (in a language very different from that
of this paper).

So the usual algebra of Wilson or ’t Hooft operators can be mapped
to the center of the noncommutative algebra that acts at a ramification
point, but not quite in a canonical way.

Relation To Monodromies

Now let us discuss how this formulation is related to the description
by monodromies in section 4.5. In that approach, one considers oper-
ations on branes that preserve only one topological supersymmetry –
the symmetry of the B-model in complex structure J or of the A-model
with symplectic structure ωK . For simplicity, we will just express the
following argument in terms of the B-model. For the A-model, the story
is the same with α and η exchanged.

In the B-model in complex structure J , the dependence of the
Lagrangian on the Kahler parameters (β, η) is entirely of the form∫
M d4x

√
g{Q,V }, where Q is the appropriate topological supercharge

and V is suitably chosen. The dependence on the parameters (α, γ)
which control the complex structure cannot be put in this form.

With an appropriate choice of V , we can let the pair (β, η) be non-
constant functions along the support D of a surface operator. For our
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purposes, we take these functions to be time-independent, but to vary
as one moves from left to right along the curve S of fig. 3. We must
keep away from values of the pair (β, η) at which the quantum theory
would become singular. Letting (β, η) vary along S, keeping away from
the locus of singularities, gives us back exactly the monodromies that
were described in section 4.5.

Now we can see the relation between monodromies and line opera-
tors. In describing a monodromy, we can let the pair (β, η) be constant
outside of a small interval I0 ∈ S. In a topological field theory, the size
of the interval I0 does not matter. If we think of this interval as being
essentially pointlike, the monodromy is just a particular way to describe
a line operator.

However, the description of line operators by monodromies has a
drawback if we wish to see the full topological supersymmetry of the B-
model at Ψ = ∞. We recall that this symmetry is of type (B,B,B). To
preserve B-type supersymmetry in complex structure J , we must keep
α and γ fixed (as we did above), since this complex structure depends on
those parameters. Likewise, to preserve B-type supersymmetry in com-
plex structure I, we must keep β fixed, as complex structure I depends
on β. So altogether, to preserve the full topological supersymmetry of
type (B,B,B), we can only vary η, and at best we will only be able
to see abelian monodromies that correspond to shifting η by a lattice
vector.

The most interesting nonabelian singularities are expected if α =
β = γ = 0. In this case, to avoid a singularity, η must be regular.
Thus, η is confined to the interior of an affine Weyl chamber. With this
restriction, we cannot observe any monodromies at all.

There is a similar problem, of course, in the A-model at Ψ = 0 if we
wish to see the full topological supersymmetry of type (B,A,A). If we
want to preserve the full symmetry of the problem, monodromies are
not an adequate framework. Our goal in the rest of this section is to see
how much better we can do by thinking in terms of line operators rather
than monodromies – that is, by defining discrete operations analogous
to Wilson and ’t Hooft operators in the unramified case.

5.2. The B-Model. The easy case to discuss is the B-model, but
this is also the case in which we will not be able to get a fully satisfactory
answer.

In the unramified case, with gauge group LG, the important oper-
ators that act on branes are Wilson operators in a representation LR
of LG. They are defined by parallel transport using the complex-valued
connection A = A + iφ. If L is a closed loop in the four-manifold M ,
we define the Wilson operator

(5.1) W (LR;L) = TrP exp

(
−
∫

L
A
)
,
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where P exp
(
−
∫
L A
)

is the holonomy of the connection A along the

line L, and the trace is taken in the representation LR. If instead L is
an open line (connecting boundaries or ends of the four-manifold M),
we define W (LR;L) as this holonomy, regarded as an operator acting
between initial and final states in the representation LR.

For the geometric Langlands program in the unramified case, we
take M = R× I ×C, where R parametrizes the “time,” I is an interval,
and C is a Riemann surface. To get a Wilson operator that can act on
branes, we take L = R × u× q, with chosen points u ∈ I and q ∈ C.

If L is contained in the support D of a surface operator, as in fig. 3,
we can carry out much the same construction. There is one important
difference. On the support of a surface operator, the group LG is re-
duced to its maximal torus L

T. Hence, if L is contained in D, we can
define Wilson operators associated with a choice of representation of L

T.
This is more general than a choice of representation of LG, since a rep-
resentation of LG can be decomposed as a direct sum of representations
of L

T, but in general not the other way around.
So in general, at a ramification point the representation ring of L

T

acts on branes of the model at Ψ = ∞, extending the action of rep-
resentations of LG that occurs at a generic point. What happens is
simply that a Wilson operator at a generic point q, associated with a
representation of LG, splits up, in the limit that q approaches p, as a
sum of Wilson operators associated with representations of L

T.
Because the ramified flat bundle of the B-model has a monodromy

around the support of a surface operator, there is a subtlety in the limit
q → p in this situation. The limit depends on the path via which one
takes q to approach p.

Interpretation

The representation ring of L
T is the coweight lattice Λcowt. This

contains a sublattice Λcort consisting of Wilson operators that do not
change the discrete electric flux e0.

We similarly encountered in section 4.5 an action on branes of the
lattice Λcort or Λcowt. However, the explanation given there was some-
what different: in that approach, the lattice acts by shifts of η, that is,
by 2π shifts of the theta-angles that are defined on the impurity surface.

It is, however, a classic result [76] that a Wilson operator in abelian
gauge theory in two dimensions causes a shift in the theta-angle by an
integer multiple of 2π. Let us recall how this comes about. We consider
a gauge theory with gauge group H = U(1) on a two-manifold D. We
let L be a one-manifold on D of a suitable type. The simplest case to
consider is that L is a closed one-manifold that is the boundary of a
region R ⊂ D. Let A be an abelian gauge field31 on D with curvature

31We consider A as a connection on a principal U(1) bundle, represented locally
by a real one-form.
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F . Then for the holonomy of A around L, we have the identity

(5.2) exp

(
i

∮

L
A

)
= exp

(
i

∫

R
F

)
.

This says that the theta-angle jumps by 2π in crossing the line on which
a charge 1 Wilson operator is supported. With more care in the analysis,
one can reach the same conclusion even if the one-manifold L is not
closed.

Discussion

So for the case of regular semi-simple monodromy, the lattice ac-
tion on branes that we have found from gauge theory is all that we
expect to see. However, according to the analysis of section 4.5, a larger
noncommutative group should act on branes in case the pair (α, γ) is
non-regular. Unfortunately, as we will now explain, it seems difficult
at Ψ = ∞ to see this larger symmetry by semi-classical gauge theory
methods. Thus we will not really be able with these methods to do
better than we did with monodromies.

The monodromies that we want to see arise by varying β and η, and
are absent if β is constrained so that the triple (α, β, γ) is always regular.
So the existence of these monodromies depends on what happens when
that triple becomes non-regular. At this point, the classical moduli
space MH gets a local singularity, in the language of section 3.6.

The monodromies still make sense, because the quantum theory
remains smooth if η is generic. However, it is hard to use this fact about
the quantum theory in a semi-classical gauge theory construction of line
operators. Any such construction begins with a classical construction
which is then implemented quantum mechanically. Operators whose
definition depends on quantum properties of the theory are difficult to
see using gauge theory methods.

The situation is different in the A-model, because the roles of α and
η are exchanged. The relevant monodromies are found by varying α
and β, with γ and η fixed. Even if γ = η = 0, one can see all the
monodromies in the region in which the pair (α, β) is regular, which
means that the classical geometry of MH is smooth.

This suggests that in the A-model, we might be more successful in
using gauge theory methods to describe the full set of operators that
act on branes and all the supersymmetry that they preserve. That will
be our next goal.

5.3. The A-Model. In the absence of ramification, the natural op-
erators acting on branes in the A-model are ’t Hooft operators, defined
by prescribing a singularity that the fields are required to have. So in
the presence of ramification, we will look for ’t Hooft-like operators. To
keep things simple, we will take the Levi subgroup defining our surface
operator to be L = T.
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It is convenient to get to Ψ = 0, that is, the A-model with symplectic
structure K, by taking the twisting parameter of the underlying four-
dimensional theory to be t = 1 and the four-dimensional theta-angle
to vanish. On a general four-manifold M , the conditions to preserve
the topological symmetry of the A-model were described in eqns. (9.1),
(9.2) of [8]. If we set A = A + iφ, and write F = dA + A ∧ A for the
curvature of A, and set dA = d+A, then the conditions are

F + i ⋆ F = 0(5.3)

dA ⋆ φ = 0.

We specialize to M = R × W , with R parametrized by a “time”
coordinate s. We restrict the equations (5.3) to the time-independent
case. This is motivated by the fact that the usual ’t Hooft operators
are defined by a time-independent singularity (and by arguments given
in the introductory part of section 9 of [8], which are also relevant in
the presence of ramification). In a time-independent situation, the four-
dimensional connection reduces to A = A′ +A0 ds with A′ a connection
on a G-bundle E → W and A0 an ad(E)-valued zero-form. Similarly
we write φ = φ′ +φ0 ds, where φ′ and φ0 are ad(E)-valued forms on W .
We set A′ = A′ + iφ′, F ′ = dA′ +A′ ∧A′, and Φ0 = φ0 − iA0. Since the
whole subsequent discussion will occur in three dimensions, we omit the
primes. The first equation in (5.3) becomes

(5.4) F = ⋆DΦ0,

where D = d+A and of course ⋆ is now the three-dimensional Hodge ⋆
operator. The second equation becomes

(5.5) D ⋆ φ =
i

2
[Φ0,Φ0].

Scaling Symmetry

An ’t Hooft-like operator is defined using a singular solution of these
equations. For example, ordinary ’t Hooft operators are defined by
using a singular solution of these equations that has a singularity in
codimension three, that is, at an isolated point r ∈W . The construction
was described in section 6.2 of [8], and will be generalized below. In the
present paper, our main topic has been surface operators, which arise
by specifying a codimension two singularity – the familiar singularity
with parameters (α, β, γ).

We are interested in a more complicated situation in which a curve S
of codimension two singularities contains an isolated point y at which the
singular behavior is “worse.” Thus, near a generic point of S, we see the
usual codimension two singularity, but a new singularity occurs at the
point y ∈ S. A priori, to the left of y, the line S is labeled by parameters
(α, β, γ), and to the right it is labeled by parameters (α′, β′, γ′). If we
are to get a surface operator that preserves the full supersymmetry of
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C

y

S

B2B1

Figure 4. A line operator supported on a surface is
represented in this time zero slice by a point y on a line S.
In the A-model, the fields have a prescribed singularity
along S. Near y, the singular behavior is different from
what it is near a generic point on S. The generic singular
behavior along S may in turn be different on the two
sides of y.

type (B,A,A), we must have (β, γ) = (β′, γ′), because β and γ are
physical parameters in the B-model of type I, and cannot jump if we
are to preserve the supersymmetry of this model. However, there is
no reason to consider only the case that α = α′. The topological field
theories of type (B,A,A) are locally independent of α, so we should
expect to get results that are essentially independent of α and α′.

