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Combinatorics, symmetric functions, and Hilbert schemes

Mark Haiman

Abstract. We survey the proof of a series of conjectures in combinatorics us-
ing new results on the geometry of Hilbert schemes. The combinatorial results
include the positivity conjecture for Macdonald’s symmetric functions, and the
“n!” and “(n+1)n−1” conjectures relating Macdonald polynomials to the char-
acters of doubly-graded Sn modules. To make the treatment self-contained, we
include background material from combinatorics, symmetric function theory,
representation theory and geometry. At the end we discuss future directions,
new conjectures and related work of Ginzburg, Kumar and Thomsen, Gordon,
and Haglund and Loehr.
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1. Introduction

About ten years ago, Garsia and I [22] began to investigate certain doubly-
graded Sn-modules whose characters appeared to be related to the new class of
symmetric functions then recently introduced by Macdonald. Our modules are
“doubled” analogs of well-known singly-graded modules arising in geometry and
representation theory connected with the flag variety and Springer correspondence
for GLn. From the outset, we hoped to use them to prove the positivity conjecture for
certain coefficients Kλµ(q, t) occurring in Macdonald’s theory, but by the time this
was achieved [39], it had become clear that the solution of the positivity problem
was just one chapter in a longer story. As the investigation advanced, we and others
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noticed that the characters of our doubled modules seemed to be related not only
to Macdonald’s symmetric functions but also to a number of classical “q-analogs”
familiar to combinatorialists. Among these are q-enumerations of rooted forests
and parking functions, two q-analogs of the Catalan number Cn = 1

n+1

(
2n
n

)
, and

a q-analog of Lagrange inversion discovered independently by Garsia and Gessel.
Eventually these various observations were formulated as a series of conjectures
which have come to be known by the nicknames n! and (n+ 1)n−1 conjectures.

It develops that the doubled modules are associated naturally with the Hilbert
scheme Hn of points in the plane. Understanding this geometric context has led to
proofs of the n! and (n+ 1)n−1 conjectures, along lines first suggested by Procesi.
As it turns out, the full explanation depends on properties of the Hilbert scheme
that were not known before, and had to be established from scratch in order to
complete the picture. One might say, then, that the main results are not the n!
and (n + 1)n−1 theorems, but new theorems in algebraic geometry. In a nutshell,
the new theorems are, first, that the Hilbert scheme Hn is isomorphic to another
kind of Hilbert scheme, which parametrizes orbits of the symmetric group Sn on
Cn ⊕ Cn, and second, a cohomology vanishing theorem for vector bundles on Hn

provided by the first theorem.
I think it is fair to say that such results were unexpected, and became plausible

to conjecture only because of evidence accumulated from the combinatorial study.
Certainly it was this study that provided the incentive to prove them. One thing I
wish to emphasize in these notes and in the accompanying lectures is how important
the combinatorial origins of the problem were for all the subsequent developments.

It is perfectly possible to state the n! and (n+ 1)n−1 conjectures without refer-
ence to anything but elementary algebra, but to properly appreciate their content
and the context in which they were discovered, it is helpful to understand some
concepts which are familiar to combinatorialists and experts on special functions,
but not so well known to a larger public. To this end I give in §2 and §3 a review
of background material from combinatorics and the theory of Hall-Littlewood and
Macdonald polynomials. To the same end, I will finish this introduction with a
capsule history of some earlier developments which inspired the current results.

In the theory of Hall-Littlewood symmetric functions one meets q-analogs
Kλµ(q) of the Kostka numbers Kλµ, which count semi-standard Young tableaux of
shape λ and content µ, or equivalently the weight multiplicity of µ in the irreducible
representation of GLn with highest weight λ. The Kλµ(q) are called Kostka-Foulkes
polynomials, and it is an important theorem that their coefficients are positive inte-
gers. A major development in the combinatorial theory of symmetric functions was
Lascoux and Schützenberger’s interpretation of Kλµ(q) as q-enumerating Young
tableaux according to a numerical statistic called charge. This gives one of two
proofs of the positivity theorem for Kostka-Foulkes polynomials; the other being
that of Hotta and Springer, who interpreted Kλµ(q) in terms of characters of coho-
mology rings of Springer fibers for GLn.

In a 1987 preprint [62], Macdonald unified the theory of Hall-Littlewood sym-
metric functions with that of spherical functions on symmetric spaces, introducing
the symmetric functions now known as Macdonald polynomials. For root systems of
type A, they are symmetric functions in the classical sense, but with coefficients that
depend on two parameters q and t. In this new context there are bivariate analogs
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Kλµ(q, t) of the Kostka-Foulkes polynomials, specializing at q = 0 to Kλµ(t). Mac-
donald conjectured in [60] that these more general Kostka-Macdonald polynomials
should also have positive integer coefficients. (Actually, the Kλµ(q, t) were defined
as rational functions and their being polynomials was part of the conjecture.) In
light of Lascoux and Schützenberger’s work, it was natural to try to prove Macdon-
ald’s positivity conjecture by suitably generalizing the definition of charge. Indeed,
the proof of the positivity conjecture notwithstanding, it remains an open problem
to give an explicit combinatorial proof along such lines.

As a first step toward the positivity conjecture, Garsia and Procesi [26] revisited
and simplified the Hotta-Springer proof of the positivity theorem for Kostka-Foulkes
polynomials. Beginning with an elementary description due to Tanisaki of the
cohomology ring Rµ of a Springer fiber, they derived the formula relating Kλµ(q) to
the character of Rµ directly, without invoking geometric machinery. Their work led
Garsia and me to the n! conjecture, which similarly relatesKλµ(q, t) to the character
of a doubled analog of Rµ, and so implies Macdonald’s positivity conjecture.

The spaces figuring in the n! conjecture are quotients of the ring of coinvariants
for the diagonal action of Sn on Cn ⊕Cn, and so we decided also to investigate the
characters of the full coinvariant ring. That precipitated the key event leading to
the discoveries recounted here: the recognition by us and others, especially Gessel
and Stanley, of striking combinatorial patterns among characters of diagonal coin-
variants. The space of coinvariants apparently had dimension equal to (n+ 1)n−1,
a combinatorially interesting number. Paying closer attention to the grading and
the Sn action revealed known q-analogs of the number (n+ 1)n−1 and the Catalan
numbers Cn in the data. A menagerie of things studied earlier by combinatorialists
for their own sake thus turned up unexpectedly in this new context.

It was Procesi who suggested, upon learning of their remarkable behavior, that
the diagonal coinvariants might be interpreted as sections of a vector bundle on
the Hilbert scheme Hn. Then it might be possible to compute their dimension
and character using the Lefshetz formula of Atiyah and Bott, and so explain the
phenomena. It soon became clear that the existence of Procesi’s alleged vector
bundle was in fact equivalent to the n! conjecture. By 1994, we had managed to
fully develop Procesi’s idea, explaining the observations on the diagonal coinvariants
by combining known combinatorial properties of Macdonald polynomials with a
character formula predicated on the assumption that the geometric theorems alluded
to earlier on the Hilbert scheme would hold. This explanation was successful enough
to persuade us that the theorems surely must be true, although it took quite some
time after that before the proof was finally complete.

2. Background from combinatorics

This section is a review of combinatorial facts needed later on. In part, the
purpose here is to fix notation and terminology, but we will also introduce several
fundamental concepts.

The jeu-de-taquin operations on Young tableaux have become central to the
combinatorial theory of symmetric functions, and lead to the definition of charge, the
basis of Lascoux and Schützenberger’s combinatorial interpretation of the Kostka-
Foulkes polynomials, discussed in more detail in §3.4.5. The positivity theorem for
Kostka-Foulkes polynomials was the progenitor of Macdonald’s positivity conjec-
ture. The beautiful and subtle combinatorics associated with the earlier theorem
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was a major reason why Macdonald’s conjecture seized the attention of combinato-
rialists.

Next we will touch on a few aspects of q-enumeration, involving Catalan num-
bers, trees and parking functions. These particular q-enumerations have especially
appealing and well studied theories of their own, apart from their surprising con-
nection with the diagonal coinvariants, which is our main concern here.

Finally, we outline Garsia and Gessel’s theory of q-Lagrange inversion, which,
as it happens, nicely ties together precisely the q-enumerations we have just dis-
cussed. This fact is hardly accidental, and indeed q-Lagrange inversion turns out
to be indispensable to the full development of the theory relating the combinato-
rial phenomena to the Hilbert scheme. The reason for this is that to get specific
predictions from the geometry, such as the dimension (n + 1)n−1 for the diagonal
coinvariants, is not a trivial exercise. What makes it possible is a reformulation of
q-Lagrange inversion in terms of symmetric function operators arising in the theory
of Macdonald polynomials, as will be explained in §3.5.7.

2.1. Partitions, tableaux and jeu-de-taquin. We write the parts of an
integer partition as usual in decreasing order, as

λ = (λ1, . . . , λl), where λ1 ≥ λ2 ≥ · · · ≥ λl.

Its length, denoted l(λ), is the number of parts, and its size, denoted |λ|, is the sum
of the parts. The diagram of λ, sometimes called its Young diagram or its Ferrers
diagram, is the array of lattice points

{(i, j) ∈ N × N : i+ 1 ≤ λj+1}.
It is drawn as an array of square cells, as for example

for the partition (4, 3, 2). Note that our conventions follow the French style, and
that the lower-left box is (0, 0), not (1, 1). We often abuse notation by identifying
λ with its diagram, writing for instance x ∈ λ to mean that x = (i, j) is a cell in
the diagram of λ. The conjugate partition, denoted λ′, is the partition obtained by
transposing the diagram of λ.

The dominance order is the partial order on partitions of a given size defined
by

(1) λ ≥ µ if λ1 + · · · + λk ≥ µ1 + · · · + µk for all k.

It is a slightly non-trivial exercise to prove that

λ ≤ µ ⇔ µ′ ≤ λ′.

The arm of a cell x ∈ λ is the set of cells to the right of x in its row; the leg is
the set of cells above x in its column. The hook of x consists of x together with its
arm and leg. We denote by

a(x), l(x), h(x) = 1 + a(x) + l(x)

the sizes of the arm, leg and hook of x. Thus in the example

l
x a a ,
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we have a(x) = 2, l(x) = 1 and h(x) = 4.
A standard Young tableau of shape λ, where |λ| = n, is a bijective map T : λ→

{1, . . . , n} such that T is increasing along each row and column of λ (here already
we are identifying λ with its diagram). A semi-standard Young tableau of shape
λ is a map T : λ → N which is weakly increasing along each row of λ and strictly
increasing along each column. The number of standard Young tableaux of shape λ
is given by the hook formula of Frame, Robinson and Thrall [19]:

(2) |SY T (λ)| =
n!∏

x∈λ h(x)
.

An important numerical statistic associated with λ is

n(λ) =
def

∑
i

(i− 1)λi =
∑

i

(
λ′i
2

)
.

This number has the following representation-theoretical significance. Put |λ| = n,
and let T be any standard Young tableau of shape λ. Let ST

∼= Sλ′
1
× · · · × Sλ′

l
be

the subgroup of Sn consisting of elements that only permute the numbers within
columns of T . The Garnir polynomial gT (x1, . . . , xn) is defined to be the product
of the Vandermonde determinants ∆(XC0) · · ·∆(XCk

) in the subsets XCi of the
variables indexed by the entries Ci in column i of T , as for example

T =
3 6
2 5 8
1 4 7 9

: gT = ∆(x1, x2x3)∆(x4, x5, x6)∆(x7, x8).

Thus gT is the essentially unique homogeneous polynomial of minimal degree that
is antisymmetric with respect to ST . Its degree is n(λ). As T ranges over standard
tableaux of shape λ, the Garnir polynomials gT form a basis of an Sn-invariant
subspace of C[x1, . . . , xn], which affords the irreducible representation V λ of Sn

whose character is denoted χλ in the standard indexing. In particular, its degree
χλ(1) is the number of standard Young tableaux of shape λ.

A skew shape λ/ν, where ν ⊆ λ, is the array of cells in the difference between
the diagrams, as for example

(4, 3, 2)/(2, 1) = .

Standard and semistandard Young tableaux of skew shape are defined by the same
rules as for straight shapes. Suppose given a semistandard tableau T of shape λ/ν
and a cell x outside λ/ν but on its lower boundary, so that {x} ∪ (λ/ν) is again a
(skew) shape. There is a unique process, called a forward slide, by which an entry of
T is moved from an adjacent cell above or to the right of x, then another entry into
the cell thus vacated, and so on, until finally a cell is left vacant along the upper
boundary, in such a way that the result is again a tableau. This is best illustrated
by an example:

1 6
2 5
x 3 4

→
1 6

5 y

2 3 4
.

Here y indicates the final vacated cell, and the tableau resulting from the slide
consists of the other cells in the diagram on the right. The opposite process, in
which tableau entries move up and to the right while the vacant cell moves down
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and to the left, is a reverse slide. It is easy to see that following a slide with an
opposite slide into the cell just vacated undoes the the first slide. In particular, the
figure above with the arrow reversed gives an example of a reverse slide. The general
name for manipulation of tableaux by slides is jeu-de-taquin. The basic properties
of jeu-de-taquin were established by Lascoux and Schützenberger [56, 77].

Proposition 2.1.1. (1) When a skew tableau T is brought to a straight shape
by jeu-de-taquin, the result depends only on T and not on the choice of slides used.

(2) The number of tableaux T of a given skew shape λ/ν that go by jeu-de-taquin
to a given tableau S of straight shape µ is the Littlewood-Richardson coefficient cλµν ,
independent of S.

A semistandard tableau T has content µ if its entries are µ1 1’s, µ2 2’s, and so
on. If µ1 ≥ µ2 ≥ · · · , we say that T has partition content.

Definition 2.1.2. The Kostka number Kλµ is the number of semistandard
Young tableaux of shape λ and content µ. In particular, Kλµ = 0 unless λ ≥ µ,
and Kλλ = 1.

Lascoux and Schützenberger defined a numerical invariant called charge on
tableaux with partition content and arbitrary skew shape. It is easiest to define it
in terms of a complementary invariant, called cocharge.

Definition 2.1.3. The cocharge of a tableaux T with partition content µ is the
integer cc(T ) uniquely characterized by the following properties:

(i) Cocharge is invariant under jeu-de-taquin slides.
(ii) Suppose the shape of T is disconnected, say T = X ∪ Y , with X above

and left of Y , and no entry of X is equal to 1. Let S = Y ∪X be a tableau
obtained by swapping X and Y . Then cc(T ) = cc(S) + |X |.

(iii) If T is a single row, then cc(T ) = 0.
The charge of T is defined as c(T ) = n(µ) − cc(T ).

The existence of an invariant cc(T ) with properties (i)-(iii) is of course a the-
orem. To compute cc(T ) for a tableau T of straight shape λ with more than one
row, one may first put it in the form X ∪ Y in (ii) using jeu-de-taquin, by sliding
the bottom row to the right until it detaches from the rest of the shape. Then
swapping the detached row to the top and normalizing again to straight shape by
jeu-de-taquin, we obtain a new tableau S with cc(S) = cc(T ) − |λ| + λ1. This
process is called catabolism. Since it diminishes the cocharge, repeated catabolism
eventually produces a tableau with one row and cocharge zero.

2.2. Catalan numbers and q-analogs. The Catalan numbers are given by
the formula

Cn =
1

n+ 1

(
2n
n

)
.

They enumerate a wide range of interesting combinatorial objects. For example, Cn

is the number of binary trees with n vertices, the number of ordered rooted trees
with n + 1 vertices, the number of standard Young tableaux of shape (n, n), and
the number of partitions λ whose diagram is contained inside that of the partition
δn = (n−1, n−2, . . . , 1). For literally dozens of other combinatorial interpretations
of Cn, one may consult the book of Stanley [82].
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The formulation most relevant here is that Cn is the number of partitions
λ ⊆ δn, listed below for n = 3.

∅ , , , ,

The list exhibits that C3 = 5. The Carlitz-Riordan q-analog of the Catalan number
[12] is the polynomial defined by

(3) Cn(q) =
∑

λ⊆δn

q(
n
2)−|λ|.

From the list of partitions for n = 3, we see that

C3(q) = q3 + q2 + 2q + 1.

The Carlitz-Riordan q-Catalan numbers satisfy the recurrence

(4) Cn(q) =
n−1∑
k=0

qkCk(q)Cn−1−k(q),

which is the q-analog of a classical recurrence for Cn. The recurrence (4) is easily
proven by taking k to be the number of consecutive cells along the outermost di-
agonal of δn, beginning at the top left, that do not belong to λ, as illustrated here
with n = 6 and λ = (4, 4, 1), so k = 3.

k
k

λ k
λ λ λ λ
λ λ λ λ

For fixed k, the top k rows of δn/λ may be chosen independently of the bottom
n− 1 − k, with the choice in the top k rows contributing a factor qkCk(q) and the
choice in the remaining rows contributing Cn−1−k(q).

The ordinary generating function for Catalan numbers is

(5) C(x) =
def

∞∑
n=0

Cnx
n =

1 −√
1 − 4x

2x
.

Thus C(x) is the solution of a quadratic equation, which we will find it convenient
to write in the form

(6) xC(x)(1 − xC(x)) = x.

In other words, xC(x) is the compositional inverse of the function F (x) = x(1−x).

2.3. Tree enumeration and q-analogs. Among the things enumerated by
Catalan numbers are various types of unlabelled trees. It is also classical in combi-
natorics (going back to Cayley) to enumerate trees and forests with vertices labelled
by the integers {1, . . . , n}. A tree is a connected graph without cycles. A rooted
tree is a tree with one vertex distinguished as the root. A forest is a possibly non-
connected graph without cycles. Every forest is the disjoint union of its connected
components, which are trees. A rooted forest is a forest in which each component
is assigned a distinguished root.

Labelled rooted forests on the vertex set {1, . . . , n} are in natural bijective
correspondence with trees on the vertex set {0, 1, . . . , n}, the trees being thought
of either as unrooted or as always rooted at vertex 0. The tree corresponding to
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a forest F is constructed by adding the vertex 0 and attaching it by an edge to
the root vertex of each component of F . It is of little consequence whether we
enumerate trees or forests; for the present discussion I prefer forests.

Proposition 2.3.1. The number of rooted forests on n labelled vertices is (n+
1)n−1.

There are many ways to prove this classical theorem, none of them entirely
trivial. Perhaps the most direct is to consider the exponential generating function
for trees

T (x) =
∞∑

n=1

tn
xn

n!
,

where tn is the number of rooted trees on n labelled vertices. On the one hand,
it follows from general principles that the exponential generating function F (x) for
rooted forests is given by F (x) = eT (x), because a forest is a disjoint union of trees.
On the other hand, viewing a rooted tree as composed of a root vertex and an
attached forest on the other vertices, one obtains T (x) = xF (x). Hence we have
T (x) = xeT (x), or better,

(7) T (x)e−T (x) = x,

so T (x) is the compositional inverse of xe−x. Now we apply the Lagrange inversion
formula.

Proposition 2.3.2. Let xK(x) be the compositional inverse of the formal power
series x/E(x). Then the coefficients of K(x) are given by

(8) kn =
def

[xn]K(x) = [xn]
E(x)n+1

n+ 1
.

In our case, we take E(x) = ex, so xK(x) = T (x) and K(x) = F (x). Then
kn = fn/n!, where fn is our desired number of forests. Proposition 2.3.2 yields
kn = (n+ 1)n−1/n! and hence fn = (n+ 1)n−1.

Definition 2.3.3. An inversion in a rooted forest F on vertices labelled
{1, . . . , n} is a pair of vertices i < j such that vertex j is on the unique path
from vertex i to the root of its component in F .

As an example, the forest

�

�

�

�

�

�

�
���

��
1

3

4

5

6

2

(drawn with the roots at the bottom) has 3 inversions: (1, 3), (2, 6) and (2, 5). This
definition provides a combinatorial q-analog of the number (n+1)n−1, the inversion
enumerator for forests

(9) Jn(q) =
def

∑
F

qi(F ),

where the sum is over rooted forests with vertices labelled {1, . . . , n}, and i(F )
denotes the number of inversions in the forest F . By listing the forests, one computes
for example

J3(q) = q3 + 3q2 + 6q + 6.
Mallows and Riordan [63] determined Jn(q) by a generating function identity.



COMBINATORICS, SYMMETRIC FUNCTIONS, AND HILBERT SCHEMES 47

Proposition 2.3.4 ([63]). We have

(10)
∞∑

n=1

qn−1Jn−1(q + 1)
xn

n!
= log

∞∑
n=0

(q + 1)(
n
2) x

n

n!
.

A pleasant proof of this result was given by Gessel and Wang [32]. The right-
hand side of (10) is the exponential generating function for connected graphs with
labelled vertices, enumerated with weight qe(G) for a graph G with e(G) edges.
Gessel and Wang described a search algorithm that selects a distinguished subtree
in each graph. All graphs with a given distinguished tree T are gotten by adding
to T some subset of certain optional edges. The number of optional edges is the
number of inversions in T , regarded as rooted at vertex 1. Since vertex 1 never
participates in an inversion of T , this is the same as the number of inversions in
the rooted forest on the other vertices. Taking account of the n − 1 fixed edges in
T , together with the additional optional edges, and summing over all trees T on n
vertices, gives the coefficient qn−1Jn−1(q + 1) of xn/n! on the left-hand side.

2.4. q-Lagrange inversion. A q-analog of Lagrange inversion was defined
independently by Garsia [30] and Gessel [31]. I will follow the approach of Garsia,
who defined a q-analog of functional composition of formal power series by the
identity

F ◦q G(x) =
def

∑
n

fnG(x)G(qx) · · ·G(qn−1x), where F (x) =
∑

n

fnx
n.

He proved the following basic result, which shows that it is a good definition.

Proposition 2.4.1 ([30]). We have

(11) F ◦q G(x) = x if and only if G ◦1/q F (x) = x

More generally, when they hold, we have for any φ(x) and ψ(x)

(12) ψ(x) = φ ◦q G(x) if and only if φ(x) = ψ ◦1/q F (x).

Garsia also obtained a q-analog of the Lagrange inversion formula (8) for the
q-compositional inverse G(x) of F (x) = x/E(x), as defined by (11). His formula
involves operations called roofing and starring, which I will not go into here. Garsia
and I later reformulated it more combinatorially as follows.

Proposition 2.4.2 ([24, 30]). Let E(x) =
∑∞

n=0 enx
n, with e0 = 1, and let

G(x) be the q-compositional inverse of F (x) = x/E(x) in the sense of (11). Then
G(x) = xK(qx), where K(x) =

∑∞
n=0 kn(q)xn, with kn(q) given by

kn(q) =
∑

λ⊆δn

q(
n
2)−|λ|eα0(λ)eα1(λ) · · · eαn−1(λ).

Here αi(λ) is the number of parts equal to i in λ, with α0(λ) defined to make∑n−1
i=0 αi(λ) = n.

One sees immediately that when E(x) = 1/(1 − x), so en = 1 for all n, then
kn(q) = Cn(q), the Carlitz-Riordan q-Catalan number defined by (3). In other
words the generating function for q-Catalan numbers

C(x; q) =
∞∑

n=0

Cn(q)xn
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has the property that G(x) = xC(qx; q) is the q-compositional inverse of F (x) =
x/E(x) = x(1 − x). This is the the q-analog of equation (6).

It turns out that equation (7) also has a q-analog, which involves the inversion
enumerators for forests.

Proposition 2.4.3 (Gessel [31]). Let

J(x; q) =
∞∑

n=0

Jn(q)
xn

n!

be the exponential generating function for the forest inversion enumerators Jn(q) in
(9). Then

(13) xe−x ◦q xJ(qx; q) = x.

This is proved using Proposition 2.3.4. Proposition 2.4.3 has an alternate in-
terpretation that is worth mentioning. Combining (13) with Proposition 2.4.2, we
see that Jn(q) is equal to the specialization of n!kn(q) at ek = 1/k!, or in symbols,

(14) Jn(q) =
∑

λ⊆δn

q(
n
2)−|λ|

(
n

α0(λ), α1(λ), . . . , αn−1(λ)

)
.

Consider the diagram of λ with its border extended by a line segment along the
vertical axis ending at (0, n). The numbers αi(λ), including α0(λ), are then the
heights of the vertical segments along this extended border. The multinomial co-
efficient

(
n

α0(λ),α1(λ),...,αn−1(λ)

)
is the number of ways to place labels {1, . . . , n} to

the right of the n vertical steps on the extended border of λ, so that the labels
increase along each contiguous vertical segment. Here is an example with n = 6
and λ = (4, 4, 1).

(15)

5
3
2

6
4
1

Such a labelled diagram is specified completely by giving the function
f : {1, . . . , n} → {1, . . . , n} in which f(i) − 1 is the column occupied by label i.
Not every function is admissible, because of the condition λ ⊆ δn. However, it is
not hard to see that this condition on λ is precisely equivalent to the condition on
f that

(16) |f−1({1, . . . , k})| ≥ k for all k = 1, . . . , n.

Definition 2.4.4. A function f : {1, . . . , n} → {1, . . . , n} satisfying (16) is a
parking function. The weight of f is the quantity

(
n+1

2

)−∑i f(i).

Note that the parts of λ are one less than the values of the corresponding
parking function f , so the weight of f is simply

(
n
2

)− |λ|. Hence Propositions 2.4.2
and 2.4.3 have the following corollary, which was also proved by Kreweras [51] using
a combinatorial bijection.

Corollary 2.4.5. The number of parking functions of weight d on {1, . . . , n}
is equal to the number of rooted forests on {1, . . . , n} with d inversions.
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There is a natural action of Sn on parking functions defined by

w(f) = f ◦ w−1, for w ∈ Sn.

This action is well-defined since it leaves condition (16) invariant; and it preserves
the weight. We have the following nice result.

Proposition 2.4.6. The permutation action of the symmetric group Sn on
parking functions is isomorphic to its action on the finite Abelian group

Q/(n+ 1)Q,

where Q = Zn/Z · (1, 1, . . . , 1) and Sn acts on Q by permuting coordinates.

Proof. Fix the integers {0, . . . , n} as representatives of the residue classes
modulo n+ 1, and identify (Z/(n+ 1)Z)n with the set of functions f : {1, .., n} →
{0, . . . , n} in the obvious way. It is not hard to show that in every coset of (Z/(n+
1)Z)·(1, 1, . . . , 1) there is exactly one f that is a parking function. This gives an Sn-
equivariant bijection between parking functions and the elements of Q/(n+1)Q. �

Note that the proposition gives in particular an easy proof that there are exactly
(n + 1)n−1 parking functions. The Abelian group Q and its Sn action may be
identified with the weight lattice for sln and its Weyl group action.

3. Background from symmetric function theory

3.1. Generalities. We work with formal symmetric functions in infinitely
many variables z = z1, z2, . . ., with coefficients implicitly assumed to be rational
functions of any parameters q, t, etc. under discussion. I’ll use the standard nota-
tion from Macdonald’s book [61] for the classical families of symmetric functions:
ek for the k-th elementary symmetric function, hk for the complete homogeneous
symmetric function of degree k, pk for the power-sum zk

1 + zk
2 + · · · , and eλ, hλ, pλ

for products of these. The monomial symmetric functions are denoted mλ, and the
Schur functions sλ.

The Hall inner product makes the Schur functions orthonormal, or equivalently,
makes the monomial symmetric functions mλ dual to the complete homogeneous
symmetric functions hλ:

(17) 〈sλ, sµ〉 = 〈mλ, hµ〉 = δλµ.

Recall that the power-sum symmetric functions are orthogonal, but not orthonor-
mal; their norms are given by

(18) 〈pλ, pλ〉 = zλ =
def

∏
i

αi!iαi , where λ = (1α1 , 2α2 , . . .).

The Kostka numbers Kλµ of Definition 2.1.2 are related to symmetric functions
by the identity

(19) Kλµ = 〈sλ, hµ〉,
which in light of (17) is equivalent to either of the expansions

sλ =
∑

µ

Kλµmµ(20)

hµ =
∑

λ

Kλµsλ.(21)



50 MARK HAIMAN

3.2. The Frobenius map. A classical theorem of Frobenius expresses the
irreducible characters of the symmetric groups in terms of symmetric functions.

Proposition 3.2.1. Let λ be a partition of n, and w ∈ Sn. The value of the
irreducible character χλ of Sn at w is given by

(22) χλ(w) = 〈sλ, pτ(w)〉,
where τ(w) is the partition whose parts are the lengths of the disjoint cycles of the
permutation w.

The number of permutations w ∈ Sn with given cycle-type τ(w) = λ is equal to
n!/zλ, where zλ = 〈pλ, pλ〉, as in (18). Hence Proposition 3.2.1 can also be written
as the identity

sλ =
1
n!

∑
w∈Sn

χλ(w)pτ(w).

This suggests the following definition.

Definition 3.2.2. The Frobenius characteristic map is the the linear map from
class functions on Sn to symmetric functions homogeneous of degree n given by

Fχ =
def

1
n!

∑
w∈Sn

χ(w)pτ(w),

or equivalently, the unique linear map sending the irreducible character χλ to the
Schur function sλ.

Note that F is an isometry of the usual inner product on characters onto the
Hall inner product on symmetric functions.

We will often deal with graded, or doubly-graded, Sn-modules. In this context
it is useful to extend the Frobenius map to a generating function for their graded
characters.

Definition 3.2.3. Let A =
⊕

r Ar be a graded Sn-module (with each Ar finite-
dimensional). The Frobenius series of A is the generating function

FA(z; t) =
∑

r

trF charAr.

If A =
⊕

r,sAr,s is doubly graded, its Frobenius series is the bivariate generating
function

FA(z; q, t) =
∑
r,s

trqsF charAr,s.

Note that the degree of χλ is equal to χλ(1) = 〈sλ, p
n
1 〉. It follows that the

dimension of any finite-dimensional Sn-module V is given by 〈pn
1 , F charV 〉. Hence

the Frobenius series of a graded or doubly graded module A determines its Hilbert
series by the formula

HA(t) = 〈pn
1 , FA(z; t)〉 or HA(q, t) = 〈pn

1 , FA(z; q, t)〉.
Of course the Frobenius series of any module is a fortiori Schur-positive, that is, the
coefficients of its expansion in Schur functions are polynomials or formal series in t
and/or q with positive integer coefficients. Our basic tool for establishing the Schur
positivity of symmetric functions will be to interpret them as Frobenius series for
suitable graded modules.
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3.3. Plethystic or λ-ring notation. The algebra of symmetric functions ΛF

over a coefficient field F containing Q is freely generated by the power-sums pk, that
is,

ΛF
∼= F[p1, p2, . . .].

Hence we may specify arbitrary values for the pk’s in any algebra A over F and
extend uniquely to an F-algebra homomorphism ΛF → A.

Now let A be a formal Laurent series with rational coefficients in indeterminates
a1, a2, . . . (possibly including parameters q, t from the coefficient field). We define
pk[A] to be the result of replacing each indeterminate ai in A by ak

i . Then for any
f ∈ ΛF, the plethystic substitution of A into f , denoted f [A], is the image of f under
the homomorphism sending pk to pk[A].

If A is a sum of indeterminates, A = a1 + · · · + an, then pk[A] =
pk(a1, a2, . . . , an), and hence for every f we have f [A] = f(a1, a2, . . . , an). This
is why we view this operation as a kind of substitution. In particular, when deal-
ing with symmetric functions in an alphabet z, we always denote the sum of the
variables by

Z = z1 + z2 + · · · ,
whence

f [Z] = f(z)

for all f . More generally, if A has a series expansion as a sum of monomials, then
f [A] is f evaluated on these monomials, for example

f [Z/(1 − t)] = f(z1, z2, . . . , tz1, tz2, . . . , t2z1, t2z2, . . .).

Among the virtues of this notation is that the substitution Z → Z/(1− t) as above
has an explicit inverse, namely the substitution Z → Z(1 − t).

One caution that must be observed with plethystic notation is that indetermi-
nates must always be treated as formal symbols, never as variable numeric quanti-
ties. For instance, if f is homogeneous of degree d then it is true that

f [tZ] = tdf [Z],

but it is false that f [−Z] = (−1)df [Z], that is, we cannot set t = −1 in the equation
above. Actually, f [−Z] is an interesting quantity: it is equal to (−1)dωf(z), where
ω is the classical involution on symmetric functions defined by ωpk = (−1)k+1pk,
which interchanges the elementary and complete symmetric functions ek and hk,
and more generally exchanges the Schur function sλ with sλ′ .

It is convenient when using plethystic notation to define

(23) Ω = exp(
∞∑

k=1

pk/k).

Then since pk[A+B] = pk[A] + pk[B] and pk[−A] = −pk[A] we have

(24) Ω[A+B] = Ω[A]Ω[B], Ω[−A] = 1/Ω[A].
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From this and the single-variable evaluation Ω[x] = exp(
∑

k≥1 x
k/k) = 1/(1 − x)

we obtain

Ω[Z] =
∏

i

1
1 − zi

=
∞∑

n=0

hn(z)(25)

Ω[−Z] =
∏

i

(1 − zi) =
∞∑

n=0

(−1)nen(z).(26)

The plethystic substitutions Z → Z(1−t) and Z → Z/(1−t) have an important
representation-theoretical interpretation.

Proposition 3.3.1. Let SkV and ∧kV denote the symmetric and exterior pow-
ers repectively of the defining representation V = Cn of Sn, and let f(z) = FA(z; t)
be the Frobenius series of a graded Sn-module A. Then we have

f [Z(1 − t)] =
∑

k

(−1)ktkFA⊗∧kV (z; t),(27)

f [
Z

1 − t
] =

∑
k

tkFA⊗SkV (z; t).(28)

The proof is in two steps. First, a direct computation gives

hn[Z(1 − t)] =
∑

k

(−1)ktkF∧kV (z; t),

hn[
Z

1 − t
] =

∑
k

tkFSkV (z; t).

Second, an easy exercise shows that if φ is a virtual character whose Frobenius
image has the form Fφ = hn[ZQ] for some Q, then F (φ⊗χ) = (Fχ)[ZQ] for all χ,
from which the result follws.

In §3.5 we will need the following classical generalization of the hook formula
(2).

Proposition 3.3.2. The Schur function specialization sλ(1, t, t2, . . .) =
sλ[1/(1 − t)] is given by

(29) sλ[1/(1 − t)] =
tn(λ)∏

x∈λ(1 − th(x))
,

where h(x) is the hook-length of the cell x ∈ λ.

3.4. Hall-Littlewood polynomials. Hall-Littlewood polynomials are sym-
metric functions with coefficients depending on a parameter q. They play an im-
portant role in the representation theory of GLn(Fq) and in the geometry associated
with it, involving character sheaves and the Springer correspondence (see §3.4.4).
Together with Jack’s symmetric functions, Hall-Littlewood polynomials were the
precursors of Macdonald’s symmetric functions.

The connecting coefficients between Hall-Littlewood polynomials and Schur
functions are the Kostka-Foulkes polynomials Kλµ(q). The positivity theorem for
Kostka-Foulkes polynomials was the precursor to Macdonald’s positivity conjecture,
and the combinatorial proof of that theorem by Lascoux and Schützenberger was
the inspiration for our work on Macdonald’s conjecture.
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3.4.1. Definition; Kostka-Foulkes polynomials. We begin with the classical def-
inition of Hall-Littlewood polynomials, as in Macdonald [61]. We use the conven-
tional q-notation (with t instead of q)

(30)
[k]t =

def

1 − tk

1 − t
= tk−1 + tk−2 + · · · + 1;

[k]t! =
def

[k]t[k − 1]t · · · [1]t.

Definition 3.4.1. The Hall-Littlewood polynomial Pλ(z; t) is defined in n ≥
l(λ) variables z = z1, . . . , zn by the formula

(31) Pλ(z; t) =
1∏

i≥0[αi]t!

∑
w∈Sn

w

(
zλ

∏
i<j(1 − tzj/zi)∏
i<j(1 − zj/zi)

)
.

Here λ = (1α1 , 2α2 , . . .), with α0 defined so as to make
∑

i αi = n, and zλ is
shorthand for zλ1

1 zλ2
2 · · · zλl

l .

We will see below that the definition is stable with respect to changing the
number of variables, so Pλ(z; t) makes sense formally in infinitely many variables.
At t = 0, the denominator

∏
i≥0[αi]t! disappears and (31) reduces to the classical

formula for Schur functions (equation (36) below), so we have

(32) Pλ(z; 0) = sλ(z).

At t = 1, the products inside the sum cancel, and
∏

i≥0[αi]t! becomes the number
of permutations w ∈ Sn that stabilize zλ, so

(33) Pλ(z; 1) = mλ(z).

Definition 3.4.2. The Kostka-Foulkes polynomials Kλµ(t) are the coefficients
in the expansion

sλ(z) =
∑

µ

Kλµ(t)Pµ(z; t).

In particular, by (32) and (33), we have

Kλµ(1) = Kλµ

Kλµ(0) = δλµ.

It is not yet obvious that Kλµ(t) is in fact a polynomial, but this will become
clear below.

3.4.2. Jing’s operators and transformed Hall-Littlewood polynomials. There is
another way of defining Hall-Littlewood polynomials which gives easier access to
many of their properties. We begin with “vertex operators” due to Bernstein (see
Macdonald [61] or Zelevinsky [86]) that have the effect of adding a part to a Schur
function.

Definition 3.4.3. The Bernstein operators are the coefficients S0
m = [um]S0(u)

of the operator generating function S0(u) defined by

(34) S0(u)f = f [Z − u−1]Ω[uZ].

Proposition 3.4.4. The Bernstein operators add a part to the indexing parti-
tion of a Schur function, that is, for m ≥ λ1, we have S0

msλ(z) = s(m,λ)(z).
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Proof. It suffices to work in finitely many variables Z = z1 + · · · + zn. Then
we have the partial fraction expansion

(35) Ω[uZ] =
∏

i

1
1 − uzi

=
∑

i

1
1 − uzi

∏
j �=i

1
1 − zj/zi

.

The classical formula in n variables for a Schur function as a ratio of determinants,
or equivalently the Weyl character formula for GLn, can be written

(36) sλ(z) =
∑

w∈Sn

w

(
zλ∏

i<j(1 − zj/zi)

)
.

Now observe that for any polynomial f , we have

[um]f(u−1)
1

1 − uz
= [u0]u−mf(u−1)

1
1 − uz

= zmf(z).

Combined with (34) and (35), this gives the formula for the Bernstein operator in
n variables

S0
mf(z) =

∑
i

zm
i

f(Z − zi)∏
j �=i(1 − zj/zi)

.

The desired result now follows easily by induction using (36). �

It is customary to define sλ by (36) when λ is any integer sequence, not neces-
sarily a partition. Then, setting δ = (n− 1, n− 2, . . . , 1, 0), we have sλ = 0 if λ+ δ
does not have distinct parts, and otherwise sλ = ε(w)sν , where w(λ + δ) = ν + δ
with ν a partition. With these conventions, the identity S0

msλ(z) = s(m,λ)(z) holds
for all m ≥ 0.

We now introduce two t-deformations of Bernstein’s operators that will allow
us to construct Hall-Littlewood polynomials.

Definition 3.4.5. The Jing operators [45] are the coefficients St
m = [um]St(u)

of the operator generating function St(u) defined by

(37) St(u)f = f [Z + (t− 1)u−1]Ω[uZ].

Let Π(1−t) denote the plethystic substitution operator Π(1−t)f(z) = f [Z(1 − t)].
The modified Jing operators are

S̃t
m = Π(1−t)S

t
mΠ−1

(1−t),

or equivalently, the coefficients of the generating function

(38) S̃t(u)f = f [Z − u−1]Ω[(1 − t)uZ].

The transformed Hall-Littlewood polynomials are defined by

(39) Hµ(z; t) = St
µ1
St

µ1
· · ·St

µl
(1).

We also set Qµ(z; t) =
def

Hµ[(1 − t)Z; t], so

(40) Qµ(z; t) = S̃t
µ1
S̃t

µ1
· · · S̃t

µl
(1).

The notation Qµ(z; t) agrees with that used in Macdonald’s book.
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3.4.3. Orthogonality and triangularity. The basic orthogonality and triangu-
larity properties of Hall-Littlewood polynomials are readily deduced using the
Rodrigues-type formulas (39) and (40).

Lemma 3.4.6. If m ≥ µ1 and λ ≥ µ, then

St
msλ ∈ Z[t]{sγ : γ ≥ (m,µ)}.

Moreover, s(m,µ) occurs with coefficient 1 in St
msµ.

Proof. Recall the Schur function identity (dual Pieri rule)

sλ[Z + a] =
∑

k

ak
∑

λ/ν∈Hk

sν ,

where the notation λ/ν ∈ Hk means that the skew shape λ/ν is a horizontal strip
of size k, that is, it has at most one cell in each column. Write the Jing operator in
terms of the Bernstein operator: St(u)f = S0(u)f [Z+ tu−1]. Taking the coefficient
of um and applying the Pieri rule, we get

(41) St
msλ =

∑
k

tk
∑

λ/ν∈Hk

s(m+k,ν),

with the conventions discussed above if (m+k, ν) is not a partition. It is convenient
to extend the dominance partial order to sequences that may not be partitions by
maintaining the same definition (1). In particular, rewriting s(m+k,ν), if nonzero,
as ±sγ where γ is a partition, we have

γ ≥ (m+ k, ν) ≥ (m,λ) ≥ (m,µ).

Equality can only occur for k = 0, and does occur then if λ = µ. �

Corollary 3.4.7. We have

Hµ(z; t) =
∑
λ≥µ

Cλµ(t)sλ(z)

for suitable coefficients Cλµ(t) ∈ Z[t], with Cµµ(t) = 1.

We will see presently that in fact Cλµ(t) = Kλµ(t). Now let us use our second
Rodrigues formula (40) to establish an opposite triangularity for Qµ(z; t).

Lemma 3.4.8. If m ≥ λ1, then

S̃t
msλ ∈ Z[t]{sγ : γ ≤ (m,λ)},

and the coefficient of s(m,λ) in S̃t
msλ is equal to 1 − tα, where α is the multiplicity

of m as a part of (m,λ).

Proof. In n variables, we can get an explicit formula for S̃t
m, much as we did

for S0
m in the proof of Proposition 3.4.4, by using the partial fraction expansion

(42) Ω[(1 − t)uZ] =
∏

i

1 − tuzi

1 − uzi
= tn + (1 − t)

∑
i

1
1 − uzi

∏
j �=i

1 − tzj/zi

1 − zj/zi
.
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The resulting formula is

S̃t
mf = δm,0t

nf + (1 − t)
∑

i

zm
i f [Z − zi]

∏
j �=i(1 − tzj/zi)∏
j �=i(1 − zj/zi)

(43)

= δm,0t
nf + (1 − t)

∑
i

∑
k

(−t)kzm−k
i

ek[Z − zi]f [Z − zi]∏
j �=i(1 − zj/zi)

.(44)

Taking f = sλ and applying the usual Pieri rule for multiplication by ek, we obtain
for m > 0

S̃t
msλ = (1 − t)

∑
k

(−t)k
∑

γ/λ∈Vk

s(m−k,γ).

The worst case γ for each k, that is, the maximal one in the dominance order, is
λ+ (1k). For this case, s(m−k,γ), if non-zero, is ±sν with ν having one of the forms

ν = (λ1, . . . , λi,m− k + i, λi+1 + 1, . . . , λk + 1, λk+1, . . .) and i ≤ k, or

ν = (λ1, . . . , λk, λk+1 − 1, . . . , λi − 1,m− k + i, λi, . . .) and i > k.

In either case, ν ≤ (m,λ) provided m ≥ λ1. Equality occurs when m = λ1 = · · · =
λi and k = i. Hence the coefficient of s(m,λ) in S̃t

msλ is equal to (1 − t)[α]t =
(1 − tα). �

Corollary 3.4.9. We have

Qµ(z; t) =
∑
λ≤µ

Bλµ(t)sλ

for suitable coefficients Bλµ(t) ∈ Z[t], and Bµµ = (1 − t)l(µ)
∏

i[αi]t!, where µ =
(1α1 , 2α2 , . . . , ).

The operator Π(1−t) is self-adjoint for the Hall inner product, that is,
〈f, g[(1 − t)Z]〉 = 〈f [(1 − t)Z], g〉. More generally, for any A there holds the identity

〈f, g[AZ]〉 = 〈f [AZ], g〉.
This is easily seen using the Cauchy formula: homogeneous bases {uλ} and {vλ}
are dual with respect to 〈−,−〉 if and only if

(45)
∑

λ

uλ[Y ]vλ[Z] = Ω[Y Z].