To simplify things, we will make an assumption about the nature
of the singularities that we are looking for. We will assume that they
are scale-invariant, like the singularities used to define ordinary ’t Hooft
operators. Indeed, since we are only interested in the local singular
behavior, we can replace W by R

3, with y as the origin in R
3. We

choose Euclidean coordinates x1, x2, x3 on R
3, and we take the line S

of fig. 5 to be the x1 axis, defined by x2 = x3 = 0. R
3 admits a

scaling symmetry ~x→ λ~x, for real positive λ. The equations of interest
are invariant under this scaling symmetry (if we take Φ0 to scale with
dimension 1), and the required singularities along S away from the point
y are compatible with scale invariance. So it makes sense to look for a
scale-invariant singular solution, and this will suffice for our purposes
here.

If we remove the point y from R
3 and divide by scaling, we get

(R3\y)/R∗
+ = S2 ∼= CP

1. We will call this quotient V. The interesting
solutions can be largely described in terms of data on V. The fields on
V will be singular at two points sketched in fig. 5, namely the points p
and p′ at which V meets the line S.

The Case φ = 0
As we learned in section 4.5, the operators acting on branes are most

interesting if β = γ = 0. In this case, it is possible to have φ = 0 (since
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S p′ p

V

Figure 5. To describe the singularity locally, we replace
the three-manifold W by R

3, and the line S by a straight
line R ⊂ R

3. The point y becomes the origin in R
3,

marked here by the black dot. V is a unit sphere sur-
rounding the origin. It intersects the line S at two points,
p and p′.

φ has no singularity along a generic point of S). It turns out that the ’t
Hooft-like operators that we are seeking can be defined using a singular
solution with φ = 0, and also A0 = 0.

This leads to a drastic simplification in the equations (5.4) and (5.5).
They reduce to the Bogomolny equations

(5.6) F = ⋆dAΦ0,

where now F = dA + A ∧ A and Φ0 = φ0 take values in the real Lie
algebra g of G. We will make an assumption that is stronger than scale-
invariance: we assume that A and Φ0 are pullbacks from V = S2. We
will think of V as the unit sphere in R

3, defined by r = 1 where r = |~x|.
The equations on S2 come out to be

F = − ⋆ Φ0(5.7)

dAΦ0 = 0,

where now these are equations on the two-manifold V and ⋆ is meant
in the two-dimensional sense. For example, to get the first equation, we
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use the fact that the dependence of Φ0 on r is precisely a factor of 1/r
(since Φ0 scales with weight 1), so that at r = 1 we have ∂Φ0/∂r = −Φ0.
The second equation is obtained using the fact that F vanishes when
contracted with ∂/∂r (because we assume the solution to be a pullback
from V).

Obviously, the two equations combine to

(5.8) dA ⋆ F = 0.

These are the two-dimensional Yang-Mills equations, that is, they are
the Euler-Lagrange equations that can be derived from the Yang-Mills
action

(5.9) I = −1

2

∫

V

TrF ∧ ⋆F.

Another interpretation of these equations is as follows. Given a
Riemann surface V, every connection A on a G-bundle E → V en-
dows E with a holomorphic structure, defined by the ∂ operator ∂A =
dz(∂z + Az). Turning this around, we can begin with a holomorphic
GC-bundle E → V and ask what sort of unitary connections E admits
that are compatible with its holomorphic structure (in the sense that
the holomorphic structure induced by the connection agrees with the
given holomorphic structure of E). Stable and semistable bundles are
precisely the ones that admit a flat unitary connection compatible with
their holomorphic structure [51]. More generally, if we endow V with a
Kahler metric and thus a ⋆ operator (so that the Yang-Mills equations
and action are defined), then [52] every GC-bundle E → V, stable or
not, admits a unitary connection, unique up to gauge transformation,
that obeys the Yang-Mills equations and is compatible with the holo-
morphic structure of E. Thus, in particular, solutions of the Yang-Mills
equations up to gauge transformation are in natural correspondence
with equivalence classes of holomorphic GC-bundles.

This result has a natural interpretation in terms of the gradient flow
of the Yang-Mills action [52], but we will not need this here. More im-
portant for us is the generalization of the above result to allow parabolic
structure [77]. We will state this theorem for any number of ramifica-
tion points with arbitrary choices of parabolic subgroups. We remove
from the Riemann surface V a finite set of points p1, . . . , ps. We label
each of the pi by a parabolic weight αi ∈ t, and an associated conjugacy
class Ui = exp(−2παi). We assume αi to be generic enough that for
each i, the Levi subgroup Li ⊂ G that commutes with αi is the same
as the subgroup that commutes with Ui; we write Pi for the parabolic
subgroup determined by the pair (L, αi). We consider a connection A on
the G-bundle E → V\{p1, . . . , ps} that obeys the Yang-Mills equations
and whose holonomy around the point pi is conjugate to Ui. The claim
is that such connections, up to gauge transformation, are in one-to-one
correspondence with holomorphic GC-bundles E → V with parabolic
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structure (of type Pi) at the points pi. A parabolic bundle is stable or
semi-stable if and only if the corresponding solution of the Yang-Mills
equations is flat; otherwise, it is unstable.

In applying this theorem, since we are taking our surface operators
to be of type T, we are for the moment interested in the case that the
Li are all conjugate to the maximal torus T. Hence, until the end of
this section, where we briefly discuss surface operators of general type
L, the phrase “parabolic structure” means a reduction of the structure
group to a Borel subgroup B.

Parabolic Bundles For SL(2,C)
For constructing ’t Hooft-like operators, we are interested in GC-

bundles over V = CP
1 with parabolic structure at two points, p and p′.

The parabolic weights at the two points are α and −α′. The reason for
the minus sign is that in fig. 5, the two-sphere V intersects the line S
with opposite orientation at the points p and p′.

Parabolic bundles in this situation can be described very explicitly.
To explain the key ideas, we take GC = SL(2,C), and carry out the
analysis both holomorphically and using the relation to the Yang-Mills
equations.

Looking at things from a holomorphic point of view, the SL(2,C)
bundle E → V (regarded as a rank two vector bundle of trivial deter-
minant) must be O(m)⊕O(−m) for some integer m, which we may as
well assume to be non-negative. In addition, we must endow E with
parabolic structure at the two points p, p′ ∈ V. Parabolic structure for
a rank two bundle E at a given point on a Riemann surface is simply
a choice of a one-dimensional subspace of the fiber of E at that point.
We denote these fibers as E|p and E|p′ . So the parabolic structures at
the points p and p′ are given by choices of subspaces Ep ⊂ E|p and
Ep′ ⊂ E|p′ . The isomorphism classes of such parabolic bundles can be
classified as follows:

(1) Suppose first that m = 0. Then the bundle E is trivial, and the
group GC

∼= SL(2,C) acts on it. We say that the parabolic structures at
p and p′ agree if there is a non-zero global section of E whose restriction
to p takes values in Ep and whose restriction to p′ takes values in Ep′ .
Otherwise we say they disagree. Up to isomorphism, that is, modulo
the action of SL(2,C), there are precisely two choices: the parabolic
structures at p and p′ may agree or disagree.

(2) Now suppose that m > 0. The bundle E = O(m) ⊕O(−m) has
a unique sub-bundle isomorphic to O(m) (characterized by the fact that
any global holomorphic section of E is actually a section of this sub-
bundle). By constrast, the embedding of O(−m) in E and hence the
splitting E = O(m)⊕O(−m) is not canonical. Up to an automorphism
of E, the only invariant information in the parabolic structure is whether
the subspaces Ep and Ep′ coincide or do not coincide with the fibers of
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O(m) at p and p′. So for given m, there are 2 × 2 = 4 choices. We
organize the four possibilities as follows. We label the parabolic bundle
E by the integer m if Ep = O(m)|p, and otherwise we label it by −m.
And we say that the parabolic structure at p′ agrees with that at p if
Ep and Ep′ both coincide with, or both differ from, the relevant fiber of
O(m). Otherwise, we say that the parabolic structures disagree.

Now let us look at things from the point of view of the Yang-Mills
equations. In this case, we need to pick parabolic weights at the points
p and p′. (The weights did not enter the holomorphic description, since
we were not concerned with the question of which parabolic bundles
were stable.) We take

α = iy

(
1 0

0 −1

)
(5.10)

α′ = iy′

(
1 0

0 −1

)
,

with 0 < y, y′ < 1/2. It is also convenient to take initially y 6= y′.
The Yang-Mills equations (5.8) tell us that the curvature is covari-

antly constant, so we can pick a gauge in which the curvature is actually
constant

(5.11) F = i

(
f 0

0 −f

)
,

with a real constant f that we may as well take to be nonnegative.
We will see momentarily that f 6= 0 if y 6= y′. Since F is covariantly
constant, it commutes with the holonomies U and U ′ around the points
p and p′, and therefore (assuming f 6= 0) these holonomies are diagonal
matrices. Since the holonomies must be conjugate to exp(−2πα) and
exp(−2π(−α′)), respectively, it follows that U = exp(−2πǫα), U ′ =
exp(2πǫ′α′), with ǫ, ǫ′ = ±1. Finally, a bundle E with the connection
and curvature that we have just described exists if and only if

(5.12) exp

(∫

V

F

)
= UU ′.

This condition is equivalent to

(5.13)

∫

V

f

2π
+ ǫy − ǫ′y′ = m′,

for some integer m′.
The Weyl group acts by changing the sign of F , y, y′, and m′. So

by a Weyl transformation, we can fix ǫ = 1, after which the solutions of
the Yang-Mills equations are labeled by an integer m′ and the variable
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ǫ′ ∈ {±1}. The classification we have given of the solutions of the Yang-
Mills equations is also valid if y = y′, but in that case one needs a little
more care in treating the case ǫ′ = 1, m′ = 0.

Thus, the classification of Yang-Mills solutions agrees with the clas-
sification of parabolic bundles. In this comparison, m′ corresponds to
m, while ǫ′ = 1 (or −1) corresponds to the case that the two parabolic
structures agree (or disagree).

Each such solution or bundle enables us to define an ’t Hooft-like
operator. Thus, for every pair (m, ǫ′) ∈ Z × Z2, we get an ’t Hooft-like
operator Tm,ǫ′ .

These operators do preserve the full topological supersymmetry of
type (B,A,A). To see this, we first note that, since they are derived
from solutions of the requisite equations (5.4) and (5.5), they preserve
the topological symmetry of the A-model of type K (the one with sym-
plectic structure ωK). As these solutions are invariant under ϕ → iϕ,
which rotates the symplectic structure ωK into ωJ , they also preserve the
topological symmetry of the A-model of type J . Linear combinations
of these two supercharges generate the full topological supersymmetry
of type (B,A,A).

Action On Branes

C

y

S

B1 B2

Figure 6. Action of a line operator, here inserted at the
point y, on branes. The fields (A, φ) determine a ramified
Higgs bundle Eu → Cu = {u} × C in complex structure
I for every u ∈ S. In a solution of the supersymmetric
equations, the holomorphic type of Eu is constant except
when Cu crosses the point y, at which point it jumps.