Hence {uλ} and {vλ[AZ]} are dual bases if and only if
∑

λ uλ[Y ]vλ[Z] = Ω[Y Z/A],
and this condition is symmetric between {uλ} and {vλ}.

By Corollaries 3.4.7 and 3.4.9, if 〈Hµ, Hν [(1 − t)Z]〉 �= 0, we must have µ ≤ ν.
By symmetry, we must also have ν ≤ µ, so µ = ν. Together with the leading terms
determined in Corollaries 3.4.7 and 3.4.9, this gives the following result.

Corollary 3.4.10. The transformed Hall-Littlewood polynomials are orthogo-
nal with respect to the inner product 〈f, g[(1 − t)Z]〉, and their self-inner-products
are given by

(46) 〈Hµ, Hµ[(1 − t)Z]〉 = (1 − t)l(µ)
∏

i

[αi]t!, µ = (1α1 , 2α2 , . . .).
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The polymomials Hµ are uniquely characterized by any two of the three prop-
erties expressed by Corollaries 3.4.7, 3.4.9, and 3.4.10.

Equation (43) yields by induction an explicit formula for Qλ(z; t) in n variables,
analogous to the classical formula (36) for Schur functions. In this way we can
recover the classical formula (31) for Hall-Littlewood polynomials.

Proposition 3.4.11. The symmetric functions Qλ(z; t) = Hλ[(1 − t)Z; t] are
given in n variables z1, . . . , zn by

Qλ(z; t) = (1 − t)l(λ)[n− l(λ)]t!
∑

w∈Sn

w

(
zλ

∏
i<j(1 − tzj/zi)∏
i<j(1 − zj/zi)

)
.

Hence the classical Hall-Littlewood polynomials Pλ(z; t) are equal to

(47) Pλ(z; t) =
Qλ(z; t)

(1 − t)l(λ)
∏

i[αi]t!
, λ = (1α1 , 2α2 , . . .).

In the classical theory of Hall-Littlewood polynomials, one uses the t-inner
product given in our language by

〈f, g〉t = 〈f, g[Z/(1 − t)]〉.
Corollary 3.4.10 and equation (47) imply that 〈Pλ, Qµ〉t = δλµ, that is, {Pλ} and
{Qλ} are orthogonal (but not orthonormal) bases for 〈−,−〉t, dual to each other.
Hence

Kλµ(t) = 〈sλ, Qµ〉t = 〈sλ, Hµ〉.
This shows, as claimed earlier, that the coefficients Cλµ(t) in Corollary 3.4.7 are
equal to the Kλµ(t).

To keep things organized, let me summarize in one place our conclusions so far.

Corollary 3.4.12. The transformed Hall-Littlewood polynomials Hµ are re-
lated to the classical Hall-Littlewood polynomials by

(48) Hµ[(1 − t)Z; t] = Qµ(z; t) = (1 − t)l(µ)

µ1∏
i=1

[αi(µ)]t!Pµ(z; t).

They are uniquely characterized by the following properties.

(i) Hµ(z; t) ∈ Z[t] · {sλ : λ ≥ µ},
(ii) Hµ[(1 − t)Z; t] ∈ Z[t] · {sλ : λ ≤ µ}
(iii) 〈sµ, Hµ〉 = 1.

The Kostka-Foulkes polynomials Kλµ(t) can be defined through the Schur function
expansion

Hµ(z; t) =
∑
λµ

Kλµ(t)sλ(z),

and enjoy the following properties.

(iv) Kλµ(t) ∈ Z[t],
(v) Kλµ(t) = 0 unless λ ≥ µ, and Kµµ(t) = 1,
(vi) Kλµ(0) = δλµ, that is, Hµ(z; 0) = sµ(z),
(vii) Kλµ(1) = Kλµ, that is, Hµ(z; 1) = hµ(z).
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3.4.4. Interpretation in geometry and representation theory. The geometric in-
terpretation of the Kostka-Foulkes polynomials that I wish to discuss is summarized
in the next proposition, which combines results of Hotta, Lusztig and Springer
[42, 58, 81]. To state it we need a bit of terminology. Let N be the variety of n×n
nilpotent matrices, that is, the nilpotent variety in the Lie algebra gln. Via the
exponential map, we can identify N with the variety of unipotent elements in GLn.
The adjoint action of GLn on N is by similarities x �→ gxg−1, so the GLn-orbit of
an element x ∈ N is given by its Jordan canonical form. For each partition λ of n,
let Oλ denote the orbit whose elements have Jordan block sizes λ1, . . . , λl.

The flag variety B = GLn /B may be identified concretely either with the
variety of Borel subalgebras b ⊆ gln or with the variety of flags of subspaces

(49) 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Cn, dimFi = i.

A flag F is compatible with x ∈ N if xFi ⊆ Fi−1 for each i, or equivalently, F is
fixed by the unipotent element exp(x) ∈ GLn, or yet again equivalently, we have
x ∈ b for the corresponding Borel b, the Lie algebra of the stabilizer of F . The
variety

(50) Z0 = {(x, b) ∈ N × B : x ∈ b}
is a vector bundle over B, hence nonsingular. The Grothendieck resolution is the
proper and birational map

g : Z0 → N
given by projection on the first factor. Its fiber over any element x ∈ Oλ is called a
Springer fiber, and denoted Bλ. Thus Bλ ⊆ B is just the variety of flags fixed by a
unipotent matrix of Jordan type λ. The dimension of Bλ, which is equal to one-half
the codimension of Oλ in N , is the statistic n(λ) discussed in §2.1.

Finally, let GLn(q) be the linear group over the finite field Fq with q elements.
Identifying Oλ with a unipotent orbit in GLn, its Fq-rational points form a conjugacy
class Oλ(q) ⊆ GLn(q) (here life is simpler for GLn than for other semisimple Lie
groups G; in general a unipotent orbit may break up into several conjugacy classes
of the corresponding finite Chevalley group). The finite group GLn(q) acts on the
finite set B(q) of Fq-rational points of the flag variety, which in our case is just the
set of flags as in (49), but in the finite vector space Fn

q instead of Cn.
The characters χλ of those irreducible representations Vλ of GLn(q) that occur

in the permutation representation on C ·B(q) are called unipotent characters. Their
indexing by partitions λ comes about as follows. Fix the Borel subgroup B ⊆
GLn(q) of upper triangular matrices. The Hecke algebra Hn(q) is the subalgebra
Hn(q) ⊆ C GLn(q) of elements

∑
g agg with coefficients ag constant on double cosets

BwB. As is well-known, Hn(q) is the specialization at the integer q of a generic
Hecke algebra in which q is an indeterminate, and its specialization at q = 1 is the
group algebra of the Weyl group, that is, Hn(1) = CSn for G = GLn. Both the
generic Hecke algebra and these specializations are semi-simple, so the irreducible
representations V λ of Hn(q) are naturally identified with those of CSn. By general
principles for double coset algebras, Hn(q) × GLn(q) acts on C · B(q) and this
representation decomposes into irreducibles as

C · B(q) ∼=
⊕

λ

V λ ⊗ Vλ.
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Thus there is a natural correspondence between the unipotent characters χλ of
GLn(q) and the irreducible characters χλ of Sn.

Definition 3.4.13. The “cocharge” Kostka-Foulkes polynomials are

K̃λµ(q) =
def

qn(µ)Kλµ(q−1).

It is not hard to see—from the proof of Lemma 3.4.6, for instance—that the
degree of Kλµ(t) is at most n(µ), so K̃λµ(q) is in fact a polynomial.

Proposition 3.4.14. The Kostka-Foulkes polynomials Kλµ(q) and their
cocharge variants K̃λµ(q) have the following interpretations.

(i) The value of a unipotent character of GLn(q) on a unipotent conjugacy
class is given by χλ(u) = K̃λµ(q), for u ∈ Oµ(q).

(ii) The Poincaré series of the local intersection homology of the closure Oλ

at any point x ∈ Oµ is given by
∑

k q
k IH 2k

x (Oλ) = qn(µ)−n(λ)Kλµ(q).
(iii) For the Springer action [81] of the Weyl group Sn on the cohomology ring

H∗(Bµ) of a Springer fiber, we have
∑

q q
k〈χλ, charH2k(Bµ)〉 = K̃λµ(q).

In other words, the Frobenius series of H∗(Bµ) is given by FH∗(Bµ)(z; q) =
qn(µ)Hµ(z; q−1).

It is somewhat difficult to gain an understanding of these results from the
original papers, because the theory of perverse sheaves, which simplifies and clarifies
the proofs, was developed later. I will not discuss the proofs in any detail, but will
only mention a few points to make the present discussion self-contained. For further
information I recommmend the excellent exposition by Shoji [78].

One point that deserves attention is the definition of the Springer action referred
to in part (iii) of the Proposition. The variety Z0 in (50) is part of a larger bundle
over the flag variety,

Z = {(x, b) ∈ gln × B : x ∈ b},
and projection on the first factor again yields a proper map

f : Z → gln.

This map f is not birational, but it is generically finite. Specifically, the preim-
age of the set (gln)rss of regular semi-simple elements has a natural structure of
principal Sn-bundle. Let CZ be the trivial constant sheaf on Z. The fundamental
decomposition theorem of Beilinson-Bernstein-Deligne-Gabber [4], together with an
easy dimension argument, implies that the object Rf∗CZ in the derived category of
constructible sheaves on gln is a perverse sheaf, and furthermore, it is the perverse
extension of its restriction to (gln)rss. Since Sn acts naturally on this restriction,
it acts on Rf∗CZ . But the cohomology ring H∗(Bµ) is just the stalk of Rf∗CZ at
x ∈ Oµ. The action of Sn on the stalk is the Springer action.

The equivalence of interpretations (ii) and (iii) in Proposition 3.4.14 follows
from similar considerations involving Rg∗CZ0 . Their further equivalence with in-
terpretation (i) is part of Lusztig’s theory of character sheaves.

As for the identification with K̃λµ(q) of the quantity described by all three inter-
pretations, Shoji gave a procedure for computing the characters of the cohomology
rings of Springer fibers (referred to in this context as Green polynomials) for the
classical groups G, and this was extended by Lusztig to all G in [59]. Shoji and
Lusztig characterize the Green polynomials by triangularity conditions, which in the



60 MARK HAIMAN

case of GLn, when translated into symmetric function language using the Frobenius
series and Proposition 3.3.1, amount to conditions (i)-(iii) in Corollary 3.4.12.

Finally, a word is in order here about the situation for a general semisimple
Lie group G. The things described by the three parts of Proposition 3.4.14 again
coincide for general G, with certain adjustments.

First of all, the cohomology rings H∗(Bu) depend, strictly speaking, on the
choice of u in a nilpotent orbit O. On a fixed orbit they are all isomorphic, but the
locally constant sheaf with stalk H∗(Bu) at u is usually not trivial. Various pairs
(O,L) consisting of a nilpotent orbit O and an irreducible local system L on it arise
in this way. These pairs, rather than the orbits themselves, are what correspond
to unipotent conjugacy classes in the finite Chevalley group G(q). To formulate
the Proposition correctly, in (iii) one should consider separately the summands
of H∗(Bu) corresponding to different local systems L on O. Also (ii) has to be
rephrased to take account of the local systems.

Secondly, part (i) is only “almost” correct for general G. The unipotent char-
acters χλ have to be replaced with certain linear combinations, called almost char-
acters. This phenomenon occurs because Lusztig’s character sheaves are imperfect
geometric analogs of characters. The linear transformations required involve only a
few characters at a time, and are given by certain small matrices which have been
explicitly determined by Lusztig.

3.4.5. Combinatorial interpretations. The following theorem was discovered by
Lascoux and Schützenberger [57] and its proof completed by Butler [11].

Theorem 3.4.15. The Kostka-Foulkes polynomial Kλµ(t) is given in terms of
the charge statistic defined in §2.1, evaluated on semistandard tableaux T of shape
λ and content µ, by

Kλµ(t) =
∑
T

tc(T ).

Equivalently, the cocharge Kostka-Foulkes polynomials are given in terms of cocharge
by

K̃λµ(t) =
∑
T

tcc(T ).

An alternative combinatorial interpretation of Kλµ(t) was given by Kirillov and
Reshetikhin [47, 48]. For any partition ν, let

sk(λ) = λ1 + · · · + λk

denote the sum of the first k parts of ν. A (λ, µ) configuration is a sequence of
partitions

ν = (ν0 = µ′, ν1, . . . , νl(λ))

of sizes
|νk| = |λ| − sk(λ).

Note that νl(λ) is empty by definition. The configuration ν is said to be admissible
if the numbers

pk
j (ν) =

def
sj(νk−1) − 2sj(νk) + sj(νk+1), for i = 1, . . . , l(λ) − 1 and all j

are non-negative. Note that for j sufficiently large, pk
j (ν) = λk − λk+1, which is

necessarily non-negative.
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Theorem 3.4.16 (Kirillov-Reshetikhin [48]). The Kostka-Foulkes polynomial
Kλµ(t) is given by the sum

(51) Kλµ(t) =
∑

ν

tn(µ)−∑ j≥1 µ′
jν1

j +
∑

k,j≥1 νk
j (νk

j −νk+1
j )

∏
k,j≥1

[
pk

j + νk
j − νk

j+1

νk
j − νk

j+1

]
t

over all (λ, µ)-admissible configurations ν, where[
n

k

]
t

=
def

[n]t!
[k]t![n− k]t!

are the Gauss binomial coefficients.

The theorem is proved by attaching to each configuration ν some additional
data, called a rigging, so that the term corresponding to ν in (51) is a weighted
enumeration of the possible riggings. Then Kirillov and Reshetikhin give a bijection
between rigged configurations and semistandard tableaux in which the weight of the
configuration corresponds to the charge of the tableau. This reduces Theorem 3.4.16
to Theorem 3.4.15.

Theorem 3.4.16 has an interesting origin. A technique from mathematical
physics known as the Bethe ansatz enables one to produce highest weight vectors
(called Bethe vectors in this context) for the irreducible constituents in tensor prod-
ucts of GLn modules Vµ1 ⊗ · · · ⊗ Vµr , where the µi are rectangular partitions. In
this particular application of the Bethe ansatz it turns out that the resulting system
of Bethe vectors is complete, and that they are naturally indexed by rigged config-
urations. The weight of the rigged configuration has a physical interpretation as a
quantum number of the state described by the corresponding Bethe vector. When
the rectangles µi are the rows of µ, the relevant configurations are the admissible
configurations in Theorem 3.4.16. Thus the theorem says that Kλµ(t) enumerates
Bethe vectors in V(µ1) ⊗ · · · ⊗ V(µr) by quantum number.

3.4.6. The method of Garsia and Procesi. The proof of Theorem 3.4.15 is com-
plicated and not particularly illuminating, while the proof of Proposition 3.4.14
requires heavy intersection cohomology machinery. A simpler route than either of
these to the positivity theorem for the Kostka-Foulkes polynomials was found by
Garsia and Procesi [26], with some improvements by N. Bergergon and Garsia [8].
I will outline their approach.

The basic idea is to describe the cohomology ring Rµ = H∗(Bµ) in elementary
terms, without reference to its geometric origin. In order to motivate the description
it is helpful first to recall some geometrical facts about Rµ, although they are not
actually needed for the construction. For any semisimple Lie group G, the cohomol-
ogy ring H∗(B) of the whole flag variety is isomorphic to the ring of coinvariants
for the Weyl group W acting on a Cartan subalgebra h. The coinvariant ring is by
definition C[h]/I, where I = (C[h]W+ ) is generated by the W -invariant polynomials
without constant term. The isomorphism H∗(B) ∼= C[h]/I is W -equivariant for the
Springer action on H∗(B) and the tautological W action on C[h]/I.

For G = GLn, the ring C[h] is a polynomial ring C[x] = C[x1, . . . , xn] in n
variables, the Weyl group W is Sn, and I = (e1, . . . , en) is generated by the ele-
mentary symmetric functions. The homomorphism H∗(B) → H∗(Bµ) induced by
the inclusion Bµ ⊆ B is always W -equivariant. For G = GLn these homomorphims
are surjective, so Rµ is C[x]/Iµ for a homogeneous Sn-invariant ideal Iµ ⊇ I. The
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highest degree in which Rµ is nonzero is dim(Bµ) = n(µ), and by the Springer cor-
respondence, this top degree component of Rµ affords the irreducible representation
Vµ of Sn.

Recall from §2.1 that C[x] contains a unique copy of Vµ in degree n(µ), spanned
by the Garnir polynomials gT (x) for standard tableaux T of shape µ. It develops
that

Iµ is the unique largest homogeneous Sn-invariant ideal having zero
intersection with the unique copy of V µ in degree n(µ).

So, following the Garsia-Procesi approach, let us forget about H∗(Bµ), define Iµ
and Rµ = C[x]/Iµ by the above characterization, and proceed to study the graded
character of Rµ. The first lemma is an easy general consequence of the definition
of Iµ.

Lemma 3.4.17 (Bergeron-Garsia [8]). Let C[∂] = C[∂/∂x1, . . . , ∂/∂xn] act on
C[x] by differentiation, and let Gµ ⊆ C[x] be the C[∂]-module generated by the
Garnir polynomials gT for T of shape µ.

(i) A polynomial f ∈ C[x] belongs to Iµ if and only if f(∂)gT = 0 for all T .
(ii) The canonical projection of Gµ ⊆ C[x] on Rµ = C[x]/Iµ is an isomor-

phism.

Let xS denote the subset of the variables x1, . . . , xn indexed by a subset S ⊆
{1, . . . , n}. Using Lemma 3.4.17 one can prove that the elementary symmetric
function ek(xS) belongs to Iµ whenever

(52) k > |S| − n+ µ′
1 + µ′

2 + · · ·µ′
n−|S|.

By considering the leading terms of derivatives of the Garnir polynomials, Bergeron
and Garsia showed that Gµ and Rµ have dimension at least

(
n

µ1,...,µl

)
. On the other

hand Garsia and Procesi constructed a set of
(

n
µ1,...,µl

)
monomials which span C[x]

modulo the ideal generated by the functions ek(xS) with k and S satisfying (52).
This proves the following result.

Proposition 3.4.18 (Garsia-Procesi [26]). The Tanisaki generators ek(xS) for
k and S satisfying (52) generate the ideal Iµ.

With this established, Garsia and Procesi showed that the Frobenius series
of Rµ satisfies a simple recurrence that also characterizes the “cocharge” version
of the transformed Hall-Littlewood polynomials, thereby recovering the result in
Proposition 3.4.14 (iii) by direct, elementary means.

Theorem 3.4.19 (Garsia-Procesi [26]). The Frobenius series of Rµ is given by

FRµ(z; t) = tn(µ)Hµ(z; t−1) =
∑

λ

K̃λµ(t)sλ.

In particular, K̃λµ(t) is a polynomial with non-negative integer coefficients.

Another aspect of Garsia and Procesi’s approach is worth mentioning here. Fix
distinct complex numbers α1, . . . , αl, and let a ∈ Cn be a point with µ1 coordinates
equal to α1, µ2 equal to α2, and so on. Let Ia ⊆ C[x] be the ideal of polynomials
vanishing on the orbit Sn · a, and let gr Ia denote its ideal of leading forms. Clearly
dim C[x]/ gr Ia = dim C[x]/Ia = |Sn · a| =

(
n

µ1,...,µl

)
. It is not hard to show, as

Garsia and Procesi do in [26], that the Tanisaki generators ek(xS) belong to gr Ia,
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and hence the dimension count implies that gr Ia = Iµ. In particular, Rµ affords
the induced representation 1 ↑Sn

Sµ
, where Sµ

∼= Sµ1 × · · · × Sµl
is the stabilizer of a.

Written in terms of the Frobenius characteristic, this says

FRµ(z; 1) = hµ(z).

Since the top degree part of Rµ is V µ, it follows that tn(µ)FRµ(z; t−1) has properties
(i) and (iii) in the characterization of Hµ(z; t) in Corollary 3.4.12. The remaining
property (ii) is a consequence of Proposition 3.3.1 and the following proposition.

Proposition 3.4.20. The Sn-modules TorC[x]
i (Rµ,C) contain only irreducible

representations Vλ with λ ≥ µ′. In particular, Rµ has an Sn-equivariant graded
free resolution over C[x] whose terms are generated by Sn-modules containing only
those irreducibles.

This proposition follows from the geometric theorems around the n! conjecture,
but I think an elementary proof should be possible. This would improve further on
the results of Bergeron, Garsia and Procesi by providing an even more direct route
to the identification of the character of Rµ.

3.4.7. Characterization of the cocharge Kostka-Foulkes polynomials. For com-
parison with the Macdonald polynomials discussed in the next section it will be
useful to reformulate the conditions characterizing Hµ(z; t) in Corollary 3.4.12 in
terms of their cocharge variant

H̃µ(z; t) =
def

tn(µ)Hµ(z; t−1) =
∑

λ

K̃λµ(t)sλ(t).

To do this, we note that K̃(n)µ(t) = 1 for all µ. This is clear from the geometric
interpretation, since K̃(n)µ(t) is the Hilbert series of the Sn invariants in Rµ. Alter-
natively, it is not difficult to deduce from (41) that K(n)µ(t) = tn(µ). We also note
that H̃µ[(1 − t)Z; t] = tn(µ)(−t)|µ|ωHµ[(1 − t−1)z; t−1], which contains only Schur
functions sλ with λ′ ≤ µ, or equivalently λ ≥ µ′. Hence the desired characterization
is as follows.

Corollary 3.4.21. The cocharge variant transformed Hall-Littlewood polyno-
mials H̃µ(z; t) are uniquely characterized by the properties

(i) H̃µ(z; t) ∈ Z[t]{sλ : λ ≥ µ};
(ii) H̃µ[(1 − t)Z; t] ∈ Z[t]{sλ : λ ≥ µ′};
(iii) H̃µ[1; t] = 〈s(n), H̃µ(z; t)〉 = 1.

3.5. Macdonald polynomials.
3.5.1. Definition and transformed version; Kostka-Macdonald coefficients. We

begin with Macdonald’s original definition [60, 61] of his polynomials as defor-
mations of the Hall-Littlewood polynomials Pλ(z; t) with an extra parameter q.
Macdonald first defines a q, t-deformation of the Hall inner product which in our
notation is

〈f, g〉q,t =
def

〈f(z), g[ 1−q
1−tZ]〉.