In broad outline, the action of one of these ’t Hooft-like operators
on branes is analogous to the action of ordinary ’t Hooft operators in
the unramified case, as described in [8]. We will hence be rather brief.

In fig. 6, we consider fields (A, φ) on a G-bundle E over the three-
manifold W = I×C with the usual singularity along the line S. For any
u ∈ I, the restriction of the bundle E and fields A, φ to Cu = {u} × C
give a ramified Higgs bundle Eu → Cu. If the Bogomolny equations (5.6)
are obeyed, the holomorphic type of Eu is independent of u, except in
crossing the position of a line operator. If one crosses a line operator
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supported at a generic point in C (times a point in I), the bundle Eu

undergoes an ordinary Hecke modification, and if as in fig. 6 one crosses
a line operator supported on S, one gets a more general Hecke-like
modification that can involve the parabolic structure. The justification
of these statements is as in [8].

Now suppose that we want to see how the line operator Ly at the
point y in fig. 6 acts on, say, the brane B1 on the left of the figure.
What we have just described means that the operator Ly determines a

“correspondence” Q ⊂ MH ×MH . Q parametrizes pairs (Ẽu, Eu), where

Ẽu can be obtained from Eu in “jumping” over the line operator Ly.
Q can be regarded as a brane in MH × MH of type (B,A,A), since it
is obtained by solving equations that preserve this symmetry. We are
mainly interested in it as an A-brane of type K.

In fact, most parabolic bundles over V ∼= CP
1 that may be used

to define the ’t Hooft-like operator Ly are unstable. When this is the
case, we really want to define Q using a compactification of the space

of pairs (Ẽu, Eu) by including Hecke-like modifications defined using a
less unstable parabolic bundle (for GC = SL(2,C) this simply means
that |m| is smaller). This is just as in the unramified case. One would
expect that in principle use of such a compactification could be justified
based on the underlying four-dimensional gauge theory.

Now let πi, i = 1, 2, be the two projections πi : MH × MH → MH .
Given a brane B1 over MH , we “pull it back” to MH × MH via π∗1,
tensor it with Q, and “push forward” to MH via p2, to get the new
brane Ly · B1. Thus Ly · B1 = π2 ∗(p

∗
1(B1) ⊗ Q). If B1 is a brane of type

(B,A,A), these operations can be carried out using complex geometry
in complex structure I, but more generally, if B1 is simply an A-brane
of type K, one must use the analogs of these operations in the A-model,
that is, in Floer cohomology.

Here is a possibly more down-to-earth explanation. To construct the
physical Hilbert space in the situation of fig. 6, with branes defining the
boundary conditions at the ends and the operator Ly in the interior, one

proceeds as follows. One considers the compactified moduli space N of
supersymmetric configurations, with boundary conditions determined
at the two ends by the branes B1, B2, and Ly in the interior. The

physical Hilbert space is the cohomology of N . To define the action of
Ly on the branes, the idea is that the cohomology of N is the same as it
would be if the singularity due to Ly were omitted and B1 replaced by
some other brane Ly ·B1, which will not depend on B2. The Chan-Paton
sheaf of Ly · B1 has a fiber at a point Eu ∈ MH that is equal to the
cohomology of the space Ξ(Eu) obtained as follows: Ξ(Eu) parametrizes

Higgs bundles Ẽu such that the pair (Ẽu, Eu) represents a point in Q.
(In this oversimplified explanation, we have ignored the singularities of
Q.) This recipe can be justified by thinking through how one would
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compute the physical Hilbert spaces with or without insertion of the
operator Ly.

Affine Weyl And Braid Groups

Now let us return to the example GC = SL(2,C), in which we
classified the ’t Hooft-like operators by pairs (m, ǫ′) ∈ Z×Z2. The affine
Weyl group Waff of SL(2,C), which was introduced in eqn. (3.50), is
an extension

(5.14) 0 → Z → Waff → Z2 → 0,

and elements of this group are fairly naturally labeled by pairs (m, ǫ′),
just like the ’t Hooft-like operators. Actually, because Z2 acts on Z by
reversing the sign, there is a subtlety about the sign of m, just as there
was for the ’t Hooft operators. The correspondence of ’t Hooft operators
with elements of Waff is more natural than the correspondence of either
one with pairs (m, ǫ′).

This has an analog for any simply-connected G: bundles on CP
1

with parabolic structure at precisely two points correspond naturally to
elements of Waff . This is fairly easy to see in the Yang-Mills approach,
by generalizing the arguments we gave for SL(2,C), and is left to the
reader. It is also a standard result in the holomorphic approach.32

B

C

p
S

y1 y2

Figure 7. Two line operators living on the support of
a surface operator can be composed by simply moving
the lines together. In the static case depicted here, this
is done by taking the limit as y1 → y2. In topological
field theory, line operators generate an associative alge-
bra that acts on branes.

The ’t Hooft-like operators that we have defined can be composed
in a natural fashion by moving two lines together, as sketched in fig. 7.
One might expect that these operators would compose according to the
multiplication law of the affine Weyl group. However, according to [29]
as well as our arguments in section 4.5, one expects that the group that
acts on branes of the A-model at a ramification point p ∈ C should be

32It is equivalent to the statement that bundles on CP
1 with parabolic structure

at two points correspond to orbits in the action of the Iwahori group on the affine
flag manifold.
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the affine braid group, not the affine Weyl group. As in (4.16), the two
groups are related by an exact sequence

(5.15) 1 → π1(Z) → Baff → Waff → 1,

where Z is the space of pairs (α, β) ∈ t × t on which Waff acts freely.
This is a non-trivial extension, so Waff can be lifted to Baff , but not
in a way that respects the group law. Therefore, we do not expect the
operators Tm,ǫ′ acting on branes to respect the relations of the affine
Weyl group.

We can be slightly more specific. For G of rank r, Waff is generated
by elementary reflections Ti, i = 1, . . . , r + 1, one for each node of the
Dynkin diagram. They obey T 2

i = 1 and certain additional relations.
For example, for simply-laced G of rank greater than 1, one has

(5.16) TiTjTi = TjTiTj

if the vertices i and j are connected by an edge, and

(5.17) TiTj = TjTi

otherwise. To get the affine braid group, one omits the relation T 2
i = 1,

but keeps the others. A word of shortest length in the affine Weyl group
can be lifted in a fairly natural way to the “same” word in the affine
braid group, but this does not give a group homomorphism.

We will not try here to describe via gauge theory methods the oper-
ations on branes that correspond to π1(Z). In examples, it appears that
π1(Z) acts by tensoring the Chan-Paton bundle of a brane with certain
vector bundles with a non-trivial action of the ghost number.

Incorporation Of β And γ
So far we have taken the Higgs field φ to vanish, which only makes

sense if β = γ = 0. If (β, γ) 6= 0, then φ has prescribed singularities,
and cannot vanish.

It is surprisingly straightforward to incorporate β and γ in the anal-
ysis, for the following reason. The solutions of the Yang-Mills equations
that we have used to describe the operators Tm,ǫ′ are actually all abelian,
that is, the structure group reduces from G to its maximal torus T. This
reflects the fact that the fundamental group of the twice-punctured two-
sphere is abelian.

This being so, we can incorporate β and γ by simply adding an
explicit abelian solution for φ. Given (β, γ) ∈ t, we define

(5.18) ϕ =
1

2
(β + iγ)

dz

z
,

where z = x2 + ix3, with x2 and x3 being the normal coordinates to
the line S ⊂W = R

3. (ϕ is not a pullback from V.) Then we obey the
equations (5.4) and (5.5) by setting φ = ϕ+ ϕ (still with A0 = 0). The
singularity of ϕ is independent of x1, so as expected this construction
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is only possible given that β and γ, unlike α, do not jump in crossing
the support of a line operator.

The line operators obtained this way do preserve topological sym-
metry of type (B,A,A). In adapting the argument that we gave at
ϕ = 0, care is needed only at one point. The transformation ϕ → iϕ
is not a symmetry of the solution just described, but rather maps this
solution into a solution of the same form with different (β, γ). This is
enough to justify the argument.

Including φ in this way, even though it may seem like a trivial opera-
tion, actually places an interesting restriction on the part of the solution
involving the gauge field. (For an analogous statement without ramifica-
tion, see section 10.5 of [8].) With β = γ = 0, the parabolic structures
at the points p and p′ are related by a relative Weyl transformation.
For example, in the Yang-Mills construction, this happened because a
knowledge of the conjugacy classes of the monodromies U1 and U2, plus
the fact that they commute with the curvature F , fixes them only up to
Weyl transformations. However, the Weyl group acts diagonally on the
triples (α, β, γ) and (α′, β, γ). So since β and γ are constant, we cannot
act on α and α′ with arbitrary Weyl transformations. We are restricted
to Weyl transformations that act trivially on β and γ. Quantum me-
chanically, if we include η, which likewise cannot jump because it is a
physical parameter of the A-model of type K, the Weyl transformation
must commute with (β, γ, η). Hence, a surface operator of this type
is determined by the characteristic class m and a Weyl transformation
that commutes with (β, γ, η). This is the result that one would expect
from section 4.5.33

In particular, if the triple (β, γ, η) is regular, there is no freedom at
all to make a Weyl transformation. The ’t Hooft-like operators that act
at a ramification point are hence classified entirely by the characteristic
class m ∈ Λcort (or Λcowt if one wishes to include operators that change
the characteristic class of the bundle). This agrees with the analysis in
section 4.5, where we found that in the case of a ramification point with
regular semi-simple monodromy, what acts on branes is precisely this
lattice.

Analog Of Type L

As usual, we can generalize all this to the case of a surface operator
based on an arbitrary Levi subgroup L. The details are fairly obvious
and are left to the reader. We will just note that ’t Hooft-like operators
supported on a surface of type L with β = γ = 0 are still classified by
GC-bundles over V ∼= CP

1 with parabolic structure at the two points p

33The analysis there gave a slightly different answer (the Weyl transformation
had to commute with (γ, η)) because, as only the A-model of type K was considered,
β was free to vary. Here we are constructing ’t Hooft-like operators that preserve the
full (B, A, A) symmetry.
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and p′. Now, however, the parabolic structures at p and p′ are respec-
tively of type P and P′, where P and P′ are the parabolic subgroups of
GC determined by the pairs (L, α) and (L,−α′). Bundles with para-
bolic structure of this type can be easily classified using the Yang-Mills
equations and correspond to elements of the group called Waff,L in sec-
tion 3.7. This is the group that acts on the cohomology of MH,L via
monodromies in the space of ramification parameters. The composition
of such ’t Hooft-like operators is expected to give the braid-like group
described in section 4.5. Including β and γ has again the effect that
the Weyl group element that enters in comparing the two parabolic
structures must commute with β and γ.

6. Local Models And Realizations By String Theory

6.1. Overview. The concluding section of this paper is devoted
to alternative approaches to a few of the topics in this paper. We first
provide an overview.