Definition 3.5.1. The Macdonald symmetric functions Pµ(z; q, t) are uniquely
characterized by the orthogonality and triangularity conditions

(i) Pµ(z; q, t) = sµ +
∑

λ<µ aλµ(q, t)sλ, for suitable coefficients aλµ ∈ Q(q, t);
(ii) 〈Pλ, Pµ〉 = 0 if λ �= µ.
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For all purposes that we will be concerned with here it is better to work with
transformed versions of the Macdonald polynomials, which are q-deformations of
the cocharge variant transformed Hall-Littlewood polynomials H̃µ(z; t).

Definition 3.5.2. The transformed Macdonald symmetric functions H̃µ(z; q, t)
are uniquely characterized by the conditions

(i) H̃µ[(1 − q)Z; q, t] ∈ Q(q, t){sλ : λ ≥ µ};
(ii) H̃µ[(1 − t)Z; q, t] ∈ Q(q, t){sλ : λ ≥ µ′};
(iii) H̃µ[1; q, t] = 1.

Observe that from Corollary 3.4.21 it immediately follows that H̃µ(z; 0, t) =
H̃µ(z; t). Of course the existence of polynomials meeting the conditions in either
of the above definitions requires proof. We will prove in §3.5.2 that the H̃µ(z; q, t)
exist, so let us now see that this implies that the Pµ(z; q, t) exist. To this end, we
define another q, t-inner product

(53) 〈f, g〉∗ =
def

〈f, ωg[(1 − q)(1 − t)Z]〉 = (−t)d〈f, g[(1 − q)(1 − t−1)Z]〉,

where the last equality is for f and g homogeneous of degree d in z. We have
〈H̃µ, H̃ν〉∗ = 〈H̃µ[(1 − q)Z; q, t], ωH̃ν [(1 − t)Z; q, t]〉. If this is non-zero then by (i)
and (ii), we must have µ ≤ ν. By symmetry, we must also have ν ≤ µ, so we have

(iv) 〈H̃µ, H̃ν〉∗ = 0 if µ �= ν.
It follows that the symmetric functions

(54) Jµ(z; q, t) =
def

tn(µ)H̃µ[(1 − t−1)Z; q, t−1]

have the orthogonality property (ii) of Definition 3.5.1, and they also have the
trianguarity property (i), except that the leading coefficient need not be 1. But we
can of course divide by the leading coefficient to obtain the required polynomials
Pµ(z; q, t).

Definition 3.5.3. The Kostka-Macdonald polynomials K̃λµ(q, t) are defined
through the Schur function expansion

H̃µ(z; q, t) =
∑

λ

K̃λµ(q, t)sλ(z).

From the usual proof of the existence theorem for Macdonald symmetric func-
tions (see §3.5.2, below) it is by no means obvious that the “polynomials” K̃λµ(q, t)
are anything more than rational functions of q and t. Their integrality property,

K̃λµ(q, t) ∈ Z[q, t],

remained unproven until circa 1995, when several proofs were independently discov-
ered by a number of people using a variety of methods [27, 28, 29, 49, 50, 55, 76].
I will mention one way of proving integrality later.

Definition 3.5.3 is related to the original one of Macdonald in the following
way. The symmetric functions Jµ(z; q, t) defined in (54) are the integral forms of
Macdonald, who defined coefficients Kλµ(q, t) through the expansion

Jµ(z; q, t) =
∑

λ

Kλµ(q, t)sλ[Z/(1 − t)].



COMBINATORICS, SYMMETRIC FUNCTIONS, AND HILBERT SCHEMES 65

By (54), this is equivalent to K̃λµ(q, t) = tn(µ)Kλµ(q, t−1). Macdonald defined the
integral forms Jµ(z; q, t) to be scalar multiples of Pµ(z; q, t) by an explicit normal-
izing factor. To see that our Jµ is the same scalar multiple of Pµ as Macdonald’s,
one may compare the identity K(n)µ(q, t) = tn(µ) obtained by Macdonald [61] with
our K̃(n)µ(q, t) = 1, which is another way of stating part (iii) of Definition 3.5.2.

3.5.2. Existence. We will prove that the polynomials H̃µ(z; q, t) meeting the
conditions in Definition 3.5.2 exist by exhibiting them as eigenfunctions of the op-
erator

(55) D =
def

1
(1 − q)(1 − t)

(1 −D0),

where

(56) D0f = [u0]f [Z + (1 − q)(1 − t)u−1]Ω[−uZ].

We shall see that the existence theorem also follows as a consequence of the geo-
metric results to be discussed later. This is the case for various other aspects of the
elementary theory of Macdonald polynomials as well, such as integrality results. I
have included the elementary existence proof here for clarity and to keep this part
of the discussion self-contained.

Lemma 3.5.4. Set D̂ = Π(1−t−1)D0Π−1
(1−t−1), or explicitly,

D̂f = [u0]f [Z − (1 − q)u−1]Ω[(1 − t)uZ].

Then D̂ is lower-triangular with respect to the Schur basis. More precisely,

(57) D̂sµ = (1 − (1 − q)(1 − t)Bµ(q, t))sµ +
∑
λ<µ

bλµ(q, t)sλ

for suitable coefficients bλµ(q, t) ∈ Z[q, t], where

(58) Bµ(q, t) =
def

∑
(i,j)∈µ

qitj .

Proof. Write D̂ in terms of the modified Jing operators as D̂f =
[u0]S̃t(u)f [Z+qu−1]. Then using the dual Pieri rule as in the proof of Lemma 3.4.6,
we have

D̂sµ =
∑
m

qm
∑

µ/λ∈Hm

S̃t
msλ.

As in the proof of Lemma 3.4.8, this is equal in n variables z1, . . . , zn to

tnsµ + (1 − t)
∑
m,k

qm(−t)k
∑

µ/λ∈Hm

∑
γ/λ∈Vk

s(m−k,γ).

Also as in the proof of Lemma 3.4.8, the worst case is γ = λ + (1k), and then
s(m−k,γ) = 0 or ±sν with ν of the form indicated there. The condition µ/λ ∈ Hm

implies that µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ · · · , and it follows with little difficulty that
ν ≤ µ.

By carefully examining how equality can be attained, one sees that the contri-
bution to the coefficient of sµ from the sum over m and k is equal to

∑n
j=1 t

j−1qµj ,
with µj interpreted as zero for j > l(µ). But this is equal to [n]t − (1 − q)Bµ(q, t),
completing the proof. �
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Lemma 3.5.4 implies that D̂ has distinct eigenvalues and that its eigenfunc-
tion F (z; q, t) with eigenvalue 1 − (1 − q)(1 − t)Bµ(q, t) belongs to the space
Q(q, t){sλ : λ ≤ µ}. Then H(z; q, t) = F [Z/(1 − t−1); q, t] is an eigenfunction
of D with eigenvalue Bµ(q, t), and H [(1 − t)Z; q, t] belongs to Q(q, t){sλ : λ ≥ µ′}.
But D is symmetric between q and t, so we have the following corollary.

Corollary 3.5.5. The operator D has eigenfunctions H̃µ(z; q, t) with eigen-
value Bµ(q, t) satisfying conditions (i) and (ii) in Definition 3.5.2.

To see that condition (iii) can also be satisfied we only have to verify that
the eigenfunctions have 〈s(n), H̃µ(z; q, t)〉 �= 0. But their specializations at q = 0
are non-zero scalar multiples of the Hall-Littlewood polynomials H̃µ(z; t), so this is
clear from Corollary 3.4.21.

Corollary 3.5.6. Polynomials H̃µ(z; q, t) satisfying conditions (i)-(iii) in Def-
inition 3.5.2 exist.

Note that the solution of (i)-(iii) is necessarily unique, since the matrix giving
any other solution in terms of the basis {H̃µ} would have to be upper triangular by
(i), lower triangular by (ii), and 1 on the diagonal by (iii).

3.5.3. Specializations. For special values of the parameters, there are simpler
expressions for the Macdonald symmetric functions, as follows.

Proposition 3.5.7. The Macdonald symmetric function H̃µ(z; 0, t) at q = 0 is
equal to the Hall-Littlewood symmetric function H̃µ(z; t). Equivalently, the Kostka-
Macdonald polynomials at q = 0 reduce to the Kostka-Foulkes polynomials:

(59) K̃λµ(0, t) = K̃λµ(t).

Proof. Compare Corollary 3.4.21 with Definition 3.5.2. �

Proposition 3.5.8. The Macdonald symmetric function at q = 1 is given by

(60) H̃µ(z; 1, t) = (1 − t)|µ|
(∏

i

[µ′
i]t!
)
hµ′ [Z/(1 − t)].

Corollary 3.5.9. The Macdonald symmetric function at q = t = 1 is given
by

H̃µ(z; 1, 1) = en
1 ,

for every partition µ. In other words, the Kostka-Macdonald polynomials satisfy

K̃λµ(1, 1) = χλ(1),

the number of standard Young tableaux of shape λ, independent of µ.

Proof. The operator D in (55) is well-defined in the limit as q → 1, and a
calculation shows that Dq=1 is a derivation: Dq=1(fg) = (Dq=1f)g + f(Dq=1g).
Since Bµ(1, t) =

∑
i[µ

′
i]t, it follows that

H̃µ(z; 1, t) =
∏

i

H̃
(1µ′

i )
(z; 1, t).

Therefore we only need to show that H̃(1n)(z; 1, t) = (1− t)n[n]t!hn[Z/(1− t)]. This
latter fact holds even for q �= 1, since condition (ii) in Definition 3.5.2 implies that
H̃(1n)(z; q, t) is a scalar multiple of hn[Z/(1 − t)], and the identity hn[1/(1 − t)] =
1/([n]t!(1 − t)n), which is a special case of (29), fixes the scalar factor.
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For the corollary, the Cauchy formula and (29) imply that

(1 − t)n[n]t!hn[Z/(1 − t)] = (1 − t)n[n]t!
∑
|λ|=n

sλ(z)sλ[
1

1 − t
]

=
∑
|λ|=n

sλ(z)
[n]t!∏

x∈λ[h(x)]t!
.

Setting t = 1, this becomes ∑
|λ|

sλ(z)χλ(1),

by the hook formula (2), and this is finally equal to en
1 , the Frobenius characteristic

of the regular representation of Sn. �

Proposition 3.5.10. The Macdonald symmetric function H̃µ(z; q, q−1) at t =
1/q is given by

(61) H̃µ(z; q, q−1) = q−n(µ)
∏
x∈µ

(1 − qh(x))sµ[Z/(1 − q)],

where h(x) = 1 + a(x) + l(x) denotes the hook-length of the cell x in the diagram of
µ.

Proof. One verifies immediately that sµ[Z/(1− q)] satisfies conditions (i) and
(ii) in Definition 3.5.2 when t = 1/q, and hence H̃µ(z; q, q−1) is a scalar multiple of
sµ[Z/(1 − q)]. Formula (29) fixes the scalar factor. �

In addition to the specializations the transformed Macdonald polynomials obey
two fundamental symmetries. The first one is obvious from the definition.

Proposition 3.5.11. For every µ we have H̃µ′(z; q, t) = H̃µ(z; t, q), or equiva-
lently,

K̃λµ′(q, t) = K̃λµ(t, q).

Proposition 3.5.12. For every µ we have ωH̃µ(z; q, t) = tn(µ)qn(µ′)H̃µ(z; q−1, t−1),
or equivalently,

K̃λ′µ(q, t) = tn(µ)qn(µ′)K̃λµ(q−1, t−1).

Proof. It is easy to see that ωH̃µ(z; q−1, t−1) satifies conditions (i) and (ii) in
Definition 3.5.2, and hence is a scalar multiple of H̃µ(z; q, t). To fix the scalar, we
need the identity

K̃(1n),µ = tn(µ)qn(µ′).

Somewhat surprisingly, this is one of the more subtle results in the elementary
theory of Macdonald polynomials. We will prove something a little more general in
the next section, in Corollary 3.5.20. �

3.5.4. The positivity problem. From the observations in the preceding section,
we see that the specializations K̃λµ(0, t), K̃λµ(q, 0), K̃λµ(1, t) and K̃λµ(q, 1) of the
Kostka-Macdonald polynomials K̃λµ(q, t) have non-negative integer coefficients. We
shall also see explicitly in Corollary 3.5.20 below that K̃λµ(q, t) ∈ N[q, t] when λ is
a hook shape partition. These facts and tables which he had computed for n ≤ 6
led Macdonald to conjecture the following theorem, already in his 1988 paper [60].
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Theorem 3.5.13 (Macdonald positivity conjecture). The Kostka-Macdonald
polynomials K̃λµ(q, t) are polynomials with non-negative integer coefficients.

Part of the conjecture was the integrality property, K̃λµ(q, t) ∈ Z[q, t], which as
we have mentioned has since been proved by elementary methods. The additional
positivity property, K̃λµ(q, t) ∈ N[q, t], lies deeper, as might be expected from the
fact that it is a serious theorem even for the Kostka-Foulkes polynomials K̃λµ(0, t).
The only proof known at present is the one based on the geometry of Hilbert schemes
that I will describe in §5.4.

In the course of working on the positivity conjecture, Garsia and I and others
were led to integrality and positivity conjectures for other quantities related to
the Kostka-Macdonald polynomials. Some of these conjectures have now also been
proven using geometric methods. In the rest of this section I will explain some
additional aspects of the theory that lead to these further conjectures.

3.5.5. Operators ∆ and ∇ and the plethystic formula. For any symmetric func-
tion f we define a homogeneous linear operator ∆f on symmetric functions with
coefficients in Q(q, t) by the formula

(62) ∆f H̃µ(z; q, t) = f [Bµ]H̃µ(z; q, t),

where Bµ = Bµ(q, t) is given by (58). In particular, the operator D of §3.5.2 is
D = ∆e1 in this notation. In [7] one can find formulas similar to (56), but more
complicated, for the operators ∆f . We also define

(63) ∇H̃µ(z; q, t) = tn(µ)qn(µ′)H̃µ(z; q, t),

which is equivalent to setting ∇f(z) = ∆enf(z) for f homogeneous of degree n.
The operator ∇ plays an especially important role in the theory.

F. Bergeron, Garsia, Tesler and I studied these operators in [7, 25]. We proved
integrality properties and we conjectured positivity properties for them, and we
showed that various results previously discovered by others could be deduced easily
with their aid. The next proposition, which was proved in [7] by elementary means,
also follows (in part) from a natural geometric interpretation of the operators, as
we shall see in §5.4.4.

Proposition 3.5.14 ([7]). The operators ∆f and hence also ∇ are integral,
in the sense that if f and F have coefficients in Z[q, t], then so does ∆fF . The
operator ∇−1 is Laurent-integral, that is, ∇−1F has coefficients in Z[q, t, q−1, t−1]

Conjecture 3.5.15 ([7]). When expanded on the Schur basis {sλ}, the follow-
ing quantities all have coefficients in N[q, t]:

(I)
(−1)i(µ)∇msµ(z)

for all µ and all m ≥ 1, where i(µ) =
(
µ1
2

)
+
∑

µ′
i<i−1 (i− 1 − µ′

i);
(II)

(−1)|µ|−l(µ)∇H̃µ(z; 0, t)
for all µ;

(III)
∇ωH̃µ(z; 0, t−1)

for all µ, and also

∇ωH̃µ(z; 0, t−1) −∇ωH̃ν(z; 0, t−1)
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whenever µ ≥ ν;
(IV)

(−1)|µ|−l(µ)∇mµ(z)

for all µ, and moreover the coefficients are doubly unimodal in q and t;
(V)

∆sνen(z)

for all ν and n.

All except (II) above have as special cases the quantity

∇en(z),

whose special significance will be explained below. Each of (I)–(V) has a geometric
interpretation in the Hilbert scheme setting, and in principle it should eventually
be possible to prove all five parts of the conjecture using geometric methods. To
date, this has only been carried out for the folllowing weakened form of (V).

Theorem 3.5.16 ([40]). When expanded on the Schur basis, the quantity

∆sν∇en(z)

has coefficients in N[q, t] for all ν and n.

In [7] we proved Proposition 3.5.14 by considering the operator D1 defined
by taking the coefficient of u1 instead of u0 in (56), and showing that there is an
integral basis of the algebra of symmetric functions consisting of elements of the
form

uλ(z; q, t) = ea
1D1e

λ1−1
1 D1e

λ2−1
1 · · ·D1e

λk−1,

where λ = (λ1, . . . , λk, 1a) with λk > 1. The proposition then follows from various
commutation relations between the operators ∆f , D1 and multiplication by e1. I
will not go into further detail on these relations here. The following fundamental
result is proved in a similar way.

Proposition 3.5.17 ([25]). For any symmetric function f , we have

〈f, H̃µ[Z + 1; q, t]〉∗ = Kf [(1 − q)(1 − t)Bµ − 1; −1],

where
Kf(z;u) =

def
∇−1(f [Z − u])

and 〈−,−〉∗ is defined in (53).

Let me mention two important consequences that follow by straightforward
calculations from this proposition. The first of these is the plethystic formula for
Kostka-Macdonald polynomials.

Corollary 3.5.18. Fix a partition γ of size k. Then the Kostka-Macdonald
coefficients K̃(n−k,γ)µ(q, t), where n = |µ| ≥ k+γ1, are given for all µ simultaneously
by

K̃(n−k,γ)µ(q, t) = kγ [Bµ; q, t],

where
kγ [ Z+1

(1−q)(1−t) ; q, t] = ∇−1ω
(
sλ[ Z+1

(1−q)(1−t) − 1]
)
.
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This corollary was first proved prior to Proposition 3.5.17, by Garsia and Tesler
in [28], but without the simple formula for kγ . Another consequence of Proposi-
tion 3.5.17 is the reciprocity formula of Koornwinder and Macdonald, which takes
the following pleasant form when written in terms of the transformed Macdonald
symmetric functions.

Proposition 3.5.19 ([61]). For all pairs of partitions λ, µ, we have

H̃µ[1 − uAλ; q, t]Ω[uBµ] = H̃λ[1 − uAµ; q, t]Ω[uBλ],

where Bµ = Bµ(q, t) is given by (58) and Aµ = 1 − (1 − q)(1 − t)Bµ.

As a particular consequence, by taking λ = ∅ in the reciprocity formula, we
obtain the specialization theorem of Macdonald [61].

Corollary 3.5.20. Under the plethystic specialization Z �→ 1 − u, we have

H̃µ[1 − u; q, t] = Ω[−uBµ].

Equivalently, for λ = (n − r, 1r) a hook shaped partition and all partitions µ of n,
we have

(64) K̃λµ = er[Bµ − 1].

3.5.6. Raising operators. Operators on Macdonald symmetric functions anal-
ogous to the Jing operators St

m in Definition 3.4.5 were first found by Lapointe
and Vinet [55] and Kirillov and Noumi [49]. Their work provides several different
families of operators Bm which add a part to the indexing partition of a Macdonald
polynomial, that is,

(65) BmH̃µ(z; q, t) = H̃(m,µ)(z; q, t) for m ≥ µ1.

Equivalently, for every partition µ, there holds the Rodrigues formula

(66) H̃µ(z; q, t) = Bµ1Bµ2 · · ·Bµl
(1).

Note that in light of the symmetry given by Proposition 3.5.11 it is the same thing
to give operators B1m with the property

(67) B1mH̃µ(z; q, t) = H̃µ+(1m)(z; q, t) for m ≥ l(µ),

so that

(68) H̃µ′(z; q, t) = B
1µ′

1
B

1µ′
2
· · ·B

1µ′
r
(1).

Zabrocki subsequently discovered that such raising operators can be manufactured
at will from any operators which have the property in (67) for the Hall-Littlewood
polynomials.

Theorem 3.5.21 ([29]). For any operator V on symmetric functions, define its
q-deformation V q by the formula

V qf = VY ( f [qZ + (1 − q)Y ] ) |Y �→Z ,

where VY denotes V acting on symmetric functions in the variables y and treating
the variables z as scalars (so in particular, V 0 = V and V 1f = V (1) · f). Let T1m

be any linear operators whatsoever that satisfy

(69) T1mH̃µ(z; t) = H̃µ+(1m)(z; t) for m ≥ l(µ).

Then

(70) T q
1mH̃µ(z; q, t) = H̃µ+(1m)(z; q, t) for m ≥ l(µ).
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It turns out rather amazingly that this theorem is almost trivial to prove, once
it is given that there exists some family of operators satisfying both (69) and (70).
Conveniently, the operators of Kirillov and Noumi have the correct form, i.e., they
are the Zabrocki q-deformations of their q = 0 specializations, and the result follows.
One nice application of Zabrocki’s theorem is to give the simplest of many proofs
of the integrality theorem.

Corollary 3.5.22 ([29]). The Kostka-Macdonald polynomials are polynomials,
K̃λµ(q, t) ∈ Z[q, t].

Proof. It is easy to see that Theorem 3.5.21 is equivalent to the corresponding
result for Hµ(z; t) and Hµ(z; q, t) =

def
tn(µ)H̃(z; q, t−1). In this variant of the

theorem, take for T1m the trivial operator defined by

T1mHµ(z; t) =

{
Hµ+(1m)(z; t) if m ≥ l(µ),
0 otherwise.

Corollary 3.4.12, part (v) shows that the transformed Hall-Littlewood symmetric
functions Hµ(z; t) form an integral basis for the algebra of symmetric functions
with coefficients in Z[t]. In particular, the operators T1m act on the Schur basis with
coefficients in Z[t], and their q-deformations T q

1m act with coefficients in Z[q, t]. Then
the Rodrigues formula implies that Hµ(z; q, t) ∈ Z[q, t]{sλ}, that is, Kλµ(q, t) ∈
Z[q, t] for all λ and µ. By the symmetry in Proposition 3.5.12, this is equivalent to
K̃λµ ∈ Z[q, t] for all λ and µ. �

In is worthy of remark that the Jing operators St
m are just the Zabrocki t-

deformations of the Bernstein operators S0
m.

3.5.7. Operator ∇ and q-Lagrange inversion. The q-Catalan numbers discussed
in §2.2, the inversion enumerator for forests in §2.3, and more generally the q-
Lagrange inversion coefficients kn(q) in Proposition 2.4.2 turn out to have remark-
able expressions involving the operator ∇ specialized at t = 1.

Proposition 3.5.23. The quantity

∇t=1en

is given by the formula for kn(q) in Proposition 2.4.2, when the indeterminates ek

in the formula are interpreted as elementary symmetric functions.

Corollary 3.5.24. The Carlitz-Riordan q-Catalan numbers are given in terms
of ∇ by

(71) Cn(q) = 〈en,∇t=1en〉,
while the inversion enumerator for forests, or weight enumerator for parking func-
tions, is given by

(72) Jn(q) = 〈en
1 ,∇t=1en〉.