Instead of describing a surface operator by simply postulating that
the fields have the familiar singularity

A = αdθ(6.1)

φ = β
dr

r
− γ dθ

along a codimension two surface D, it is tempting to describe such an
operator by introducing new degrees of freedom supported on D and
coupling them to the gauge fields of the N = 4 super Yang-Mills theory
in bulk. For example, hypermultiplets or vector multiplets with (4, 4)
supersymmetry in two dimensions can be coupled to N = 4 super Yang-
Mills theory in bulk. This will give a theory somewhat like the one that
we have described “by hand” in the present paper.

The physics literature of course contains many analyses of conformal
field theory coupled to defects of various kinds, that is, fields supported
on a submanifold of positive codimension. The Kondo model in con-
densed matter physics is a classic example. Closer to our present con-
cerns, hypermultiplets localized in codimension one have been coupled
to N = 4 super Yang-Mills theory via brane constructions, for example
in [78], [79], and hypermultiplets of codimension two, the case most
relevant to us, have been described in [18].

From section 3.8, we actually can see what sort of impurity model
would reproduce some properties of the surface operators that we have
considered. One of the important themes in the present paper is the “lo-
cal singularity” of the moduli space MH of Higgs bundles when the triple
(α, β, γ) becomes non-regular. The hyper-Kahler resolution of such a
local singularity is conveniently described by hyper-Kahler metrics [34]
on certain complex coadjoint orbits, or equivalently (in a different com-
plex structure) hyper-Kahler metrics on X = T ∗(G/L), for various Levi
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subgroups L ⊂ G. Therefore, in fact, some topics explored in this paper
can be expressed in terms of a combined system consisting of N = 4
super Yang-Mills theory on a four-dimensional spacetime together with
a supersymmetric sigma model supported on a two-dimensional sub-
manifold of spacetime. We call this sigma model the local model.

Despite the usefulness of this approach, it has (as far as we know) a
fundamental limitation. The theory developed in the present paper de-
pends on the parameters34 (α, β, γ, η) ∈ T× t× t×L

T. The sigma model
depends on somewhat similar parameters (α, β, γ, η), where (α, β, γ) are
geometrical parameters that enter in the hyper-Kahler metric on X, and
η incorporates the theta-angles of the sigma model. The parameter η
takes values in L

T, just as in the gauge theory (see (3.44)), and likewise
β and γ are t-valued in each case. But α, which is T-valued in the full
geometry of MH , is t-valued (and related to β and γ by an SO(3) sym-
metry) in the hyper-Kahler geometry of T ∗(G/L), as we have reviewed
in section 3.8. Consequently, the parameters of the full model and the
local model do not quite match.

This leads to no contradiction with the claim that the local model
captures the behavior near a local singularity, since for that purpose,
the behavior when α becomes large is not important. However, it does
apparently mean that the local model cannot be S-dual. Since S-duality
exchanges α and η, it hardly can hold in the sigma model of target
T ∗(G/L), given that in this model η is an angular variable but α takes
values in a linear space. Hence, we cannot expect to maintain S-duality
if we couple the N = 4 theory to this local model.

Although this may seem surprising, another point of view perhaps
makes the conclusion more natural. The spaces T ∗(G/L) are not torus
fibrations and do not admit mirror symmetry, at least not in a G-
invariant way. (A mirror symmetry of the sigma model that is not
G-invariant would not help much when the sigma model is coupled to
four-dimensional gauge theory with gauge group G.) So expecting to
maintain S-duality when coupling N = 4 super Yang-Mills theory to
the local model may be unrealistic.

Nonetheless, as we have stressed, we do believe that the local model
is useful for studying the behavior near a local singularity of MH , that
is, near a non-regular triple (α, β, γ). For example, consider the action
of the affine braid group Baff on the branes of the B-model at Ψ = ∞. In
this action, α and γ are held fixed (and the most interesting case is that
they are near zero), and one studies monodromies in β and η. Whether
α is t-valued or T-valued is unimportant, and Baff acts on the B-branes
of the local model for the same reason that it acts on the branes on
MH . Indeed, the analysis of the Baff action in [29] is equivalent, from

34For brevity, we describe here the parameters for the case that the Levi sub-
group is L = T. In general, all parameters are required to be L-invariant.
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a physical point of view, to studying the monodromy action on the B-
branes of the local model. This seems to be a good local model for the
Baff action on B-branes of MH .

By contrast, the local model is not a good model for studying the
action of the Baff on the A-branes at Ψ = 0. This involves monodromy
action on the pair (α, β), and this monodromy action is lost if α takes
values in t rather than T. To study the monodromy action on A-branes
of MH , it is essential, as far as we know, to use the full sigma model
of target MH (or the full four-dimensional gauge theory). There is
a slightly ironical role reversal here. The monodromy action of the A-
model involves classical symplectomorphisms, while that of the B-model
is highly nonclassical; but the monodromy action of the B-model can
be studied in the local model, while that of the A-model cannot.

Contents Of This Section

Now we can give a brief overview of the contents of this section.
As we have discussed, despite its limitations, the local model does

have its uses. The question arises of whether there is some physical
approach to the local model by which we can learn more than we have
gleaned already. Though we do not have a good answer to this question
for general gauge groups, there is a useful description of the local model
in the case of GC = SL(2,C). This will be the topic of section 6.2.

The analysis in section 6.2 will reveal the importance of the fact that
the instanton action (for certain supersymmetric instantons of the local
model) vanishes when the triple (α, β, γ) becomes nonregular. This fact
is actually inherited from a similar fact in the four-dimensional gauge
theory, as we explain in section 6.3.

Finally, it is not very satisfactory to merely say that the local model
lacks duality symmetry. What can we do instead that is similar but
does preserve the duality symmetry? In fact, an answer to this question
has already been given in string theory [18] in an interesting special
case (GC = SL(N,C) with a minimal coadjoint orbit). We explain this
in section 6.4.

6.2. Linear Sigma Model For GC = SL(2,C). To use the lo-
cal model – the supersymmetric sigma model with target T ∗(G/L) – to
learn something that is not obvious from four-dimensional gauge theory,
we need a different way of studying it. We do not have a general ap-
proach that works uniformly for all groups, but we will explain an inter-
esting approach for G = SU(2). Here we rely upon the fact that the only
relevant choice of L is L = U(1), and that T ∗(SU(2)/U(1)) = T ∗

CP
1 is

the resolution of an A1 singularity. As a result, it can be constructed
as a hyper-Kahler quotient of a finite-dimensional linear space [62].
This has many applications in brane physics [80] and is relevant for
our purposes because it can be used to construct a linear sigma model
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[81] that gives a simple way to understand the vacuum structure of the
supersymmetric sigma model with target T ∗

CP
1.

Complex coadjoint orbits of all the classical Lie groups can similarly
be constructed as hyper-Kahler quotients of finite-dimensional linear
spaces [82]. These more general constructions could be taken as the
starting point in constructing a linear sigma model relevant to surface
operators for any classical group. However, the case of SU(2) has an
important advantage, which is that the action of the Weyl group is
transparent in the linear sigma model. This is not the case for G of
higher rank, which is why we will in this analysis consider only SU(2).

To get the A1 singularity as a hyper-Kahler quotient, we start with
H

2 ∼= R
8, regarded as a flat hyper-Kahler manifold. It admits the action

of Sp(2), which in our notation is the group of 2× 2 unitary matrices of
quaternions. Two kinds of quaternionic matrices will play an important
role. Sp(2) contains the group SU(2) consisting of quaternion multiples
of the identity

(6.2)

(
v 0

0 v

)
,

where v is a quaternion of modulus 1, and also the group O(2) of unitary
quaternion matrices whose entries are actually all real:

(6.3)

(
a b

c d

)
.

These two groups commute with each other, but the global structure
is not a product, because SU(2) and O(2) contain the common central
element −1. So the global structure is

(6.4) (SU(2) ×O(2)) /Z2 ⊂ Sp(2).

The connected component of O(2) is U(1). Let ~µ = (µ1, µ2, µ3) be
the hyper-Kahler moment map for the action of this U(1). We introduce
real parameters (α, β, γ), and define X(α, β, γ) to be the hyper-Kahler
quotient H

2///U(1)) taken at ~µ = (α, β, γ). In other words, X(α, β, γ)
is defined by setting ~µ = (α, β, γ) and dividing by U(1). For α = β =
γ = 0, this gives the A1 singularity R

4/Z2; in general, it gives the
hyper-Kahler resolution of the A1 singularity.

From a physical point of view, we construct a supersymmetric linear
sigma model on a two-manifold D in which the fields are a U(1) vector
multiplet and a pair of hypermultiplets H1, H2 (whose bosonic com-
ponents parametrize H

2, acted on by U(1) as above). The parameters
(α, β, γ) are the D-terms or Fayet-Iliopoulos parameters of the vector
multiplet. The moduli space of classical vacua is precisely the hyper-
Kahler quotient X(α, β, γ) described in the last paragraph, with one
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caveat: if α = β = γ = 0, this moduli space has a second branch, as
described in [81].

The linear sigma model has an SO(3) symmetry that rotates the
parameters (α, β, γ). This arises as follows. If we think of an element of

H
2 as a column of quaternions

(
u1

u2

)
, then the action of Sp(2) on the

left commutes with a right action of Sp(1). This Sp(1) acts by rotating
the complex structures of the hyper-Kahler manifold H

2, and likewise
rotating the parameters (α, β, γ).

In addition to (α, β, γ), the quantum theory also depends on the
theta-angle of the U(1) vector multiplet, which as usual we will call η.
Clearly, η is angle-valued. It appears in a factor in the path integral of
the form

(6.5) exp

(
iη

∫

D
F

)
.

Here F is the U(1) curvature, which we represent by a real two-form.
This means, in the usual form of the model, that there is a symmetry

(6.6) η → η + 1.

As we explain later, there is a certain sense in which the basic symmetry
is η → η + 2.

The parameters (α, β, γ, η) take values in K0 = R
3 × S1. But this is

not quite the natural parameter space of the model. We must recall from
(6.3) that the U(1) symmetry of the model can be extended to O(2).
Let w be an element of the disconnected conjugacy class of O(2). As
we will see momentarily, w will play the role of the non-trivial element
of the Weyl group of SU(2). (This fact does not have a good analog for
similar models for coadjoint orbits of groups of higher rank. That is why
we limit ourselves here to SU(2).) w acts by an outer automorphism
of the gauge group U(1) of the linear sigma model, and acts on the
coupling parameters by changing all signs:

(6.7) w : (α, β, γ, η) → (−α,−β,−γ,−η).
This is the action that in the rest of the present paper has always come
from the Weyl group of SU(2). The parameter space of the model is
thus really K = K0/Z2. At its fixed points, which will be described
momentarily, w becomes a symmetry of the linear sigma model.

The question of where in parameter space the model becomes sin-
gular was addressed in [81]. The answer is that it becomes singular
precisely at the point P0 : α = β = γ = η = 0, when the vacuum
becomes unnormalizable because of the role of the “second branch” of
classical vacua.