Proof of the corollary. The inner product 〈en, eν〉 is equal to 1 for all ν,
so the right-hand side of (71) is the specialization of kn(q) at ek = 1 for all k. We
have seen in §2.4 that this is the same as Cn(q).

The inner product 〈en
1 , eν〉 is equal to the multinomial coefficient

(
n

ν1,...,νl

)
. Us-

ing (14), we obtain (72). �
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Proposition 3.5.23 was proved in [23]. Here I will sketch a slick version of the
proof. There are two key points. The first is that Garsia’s original solution of the
q-Lagrange inversion problem in [30] can be recast in symmetric function language
when the coefficients ek are understood as elementary symmetric functions, to give
another formula for kn(q), different from the one in Proposition 2.4.2, namely

kn(q) =
∑
|µ|=n

qn(µ′)hµ[Z/(1 − q)]fµ[1 − q],

where the fµ(z) = ωmµ(z) are the so-called forgotten symmetric functions. The
second is that the specialization in Proposition 3.5.8, taken with t = 1 instead of
q = 1, implies that

∇t=1hµ[Z/(1 − q)] = qn(µ′)hµ[Z/(1 − q)].

But {hµ[Z/(1−q)]} and {mµ[(1−q)Z]} are dual bases with respect to the Hall-inner
product, so the Cauchy formula (45) yields

hn(Y Z) =
∑
|µ|=n

hµ[Z/(1 − q)]mµ[(1 − q)Y ].

Now applying ω in the Y variables and then setting Y = 1 yields

en(z) =
∑
|µ|=n

hµ[Z/(1 − q)]fµ[1 − q],

and hence
kn(q) = ∇t=1en.

The t = 1/q specialization of ∇en can be derived by similar devices.

Proposition 3.5.25. We have

∇t=q−1en = q−(n
2) 1

[n+ 1]q
en

[
[n+ 1]qZ

]
.

Note that the above formula is a kind of naive q-analog of the classical Lagrange
inversion formula (8).

The proof of Proposition 3.5.23 given above and the similar (unstated) proof
of Proposition 3.5.25 evade the issue of determining ∇en explicitly. We did, how-
ever, find an explicit formula in [23]. Since we will need it later, I will review its
derivation.

In order to apply ∇, we need to write en in terms of the transformed Macdonald
polynomials. To do this, we use the fact that the H̃µ(z; q, t) are orthogonal with
respect to the inner product 〈−,−〉∗ in (53), together with the identity

(73) 〈H̃µ, H̃µ〉∗ = tn(µ)qn(µ′)
∏
x∈µ

(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x)).

Here a(x) and l(x) denote the arm and leg of x, as defined in §2.1. Identity (73)
follows from Macdonald’s formula for the inner product 〈Pµ, Pµ〉. However, rather
than repeat its derivation here, I prefer to appeal to the geometric proof that will
be given in §5.4.3. The latter proof is more illuminating than the elementary one
because it explains the meaning of the factors in (73).

The 〈−,−〉∗ orthogonality and (73) yield as an instance of the Cauchy formula

ωΩ
[

Y Z

(1 − q)(1 − t)

]
=
∑

µ

t−n(µ)q−n(µ′)H̃µ(y; q, t)H̃µ(z; q, t)∏
x∈µ(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))

.
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Taking the homogeneous component of degree n, setting Y = 1 − u, and using
Corollary 3.5.20, we arrive at

en

[
(1 − u)Z

(1 − q)(1 − t)

]
=
∑
|µ|=n

t−n(µ)q−n(µ′)Ω[−uBµ]H̃µ(z; q, t)∏
x∈µ(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))

.

Dividing both sides by 1 − u and setting u = 1 in what remains produces

(−1)n−1pn

[
Z

(1 − q)(1 − t)

]
=
∑
|µ|=n

t−n(µ)q−n(µ′)Πµ(q, t)H̃µ(z; q, t)∏
x∈µ(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))

,

where

(74) Πµ =
def

Ω[Bµ − 1] =
∏

(i,j)∈µ
(i,j) �=(0,0)

(1 − qitj).

Finally, applying the operator D = ∆e1 to both sides yields, by a calculation on
the left-hand side and using Corollary 3.5.5 on the right,

en(z) =
∑
|µ|=n

t−n(µ)q−n(µ′)(1 − q)(1 − t)Πµ(q, t)Bµ(q, t)H̃µ(z; q, t)∏
x∈µ(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))

.

This proves the following proposition.

Proposition 3.5.26. We have explicitly

(75) ∇en(z) =
∑
|µ|=n

(1 − q)(1 − t)Πµ(q, t)Bµ(q, t)H̃µ(z; q, t)∏
x∈µ(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))

,

with Bµ(q, t) as in (58) and Πµ(q, t) as in (74).

4. The n! and (n+ 1)n−1 conjectures

4.1. The n! conjecture. The proof of the Macdonald positivity conjecture
rests on the interpretation of H̃µ(z; q, t) as the Frobenius series of a suitable doubly
graded Sn module. This interpretation, which Garsia and I proposed in 1991, is
what has come to be known as the n! conjecture. I will present it here in a way that
I hope gives a flavor of how we discovered it. The results below and some of our
other early results on the n! conjecture were announced in [22] and given a fuller
treatment in [24].

In §3.4.6, we saw that the Kostka-Foulkes polynomials K̃λµ(t) describe multi-
plicities of Sn characters χλ in the graded character of the Garsia-Procesi ring Rµ,
which is the same thing as the cohomology ring H∗(Bµ) of a springer fiber. We also
saw that these rings are quotients of the ring

R1n(x) = C[x]/I

of coinvariants for the natural action of Sn on the polynomial ring C[x] =
C[x1, . . . , xn].

From Propositions 3.5.7 and 3.5.11 we know that the Kostka-Macdonald poly-
nomials K̃λµ(q, t) specialize to

K̃λµ(0, t) = K̃λµ(t); K̃λµ(q, 0) = K̃λµ′(q).

This suggests that H̃µ(z; q, t) might be the Frobenius series of a doubly graded ring
Rµ(x,y), a quotient of the polynomial ring C[x,y] = C[x1, y1, . . . , xn, yn] in two
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sets of variables, whose components of degree zero in the y and x variables are
Rµ(x) and Rµ′(y), respectively. In other words, we may expect Rµ(x,y) to be a
suitable quotient of

Rµ(x) ⊗Rµ(y) ∼= H∗(Bµ) ⊗H∗(Bµ′).

Other information about the K̃λµ(q, t) gives more clues. In particular, by Corol-
lary 3.5.9, we want Rµ(x,y) to afford the regular representation of Sn. To this
end, recall that the defining ideal of Rµ(x) is generated by the leading forms of
polynomials p(x) that vanish on the Sn-orbit of a point a = (a1, . . . , an) ∈ Cn with
µi coordinates aj equal to αi, for distinct complex numbers αi. Suppose now that
we fix a point

(76) b = (a1, b1, . . . , an, bn) ∈ C2n

by assigning distinct numbers αj to each row j in the diagram of µ and βi to each
column i, and setting ak = αjk

, bk = αik
, where (i1, j1), . . . , (in, jn) is a list of the

cells (i, j) ∈ µ in some arbitrary order. The n pairs (ak, bk) are all distinct, so
the Sn orbit of b in C2n = (C2)n is a regular orbit, with n! distinct points. Let
Jb be the ideal of leading forms of polynomials p(x,y) that vanish on the orbit
Sn · b, and put Rb = C[x,y]/Jb. Then we have automatically that Rb affords the
regular representation of Sn. Projecting b on the x coordinates gives a point with
coordinate multiplicities µ, so the subring of Rb generated by x is isomorphic to
Rµ. The subring generated by y is isomorphic to Rµ′ by symmetry. In short, the
ring Rb has the properties we desire, except that it is apparently only singly, not
doubly, graded.

In practice, it always turns out that the ideal Jb is doubly homogeneous. An-
other way to say this is that if we assign the x variables different weights from the
y variables for the purpose of defining “leading forms,” the resulting ideal does not
depend on the weights. It also turns out that the ring Rb is always Gorenstein, and
this property is the key to reformulating the problem indepenendtly of the choice
of b. A special case of the definition will suffice for the moment.

Definition 4.1.1. The socle of a finite-dimensional graded C-algebra R is the
set soc(R) of elements x ∈ R annihilated by the maximal homogeneous ideal R+.
The algebra R is Gorenstein if dim soc(R) = 1.

Note that the highest degree homogeneous componentRdmax is always contained
in soc(R), so if R is Gorenstein, then Rdmax = soc(R). Recall also that the only
one-dimensional representations of Sn are the trivial representation and the sign
representation. Hence if R has an action of Sn by algebra automorphisms, and
R is Gorenstein, then the socle of R must afford either the trivial or the sign
representation.

Now suppose that R is a graded Gorenstein quotient of Rµ(x) ⊗ Rµ′(y). The
ring Rµ contains only Sn modules Vλ with λ ≥ µ, while Rµ′ contains only Vλ with
λ ≥ µ′ (see Corollary 3.4.21). However, the sign representation ε = V(1n) can
only occur in tensor products of the form Vλ ⊗ Vλ′ . Hence it occurs only once in
Rµ ⊗Rµ′ , in the top degree component (Rµ)n(µ) ⊗ (Rµ′ )n(µ′). If we assume that
this unique copy of the sign representation is not in the kernel of the canonical
projection Rµ ⊗Rµ′ → R, then its image in R must be equal to soc(R). These
considerations lead to the following result.
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Proposition 4.1.2. There is a unique Sn-invariant Gorenstein (doubly) graded
ideal Jµ ⊆ Rµ(x) ⊗Rµ′(y) such that Rµ(x,y) = C[x,y]/Jµ contains a copy of the
sign representation. A polynomial f ∈ C[x,y] belongs to Jµ if and only if the
principal ideal (f) generated by its image in Rµ(x) ⊗Rµ′(y) has zero intersection
with the unique copy of the sign representation.

Proof. Define Jµ to be the set of polynomials f satisfying the stated crite-
rion. It is easy to see that Jµ is a doubly homogeneous ideal and that Rµ(x,y) =
C[x,y]/Jµ is a quotient of Rµ(x) ⊗Rµ′(y) in which the socle is the sign represen-
tation. Hence it is Gorenstein. For uniqueness, note that any ideal in a finite-
dimensional graded algebra has non-zero intersection with the socle. On one hand,
if R is any Gorenstein quotient R of Rµ(x) ⊗Rµ′(y) in which the sign represen-
tation survives, this implies that every f ∈ Jµ must vanish in R. Hence R is a
quotient of Rµ(x,y). On the other hand, any proper ideal in Rµ(x,y) contains the
socle, so R = Rµ(x,y). �

Henceforth we will simply write

Rµ = C[x,y]/Jµ

for the ring in Proposition 4.1.2, and use the notation Rµ(x), Rµ′(y) to distinguish
the Garsia-Procesi rings in one set of variables. Before continuing further, let me
give also a more elementary description of Rµ. As before let (i1, j1), . . . , (in, jn) be
a list of the cells (i, j) ∈ µ in some order, and set

(77) ∆µ(x,y) = det

⎡
⎢⎣
xj1

1 y
i1
1 xj1

2 y
i1
2 . . . xj1

n y
i1
n

...
. . .

...
xjn

1 y
in
1 xjn

2 y
in
2 . . . xjn

n yin
n

⎤
⎥⎦ .

It is not hard to prove the following characterization of the defining ideal Jµ of Rµ.

Proposition 4.1.3. The ideal Jµ in Proposition 4.1.2 coincides with the ideal
of polynomial differential operators that annihilate ∆µ, that is, we have f ∈ Jµ if
and only if

f(
∂

∂x1
,
∂

∂y1
, . . . ,

∂

∂xn
,
∂

∂xn
)∆µ = 0.

Consider once again the ideal of leading forms Jb of the vanishing ideal of an
orbit Sn · b, with b as in (76). We will prove that every f ∈ Jb satisfies the condition
in Proposition 4.1.2, so Jb ⊆ Jµ. If f ∈ Jb, then by definition f coincides on Sn · b
with some polynomial g of lower degree. There is an essentially unique function ε on
Sn ·b that affords the sign representation. It cannot be represented by a polynomial
of degree less than n(µ) + n(µ′), because Rµ(x) ⊗Rµ′(y) has no copy of the sign
representation in lower degree. Suppose now that hf is a homogeneous multiple of
f of degree n(µ) + n(µ′) which coincides on Sn · b with ε. Then hg also represents
ε and has smaller degree, a contradiction. This shows that f satisfies the condition
in Proposition 4.1.2. The containment Jb ⊆ Jµ, has the following consequences.

Proposition 4.1.4. We have dimRµ ≤ n!. If equality holds, then Jb = Jµ. In
particular, Jb is then doubly homogeneous and does not depend on the choice of b,
and Rµ affords the regular representation of Sn.

At this point the interpretation we have been seeking for the Macdonald sym-
metric function H̃µ(z; q, t) becomes natural and plausible to conjecture.
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Theorem 4.1.5 (n! conjecture). The Frobenius series of Rµ is the transformed
Macdonald symmetric function

FRµ(z; q, t) = H̃µ(z; q, t).

In particular Rµ affords the regular representation of Sn, and hence dimRµ = n!.

The “in particular” follows by Corollary 3.5.9. The Macdonald positivity con-
jecture, Theorem 3.5.13, is a corollary to this theorem.

4.1.1. Examples. Let us briefly consider the simplest case of the n! conjecture,
when µ = (1n). In this case ∆µ is the Vandermonde determinant ∆(x) in the x
variables, and R(1n) = R(1n)(x) is the coinvariant ring of Sn acting on Cn, or the
cohomology ring H(B) of the flag variety. Here we are in a classical situation, and
the n! conjecture is an instance of the following more general result.

Proposition 4.1.6. Let W be a group generated by complex reflections on a
vector space h. Then the coinvariant ring R = C[h]/W affords the regular repre-
sentation of W . It is Gorenstein, and the representation of W on its socle is the
determinant of the representation on h. When W is the Weyl group of a semisimple
Lie algebra g, then R is isomorphic to the cohomology ring of the flag variety for
the corresponding Lie group G.

It is also instructive to relate the known symmetries and specializations of the
Kostka-Macdonald polynomials to Theorem 4.1.5. We have already seen that the
specializations q = 0 and t = 0, and also q = t = 1, are in agreement with the
theorem. These led us to the construction of Rµ in the first place.

The specialization q = 1 (and by symmetry t = 1) can be obtained with a bit of
effort from the identification of Jµ as the ideal of leading forms Jb for an orbit Sn ·b.
To do this one uses the fact noted above that Jb is independent of the choice of
weights for leading forms, which allows one to take leading forms in the x variables
first and the y variables afterwards.

The symmetry H̃µ′(z; q, t) = H̃µ(z; q, t) is in obvious agreement with the theo-
rem.

More interesting is the symmetry K̃λ′µ(q, t) = tn(µ)qn(µ′)K̃λµ(q−1, t−1). This
symmetry reflects the Gorenstein property of Rµ, which implies that multiplication
gives a perfect pairing of complementary degrees

(Rµ)r,s ⊗ (Rµ)n(µ)−r,n(µ)−s → (Rµ)n(µ),n(µ′) = soc(Rµ).

The pairing is Sn equivariant, and it pairs complementary irreducible representa-
tions Vλ and Vλ′ because the socle affords the sign representation. Hence Vλ and
Vλ′ have the same multiplicities in complementary degrees.

4.2. The (n+ 1)n−1 conjecture.
4.2.1. Diagonal harmonics and coinvariants. The rings Rµ involved in the n!

conjecture are graded quotients of C[x,y] that afford the regular representation
of Sn. In particular, their only copy of the trivial representation is given by the
constants, and so every Rµ is a quotient of the diagonal coinvariant ring

(78) Rn = C[x,y]/In,

where In is the ideal generated by the space C[x,y]Sn
+ of invariant polynomials

without constant term. Because of this connection, Garsia and I were led during
our early investigation of the rings Rµ to study also the ring Rn. The result was
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the discovery of its remarkable combinatorial aspects, as related in the introduction.
Below I will review some of these aspects in more detail.

First we should take note of some basic facts about Rn. The first is that the
ideal In has a well-known set of generators.

Proposition 4.2.1 (Weyl [85]). The ideal In is generated by the bivariate
power-sums

pr,s(x,y) =
def

n∑
i=1

xrys, 1 ≤ r + s ≤ n.

The corresponding result also holds for more than two sets of variables x,y, . . . , z.

The second fact is that as far as the study of its Frobenius series is concerned,
it doesn’t matter whether we work with the coinvariant ring Rn or the space of
harmonics.

Definition 4.2.2. The space DH n of diagonal harmonics for Sn is the set of
polynomials f ∈ C[x,y] annihilated by all Sn-invariant constant coefficient differ-
ential operators without constant term, that is, by C[∂x, ∂y]Sn

+ .

Since Rµ is a quotient of Rn, it follows from Proposition 4.1.3 that the polyno-
mial ∆µ is a diagonal harmonic. It at first seemed more natural in the early days
to work with the space of derivatives of ∆µ rather than with Rµ, and with DH n

rather than Rn, but in the end it is immaterial, by the following easy proposition.

Proposition 4.2.3. The canonical projection of DH n on Rn is an isomor-
phism. Similarly, if Dµ = C[∂x, ∂y]∆µ, then the canonical projection of Dµ on Rµ

is an isomorphism.

4.2.2. The initial conjectures. In §2 we have described q-enumerations of Cata-
lan numbers, forests and parking functions. They turn out to be connected with
the Frobenius and Hilbert series of Rn.

Theorem 4.2.4 ((n + 1)n−1 conjecture). Let Rn denote the ring of diagonal
coinvariants and Rε

n its subspace of antisymmetric elements. Their characters,
dimensions, and Hilbert series enjoy the following properties.

(i)
dimRn = (n+ 1)n−1.

(ii)

dimRε
n = Cn =

1
n+ 1

(
2n
n

)
,

the n-th Catalan number.
(iii)

HRn(q, q−1) = q−(n
2)[n+ 1]n−1

q .

(iv)

HRε
n
(q, q−1) = q−(n

2) 1
[n+ 1]q

[
2n
n

]
q

.

(v)
HRn(q, 1) = Jn(q) =

∑
F

qi(F ),

the enumerator of forests on n vertices by number of inversions, or parking
functions by weight.



78 MARK HAIMAN

(vi)
HRε

n
(q, 1) = Cn(q),

the Carlitz-Riordan q-Catalan number.
(vii) As an Sn-module, Rn is isomorphic to ε⊗PF, where PF is the permutation

representation on parking functions.
(viii) Ignoring the y-degrees and grading Rn only by x-degrees, the isomorphism

ε⊗Rn
∼= PF is homogeneous, where PF is graded by weights.

We have listed items (i)-(viii) cumulatively for clarity, but of course some of
them are redundant. Specifically, (i)-(ii) are special cases of both (iii)-(iv) and
(v)-(vi), (viii) is of course stronger than (vii), and both (v) and (vi) follow from
(viii).

4.2.3. The master conjecture. To appreciate the effect that the empiricial dis-
covery of the facts in Theorem 4.2.4 had at the time, it must be borne in mind
that the connection between q-Lagrange inversion and the operator ∇ discussed in
§3.5.7 was not then known. In hindsight, however, armed with Propositions 3.5.23
and 3.5.25, we can readily recognize that everything in Theorem 4.2.4 is implied by
the following master formula.

Theorem 4.2.5. The Frobenius series of the diagonal coinvariant ring is given
by

FRn(z; q, t) = ∇en(z).

Indeed, part (viii) is equivalent to Proposition 3.5.23, and parts (v)-(vi) are
its Corollary 3.5.24. Parts (iii) and (iv) follow from Proposition 3.5.25 using the
symmetric function identities

〈en
1 , en

[
[n+ 1]qZ

]〉 = [n+ 1]nq

〈en, en

[
[n+ 1]qZ

]〉 =
[
2n
n

]
q

.

5. Hilbert scheme interpretation

Theorems 4.1.5 and 4.2.5 and the various entities associated with them—the
Macdonald symmetric functions H̃µ(z; q, t) and the operators ∆f and ∇—can be
understood geometrically in the context of Hilbert schemes of points in the plane.
I will explain in some detail how this comes about in §5.4, below. First we need
some background material on Hilbert schemes, and a review of classically known
results and the new theorems that have made possible the solution of the n! and
(n+ 1)n−1 conjectures.

5.1. The Hilbert scheme and isospectral Hilbert scheme.

Definition 5.1.1. Let R = C[x, y] = O(C2) denote the coordinate ring of the
affine plane. The Hilbert scheme Hn = Hilbn(C2) of n points in the plane is the
algebraic variety parametrizing ideals I ⊆ R such that dimC R/I = n.

The definition of Hilbert schemes and other facts about them stated below
without specific attribution are due to Grothendieck [35]. The term parametrizing
in the definition has the following technical meaning. By definition, the ideals
parametrized by Hn correspond one-to-one with zero-dimensional subschemes S ⊆
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C2 of length n, so we may also think of Hn as parametrizing these subschemes.
Now there is a flat family, the universal scheme

(79)

Fn ⊆ Hn × C2⏐⏐�π

Hn,

over Hn, whose fiber over a point of Hn is the corresponding subscheme S. The
structure of Hn as an algebraic variety is characterized by the universal property
that any family Y ⊆ T × C2, flat and finite of degree n over a scheme T , is the
pullback of the univeral family F via a unique morphism T → Hn.

Let us pause to see what various points of Hn might look like. In the “generic”
case, the subscheme S ⊆ C2 is a set of n distinct points and I = I(S) its vanishing
ideal. The least generic case, but most important for us, is when I is a monomial
ideal. In that case, there are n monomials xjyi not in I, which form a basis of R/I,
and their exponents (i, j) are the cells in the diagram of a partition µ. We index
the monomial ideals by their corresponding partitions, writing

I = Iµ.

For example, I(1n) = (xn, y) and I(n) = (x, yn). The subscheme S = V (Iµ) defined
by a monomial ideal is non-reduced and concentrated at the origin. It may be
usefully and correctly pictured as an infinitesimal copy of the diagram of µ.

The first result on Hn is Fogarty’s theorem.1

Theorem 5.1.2 ([18]). The Hilbert scheme of points in the plane (or any
smooth surface) is irreducible and nonsingular, of dimension 2n.

The irreducibility part of the theorem means that the “generic” subschemes
S ⊆ C2 consisting of n distinct points really are generic, in the sense that they are
dense in Hn.

Next we need an auxilliary variety, called the isospectral Hilbert scheme. To
define it, we first need to introduce the Hilbert-Chow morphism. For each ideal
I ∈ Hn, the ring R/I is isomorphic to the direct product of its local rings (R/I)P

at each point P ∈ V (I). Hence the multiplicities mP (I) = dimC(R/I)P sum to n,
so that to I corresponds a zero-dimensional algebraic cycle

(80) σ(I) =
∑
P

mP (I) · P

of weight n. These cycles may be identified with the points of the the orbit variety
(C2)n/Sn, where Sn acts on (C2)n by permuting coordinates.

Proposition 5.1.3. The map

σ : Hn → C2n/Sn

described by (80) is a projective and birational morphism of algebraic varieties. In
particular it is a desingularization of the quotient singularity C2n/Sn.

1I am told that this theorem was actually proved earlier but not published by Hartshorne.
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Definition 5.1.4. The isospectral Hilbert scheme is the reduced fiber product

(81)

Xn
f−−−−→ C2n

ρ

⏐⏐� ⏐⏐�
Hn

σ−−−−→ C2n/Sn.

Specifically, Xn is the underlying reduced subscheme of the scheme-theoretic fiber
product (which is not reduced).

Let me explain the motivation for the term isospectral. For each point I of
Hn, the operators of multiplication by x and y are commuting endomorphisms of
the n-dimensional vector space R/I. Their joint spectrum consists of n pairs of
eigenvalues (αi, βi) ∈ C2, which are just the points of σ(I), with repetitions given
by the multiplicities. A point of Xn is then a tuple (I, P1, . . . , Pn) in Hn × (C2)n

where (P1, . . . , Pn) is some ordering of the joint spectrum.
The projection ρ of Xn on Hn is finite. Its degree is n!, since for a generic

I = I(S) there are n! possible orderings (P1, . . . , Pn) of the n distinct points of S.
5.1.1. Torus action. The algebraic torus group

(82) T2 = (C∗)2

acts linearly on C2 as the group of 2 × 2 diagonal matrices

(83) τt,q =
[
t−1 0
0 q−1

]
.

The inverse signs in (83) make T2 act on the coordinate ring C[x, y] of C2 by

τt,qx = tx; τt,qy = qy.

The action of T2 on C2 induces an action on Hn, Xn, the unversal family Fn, etc.,
so that all relevant morphisms are equivariant. There are induced T2 actions on
various vector spaces such as the coordinate ring C[x,y] of C2n, the space of global
sections of any T2-equivariant vector bundle, or the fiber of such a bundle at a
torus-fixed point in Hn. The T2 action on such a space is equivalently described
by a Z2-grading: namely, an element f is homogeneous of degree (r, s) if and only
if τt,qf = trqsf . In most cases, the grading induced by the torus action coincides
with an obvious “natural” double grading, as for example in C[x,y].

Proposition 5.1.5. The T2-fixed points of Hn are the monomial ideals Iµ, and
every I ∈ Hn has a fixed point in the closure of its orbit.

Proof. An ideal I ⊆ R = C[x, y] is fixed if and only if it is doubly homoge-
neous, i.e., if and only if it is a monomial ideal. The initial ideal of I with respect
to any term order on R is a monomial ideal in the closure of the T2-orbit of I. �

5.1.2. Zero-fiber. We will need some basic results on the zero-fiber of the
Hilbert-Chow morphism σ : Hn → C2n/Sn over the origin in C2n/Sn, which we
denote by

Zn = σ−1({0}).
The definition may be understood either in the set-theoretic or scheme-theoretic
sense, since we will see shortly that the scheme-theoretic zero-fiber is reduced. In
a naive sense, Zn parametrizes subschemes S ⊆ C2 supported at the origin. One
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has to be a bit careful about this, however: by Skjelnes [80], the functor of fam-
ilies supported at the origin is not representable. What Zn does represent is the
restriction of this functor to families with reduced base scheme.

The first property of Zn that we need is classical.

Proposition 5.1.6 (Briançon [9]). The zero-fiber Zn is irreducible, of dimen-
sion n− 1.

We also need a further property of Zn that had not been known before.

Proposition 5.1.7 ([38]). The zero-fiber Zn is scheme-theoretically reduced
and Cohen-Macaulay.

This is proved by considering the zero-fiber Z̃n in the universal family Fn over
Hn, that is, the fiber over the origin of the composite map

σ ◦ π : Fn → Hn → C2n/Sn.

The universal family Fn is Cohen-Macaulay, since it is flat and finite over Hn (see
the discussion following Theorem 5.2.1 below for more on this point). An explicit
calculation in local coordinates on Fn, using the generators of the ideal of {0} in
C2n/Sn given by Proposition 4.2.1, shows that Z̃n is a generically reduced local
complete intersection in Fn, hence reduced and Cohen-Macaulay. It is easy to show
that the projection π : Fn → Hn maps Z̃n isomorphically onto Zn, completing the
proof.

5.2. Main theorem on the isospectral Hilbert scheme. The next theo-
rem is the key result from which all else follows.

Theorem 5.2.1 ([39]). The isospectral Hilbert scheme Xn is Cohen-Macaulay
and Gorenstein. Equivalently, the projection

ρ : Xn → Hn

is flat and the coordinate ring of its scheme-theoretic fiber over each point Iµ is
a finite dimensional (doubly) graded Gorenstein algebra, in the sense of Defini-
tion 4.1.1.

A few clarifying remarks may be in order here. By definition, a scheme is Cohen-
Macaulay (resp. Gorenstein) if its local ring at every point is so. A local ring is
Cohen-Macaulay if some, or equivalently every, system of parameters is a regular
sequence. Phrased geometrically, this means that a scheme X is Cohen-Macaulay
if some, or equivalently every, finite morphism X → H with H nonsingular, is flat.
In particular this applies to the morphism ρ.

A local ring A is Gorenstein if it is Cohen-Macaulay first of all, and in addition,
for some, or equivalently every, ideal J generated by a system of parameters, the
Artin local ring A/J has one-dimensional socle. In the graded case this reduces
to Definition 4.1.1. Since Iµ is a T2-fixed point, the coordinate ring O(ρ−1(Iµ)) of
its fiber is doubly graded, and it is precisely of the form A/J , where A = OXn,Qµ

is the local ring of Xn at the unique point Qµ lying over Iµ, and J is generated
by local coordinates on Hn at Iµ. So the rings O(ρ−1(Iµ)) are Gorenstein if and
only if Xn is Gorenstein at each point Iµ. However, the Gorenstein locus in Xn is
open and T2-invariant, so this is equivalent to Xn being Gorenstein everywhere, by
Proposition 5.1.5.
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There is an important way to reformulate Theorem 5.2.1. For any finite group
G of order g acting faithfully on V = Cm, one defines the G-Hilbert scheme

(84) V //G

as in Ito and Nakamura [43] to be the closure in Hilbg(V ) of the locus parametriz-
ing regular G-orbits in V . The fibers of the universal family X over V //G are
G-invariant subschemes S ⊆ V whose coordinate rings afford the regular represen-
tation of G. In particular, G acts on X , and X/G = V //G. The projection X → V
then induces a Hilbert-Chow morphism V //G→ V/G.

The case of interest here is V = C2n, G = Sn. Because the subgroup Sn−1 has
index n in Sn, the quotient X/Sn−1 of the universal family over C2n//Sn is flat and
finite of degree n. A simple argument based on Proposition 4.2.1 shows that the
coordinates xn and yn on C2n generate the Sn−1-invariants in the coordinate ring of
each fiber of X . Hence X/Sn−1 can be identified with a subscheme of (C2n//Sn)×
C2. The universal property of the Hilbert scheme then yields a morphism

φ : C2n//Sn → Hn,

and it is easy to see that it commutes with the Hilbert-Chow morphisms.
Conversely, the flatness of the projection ρ : Xn → Hn, given by Theorem 5.2.1,

means that we have a morphism Hn → Hilbn!(C2n) mapping generic subschemes
S ⊆ C2 to regular Sn-orbits in C2n. Since Hn is irreducible, this factors through a
morphism

η : Hn → C2n//Sn.

Because both morphisms φ and η commute with the Hilbert-Chow morphism, they
are mutually inverse generically and hence everywhere. We have proved the follow-
ing corollary.

Corollary 5.2.2. The Hilbert scheme of Sn-orbits C2n//Sn is isomorphic
to the Hilbert scheme Hn of points in the plane. The isomorphism identifies the
isospectral Hilbert scheme Xn with the universal family on C2n//Sn.

We remark that Theorem 5.2.1 and Corollary 5.2.2 hold with C2 replaced by
any smooth quasiprojective surface, since the properties in question are local in the
étale topology.

5.3. Theorem of Bridgeland, King and Reid. WhenG is a finite subgroup
of SL(V ), the quotient singularity V/G is Gorenstein, and in some cases it posseses
a particularly nice type of desingularization.

Definition 5.3.1. Let V = Cm and G ⊆ SL(V ). A resolution of singularities

Y → V/G

is crepant if the sheaf ωY of differential m-forms is trivial, i.e., ω ∼= OY .

A crepant resolution is automatically minimal and has other interesting prop-
erties, among them the generalized McKay correspondence, conjectured by Reid
[72] and proved by Batyrev [2], which says that the Betti numbers of Y enumer-
ate the conjugacy classes of G according to certain weights. The classical McKay
correspondence is its two-dimensional case.

In dimensions two and three, the G-Hilbert scheme V //G turns out always to
be a crepant resolution. Seeking to explain and generalize this fact, Bridgeland,
King and Reid [10] proved the following theorem.
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Theorem 5.3.2 ([10]). Let G be a finite subgroup of SL(V ), and consider the
diagram

(85)

X
f−−−−→ V

ρ

⏐⏐� ⏐⏐�
V //G

σ−−−−→ V/G,

Let D(V //G) be the bounded derived category of coherent sheaves on V //G and
DG(V ) the similar derived category of G-equivariant sheaves on V . Suppose that the
Hilbert-Chow morphism σ : V //G→ V/G satisfies the following smallness criterion:
for every d, the locus of points x with dimσ−1(x) ≥ d has codimension at least 2d−1
in V/G. Then

(i) V //G is a crepant resolution V/G;
(ii) the functor

Φ = Rf∗ ◦ ρ∗ : D(V //G) → DG(V )
is an equivalence of categories.

Proposition 5.1.6 implies that the Chow morphism σ : Hn → C2n/Sn satisfies
the smallness criterion in Theorem 5.3.2. Combining this theorem with Corol-
lary 5.2.2 we therefore obtain a powerful tool for the study of the Hilbert scheme
Hn.

Corollary 5.3.3. In diagram (81), the functor

Φ = Rf∗ ◦ ρ∗ : D(Hn) → DSn(C2n)

is an equivalence of categories.

We remark that it is has long been known (see Beauville [3]) that Hn is a
crepant resolution of C2n/Sn. Thus the interesting aspect of the Bridgeland-King-
Reid theorem in this context is part (ii).

5.4. How the conjectures follow. Now let us see how Theorems 4.1.5 and
4.2.5 follow from our theorems on the Hilbert scheme. To begin, we need names for
some vector bundles of geometric origin on Hn. We put

(86) B = π∗OFn ,

the sheaf of regular functions on the universal family, pushed down to a sheaf on
the Hilbert scheme, and

(87) P = ρ∗OXn ,

the push-down of the sheaf of regular functions on the isospectral Hilbert scheme.
Here we are identifying vector bundles with their (locally free) sheaves of sections.
The sheaf P is locally free by virtue of Theorem 5.2.1.

The bundle B is the tautological bundle whose fiber at I ⊆ R is R/I. In partic-
ular it is a bundle of algebras which are quotients of R = C[x, y]. The bundle P is
the tautological bundle on C2n//Sn, regarded as a sheaf on Hn via the isomorphism
in Corollary 5.2.2. As such it is a bundle of algebras which are quotients of C[x,y]
by Sn-invariant ideals, with Sn acting by the regular representaton on each fiber.
The Gorenstein property of Xn in Theorem 5.2.1 means that the fibers of P are
Gorenstein algebras.
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We also put

(88) O(1) = ∧nB,

the tautological line bundle on the Hilbert scheme. In fact O(1) is a very ample
line bundle for Hn as a variety projective over C2n/Sn, as I will explain later (see
Proposition 6.1.5). As usual we also write O(k) with k ∈ Z for the tensor powers
of O(1) or its dual O(−1).

5.4.1. The n! conjecture. The first result is the “n!” part of the n! conjecture.

Proposition 5.4.1. The ring Rµ in the n! conjecture is the fiber P (Iµ) of the
bundle P at the point Iµ in the Hilbert scheme. In particular, dimRµ = n!.

Proof. Consider an orbit Sn · b ⊆ C2n with b associated to µ as in (76). Its
ideal Jb is a point of C2n//Sn. The corresponding point of Hn is the ideal I = I(S),
where S is the set of coordinate pairs (ai, bi) in b. In effect, the set S is the picture
in C2 of the diagram of µ.2

The ideal J of leading forms of Jb is the limit as u→ 0 of Jub. More precisely,
consider the one-parameter torus C∗ = {τu−1,u−1} ⊆ T2. The C∗ orbit of Jb consists
of the ideals Jub for u �= 0. This orbit extends to an affine line C1 ↪→ C2n//Sn, with
the origin mapping to J .

The point of Hn corresponding to J is similarly the limit as u → 0 of I(uS),
that is, the ideal of leading forms of I(S). For (r, s) outside the diagram of µ, the
polynomial

f(x, y) =
∏
j<s

(x− αj)
∏
i<r

(y − βi)

belongs to I(S). The leading form of f is xsyr, so the ideal of leading forms of I(S)
is Iµ. Hence J is the defining ideal of the fiber P (Iµ) = C[x,y]/J , and in particular
C[x,y]/J is Gorenstein.

Recall from §4.1 that Rµ is uniquely characterized as the Gorenstein quotient
of C[x,y]/J in which the sign representation is not killed. But C[x,y]/J is already
Gorenstein, so it is equal to Rµ. �

To identify the Frobenius series of Rµ we can use the functorial equivalence Φ
in Corollary 5.3.3. The method I will outline is a bit different from the one in [39].

Proposition 5.4.2. The Sn-modules TorC[x]
i (Rµ,C) contain only irreducible

representations V λ of Sn with λ ≥ µ′.

Before I indicate the proof of this proposition, let us take note of its conse-
quences. For one thing it implies Proposition 3.4.20. Just as Proposition 3.4.20
provides a triangularity condition on the Frobenius series of the Garsia-Procesi
ring, so does Proposition 5.4.2 for its doubled analog Rµ. Specifically, using Propo-
sition 3.3.1, it implies

FRµ [(1 − t)Z; q, t] ∈ Z[q, t] · {sλ : λ ≥ µ′},
which is condition (ii) in Definition 3.5.2. Taking y in place of x we see by sym-
metry that FRµ(z; q, t) also satisfies condition (i) in the definition of H̃µ(z; q, t).
Finally, the trivial representation of Sn occurs uniquely in degree (0, 0) in Rµ, so

2For this to come out right we should think of the x-axis as vertical and the y-axis as hori-
zontal. Unfortunately neither the English nor the French convention for Young diagrams matches
the Cartesian convention for axes in the plane.
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〈s(n), FRµ(z; q, t)〉 = 1, which is another way of stating condition (iii) in the defini-
tion. Hence we have

FRµ(z; q, t) = H̃µ(z; q, t).
Now let us turn to the proof of Proposition 5.4.2. We first need to say something

about the locus Wy ⊆ Hn parametrizing subschemes S with support on the y-axis
V (x) ⊆ C2. The locus Wy has a well-known explicit description. Given a partition
µ of n, consider the set of points S ∈ Wy for which the multiplicities of the points
of S are the parts of µ. For every µ this set has dimension n. First there are
l(µ) degrees of freedom to choose the support of S on the y-axis. For each point
of the support, the choice of a non-reduced scheme structure there is locally (in
the analytic topology) the same as the choice of a point in the zero-fiber of the
Hilbert-Chow morphism for Hµi . By Briançon’s theorem (Proposition 5.1.6) this
contributes µi − 1 degrees of freedom for each i, for a total of

l(µ) +
∑

i

(µi − 1) = n.

The locus Wy is the union of these n-dimensional locally closed subsets Wy,µ, whose
closures are its irreducible components.

The functor Φ in Corollary 5.3.3 has the explicit inverse

(89) Ψ = O(−1) ⊗ (ρ∗ ◦ Lf∗(−))ε,

where the notation (·)ε stands for the subsheaf of Sn-antisymmetric elements. Note
that DSn(C2n) is just the derived category of finitely generated Sn-equivariant
C[x,y]-modules. The key point in proving Proposition 5.4.2 is to identify the objects

Ψ(V λ ⊗ C[y]) = Ψ(V λ ⊗ C[x,y]/(x))

in the derived category D(Hn). To do this we observe that the coordinates x =
x1, x2, . . . , xn form a regular sequence in OXn at every point where they vanish.
The reason for this is that their vanishing locus V (x) ⊆ Xn is finite over Wy , hence
has dimension n, so it is a complete intersection in the Cohen-Macaulay scheme
Xn. Moreover, a simple calculation at a generic point in each component of Wy

shows that V (x) is scheme-theoretically reduced, generically and hence everywhere.
These facts imply that Lf∗(V λ ⊗ C[y]) = V λ ⊗OV (x). By (89), we have

Ψ(V λ ⊗ C[y]) = O(−1) ⊗ HomSn(V λ′
, ρ∗OV (x)).

Now ρ∗OV (x) is supported on Wy and its Sn action is induced from that on Xn.
Over the subset Wy,µ of Wy , the fiber of V (x) consists of

(
n

µ1,...,µl

)
reduced points,

and Sn permutes them transitively, with the stabilizer of each one having the form
Sµ1 × · · · × Sµl

. From this one sees that HomSn(V λ′
, ρ∗OV (x)) is supported on the

components W y,µ with µ ≤ λ′. In turn one deduces that HomSn(V λ′
, ρ∗OV (x)) is

locally zero at Iµ unless µ′ ≤ λ′.
To complete the proof, Proposition 5.4.2 is equivalent to

(90) Exti(Vλ ⊗ C[y], Rµ) = 0 for all i, unless λ′ ≥ µ′

in the derived category DSn(C2n). But Proposition 5.4.1, stated in the language of
Corollary 5.3.3, says simply that ΦkIµ = Rµ, where kIµ = OHn,Iµ/mIµ ∈ D(Hn) is
the “skyscraper sheaf” of the point Iµ. Hence by Corollary 5.3.3, the Ext groups
in (90) are equal to the Ext groups

Exti(Ψ(V λ ⊗ C[y]), kIµ ).
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We have just seen that these are zero unless λ′ ≥ µ′.
5.4.2. The (n + 1)n−1 conjecture. To prove Theorem 4.2.5, we need stronger

consequences of Corollary 5.3.3 than the ones we used in the preceding section.
The next result is the second of our two main theorems on Hn (the first being
Theorem 5.2.1).

Theorem 5.4.3 ([40]). With the notation B and P as in (86), (87) for the
tautological vector bundles on the Hilbert scheme, we have

(91)
Hi(Hn, P ⊗B⊗l) = 0 for all i > 0 and all l; and

H0(Hn, P ⊗B⊗l) = R(n, l),

where R(n, l) is the coordinate ring of a certain union of linear subspaces Z(n, l) ⊆
C2n+2l (the polygraph). Moreover, we have the similar statements on the zero-fiber

(92)
Hi(Zn, P ⊗B⊗l) = 0 for all i > 0 and all l; and

H0(Zn, P ⊗B⊗l) = R(n, l)/mR(n, l),

where m = C[x,y]Sn
+ is the homogeneous maximal ideal in the ring of invariants

C[x,y]Sn , that is, the ideal of {0} in C2n/Sn.

The definition of the polygraph Z(n, l) will be given in §6, and need not concern
us here except when l = 0. In that case, Z(n, 0) = C2n and R(n, 0) = C[x,y]. In
particular, the ring R(n, l)/mR(n, l) on the right-hand side in (92) reduces for l = 0
to the diagonal coinvariant ring Rn. We can use Theorem 5.4.3 to calculate the
Frobenius series of Rn in terms of Macdonald symmetric functions, with the aid of
the following auxilliary result, which is a corollary to the proof of Proposition 5.1.7.

Proposition 5.4.4. On Hn, we have a T2-equivariant locally free resolution of
the coordinate sheaf OZn of the zero-fiber,

(93) · · · → B ⊗∧k(B′ ⊕Ot ⊕Oq) → · · · → B ⊗ (B′ ⊕Ot ⊕Oq) → B → OZn → 0,

where B′ is a canonical direct summand of the tautological bundle B,

B = O ⊕B′,

and Ot, Oq denote the twistings O ⊗ Ct and O ⊗ Cq by one-dimensional represen-
tations of T2 in which τt,q acts as t or q, respectively.

This given, we can make the desired calculation using a suitable version [83] of
the classical Lefschetz formula of Atiyah and Bott [1]. What the formula gives us
is actually the Frobenius series Euler characteristic

(94)
∑

i

(−1)iFHi(Zn,P )(z; q, t).

But from (92) we see that the only nonzero term here is i = 0, and that term is just
FRn(z; q, t). The formula gives (94) as a sum of local data for each T2-fixed point
Iµ on the Hilbert scheme. The required local datum at Iµ is the Frobenius series
of the fiber of OZn ⊗ P there, divided by the determinant of the T2 action on the
cotangent space at Iµ.

From Proposition 5.4.1 and Theorem 4.1.5, we know that the Frobenius series of
P (Iµ) is H̃µ(z; q, t). We have to multiply this by a Hilbert series Euler characteristic
for the fiber at Iµ of the resolution of OZn in (93). Note that the Hilbert series
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of B(Iµ) = R/Iµ is none other than the expression Bµ(q, t) in (58). From this we
calculate the factor attributable to (93) as

(1 − q)(1 − t)Πµ(q, t)Bµ(q, t),

with Πµ(q, t) defined as in (74).
For the denominator factor we need the following lemma, which is a reformu-

lation of a classical result of Ellingsrud and Strömme [17].