Obviously, P0 is one of the two fixed points for the action of Z2

on K0. The second is P1 : α = β = γ = 0, η = 1/2. What happens
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there? From the point of view of classical geometry, one does not see
the parameter η. The hyper-Kahler quotient at α = β = γ = 0 is
the orbifold singularity R

4/Z2. There is a soluble conformal field the-
ory associated with this orbifold [83]. One may guess that for some
value of η, the linear sigma model will reduce to this orbifold theory at
low energies. This in fact occurs [84] at η = 1/2, or more exactly at
P1 : (α, β, γ, η) = (0, 0, 0, 1/2). The theory at this point is a perfectly
smooth, well-behaved quantum field theory, and in fact a simple and
exactly soluble one. Since P1 is a fixed point of w, the orbifold theory
has w as a symmetry. In fact, w is the “quantum symmetry” of the
orbifold (which acts as −1 for strings in the twisted sector and +1 on
untwisted strings).

Now let us focus on the A-model or B-model derived from this
theory (upon picking one of the symplectic or complex structures), and
the associated monodromies as the parameters are varied. Actually, as
was explained in the overview of this section, it is not very interesting to
consider the A-model, because in the present local model α takes values
in a linear space, preventing the existence of interesting monodromies.
So we will concentrate on the B-model in one of the complex structures.
Because of the SO(3) symmetry that rotates the complex structures, it
does not matter which one we pick. To agree with the terminology in
the rest of this paper, we will consider the B-model in complex structure
J .

The monodromies of this model come as in section 4.5 by varying
β and η while keeping α and γ fixed. If the pair (α, γ) is nonzero, then
the relevant parameters are β and η modulo the symmetry η → η + 1.
We do not get anything new from the “Weyl transformation” w, since
it does not leave (α, γ) fixed. Thus, in this situation, the appropriate
parameter space is simply the quotient of the β− η plane by η → η+1,
or R

2/Z = R × S1. The monodromy group is simply Z. This answer is
familiar from section 4.5.

As usual, the most interesting case is (α, γ) = (0, 0). Here after
dividing by Z to get R × S1 ∼= C

∗, we must still divide by w : (β, η) →
(−β,−η). w acts on λ = exp (2π(β + iη)) by λ → λ−1. There are two
fixed points, at λ = 1 and λ = −1. The fixed point at λ = 1 is the point
P0 at which the theory becomes singular. We omit this point from the

parameter space and call what remains C̃
∗. We still have the action of Z2

on C̃
∗, with a fixed point at P1 : λ = −1. We do not want to remove this

fixed point, since the quantum field theory is well-defined there. Rather,
we think of the parameter space on which the quantum field theory

depends as an orbifold C̃
∗/Z2, and the relevant monodromy group is

the fundamental group in the orbifold sense, πorb
1 (C̃∗/Z2). This group

is generated by A, the monodromy around λ = 1, and T , the monodromy
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around λ = −1, with the sole relation being T2 = 1, expressing the fact
that λ = −1 is a Z2 orbifold point.

This answer for the monodromies seen in the local model is essen-
tially equivalent to the answer obtained in section 4.5, but some expla-
nation is required. First of all, let us consider the maximal torus T of
the group SO(3). It consists of elements of the following form:

(6.8) U =




cos(2πη) sin(2πη) 0

− sin(2πη) cos(2πη) 0

0 0 1


 .

η is real if we want the compact group SO(3), or should be replaced
by its complexification η − iβ in the case of the complex Lie group
SO(3,C) = SL(2,C)/Z2. In that case, we can write

(6.9) U =




1
2(λ+ λ−1) i

2(λ− λ−1) 0

− i
2(λ− λ−1) 1

2(λ+ λ−1) 0

0 0 1


 ,

with λ = exp(2πi(η− iβ)) ∈ C
∗. We call an element U ∈ T very regular

if the subgroup of SO(3) that commutes with U is precisely T, and
regular if the connected component of this group is equal to T. This
criterion does not depend on whether we work in SO(3) or SO(3,C).
The element U = 1 corresponding to λ = 1 is nonregular. By contrast,
the element U that corresponds to λ = −1 is regular but it is not very
regular, since it commutes with the element

(6.10) w =




1 0 0

0 −1 0

0 0 −1




which acts by λ→ λ−1, and, in fact, generates the Weyl group of SO(3).

We get a regular conjugacy class for any λ ∈ C̃
∗. However, the

conjugacy classes in SO(3) that correspond to λ and λ−1 are conjugate
by the action of w. So the moduli space of regular conjugacy classes in

SO(3) is the orbifold C̃
∗/Z2, and, as we have seen, its orbifold funda-

mental group πorb
1 (C̃∗/Z2) is also the monodromy group of our B-model

for the case (α, γ) = (0, 0).
In section 4.5, it was convenient to consider the subgroup of the

monodromy group that consists of transformations that act trivially on
the discrete electric flux e0. So let us identify that subgroup in the local
model. As we explained in section 4.1, to define e0 in SU(2) gauge
theory, one allows a “twist” so that the gauge bundle E →M = Σ×C
has structure group SO(3) = SU(2)ad, but lifts to an SU(2) bundle if
restricted to q × C for q a point in Σ. In the local model, we do not
necessarily have such a lifting to SU(2), since the support of the local
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model is not q × C but is D = Σ × p for some point p ∈ C. In defining
e0, we include SO(3)-bundles E → D with

∫
D w2(E) 6= 0.

What does this mean in the local model? The group that acts on
the hypermultiplets of the local model is not SO(3) but SU(2), so at
first sight one might think it is impossible to twist the local model by an
SO(3) bundle E with non-zero w2(E). However, the local model has a
gauge group U(1), and by restricting (6.4) to the connected component,
we see that the global form of the symmetry group is not SU(2)×U(1)
but (SU(2) × U(1))/Z2. An SO(3) bundle E → D with w2(E) 6= 0
cannot be lifted to an SU(2) bundle, but it can be lifted to a bundle
with structure group (SU(2) × U(1))/Z2. When we do this, the U(1)
curvature F obeys

(6.11)

∫

D

F

2π
=

1

2

∫

D
w2(E) mod Z.

Looking back to (6.5), we see that this means that the effect of η → η+1
is to multiply the integrand of the path integral by

(6.12) (−1)
R

D w2(E).

This operation is equivalent to shifting e0.

The result is that the fundamental group πorb
1 (C̃∗) is the full mon-

odromy group of the model, including transformations that shift e0. If
we want to identify the subgroup of monodromies that keep e0 fixed,
which will facilitate the comparison to the result of section 4.5, we should
consider the pair (β, η) subject to the symmetries w : (β, η) → (−β,−η)
and

(6.13) η → η + 2.

These are the symmetries that keep e0 fixed. Identifying η mod 2 is
equivalent to lifting U to an element of the maximal torus of SU(2),
rather than SO(3). As such it is conjugate to

(6.14) Û =

(
exp(iπ(η − iβ)) 0

0 exp(−iπ(η − iβ))

)
.

The Weyl group still acts on the pair (β, η) with two fixed points, but
there is an essential difference. The fixed points are now P0 : (β, η) =
(0, 0) and P ′

1 : (β, η) = (0, 1). The essential difference is that the two
fixed points of the Weyl group are now both points at which the sigma
model is singular (since its singularities are invariant under η → η+ 1).
In contrast, before lifting to SU(2), one fixed point was a singularity of
the sigma model and one was an orbifold point.

The non-regular values of Û are 1 and −1, which correspond pre-
cisely to the fixed points P0 and P ′

1. So when we omit the points at
which the local model is singular, and divide by the Weyl group and by
η → η+2, we get precisely the moduli space of regular conjugacy classes
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in SL(2,C). Its fundamental group is known as the affine braid group
of SL(2,C), and denoted Baff(SL(2,C)). This group is freely generated
by elements A and B that we can regard as the monodromies around
the points 1 and −1. They obey no relations at all.

The full monodromy group of the local model, including transfor-
mations that change e0, is an extension:

(6.15) 1 → Baff → πorb
1 (C̃∗) → Z2 → 1.

Here Baff is extended by an outer automorphism of order 2 that acts

by η → η + 1 and exchanges the points Û = 1 and Û = −1, which are
equivalent in SO(3). We call this automorphism T ; it obeys T2 = 1,

TAT = B, TBT = A. Since B is the same as TAT , the extension πorb
1 (C̃∗)

is generated by A and T with the sole relation T2 = 1. This is the result
we gave earlier for the full monodromy group.

All of this is in accord with the analysis of section 4.5. The subgroup
of the monodromy group that acts trivially on e0 is the affine braid
group, and the full monodromy group is an extension of the affine braid
group by the center of the simply-connected form of the gauge group G.
In the present example, G = SL(2,C), and the center is Z2.

To tie up a loose end, we should perhaps mention that SL(2,C) is
an exception to the description of the affine braid group given in eqns.
(5.16) and (5.17). The reason for the exception is that in SL(N,C) for
N > 2, the adjacent nodes of the affine Dynkin diagram correspond
to vectors at an angle 2π/3, but this is not so for SL(2,C) (where the
angle is π). To describe what happens for SL(2,C), we go back to the
definition of the affine Weyl group as an extension Λcort ⋊ W, with W
the Weyl group. For SU(2), Λcort

∼= Z, so a vector in Λcort is just an
integer n. The Weyl group is Z2, generated by A : n → −n. The
affine Weyl group is generated by A together with R : n→ n+ 1. They
obey A2 = 1 and ARA = R−1. Equivalently, Waff is generated by A

and B = AR with A2 = B2 = 1 and no other relations. A and B are
the reflections corresponding to the two nodes of the extended Dynkin
diagram. To get the affine braid group of SL(2,C), we just drop the
conditions A2 = B2 = 1, so Baff(SL(2,C)) is simply a free group with
the two generators A and B.

6.3. Instantons And The Local Singularity. In this discussion,
the fact that the local model is singular at α = β = γ = η = 0 (and
non-singular elsewhere) played a crucial role.

One explanation of this is given in [81], using the fact that a second
branch of classical vacua becomes relevant precisely when these param-
eters all vanish. There is, however, another standard explanation of
the significance of having α = β = γ = η = 0. When (α, β, γ) 6= 0,
the A1 singularity undergoes a hyper-Kahler resolution to produce a
smooth manifold with the topology of T ∗

CP
1. The zero section of this
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cotangent bundle is holomorphic in the complex structure

(6.16) I =
(αI + βJ + γK)√
α2 + β2 + γ2

.

It is antiholomorphic in the opposite complex structure. Its area A is

proportional to
√
α2 + β2 + γ2. A holomorphic or antiholomorphic map

of D to CP
1 ⊂ T ∗

CP
1 is holomorphic in complex structure I or −I. We

interpret it as an instanton of the sigma model. In other complex struc-
tures, there are no compact holomorphic or anti-holomorphic curves.
An instanton of the sigma model that is defined by a degree d holomor-
phic mapping of D to the zero section of T ∗

CP
1 makes a contribution to

the path integral that is proportional to qd, where q = exp(−kA+2πiη).
(Here k is a constant that depends on the gauge coupling of the linear
sigma model.) Upon summing over d, the instanton series has a pole at
q = 1, or in other words when (α, β, γ, η) all vanish. This pole reflects
the singularity of the sigma model.

What has just been summarized is a standard analysis in two dimen-
sions. We want to consider here how this story looks in four dimensions.
The twisted N = 4 super Yang-Mills theory that underlies the present
discussion depends on a parameter t. The analog of the instanton equa-
tion in four dimensions, according to section 3.2 of [8], is the condition
V+(t) = V−(t) = V0 = 0, where

V+(t) = (F − φ ∧ φ+ tdAφ)+(6.17)

V−(t) = (F − φ ∧ φ− t−1dAφ)−

V0 = D ⋆ φ.

Moreover, according to eqn. (5.28) (or eqns. (5.7) and (5.11)) of [8], if
we specialize to M = Σ×C, then the four-dimensional topological field
theory reduces on Σ to a two-dimensional A-model with target space
MH(G,C), and symplectic structure a multiple of

(6.18) ωt =
1 − t2

1 + t2
ωI −

2t

1 + t2
ωK .

The instantons in this A-model are holomorphic curves for the corre-
sponding complex structure

(6.19) It =
1 − t2

1 + t2
I − 2t

1 + t2
K.

Now let us incorporate a surface operator supported on D = Σp =
Σ×p, for p a point in C. We endow the surface operator with parameters
(α, β, γ). From the point of view of the local model, we expect holomor-
phic instantons only in the complex structure I. The local model should
be adequate at least for describing those instantons whose action goes
to zero as (α, β, γ) → 0. We will call these the instantons with small
action. Four-dimensional instantons of small action should correspond
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to instantons of the sigma model with complex structure It. The sigma
model only has instantons in complex structure I. Therefore, we expect
the four-dimensional gauge theory to have instantons – or at least in-
stantons of small action – only if It = I. The condition to have It = I,
in view of (6.16) and (6.19), is that

(6.20)
α

γ
=
t− t−1

2
, β = 0.

We want to derive these conditions directly in four dimensions.
First of all, from a four-dimensional point of view, V0 cannot vanish

if β 6= 0. Indeed, having β 6= 0 causes dA ⋆ φ to have a delta function
alongD, so it cannot vanish. This is one of the desired results; it remains
to derive the first equation in (6.20). We will do this by generalizing
the vanishing arguments of section 3.3 of [8].

What in that reference is called Vanishing Theorem 1 asserts that
in any solution of the equations (6.17) (in the absence of surface opera-
tors) the Pontryagin number vanishes. This follows from the following
identity:
(6.21)∫

M
Tr
(
V+(t) ∧ V+(−t−1) + V−(t) ∧ V−(−t−1)

)
=

∫

M
TrF ∧ F.

The derivation of this identity depends on integration by parts. The
left hand side vanishes in a solution of the equations, and of course the
right hand side is a multiple of the Pontryagin number. So the identity
implies vanishing of the Pontryagin number.

A few things are different in the presence of a surface operator sup-
ported on D ⊂ M . As in the derivation of (2.42), we interpret the
integral in (6.21) as an integral over the complement of D in M . With
that understood, the Pontryagin number is not simply a multiple of∫
M TrF ∧ F , but has the extra terms indicated in (2.42). Second,

in the integration by parts that is needed to derive (6.21), one runs
into a term (t − t−1)

∫
M d (Trφ ∧ F ). For γ 6= 0, despite being the

integral of an exact form, this does not vanish, even for compact M .
Instead, there is a sort of surface contribution localized on D, of the
form −2π(t − t−1)

∫
D Tr γF . With this understood, the generalization

of (6.21) is

∫

M
Tr
(
V+(t) ∧ V+(−t−1) + V−(t) ∧ V−(−t−1)

)
(6.22)

= −8π2N + 4π2(D ∩D)Trα2 + 4π

∫

D
Tr

(
α− t− t−1

2
γ

)
F.

The left hand side vanishes in any solution of the supersymmetric
equations. So obviously, if such a solution is to exist for small (α, β, γ),
the integer N must vanish. In addition, in our application with M =
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Σ×C andD = Σ×p, we haveD∩D = 0. So all terms on the right vanish
except the last one, which hence must also vanish. The G-bundle E →
M , when restricted to D, has structure group T, and is characterized
topologically by the characteristic class m of its curvature F . For G =
SU(2), as assumed in the derivation of (6.20), m is equivalent to the
instanton number of the sigma model (the degree of the map D → CP

1),
and the singularity of the sigma model at (α, β, γ) approaching zero is
supposed to come from instantons with m 6= 0 and small action. But
(6.22) shows us that if N = D ∩D = 0, then an instanton with m 6= 0
must have α − 1

2(t − t−1)γ = 0. This is the desired condition in eqn.
(6.20), so we have explained from a four-dimensional point of view the
fact that instantons or supersymmetric field configurations appear only
when this condition is obeyed.

It is similarly possible to derive the same condition by generalizing
Vanishing Theorem 2 of [8] to incorporate surface operators.

6.4. Some String Theory Constructions. The assertion that
the local model does not preserve S-duality is a little perplexing. In
order to understand this better, we will consider a string theory con-
struction in which S-duality is manifest, and see how this construction
fails to give the local model.

As in [18], we will consider a much studied situation in Type IIB
superstring theory: a stack of N D3-branes, giving a U(N) gauge theory
in four dimensions, that intersects in codimension two anotherD3-brane
which we will call D3′. Thus everything happens in a six-dimensional
subspace of the ten-dimensional spacetime of the Type IIB theory. We

will take this six-dimensional subspace to be a product Z = Σ×C × C̃
of three Riemann surfaces. The N D3-branes are supported on M =

Σ × C × r, with r a point in C̃, and the D3′-brane is supported on

M̃ = Σ × p × C̃, with p a point in C. C̃ may be either the complex
plane C or a compact Riemann surface. In our usual application, C
is the Riemann surface on which we consider the geometric Langlands
program, and Σ is the spacetime of the two-dimensional effective field
theory that results from compactification on C. One can also replace
M = Σ × C with a more general four-manifold, and presently this will
be convenient.

The stack of N D3-branes wrapped on M produces a U(N) gauge
theory on M with N = 4 supersymmetry, and the D3′-brane produces

a U(1) gauge theory on M̃ also with N = 4 supersymmetry. On the

intersection M ∩ M̃ = Σ × p × r, one gets hypermultiplets in the N -
dimensional representation of U(N) and with charge 1 under U(1). To
try to make contact with the situation explored in this paper, one might
hope that the hypermultiplets, together with the U(1) gauge multiplet

supported on M̃ , would be equivalent at low energies to a sigma model
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with target H
N///U(1), where H

N ∼= C
2N is parametrized by the hy-

permultiplets and H
N///U(1) is its hyper-Kahler quotient by U(1).

This hyper-Kahler quotient depends on the constant values chosen
for the three components of the hyper-Kahler moment map. Physically,
the constants will have to arise from the Fayet-Iliopoulos D-terms of

the U(1) gauge theory on M̃ , which one would like to somehow derive
from parameters of the string theory construction. For non-zero D-
terms, the hyper-Kahler quotient is equivalent in one complex structure
to T ∗

CP
N−1, and in a different complex structure it is equivalent to the

orbit of an element

(6.23) δ =




N − 1

−1
. . .

−1




of the Lie algebra gl(N). What we get here is a special case of the
local model discussed in section —refoverview, namely the case with
G = U(N), L = U(N − 1), and so T ∗(G/L) = T ∗(U(N)/U(N − 1)) =
T ∗

CP
N−1. The parameters (α, β, γ) must each, in this case, be real mul-

tiples of δ, with the proportionality determined by the Fayet-Iliopoulos
parameters. Thus, each depends on only one real parameter, an asser-
tion that will remain true in the Anti de Sitter construction explained
below.

This looks like a plausible way to get from branes an example of the
situation discussed in this paper. However, since the brane construction
(like any configuration ofD3-branes in Type IIB superstring theory) has
SL(2,Z) S-duality, and the model consisting of the N hypermultiplets
plus U(1) gauge field does not, the brane configuration cannot really
be equivalent to the coupling of N = 4 super Yang-Mills theory to the
two-dimensional system of hypermultiplets and gauge fields. What fails

depends on the choice of C̃.

If we take C̃ = C, then we do not quite get the reduction we want,

since the infinite area of C̃ means that one cannot treat the D3′-brane
in two-dimensional terms. More fundamentally, the dynamics of this
problem in general involves brane recombination, in which one of the
N D3-branes combines with the D3′-brane to make a smooth (but de-
formed) brane. Locally, if C is defined by a complex equation x = 0

and C̃ by y = 0, the recombination can be described by deforming an
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intersection xy = 0 to a smooth curve35

(6.24) xy = ǫ.

The low energy effective physics cannot then be described without tak-

ing into account the non-compactness of C̃, and does not lead to the
sort of surface operator considered in this paper. On the plus side of

the ledger, the noncompactness of C̃ means that whatever we get from
this construction depends on parameters (α, β, γ) that can be defined in

terms of the behavior at infinity on C̃. For example, α is the holonomy

at infinity on C̃ of the U(1) gauge field, and β + iγ is the parameter ǫ
of eqn. (6.24), which can also be measured at infinity (in terms of the
way the brane is “bent”).

If we take C̃ to be compact, we have the opposite problem. Com-

pactness of C̃ means that all fields on C̃ other than zero modes can
be eliminated in a low energy description. So we get some sort of de-
scription in terms of four-dimensional fields defined on M = Σ × C
and impurity fields supported on Σ × p. In particular, the U(1) gauge
field on the D3′-brane can be eliminated at low energies by taking a

hyper-Kahler quotient. But when C̃ is compact, all variables describing

the physics of the brane intersection and the fields on C̃ are dynamical
(rather than being “frozen” at infinity). So there is no apparent way to
introduce parameters corresponding to (α, β, γ, η). It would be interest-
ing, however, to know what kind of surface operator one does get from

the case of compact C̃.

An Alternative

There is an alternative to this, explained in [18]. This alternative en-
ables us to maintain the S-duality and to see the parameters (α, β, γ, η).
It is not equivalent to the local model (it hardly can be, as the local
model is not S-dual), but it is an elegant way to use branes and string
theory to describe an example of the construction studied in this paper.

The alternative is merely to use the AdS/CFT duality [85] to re-
place the D3-branes with a description involving the Type IIB geometry
that these D3-branes create. The D3′-brane will remain as part of the
Type IIB description, and this will give the desired surface operator.