Lemma 5.4.5 ([38]). The eigenvalues of τt,q ∈ T2 on the cotangent space of the
Hilbert scheme at the fixed point Iµ are given by the 2n monomials

t1+l(x)q−a(x), t−l(x)q1+a(x) : x ∈ µ,

where a(x) and l(x) are the arm and leg of the cell x in the diagram of µ.

Putting all this together yields the formula

FRn(z; q, t) =
∑
|µ|=n

(1 − q)(1 − t)Πµ(q, t)Bµ(q, t)H̃µ(z; q, t)∏
x∈µ(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))

.

Comparing this with Proposition 3.5.26 we see that we have proved Theorem 4.2.5.
5.4.3. Orthogonality of the Macdonald symmetric functions. As promised ear-

lier, there is a nice geometric proof of the identity (73), along with the orthogonality
of the Macdonald symmetric functions H̃µ(z; q, t) with respect to the inner product
〈−,−〉∗. The ideas that go into it will also enable us to deduce other results.

The equivalence of categories in Corollary 5.3.3 induces an isomorphism of
Grothendieck groups

Φ: K0
T(Hn) ∼= K0

Sn×T(C2n).
Here K0

T
(Hn) is the Grothendieck group of torus-equivariant coherent sheaves on

the Hilbert scheme, and K0
Sn×T

(C2n) is the Grothendieck group of finitely gen-
erated Sn-equivariant doubly-graded C[x,y]-modules. These Grothendieck groups
are modules over the representation ring

Z[q, t, q−1, t−1]

of the torus T2. More specifically, K0
Sn×T

(C2n) is freely generated as a
Z[q, t, q−1, t−1] module by the free C[x,y]-modules V λ ⊗ C[x,y]. By Proposi-
tion 3.3.1, the Frobenius series of V λ ⊗ C[x,y] is

FV λ⊗C[x,y](z; q, t) = sλ

[
Z

(1 − q)(1 − t)

]
.

An object A ∈ D(Hn) is supported on the zero-fiber if and only if ΦA is supported
at 0, and a finitely-generated graded module is supported at 0 if and only if it
is finite-dimensional. The Grothendieck group of finite-dimensional Sn-equivariant
C[x,y]-modules is freely generated by the irreducible Sn-modules V λ, regarded as
C[x,y]-modules annihilated by (x,y). We can summarize these observations as
follows.

Proposition 5.4.6. The Frobenius series composed with the functor Φ in Corol-
lary 5.3.3 gives an isomorphism of the Grothendieck group K0

T2(Hn) onto the algebra
of symmetric functions f with the property that f [(1 − q)(1 − t)Z] has coefficients
in Z[q, t, q−1, t−1]. Under this isomorphism, the subgroup of objects supported on
the zero-fiber corresponds to the subalgebra of symmetric functions f which already
have coefficients in Z[q, t, q−1, t−1].
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To make this more explicit, if [Iµ] ∈ K0
T2(Hn) denotes the class of the skyscraper

sheaf kIµ , then Proposition 5.4.1 and Theorem 4.1.5 give

(95) Φ[Iµ] = H̃µ(z; q, t).

Also, the formula for the inverse map in (89) implies that

Ψ(V λ ⊗ C[x,y]) = HomSn(V λ′
,O(−1) ⊗ P ).

With λ = (n), this shows in particular that the line bundle of antisymmetric ele-
ments P ε is isomorphic to O(1). Recall that fibers of P are Gorenstein algebras,
and the fibers of P ε are their socles. The Gorenstein property implies that there is
a perfect pairing

(96) P ⊗ P → P ε ∼= O(1),

so O(−1) ⊗ ε⊗ P ∼= P ∗. Now define character bundles

Pλ =
def

HomSn(V λ, P ).

Then the above considerations yield

(97) ΦP ∗
λ = sλ[Z/(1 − q)(1 − t)].

Corollary 5.4.7. For T2 equivariant objects A, B in D(Hn), the Hilbert series
Euler characteristic of their Tor groups is given by∑

i

(−1)iHTori(A,B)(q, t) = 〈Φ[A],Φ[B]〉.,

where
〈f, g〉. =

def
〈∇−1f, g〉∗

Proof. Both sides depend bilinearly on the classes [A] and [B] in the
Grothendieck group. Evaluating at A = P ∗

λ and B = kIµ , we have K̃λµ(q−1, t−1)
on the left-hand side. On the right-hand side, using (95) and (97), we have
〈H̃µ, sλ[Z/(1 − q)(1 − t)]〉., which is also equal to K̃λµ(q−1, t−1). �

Now for the promised proof of (73).

Corollary 5.4.8. We have 〈H̃µ, H̃ν〉∗ = 0 if µ �= ν, and

〈H̃µ, H̃µ〉∗ = tn(µ)qn(µ′)
∏
x∈µ

(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x)).

Proof. From the definition of ∇ we have 〈H̃µ, H̃ν〉∗ = tn(µ)qn(µ′)〈H̃µ, H̃ν〉..
The result now follows from Corollary 5.4.7 and Lemma 5.4.5, since Tori(kIµ , kIµ)
is the i-th exterior power of the cotangent space to Hn at Iµ. �

5.4.4. Integrality and positivity for the operators ∆f . The operators ∆f defined
in (62) have a simple interpretation in terms of the isomorphism of Grothendieck
groups in Proposition 5.4.6. To explain it we need to recall that the Schur functor
Sλ corresponding to a partition λ of n is defined by

Sλ(W ) = HomSn(V λ,W⊗n).

If W is (doubly) graded, then so is Sλ(W ), and its Hilbert series is given by

HSλ(W )(q, t) = sλ[HW (q, t)].
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In particular, the Hilbert series of the fiber at Iµ of the vector bundle Sλ(B), where
B is the tautological bundle on the Hilbert scheme, is given by sλ[Bµ(q, t)]. Together
with (95), this implies the following result.

Proposition 5.4.9. The operator ∆sλ
on symmetric functions corresponds un-

der the isomorphism in Proposition 5.4.6 to the operator on the Grothendieck group
of the Hilbert scheme induced by the functor

(Sλ(B) ⊗−).

In particular, the operators ∇ and ∇−1 correspond to the functors

(O(1) ⊗−), (O(−1) ⊗−).

This gives immediately a partial proof of Proposition 3.5.14.

Corollary 5.4.10. The operators ∆sλ
, ∇ and ∇−1 have the Laurent-

integrality property in Property 3.5.14, that is, they map the algebra of symmetric
functions with coefficients in Z[q, t, q−1, t−1] into itself.

Finally let us turn to the proof of Theorem 3.5.16. In the language of Proposi-
tion 5.4.6, Theorem 4.2.5 tells us that

ΦOZn = ∇en(z),

and therefore we also have

Φ(Sλ(B) ⊗OZn) = ∆sλ
∇en(z).

To establish that this has coefficients in N[q, t], it suffices to show that

Hi(Zn, P ⊗ Sλ(B)) = 0, for i > 0

and that the graded C[x,y]-module H0(Zn, P ⊗Sλ(B)) is zero in negative degrees.
But Sλ(B) is a direct summand of B⊗l, where l = |λ|, so both assertions follow
from Theorem 5.4.3.

6. Discussion of proofs of the main theorems

In this section I will outline the proofs of Theorem 5.2.1 (the Cohen-Macaulay
and Gorenstein properties of Xn) and Theorem 5.4.3 (the cohomology vanishing
theorem). Procesi has also given a nice synopsis of the proof of Theorem 5.2.1 in
his review article [71], and I have followed here his way of organizing the logic.

6.1. Theorem on the isospectral Hilbert scheme. We are to prove that
Xn is Cohen-Macaulay and Gorenstein. We proceed by induction on n. Over a
point I of the Hilbert scheme whose support σ(I) is not of the form n · P , we have
locally a product structure

(98) Xn
∼= Xk ×Xl.

So we can assume by induction that Xn is locally Cohen-Macaulay and Gorenstein
where the n points do not all coincide. In order to handle the most degenerate
points, we make use of the nested Hilbert scheme Hn−1,n and its corresponding
isospectral scheme Xn−1,n. The nested Hilbert scheme parametrizes pairs of ideals

In ⊆ In−1 ⊆ R

such that dimR/In = n and dimR/In−1 = n − 1. Parallel to Fogarty’s theorem
we have the theorem of Tikhomirov and Cheah [13] that Hn−1,n is irreducible and
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nonsingular. Now all these schemes for n − 1 and n fit into a big commutative
diagram

(99)

Xn−1,n
g−−−−→ Xn

↘
⏐⏐�⏐⏐� Hn−1,n −→ Hn⏐⏐�

Xn−1 −→ Hn−1.

By induction, the bottom horizontal arrow is flat of degree (n−1)! with Gorenstein
fibers. From this fact it is easy to deduce that the square involving the bottom
arrow is a scheme-theoretic fiber square. Consequently Xn−1,n is Cohen-Macaulay
and Gorenstein, since Hn−1,n is nonsingular and the diagonal arrow is flat and finite
with Gorenstein fibers.

For the next step we need to calculate the canonical line bundles on some of
the schemes in (99). On Hn−1,n, and also on Xn−1,n via pullback, we define

O(k, l) = p∗n−1OHn−1(k) ⊗ p∗nOHn(l),

where pn−1, pn are the projections on Hn−1, Hn and O(1) denotes the highest
exterior power of the tautological bundle, as in (88). The canonical bundle on
Hn−1 is trivial, and the pairing in (96), which holds on Hn−1 by induction, implies
that the canonical bundle on Xn−1 is O(−1). It follows that the relative canonical
bundle of Xn−1,n over Hn−1,n in our fiber square is O(−1, 0) in the notation above.

Lemma 6.1.1 ([39]). The canonical sheaf on Hn−1,n is ωHn−1,n = O(1,−1).

This is proved by direct computation in local coordinates. We conclude that
the canonical bundle on Xn−1,n is

ωXn−1,n = O(0,−1).

The important point here is that ωXn−1,n is the pullback of a line bundle on Xn

through the map g in diagram (99).

Claim 6.1.2. For the map g in (99) we have Rg∗OXn−1,n = OXn .

Suppose we prove the claim. Since ωXn−1,n = g∗OXn(−1) we shall also have
Rg∗ωXn−1,n = OXn(−1). By duality theory it follows that OXn(−1) is the dualizing
complex onXn. But this means exactly thatXn is Cohen-Macaulay and Gorenstein,
with canonical bundle O(−1), so our theorem will be proved.

As to the claim, the nested isospectral Hilbert scheme, like Xn, has a local
product structure

Xn−1,n
∼= Xk,k−1 ×Xl

where the the n points do not all coincide. The map g in diagram (99) factors
locally as

gk × 1l : Xk,k−1 ×Xl → Xk ×Xl.

We can assume that Claim 6.1.2 holds for gk as part of the induction. Then the
claim holds locally away from the most degenerate points. In particular, it holds
outside the locus defined by the equations

y1 = y2 = . . . = yn.
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The following lemma is proved by a standard local cohomology argument.

Lemma 6.1.3. Let g : Y → X be a proper morphism of algebraic varieties.
Suppose given m global regular functions z1, . . . , zm on X, and let Z be the subvariety
of X where they vanish; U = X\Z its complement. Assume the following conditions
hold.

(i) The zi form a regular sequence in every local ring OX,x, x ∈ Z.
(ii) The zi form a regular sequence in every local ring OY,y, y ∈ g−1(Z).
(iii) Every fiber of g has dimension < m− 1.
(iv) On the open set U , the canonical homomorphism OX → Rg∗OY is an

isomorphism.
Then the canonical homomorphism OX → Rg∗OY is an isomorphism everywhere.

To prove Claim 6.1.2 we apply this to the morphism g : Xn−1,n → Xn, taking
zi = yi − yi+1, i = 1, . . . , n− 1. We need to verify assumptions (i)-(iv).

We have already seen that we can assume (iv) by induction.
For (iii) we have to analyze the fibers of the map Hn−1,n → Hn. The fiber over

a point I in Hn is just a projective space of dimension dim soc(R/I) − 1. This is
always maximized at a fixed point I = Iµ, and then a simple calculation shows that
dim soc(R/I) < n− 2 when n > 3. For n ≤ 3 the induction hypotheses have to be
verified directly.

Both (i) and (ii) reduce to the corresponding problem for the sequence
y1, . . . , yn. For (ii), the local rings of Xn−1,n are Cohen-Macaulay, so we only
need to show that the locus y = 0 in Xn−1,n has dimension n. This follows from
the cell decomposition of Hn−1,n in Cheah [13].

The crucial part is (i), which amounts to the following statement.

Proposition 6.1.4. The morphism Xn → Cn given by projection on the y
coordinates is flat.

At this point we have pushed our geometric induction argument as far as it
will go, and must approach the proof of Proposition 6.1.4 head-on. The first step
is construct Hn and Xn as blowups.

Proposition 6.1.5 ([38]). Let A = C[x,y]ε be the subspace of antisymmetric
elements and let J = C[x,y]A be the ideal it generates. Define graded Rees algebras

S =
⊕
d≥0

Ad; T = C[x,y][tJ ] =
⊕
d≥0

Jd,

with the convention that A0 = C[x,y]Sn . Then Hn = ProjS and Xn = ProjT .

Proof. The result for Xn follows easily from the one for Hn. For Hn, observe
that the fibers of the tautological bundle B are quotients of R = C[x, y], so the fibers
of O(1) = ∧nB are quotients of ∧nR = A. So we get an algebra homomorphism
φ : S → ⊕

dH
0(Hn,O(d)), and the sections of O(1) coming from S do not vanish

simultaneously anywhere on Hn. Hence φ is induced by a morphism f : Hn →
ProjS, and OHn(1) is the pullback f∗O(1) of the twisting sheaf on ProjS. Since
f is a birational morphism of schemes projective over C2n/Sn, it is projective and
hence surjective.

Consider the section α of OHn(1) given by the Vandermonde determinant
∆(x) ∈ A. The open set Uα where α �= 0 consists of the ideals I such that
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{1, x, . . . , xn−1} is a basis of R/I. One can see with explicit coordinates that
Uα

∼= C2n. In fact Uα is the open cell in the cell decomposition of Hn given by
Ellingsrud and Strömme [17]. From the cell decomposition one also sees that the
divisor Z = Hn \U is irreducible. These facts imply that the Picard group of Hn is
isomorphic to Z, and OHn(1) = f∗O(1) is ample. It follows that f is injective. �

To prove Proposition 6.1.4 it suffices to prove that for every d the ideal Jd is a
free C[y]-module. To do this we introduce an auxilliary object.

Definition 6.1.6. Let [l] stand for the set {1, . . . , l}. To every function f : [l] →
[n] associate the map πf : (C2)n → (C2)l sending (P1, . . . , Pn) to (Pf(1), . . . , Pf(l))
and let Wf ⊆ C2n+2l be its graph. The polygraph Z(n, l) is the union of the linear
subspaces Wf ⊆ C2n+2l over all functions f : [l] → [n].

We denote the coordinates on C2n by xi, yi and those on C2l by ai, bi, so the
coordinate ring R(n, l) of Z(n, l) is the quotient

R(n, l) = C[x,y, a,b]/(
⋂
f

If ),

where

If =
l∑

i=1

(ai − xf(i), bi − yf(i)).

The connection with the ideals Jd is as follows.

Proposition 6.1.7. Put l = dn and let Sd
n act on R(n, l) = R(n, dn) by per-

muting the dn coordinate pairs ai, bi in blocks of size n. Then Jd is isomorphic as
a C[x,y]-module to the space R(n, dn)ε of antisymmetric elements with respect to
Sd

n.

Proof. Fix the function f0 : [dn] → [n] defined by f0(kn + i) = i for i ∈ [n]
and 0 ≤ k < d. Let Wf0 be the corresponding component of Z(n, l). Restriction of
functions from Z(n, l) to Wf0 is a homomorphism of C[x,y]-algebras φ : R(n, l) →
C[x,y] mapping akn+i, bkn+i to xi, yi. It is easy to see that φ maps R(n, l)ε

surjectively onto Jd.
We need to prove that φ is injective on R(n, l)ε. Every antisymmetric function

p vanishes on Wf if f(kn+ i) = f(kn + j) for some 0 ≤ k < d and some i, j ∈ [n]
with i �= j. But if f(kn+ 1), . . . , f(kn+ n) are distinct for each k, then f is in the
Sd

n-orbit of f0 and so p is determined on Wf by its restriction to Wf0 . �

Hence our problem is reduced to a special case of the following theorem.

Theorem 6.1.8. The coordinate ring R(n, l) of the polygraph is a free module
over the polynomial ring C[y].

This theorem is proved in [39] using induction and some commutative algebra to
produce a basis of R(n, l) as a free module. The proof is quite constructive and one
can extract from it an algorithm to generate the basis elements in any given degree.
More usefully, one can deduce that that the basis elements are indexed by some
simple combinatorial data. Unfortunately, the proof is also extremely complicated,
and I will be the first to admit that it is rather unsatisfactory from a conceptual
point of view.
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I should point out, however, that the polygraph is not merely an artifice to
make the proof of Proposition 6.1.4 more combinatorial. It is also the object whose
coordinate ring R(n, l) appears in Theorem 5.4.3 as the space of global sections of
the tensor product of tautological bundles P ⊗ B⊗l. As such it is a geometrically
natural entity. From this point of view we can see for example that the identification
of Jd with R(n, dn)ε in Proposition 6.1.7 is secretly the representation of the line
bundle O(d) as the summand (∧nB)⊗d of B⊗dn.

6.2. Vanishing theorem. Now let us see how the vanishing theorem, The-
orem 5.4.3, comes about. The first point is to restate the theorem using the
Bridgeland-King-Reid functor as the pair of identities

(100)
Φ(B⊗l) = R(n, l),

Φ(OZn ⊗B⊗l) = R(n, l)/mR(n, l).

The next point is that the second identity can be deduced from the first in a
straightforward way, using the resolution of OZn in Proposition 5.4.4. So we only
have to prove the first identity, which we may rewrite using the Bridgeland-King-
Reid theorem as

ΨR(n, l) = B⊗l.

To put it a bit more precisely, the fiber product over the Hilbert schemeXn×F l
n/Hn

projects on C2n+2l with image Z(n, l). Functions on Z(n, l) pull back to global
functions on Xn ×F l

n/Hn, that is, to global sections of P ⊗B⊗l, and this induces a
map R(n, l) → Φ(B⊗l). Applying Ψ we have a canonical map ΨR(n, l) → B⊗l and
we are to prove it is an isomorphism.

I wish to point out here the full strength of this seemingly trivial substitution.
The functor Φ involves sheaf cohomology, in the guise of the derived functor Rf∗.
The inverse functor Ψ, however, involves only commutative algebra: to compute
ΨA for any object A you only need an Sn-equivariant free resolution of A.

It develops that Theorem 6.1.8 is exactly what we need in order to calculate
ΨR(n, l). The theorem implies immediately that R(n, l) has a free resolution over
C[x,y] of length at most n, but we can do a little better using the translation
invariance of the polygraph with respect to C2. This yields that R(n, l) is actually
a free C[x1,y]-module and hence has a free resolution of length n− 1.

Next we observe that when not all n points coincide, so we have the local
product structure in (98), both R(n, l) and B⊗l decompose into smaller pieces, in
a manner compatible with the map ΨR(n, l) → B⊗l. Therefore we can assume by
induction that our map is locally an isomorphism away from the most degenerate
points.

This much turns out to be almost enough to prove the theorem. Consider an
exact triangle

C[−1] → ΨR(n, l) → B⊗l → C

in the derived category D(Hn). We are to prove that C = 0. We have just shown
that it has a locally free resolution of length n (from the resolution of R(n, l) plus
the extra term B⊗l), and that it vanishes on an open set whose complement has
codimension n−1. If the codimension were n+1 instead, it would imply that C = 0
by the intersection theorem of Peskine, Szpiro and Roberts [70, 74, 75]. All we
need to do is kill off C on a slightly bigger open set.



94 MARK HAIMAN

Let Ux be the open set, called Uα in the proof of Proposition 6.1.5, where the
monomials 1, x, . . . , xn−1 are independent modulo I, and let Uy be the same with
y in place of x. The theorem follows from two more facts.

Lemma 6.2.1. Let W be the locus where not all n points coincide. Then the
complement of the open set W ∪ Ux ∪ Uy in the Hilbert scheme has codimension
n+ 1.

Lemma 6.2.2. On Ux, the canonical map ΨR(n, l) → B⊗l is an isomorphism.

Lemma 6.2.1 is an easy application of the Ellingsrud-Strömme cell decomposi-
tion.

Lemma 6.2.2 is a computation in explicit coordinates on Ux. Its proof contains
two delicate points, which I will mention without giving details. First we have
to check that the free resolution of R(n, l) remains exact when pulled back to the
open set in Xn lying over Ux. This is done using Theorem 6.1.8 again. Second, we
have to check that on Ux the canonical map O(−1) ⊗ (ρ∗f∗R(n, l))ε → B⊗l is an
isomorphism (recall the formula for Ψ in (89)). Once written out in coordinates,
it is easy to see that this map is surjective. For injectivity one has to show that
certain elements that are not obviously zero do in fact vanish in f∗R(n, l), which
requires a bit of care.

7. Current developments

7.1. Combinatorial advances. It remains an open problem to find a com-
binatorial formula for the Kostka-Macdonald polynomials K̃λµ(q, t) along the lines
of Theorem 3.4.15 or 3.4.16, but there has recently been encouraging progress on
the corresponding problem for the coefficients of the Frobenius series of diagonal
coinvariants, ∇en(z).

In view of (71) there exist t-analogs of the Carlitz-Riordan q-Catalan numbers

Cn(q, t) =
def

〈en,∇en〉.
By Theorem 4.2.5, this q, t-Catalan polynomial is the Hilbert series of the antisym-
metric part Rε

n of the diagonal coinvariant ring. Hence it is a polynomial with
positive integer coefficients. Unlike most of the other quantities that can be shown
to be positive by geometric methods, this one has a known combinatorial interpre-
tation, discovered by Haglund and proved by him and Garsia. I will state a variant
of their theorem that lends itself better to generalization.

Theorem 7.1.1 ([20, 21]). Denote by b(λ) the number of cells x in the diagram
of λ for which the arm and leg of x are related by l(x) ≤ a(x) ≤ l(x) + 1. Let δn be
the staircase partition (n− 1, n− 2, . . . , 1). Then the q, t-Catalan polynomial is the
sum over partitions λ with diagram contained inside the diagram of δn

(101) Cn(q, t) =
∑

λ⊆δn

q(
n
2)−|λ|tb(λ).