To simplify things, we will take M = S4, in which case the simplest
relevant Type IIB spacetime is AdS5 × S5. The simplest choice of the
D3′-brane is AdS3×S1, where AdS3×S1 is embedded in AdS5×S5 in the
obvious way. The embedding of S1 in S5 is unstable topologically, but
energetically it is stable and in fact leads to a supersymmetric membrane
on AdS5. The conformal boundary of AdS3 is D ∼= S2, embedded in

35For small ǫ, in the space C
2 parametrized by x and y, there is a supersymmetric

disc, of area proportional to ǫ, whose boundary is on the curve xy = ǫ. One can also
consider a multiple covering of this disc. This gives a stringy model of the instantons
of small action that were discussed in section 6.3.
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M ∼= S4 in the obvious way (the S1 factor of AdS3 × S1 effectively
shrinks to a point near the conformal boundary). D is, of course, a
two-dimensional submanifold of M . By quantizing in the presence of a
D3′-brane whose asymptotic behavior is required to coincide with that
of AdS3 × S1, one defines in the N = 4 super Yang-Mills theory on M
a supersymmetric surface operator supported on D. This is precisely
in parallel with the use [86], [87] of strings in AdS5 × S5 to describe
supersymmetric Wilson and ’t Hooft operators on M . One can modify
this to consider more general M or D, but this is not essential for what
we will say.

The surface operator obtained this way has the familiar parameters
(α, β, γ, η). To see them, we consider the N = 4 super Yang-Mills
theory, with gauge group U(1), supported on the D3′-brane. The world-
volume of that brane, in our simple example, is X = Y × S1, with
Y = AdS3. And in general this gives the right asymptotic behavior,
which is all that one needs in describing the parameters (α, β, γ, η).
They arise as follows. The parameter α is the holonomy of the U(1)
gauge field around S1, measured near the conformal boundary of Y .
The part of the U(1) gauge field on X that is invariant under rotations
around S1 is a U(1) gauge field on Y that can be dualized to give an
angle-valued scalar field. The expectation value of this scalar field near
the boundary of Y is η. Finally, to find β and γ, we use the “Higgs field”
ϕ of the gauge multiplet on the D3′-brane. In Poincaré coordinates, the
metric of AdS3 can be written as 1

r2 (dr2 +dx2 +dy2), where 0 ≤ r ≤ ∞,
and the (x, y)-plane is the two-sphereD with a point at infinity removed.
The metric of X = Y × S1 is thus 1

r2 (dr2 + dx2 + dy2) + dθ2 where θ is

an angle. Upon setting z = reiθ, we introduce β and γ by requiring that
ϕ should be asymptotic at r = 0 (that is, on the conformal boundary
of Y ) to (β + iγ)(dz/2z). One can verify that the underlying S-duality
of the U(1) gauge theory, which we reviewed in section 2.4, acts in the
expected fashion on these parameters.

Another Variant

For another variant of this construction, we begin with the (0, 2)
conformal field theory in six dimensions [81]. This theory on S6 can be
described [85] in terms of M -theory on AdS7 × S4 (or more precisely
on spacetimes with that asymptotic behavior) with N units of flux on
S4. The (0, 2) model has surface operators [88], [89], which can be
defined by considering M2-branes in AdS7 × S4 whose world-volume is
asymptotic at infinity to a two-dimensional surface D ⊂ S6. One can
replace S6 by a more general six-manifold Z by replacing AdS7 × S4

with spacetimes with the appropriate asymptotic behavior.
Now take the six-manifold on which the (0,2) model is formulated

to be Z = M×T 2 with M a four-manifold. The (0,2) model formulated
on Z is equivalent at low energies to N = 4 super Yang-Mills theory on
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M , with gauge group U(N). A surface operator on Z whose support is
a circle in M times one of the two factors in T 2 = S1×S1 gives a Wilson
or ’t Hooft operator on M . (More generally, any choice of a geodesic
circle in T 2 gives a mixed Wilson-’t Hooft operator.) However, a surface
operator on Z whose support is a surface D ⊂M times a point r ∈ T 2

gives a surface operator on M , with α and η determined by the choice
of r. S-duality comes from the geometrical action of SL(2,Z) on T 2.
This construction is closely related to the previous one, since M -theory
on T 2 is dual to Type IIB on a circle.

Appendix A. Review Of Duality

In this appendix, we will give a brief review of the relation be-
tween a Lie group G and its Langlands or GNO dual LG. For general
background, see chapter 3 of [90]or chapter 8 of [91]. For brevity, we
describe only the case that G is simple, though the theory extends to
any compact Lie group.

The root system Φ of G is a finite set of nonzero vectors in a fixed
Euclidean space E ∼= R

r (where r will be the rank ofG). E will eventually
be interpreted as t∨, the dual of the Lie algebra t of a maximal torus T

of G. We consider E to be endowed with a metric ( , ) which to begin
with we consider to be defined only up to multiplication by a positive
real scalar. Later, we will choose a particular metric.

Φ is required to obey certain axioms. The vectors in Φ generate
a rank r lattice Λrt (eventually interpreted as the root lattice of G),
which moreover has no decomposition as a direct sum of orthogonal
sublattices. Additionally, for µ ∈ Φ, we require that the multiples of µ
that are contained in Φ are precisely the vectors ±µ. This will ensure
that there is an sl(2) subalgebra of g with nonzero roots ±µ. We call
this algebra sl(2)µ. We also ask that for any other root ν, the expression

(A.1) 〈ν, µ〉 =
2(ν, µ)

(µ, µ)

is an integer. Note that the symbol 〈 , 〉, which is independent of the
normalization of ( , ), is only linear in the first variable. The integrality
of 〈ν, µ〉 is interpreted as the condition that each root ν has integer or
half-integer weight with respect to sl(2)µ. Finally, we ask that the set
of roots should be closed under the reflection with respect to µ, which
is the operation

(A.2) ν → ν − 〈ν, µ〉µ.

This operation is eventually interpreted as the Weyl transformation of
the algebra sl(2)µ.
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For any such root system Φ, one defines a dual root system Φ∨ in
the following way. For µ ∈ Φ, we define

(A.3) µ∨ =
2µ

(µ, µ)
.

Φ∨ is defined to consist precisely of the vectors µ∨ for µ ∈ Φ. A short
computation shows that Φ∨ obeys the same axioms as Φ. It will be
interpreted as the root system of the dual group.

However, the definition of µ∨ depends on the normalization of the
metric ( , ), and therefore the vectors µ∨ are not really naturally defined
as vectors in E. They actually are more naturally understood as vectors
in the dual space E∨. The reason for this claim is that for µ, ν ∈ Φ, the
pairing

(A.4) µ∨(ν) = (ν, µ∨) =
2(ν, µ)

(µ, µ)
= 〈ν, µ〉

is independent of the normalization of the metric ( , ). Hence, while
the original root system Φ lies in E ∼= t∨, the dual root system Φ∨ lies
in E∨ ∼= t.

The Weyl group W of Φ is the group generated by the reflections
with respect to the roots µ, namely the operations ν → ν − µ〈ν, µ〉.
Similarly, the Weyl group W∨ of Φ∨ is the group generated by the
reflections with respect to the coroots µ∨, namely ν → ν − µ∨〈ν, µ∨〉.
However, as µ∨ is a real multiple of µ, we have µ〈ν, µ〉 = µ∨〈ν, µ∨〉, and
the reflections with respect to µ or µ∨ coincide. Hence the groups W
and W∨ likewise coincide. This leads to the fact that G and its dual
group LG have the same Weyl group.

Just as the vectors µ ∈ Φ generate a rank r lattice Λrt, the vectors
µ∨ ∈ Φ∨ generate a rank r lattice Λcort (the coroot lattice). We write
Λcowt (the coweight lattice) for the dual to Λrt and Λwt (the weight
lattice) for the dual of Λcort. Thus (momentarily regarding all these
lattices as embedded in E, using the metric ( , )), we have ν ∈ Λcowt if
and only if (ν, µ) ∈ Z for all µ ∈ Φ, and ν ∈ Λwt if and only if (ν, µ∨) ∈ Z

for all µ∨ ∈ Φ∨. Integrality of the pairing (ν, µ∨) for ν ∈ Λrt, µ
∨ ∈ Λcort

means that we have inclusions

Λrt ⊂ Λwt(A.5)

Λcort ⊂ Λcowt.

These lattices all have the same rank r, so the inclusions are of finite
index.

Now let Λchar (the character lattice) be any lattice that is interme-
diate between Λrt and Λwt:

(A.6) Λrt ⊂ Λchar ⊂ Λwt.
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The dual of Λchar is a lattice Λcochar (the cocharacter lattice) that lies
between the coroot and coweight lattices:

(A.7) Λcort ⊂ Λcochar ⊂ Λcowt.

Of course, the three lattices in (A.7) are naturally regarded as embedded
in E∨; their embedding in E depends on the choice of metric ( , ).

The classification of compact simple Lie groups states that such
groups correspond to character lattices that can arise in a construction
of this type. For every choice of Λchar, there is a compact Lie group G
such that the highest weight of a representation of G is an element of
Λchar. In fact, Λchar is the group of characters, that is of homomorphisms
of the maximal torus T of G to U(1). Thus

(A.8) Λchar = Hom(T, U(1)),

and dually,

(A.9) Λcochar = Hom(L
T, U(1)) = Hom(U(1),T).

If Λchar = Λwt, then G is simply-connected. If Λchar = Λrt, then G is of
adjoint type.

More generally, let Z(G) denote the center of G. For any locally
compact abelian group A, we write A∨ for Hom(A,U(1)); according
to Pontryagin duality, if B = A∨, then A = B∨. In an irreducible
representation R of G, Z(G) acts centrally, or in other words via a
homomorphism to U(1). The highest weight of R is an element w ∈
Λchar, and Z(G) acts trivially if w ∈ Λrt. The quotient Λchar/Λrt is
Hom(Z(G), U(1)):

(A.10) Z(G)∨ = Λchar/Λrt.

Using the duality between the inclusions in (A.6) and (A.7), this is
equivalent to

(A.11) Z(G) = Λcowt/Λcochar.

Similarly, an element of the fundamental group π1(G), if lifted to the
universal cover G of G, determines a path from the identity to a central
element ξ of G. In a representation R of G, ξ acts by multiplication by
an element of U(1). By this construction, R determines an element of
π1(G)∨, and this element vanishes if R is actually a representation of
G, that is, if its highest weight is in Λchar. This leads to a relation

(A.12) π1(G)∨ = Λwt/Λchar.

Again, the duality between (A.6) and (A.7) leads to an alternative ver-
sion

(A.13) π1(G) = Λcochar/Λcort.

The Langlands or GNO dual group LG is related to the lattices Λcort,
Λcochar, and Λcowt exactly as G is related to Λrt, Λchar, and Λwt. All of
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the above statements have obvious duals. For example, LG is simply-
connected if Λcochar = Λcowt, and is of adjoint type if Λcochar = Λcort.
And more generally,

Z(LG)∨ = Λcochar/Λcort(A.14)

π1(
LG)∨ = Λcowt/Λcochar.

Comparing (A.14) to (A.11) and (A.13), we learn that

π1(
LG) = Z(G)∨(A.15)

Z(LG) = π1(G)∨.

The whole construction is completely symmetric under exchange of
E with E∨, the lattices in (A.6) with the dual lattices in (A.7), and the
group G with the dual group LG. In the theory of Lie algebras, the roots
of G take values in t∨ (the dual of the Lie algebra t of the maximal torus
of G) and the coroots in t, so we identify E with t∨ and E∨ with t. The
results (A.11) and (A.13) have more direct explanations using the fact
that the lattices Λcort, Λcochar, and Λcowt are all naturally embedded in
t.

Choice of Metric

At this point, it is useful to make a convenient choice for the metric
( , ) on E.

The group G is said to be simply-laced if all roots µ ∈ Φ have the
same length squared. This is so precisely if G is of type A, D, or E. In
this case, it is convenient to pick a metric such that the roots actually
have length squared equal to 2, that is (µ, µ) = 2 for all µ. Looking back
to the definition of µ∨ in eqn. (A.3), we see that this condition ensures
that µ∨ = µ for all µ. This causes the construction summarized above
to simplify. The distinction between E and E∨ can be omitted without
any loss of symmetry, and we then have Λrt = Λcort, Λwt = Λcowt. In
this situation, the groups G and LG have the same Lie algebra, since
their root lattices are the same, but they are not necessarily isomorphic,
since the lattices Λchar and Λcochar may differ.

Now let us consider the case that G is not simply-laced. In this
case, it is shown via the classification of simple Lie algebras that there
are precisely two values for the length squared of a root. We denote the
ratio of these two values as ng; it equals 2 for groups of type B, C, or
F4, and 3 for G2. From µ∨ = 2µ/(µ, µ), we find

(A.16) (µ∨, µ∨) =
4

(µ, µ)
.

So the function (µ∨, µ∨) again takes two values for µ∨ ∈ Φ∨, and these
values have the same ratio ng. Moreover, from (A.16), we see that if µ
is a short root, then µ∨ is a long coroot, and if µ is a long root, then µ∨

is a short coroot.
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short root

long root

long coroot

short coroot

Figure 8. Shown here are the roots of the Lie group G2

(left) and the coroots (right). The map µ→ µ∗ (defined
using the metric in which short roots have length squared
2) maps a vector on the left to the “same” vector on the
right. A short root maps to a long coroot, and a long root
maps to 3 times a short coroot. To get an isomorphism
between the root diagram and the coroot diagram, we
can compose the map µ→ µ∗ with rotation by an angle
±π/6 and multiplication by 1/

√
3.

We obviously cannot now normalize the metric ( , ) on E so that
all roots have length squared 2. However, it is convenient to normalize
the metric so that short roots have length squared 2, and therefore long
roots have length squared 2ng. When this choice is made, we have

(A.17) µ∨ =

{
µ if µ is a short root;

µ/ng if µ is a long root.

Reciprocally,

(A.18) µ =

{
µ∨ if µ is a short root;

ngµ
∨ if µ is a long root.

Once we pick the metric, we get a natural identification of E with
E∨. This gives a map from E to E∨, mapping ν ∈ E to the linear form
on E defined by ν(µ) = (ν, µ). We denote this map as ν → ν∗.

From (A.18), we can be more precise. If µ ∈ Φ is a short root, then
µ∗ (which is the same as µ, but interpreted as an element of E∨) is equal
to a long coroot (namely µ∨). But if µ is a long root, then µ∗ is ng times
the short coroot µ∨. This is illustrated in fig. 8 for the case of G2. In
particular, µ∗ is not always a coroot but is always an element of the
coroot lattice, so the linear transformation µ→ µ∗ maps Λrt into Λcort.

Of course, there is also a dual of this construction. We can pick on
E∨ a metric in which a short coroot has length squared 2. This leads
to a natural map E∨ → E, which we denote µ∨ → (µ∨)∗. By applying
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the same reasoning, we see that this operation maps a short coroot to
a long root, or a long coroot to ng times a short root. In particular, it
maps Λcort into Λrt.

The composition of the two maps is multiplication by ng, that is
(µ∗)∗ = ngµ for all µ. Indeed, a short root maps to a long coroot and
thence to ng times the original short root, while a long root maps to ng

times a short root, and thence to ng times the original long root.

Dynkin Diagrams

A collection of r roots µi ∈ Φ is called a set of simple positive roots
if every root µ has an expansion µ =

∑
i aiµi, with coefficients ai that

are all non-negative or all non-positive. Such a set always exists and is
unique up to a Weyl transformation.

If µi are a set of simple positive roots of Φ, then the dual roots
µ∨i ∈ Φ∨ are a set of simple positive roots of Φ∨. Indeed, the µ∨i are
positive multiples of the µi, and any dual root µ∨ is similarly related to
µ. So in an expansion µ∨ =

∑
i biµ

∨
i , the coefficients bi have the same

signs as the coefficients ai in µ =
∑

i aiµi.
The Dynkin diagram of G has a node for every simple positive root.

The nodes are connected in a way that encodes the angles among the
simple positive roots. When G is not simply-laced, the diagram is also
commonly labeled with an arrow that points from long to short roots.

. . .B
n

. . .C
n

F
4

G
2

Figure 9. Dynkin diagrams of the non-simply-laced Lie
groups. Duality has the effect of reversing the arrow that
points from long to short roots. Thus, the groups Bn and
Cn are exchanged by duality. However, F4 and G2 are
self-dual, since for those groups, a reversal of the arrow
is equivalent to exchanging the two ends of the diagram.

The angles between the simple positive roots µi of Φ are the same as
the angles between the simple positive roots µ∨i of Φ∨, since the µ∨i are
positive multiples of the µi. However, the transformation µ→ µ∨ maps
short roots to long ones, and vice-versa, as we have seen above. So the
root systems Φ and Φ∨ have Dynkin diagrams that look just the same,
except that, in the non-simply-laced case, the arrows point in opposite
directions. This is illustrated in fig. 9.

A Levi subgroup L of G has a Dynkin diagram obtained by sim-
ply removing some nodes from the Dynkin diagram of G. LG has a
corresponding Levi subgroup L

L whose Dynkin diagram consists of the
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“same” nodes. L and L
L have the same Weyl group for the same reason

that G and LG do.

Comparison To Gauge Theory

For simply-laced G, the metric in which the roots have length squared
2 is invariant under duality, since in this metric the roots and coroots
coincide.

When G is not simply-laced, if we identify E with its dual using
a metric in which the roots have length squared 2 or 2ng, then the
coroots have length squared 2 or 2/ng, so this recipe is not invariant
under duality. The factor of ng in the formula (µ∗)∗ = ngµ reflects this
discrepancy, as does the factor of ng in the S-duality transformation
τ → −1/ngτ .

Of course, we could restore duality by simply dividing the metric by√
ng. However, this would lead to awkwardness in other formulas. In-

deed, the metric on t ∼= E∨ such that a short coroot has length squared
2 is widely used in gauge theory, for example in the present paper be-
ginning in sections 2.4 and 2.5, because it leads to definitions of the
instanton number (2.39) and theta-angle (2.38) that are uniformly valid
for all G.

In addition, normalizing the metrics as we have done has the virtue
that it leads to maps µ → µ∗ and µ∨ → (µ∨)∗ that, although not
isomorphisms of the relevant lattices, do map Λrt into Λcort, and vice-
versa. This is lost if we divide by

√
ng.

Relation Of G and LG
If G is simply-laced, then G and LG have the same Lie algebra, and

this fact is manifest in the above construction, in the sense that the map
µ→ µ∗ is an isomorphism from Φ to Φ∨.

If G is not simply-laced, the story is more complicated. For G of
type B or C, the Lie algebras of G and LG are distinct, as is clear from
the diagrams in fig. 9. For G of type G2 or F4, the groups G and LG
are actually isomorphic. This is obvious from the Dynkin diagrams; re-
placing Φ with Φ∨ has the effect of reversing the arrow that points from
long to short roots, but for G2 and F4, this is equivalent to exchanging
the two ends of the diagram, as one can see in fig. 9.

For G2 and F4, the isomorphism between the group and the dual
group does not simply come from the maps µ → µ∗ and µ∨ → (µ∨)∗,
which are not isomorphisms between Φ and Φ∨. To get such an isomor-
phism, one can compose the map µ → µ∗ with a linear transformation
R : E∨ → E. Modulo a Weyl transformation, R is determined by the
way it must exchange the two ends of the Dynkin diagram. For G2, R

can be chosen to be the composition of a rotation by an angle ±π/6
and multiplication by 1/

√
3, as one can see in fig. 8. For F4, it is the

composition of a rotation and multiplication by 1/
√

2.
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In the physics literature [41], [42], S-duality is often defined so that,
in a vacuum in which G is spontaneously broken to an abelian subgroup,
the action of R is incorporated as part of the definition of S. At the
expense of treating G2 and F4 as exceptional cases, this makes the self-
duality of those groups manifest. We instead prefer, as for example in
[71], to treat all groups uniformly, omitting the factor of R. In this way,
formulas such as (2.22) can be written uniformly for all groups.

Appendix B. Index Of Notation

I. Gauge Theory

M four-manifold
W three-manifold
C Riemann surface on which we do

geometric Langlands
Σ Riemann surface to which we compactify
G compact gauge group, usually simple
G simply-connected cover of G
E a G-bundle
A the gauge field; a connection on E
dA the gauge-covariant exterior derivative d+ [A, · ]
φ ad(E)-valued one-form; the Higgs field
ϕ the (1, 0) part of φ
A the complex-valued connection A+ iφ
V monodromy of A
U semi-simple element in closure of orbit of V
τ the gauge coupling parameter θ/2π + 4πi/e2

N instanton number
m magnetic flux; characteristic class of a T-bundle
ξ characteristic class that obstructs lifting

a G-bundle E to a G-bundle
D support of a surface operator
L support of a line operator
(α, β, γ, η) parameters of a surface operator
e0 discrete electric flux
m0 discrete magnetic flux
MH moduli space of Higgs bundles
M moduli space of G-bundles
MH(α, β, γ) moduli space of ramified Higgs bundles
M(α) moduli space of parabolic bundles
B base of the Hitchin fibration
F fiber of the Hitchin fibration
B a brane
L Chan-Paton line bundle of a brane
G the group of gauge transformations
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⋆ Hodge star operator
Γ duality group

II. Hyper-Kahler Structure

X generic hyper-Kahler manifold
I, J,K complex structures on X
ωI , ωJ , ωK Kahler structures on X
ΩI ,ΩJ ,ΩK holomorphic two-forms on X
~µ = (µI , µJ , µK) hyper-Kahler moment map

III. Group Theory

G compact Lie group, usually simple
G universal cover of G
Gad adjoint form of G
LG dual group
T maximal torus of G
L Levi subgroup of G
GC, TC, etc. complexifications
B Borel subgroup of GC

P parabolic subgroup of GC

N unipotent radical of P

g Lie algebra of G
t Lie algebra of T

t∨ dual of t

b Lie algebra of B

p Lie algebra of P

n Lie algebra of N

W Weyl group
Waff affine Weyl group
D affine Weyl chamber
Baff affine braid group
Z(G) center of G
π1(G) fundamental group of G
C conjugacy class in GC

c conjugacy class in gC

CL Richardson conjugacy class associated
to Levi subgroup L

IV. Lattices

Λrt root lattice
Λcort coroot lattice
Λwt weight lattice
Λcowt coweight lattice
Λchar character lattice
Λcochar cocharacter lattice
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