To prove this, define more generally Sn,k(q, t) to be the same sum taken only
over those λ that contain precisely k cells on the outermost diagonal of δn. Garsia
and Haglund find a recurrence for Sn,k(q, t) and an expression in terms of symmetric
functions that satisfies the same recurrence. Their expression reduces to 〈en,∇en〉
for Sn+1,0(q, t), which is the same as the sum in (101).



COMBINATORICS, SYMMETRIC FUNCTIONS, AND HILBERT SCHEMES 95

Interestingly, there is a way of rewriting the combinatorial formula (101) as a
sum of products of Gauss binomial coefficients, formally resembling the Kirillov-
Reshetikhin formula (51) for the Kosta-Foulkes polynomials.

Corollary 7.1.2. The q, t-Catalan polynomial can be written as

(102) Cn(q, t) =
∑

r

∑
k1+···+kr=n

q
∑

i(i−1)ki t
∑

i (ki
2 )

r−1∏
i=1

[
ki + ki+1 − 1

ki − 1

]
t

,

the sum ranging over compositions of n into positive integers k1, . . . , kr.

Proof. Encode each λ ⊆ δn by the sequence (e1, e2, . . . , en) with ei = n−i−λi

and en = 0. The constraints on the possible sequences are 0 ≤ ei ≤ ei+1 + 1 for
each i. Let km be the number of ei’s equal to m − 1. If r = 1 + max(e1, . . . , en),
the constraints imply that k1, . . . , kr are all non-zero.

The exponent
(
n
2

) − |λ| of q in (101) is
∑

j ej =
∑

i(i − 1)ki. The exponent
b(λ) of t is the number of pairs i < j with ej = ei, contributing

∑
i

(
ki

2

)
, plus

the number of pairs with ej = ei + 1. The constraints imply that for each m, the
subsequence formed by the ei’s in {m− 1,m} ends with an m− 1. The others may
be interspersed in any order, contributing the factor

[
km+km+1−1

km−1

]
t

as we sum over
all possibilities. One can show that the choices of interspersing order for each m
may be made independently, and together they determine the sequence. �

Curiously, the symmetry Cn(q, t) = Cn(t, q), which is obvious from the defini-
tion, appears as quite a surprising property of formula (101) or (102).

The Garsia-Haglund theorem has two conjectured extensions that have been
verified computationally up to reasonably large values of n. The first conjecture I
will discuss is mine; the second is due to Haglund and Loehr [36]. Define “higher”
q, t-Catalan polynomials by the formula

C(m)
n (q, t) = 〈en,∇men〉.

They are polynomials with positive coefficients by Theorem 3.5.16, and the following
specializations can be derived similarly to the case m = 1:

C(m)
n (q, 1) =

∑
λ⊆mδn

qm(n
2)−|λ|;

C(m)
n (q, q−1) = q−m(n

2) 1
[mn+ 1]q

[
(m+ 1)n

n

]
q

.

From the discussion in §5.4.4 we see that C(m)
n (q, t) has a natural geometric inter-

pretation as the Hilbert series of the space of sections of the line bunle O(m) on
the zero-fiber Zn of the Hilbert scheme. More concretely, this space of sections is
Jm/(x,y)Jm, where J is the ideal generated by all antisymmetric polynomials in
C[x,y], as in Proposition 6.1.5.

Conjecture 7.1.3. Denote by b(m)(λ) the number of cells x ∈ λ whose arm
and leg satisfy l(x) ≤ a(x) ≤ l(x) +m. For the higher q, t-Catalan polynomials we
have the formula

C(m)
n (q, t) =

∑
λ⊆mδn

qm(n
2)−|λ|tb

(m)(λ).
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The other conjecture I want to discuss is Haglund and Loehr’s conjecture for
the Hilbert series of the whole diagonal coinvariant ring, or by Theorem 4.2.5, for
the polynomial

Dn(q, t) =
def

〈en
1 ,∇en〉.

Recall that Dn(q, 1) enumerates parking functions by weight. Haglund and Loehr
define an analog for parking functions of the statistic b(λ) in Theorem 7.1.1.

We have seen that a parking function can be represented by a standard tableau
on the skew shape (λ + (1n))/λ, where λ ⊆ δn. Here is example (15) again to
illustrate this.

5
3
2

6
4
1

Call the k-th diagonal the set of cells (i, j) with i+ j = k. Now let f be a parking
function, T the corresponding tableau, λ ⊆ δn the corresponding shape, and define
b(f) to be the number of pairs of cells x, y ∈ (λ+ (1n))/λ such that the label on x
is less than the label on y, and either:

(i) x and y are on the same diagonal and y is in a higher row than x, or
(ii) x and y are on consecutive diagonals k and k+ 1, respectively, and y is in

a lower row than x.
In the example above we have b(f) = 3, for the pairs {1, 3}, {3, 4} and {4, 5}. For
any given λ the maximum value of b(f) is b(λ), attained by the unique tableau T
formed by labelling the cells in increasing order of diagonals, and from lowest row
to highest within each diagonal.

Conjecture 7.1.4 ([36]). The Hilbert series of the diagonal coinvariant ring
is given by the sum

Dn(q, t) =
∑

f

qw(f)tb(f)

over parking functions f on {1, . . . , n}, with weight w(f) =
(
n
2

) − |λ| and b(f) as
defined above.

7.2. Extensions to other groups. It it natural to ask which of the results
about the Hilbert scheme, diagonal coinvariants, and n! conjecture might hold and
in what form with a more general finite group G in the role of Sn.

The first obvious possibility is to take for G a Coxeter group acting diagonally
on two copies h ⊕ h of its defining representation, or more generally a complex re-
flection group acting on h ⊕ h∗. In this setting only a limited generalization of the
n! conjecture seems to be possible, but it appears that the phenomena involving di-
agonal coinvariants generalize beautifully. Very recently, I. Gordon [34] has proved
a conjecture of mine along these lines.

A second possibility is to take for G the wreath product Γn = Γ � Sn, where Γ
is a finite subroup of SL2(C). The possible groups Γ are classified by Dynkin dia-
grams of type ADE, via the McKay correspondence [64]. Associated to each affine
ADE diagram and its fundamental weight at the affine node are quiver varieties
of Nakajima [66], which provide crepant resolutions of C2n/Γn, with the Hilbert
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scheme as the special case when Γ is trivial. In this setting there appears to be a
good generalization of the n! conjecture.

Most interesting is the intersection of the above two settings, when Γ = Z/rZ
is cyclic, so G = Γ � Sn is the complex reflection group G(r, 1, n) with its doubled
reflection representation h ⊕ h∗. Here as for Sn we have the T2 action, with fixed
points indexed by r-tuples of partitions. Conjecturally we expect analogs of the
bundle P on the Hilbert scheme, with the graded characters of its fibers given by
new wreath Macdonald polynomials.

Let me now explain some of these developments in more detail.
7.2.1. Principal nilpotent pairs. The commuting variety of a semisimple Lie

algebra g is the set
C(g) = {(X,Y ) ∈ g : [X,Y ] = 0}.

It is not known whether the equations [X,Y ] = 0 generate the ideal of the com-
muting variety, so in principle we should distinguish the possibly non-reduced com-
muting scheme defined by these equations. It is known that C(g) is irreducible, of
dimension dim g+rk g. For gln this is an old theorem of Motzkin and Taussky [65];
it was extended to all g by Richardson [73]. Equivalently, the commuting regular
semisimple pairs are dense in C(g).

One proves easily that the dimension of the Zariski tangent space to the com-
muting scheme at (X,Y ) is equal to dim g + dim z(X,Y ), where z(X,Y ) is their
common centralizer. Set

Creg(g) = {(X,Y ) ∈ C(g) : dim z = rk g},
the nonsingular locus of the commuting scheme, which at least on this locus clearly
coincides with the commuting variety. A point of C(gln) is just a pair of commuting
n × n matrices X , Y , and they make Cn into a C[x, y]-module. Neubauer and
Saltman [69] showed that (X,Y ) ∈ Creg(gln) if and only if Cn considered as a
C[x, y]-module is locally cyclic or cocylic at every point (x, y) ∈ C2. Their theorem
implies that for every (X,Y ) ∈ Creg(gln), the ideal of relations I = {f(x, y) ∈
C[x, y] : f(X,Y ) = 0} has dimC C[x, y]/I = n, yielding a morphism

(103) Creg(gln) → Hn

of Creg(gln) onto the Hilbert scheme.
The points of Creg(gln) lying over a T2-fixed point in Hn are exactly the prin-

cipal nilpotent pairs, as defined more generally for any g by Ginzburg.

Definition 7.2.1 ([33]). A principal nilpotent pair is an element (e1, e2) ∈
Creg(g) such that the orbit Ad(G)(e1, e2) is a fixed point for the action of T2 on the
set of such orbits.

Here the T2 action is the obvious one on the two components of (X,Y ) ∈ C(g).
The principal nilpotent pairs up to Ad(G) conjugacy have been classified by

Elashvili and Panyushev [16]. For gln, two pairs dual to each other lie over each
fixed point Iµ in the Hilbert scheme (or one self-dual pair if µ is rectangular). For
other types they are much more rare, and the elements e1, e2 can belong only to
very special nilpotent orbits.

Now let h be a Cartan subalgebra of g and W the Weyl group. To each principal
nilpotent pair e (apart from an exception in type E7) Ginzburg associates a W -
antisymmetric polynomial ∆e ∈ C[h ⊕ h] generalizing our polynomial ∆µ in (77),
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which is the gln case. Letting Je ⊆ C[h⊕ h] be the ideal of polynomials f such that
f(∂)∆e = 0, the analog of our ring Rµ would appear naively to be

Re =
def

C[h ⊕ h]/Je.

It would be tempting to conjecture that dimRe = |W | and Re affords the regular
representation of W , but that is false for g = sp6.

There seem to be two ways to fix this trouble. The first has been proposed by
Kumar and Thomsen [54], who would replace the ring Re by the coordinate ring De

of the scheme-theoretic intersection of h⊕h with the closureOe, whereOe is the orbit
of e under a group Ge which is Ad(G) enlarged by certain outer automorphisms
of g. By definition their ring De is a again a quotient of C[h ⊕ h] by a doubly
homogeneous W -invariant ideal, and they conjecture that De is Gorenstein and
affords the regular representation of W . Unfortunately, it appears their conjecture
cannot be true as stated since the properties of De would imply that Re = De.
However, I think a small modification may work.

Conjecture 7.2.2. Let Õe be the normalization of the orbit closure Oe defined
by Kumar and Thomsen, when it is irreducible, or a suitable seminormalization
when it is not. Then the coordinate ring D̃e of the scheme-theoretric fiber product
of Õe and h⊕h over C(g) is Gorenstein, has dimension |W |, and affords the regular
representation of |W |.

Observe that the original ring De is a subring of D̃e, the image of the canonical
homomorphism C[h ⊕ h] → D̃e. It seems plausible to expect that De = Re, so De

should in fact be Gorenstein, but its dimension will be too small in general. In
the case of gln, when Re = Rµ has the full dimension n!, the normalization step is
unnecessary, and the Kumar-Thomsen conjecture should be correct in its original
form. Even for gln it is open.

There is another way to enlarge Re to what should turn out to be the same
ring D̃e as in Conjecture 7.2.2. Restriction of functions defines a homomorphism of
coordinate rings

C[C(g)] → C[h ⊕ h],

and by an important theorem of Wallach [84] and Joseph [46], it induces an iso-
morphism of invariants

C[C(g)]G ∼= C[h ⊕ h]W .

Thus we get a ring homorphism C[h⊕ h]W → C[C(g)] and a G-invariant morphism
of algebraic varieties C(g) → (h ⊕ h)/W . Now define the isospectral commuting
variety X(g) to be the normalized, reduced fiber product

(104)

X(g) −−−−→ h ⊕ h⏐⏐� ⏐⏐�
C(g) −−−−→ (h ⊕ h)/W.

The Weyl groupW acts on X(g), and the projection X(g) → C(g) is finite of degree
|W | with W acting by the regular representation on its generic fibers.

Conjecture 7.2.3. The isospectral commuting variety X(g) is Cohen-
Macaulay and Gorenstein. In particular the coordinate ring of its fiber over each
point of Creg(g) is a Gorenstein ring on which W acts by the regular representation.
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Note that the fiber ring over a point (X,Y ) ∈ C(g) depends only on its Ad(G)
orbit. The most interesting fibers are those over principal nilpotent pairs e, where
the coordinate ring D̂e of the fiber is doubly graded. Assuming the conjecture holds,
the naive ring Re is the image of the canonical map C[h ⊕ h] → D̂e, and it seems
reasonable to expect that D̂e is isomorphic to the ring D̃e in Conjecture 7.2.2.

For the case of gln, Conjecture 7.2.3 in its full strength is open. Over the regular
locus Creg, however, it is true—this is equivalent to Theorem 5.2.1. The conjecture
implies the famous conjecture generally attributed to Hochster that C(gln) is Cohen-
Macaulay. In the gln case, I expect that the reduced fiber product in (104) is already
normal. For other types it is not.

7.2.2. Diagonal coinvariants and Gordon’s theorem. Let W be a Coxeter group
and h its (complexified) defining representation. Then h is self-dual and it is best to
identify the diagonal representation with the W -module h⊕h∗, which has a natural
symplectic structure. For W = Sn, we have seen that the coinvariant ring

CW = C[h ⊕ h∗]/(C[h ⊕ h∗]W+ )

has dimension (n+ 1)n−1. It is natural for many reasons to predict that the analo-
gous dimension formula in general should be (h+1)n, where h is the Coxeter number
of W and n = dim h is the rank, but this turns out not to be quite right. For W of
type B4, for example, the formula gives 94, but the actual dimension is 94 + 1. In
[37] I conjectured that after passing to a suitable quotient of the coinvariant ring,
one should have the following result, which has now been proven by Gordon.

Theorem 7.2.4 (Gordon [34]). There is a canonically defined doubly graded
quotient ring RW of the coinvariant ring CW with the following properties.

(i) dimRW = (h+ 1)n, where h is the Coxeter number and n is the rank;
(ii) The Hilbert series of RW satisfies HRW (t−1, t) = t−hn/2[h+ 1]nt ;
(iii) The image of C[h] in RW is the classical coinvariant ring;
(iv) If W is a Weyl group, then ε⊗ RW is isomorphic as a W -module to the

permutation representation on Q/(h+ 1)Q, where Q is the root lattice.

Let us remark that (ii) obviously implies (i). In fact (ii) also implies (iii),
because the image of C[h] is in any event a quotient of the classical coinvariant ring.
If it were a proper quotient, then its socle would be killed and there would be no
thn/2 term in HRW (t−1, t).

Note that HRW (t−1, t) is the Hilbert series of RW in the grading that assigns
degree 1 to the coordinates on h and −1 to those on h∗, which is the natural
grading from the symplectic point of view. In fact Gordon fully determines the
graded character of RW in this grading, which implies both (ii) and (iv). It seems
to be difficult to understand the second grading using Gordon’s approach. It also
seems to be difficult to describe the ideal of RW in CW . In particular, for W = Sn,
Gordon’s theorem only implies that (n+ 1)n−1 is a lower bound for dimRn.

Gordon proves Theorem 7.2.4 using representation theory of Cherednik alge-
bras, more specifically their rational degenerations Hc which have been studied by
Dunkl [15], Opdam and Rouqier [unpublished], Berest, Etingof and Ginzburg [5, 6],
and Guay [unpublished] among others. To see how Cherednik algebras enter the
picture, we first desribe the coinvariant ring in a different way.

Consider the skew group algebra C[h ⊕ h∗]W , and let e = 1
|W |

∑
w∈W w be the

invariant idempotent. A C[h ⊕ h∗]W -module is the same thing as a W -equivariant
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C[h ⊕ h∗]-module, and the subalgebra eC[h ⊕ h∗]We is the ring of invariants C[h ⊕
h∗]W . Regard C as a trivial C[h⊕h∗]W -module annihilated by the ideal C[h⊕h∗]W+ .
Then the coinvariant ring can be described as

CW = C[h ⊕ h∗]We⊗eC[h⊕h∗]We C.

Alternatively, let eε = 1
|W |

∑
w∈W ε(w)w be the sign idempotent. Then we also

have

(105) ε⊗ CW = C[h ⊕ h∗]Weε ⊗eεC[h⊕h∗]Weε
C.

The rational Cherednik algebra Hc (depending on a parameter c) is the algebra
of operators on C[h] generated by

(i) multiplication operators by coordinates xi on h;
(ii) Dunkl-differential operators

yi = ∂/∂xi − c
∑
s∈S

〈αs, x
∗
i 〉

1 − s

αs
,

where {x∗i } is a dual basis of coordinates on h∗, S is the set of reflections
in W , and αs is a linear form vanishing on the fixed hyperplane of s;

(iii) the group W .

The operators yi commute. Thus Hc contains a copy of C[h] generated by the xi’s,
a copy of C[h∗] generated by the yi’s, and a copy of CW . It has a Poincaré-Birkhoff-
Witt decomposition

(106) Hc
∼= C[h] ⊗ CW ⊗ C[h∗]

and commutation relations

[yi, xj ] = δij − c
∑
s∈S

〈αs, x
∗
i 〉〈xi, α

∨
s 〉s,

where α∨
s is the coroot vector such that sv = v − 〈αs, v〉α∨

s . Under the filtration of
Hc assigning degree zero to CW and degree 1 to xi, yi, we have

(107) grHc
∼= C[h ⊕ h∗]W.

The decomposition (106) implies that for each irreducible W -module τ there is
a standard “Verma” module Mc(τ) isomorphic to C[h]⊗ τ as a C[h]W module and
annihilated by C[h∗]+. It has a unique irreducible quotient Lc(τ). Put hk = ∧kh,
which is always an irreducible W -module.

Gordon proves that for the special value c = (1 + h)/h of the parameter, the
following things happen. First, there is a decomposition

Lc(h0) =
∑

k

(−1)kMc(hk)

in the Grothendieck group of Hc-modules. Second, the degree operator d =
1
2

∑
i(xiyi + yixi) induces a grading on these modules, such that deg(xi) = 1,

deg(yi) = −1, and Mc(hk) has the same grading as C[h] ⊗ hk with the generators
in degree −hn/2 + k(h+ 1). It follows that the Hilbert series of Lc(h0) is equal to

t−hn/2[h+ 1]nt ,
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as we want to prove for RW . The same computation also determines the character
of Lc(h0) as a graded W -module. Finally, the subalgebra eεHceε has a unique 1-
dimensional unital module C (with degree zero), and Lc(h0) is the induced module

Lc(h0) ∼= Hceε ⊗eεHceε C.

Passing to the associated graded using (107), and comparing with (105), we get a
canonical surjection

CW → ε⊗ grLc(h0)
of C[h ⊕ h∗]W -modules. Hence RW =

def
ε⊗ grLc(h0) has the desired properties.

Shortly before Gordon’s work appeared I had conjectured another way to pick
out the correct quotient of CW , as follows.

Conjecture 7.2.5. Let R̃W be the quotient of CW by the unique largest ideal
J ⊆ CW such that J ∩ (CW )ε = 0. Then R̃W has the properties in Theorem 7.2.4.

Conjecture 7.2.5 is true for W = Sn, that is, we have Rε
n = socRn. This follows

from [40, Theorem 4.1]. I can prove it for W of type Bn, and have verified it by
computer for type D4.

Proposition 7.2.6. If Conjecture 7.2.5 holds for W , then the ring R̃W in the
conjecture is the same as Gordon’s ring RW .

Proof. Suppose Conjecture 7.2.5 holds. Then dim(CW )ε = dim(R̃W )ε =
dim(RW )ε. This implies that the defining ideal of Gordon’s ring RW is contained in
the ideal J in the conjecture. But dim R̃W = dimRW = (h+1)n, so R̃W = RW . �

7.2.3. Quiver varieties. In this section and the next, the role of Sn will be
played by the wreath product Γn = Γ � Sn, where Γ is a finite subgroup of SL2(C).
Then Γn acts on C2n and is normalized by Sn; the wreath product Γn is their
semidirect product. The presentation here is a synopsis of a preprint [41] that I
hope to make available on the servers soon.

The quotient singularities C2n/Γn have crepant resolutions by quiver varieties,
generalizing the Hilbert scheme in the case Γ = 1. Our first goal will be to formulate
a conjectured analog of the Cohen-Macaulay property of the isospectral Hilbert
scheme, Theorem 5.2.1.

The possible groups Γ are classified by the McKay correspondence. Let
χ0, χ1, . . . , χr−1 be a list of the irreducible characters of Γ, with χ0 = 1, and let ζ
be the character of the defining representation C2. The McKay graph is the graph
on vertex set I = {0, 1, . . . , r − 1} with an edge {i, j} if 〈χi ⊗ ζ, χj〉 �= 0. Since ζ is
self-dual, this relation is symmetric in i and j. The McKay graphs turn out to be
the affine Dynkin diagrams of type Â, D̂ and Ê, as follows.

• Type Âr−1: Γ = Z/rZ is cyclic.
• Type D̂r+2: Γ is the binary dihedral group, the preimage of the dihedral

group D2r by the double cover SU 2(C) → SO3(R).
• Type Ê6, Ê7, Ê8: the binary tetrahedral, octahedral and icosahedral

groups.
Fix Γ and its associated affine Dynkin diagram. Let P be the weight lattice,

P+ the dominant weights, Q the root lattice, Q+ the cone spanned by the simple
roots α0, . . . , αr−1, and δ the smallest positive imaginary root. The correspond-
ing root lattice Q0 of finite type can be identified with Q/Zδ. To each character
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χ =
∑

i miχi corresponds the element
∑

i miαi ∈ Q+, and a key property of the
McKay correspondence is that δ corresponds to the character 1Γ

1 of the regular
representation.

Denote by MΓ
θ (λ, µ) the quiver variety associated by Nakajima [66] to the

McKay graph I of Γ, elements λ ∈ P+ and µ ∈ Q+, and a stability condition given
by a linear function θ : Q→ R. The quiver varieties MΓ

θ (λ, µ) have many remarkable
properties. For generic θ they are nonsingular and have a symplectic (and even a
hyper-Kähler) structure. Nakajima has shown that for each λ the top cohomology
groups

⊕
µH

top(MΓ
θ (λ, µ),C) carry the irreducible highest-weight representation

L(λ) of the Kac-Moody algebra attached to I, with MΓ
θ (λ, µ) contributing the

weight space L(λ)λ−µ.
We will only be concerned with MΓ

θ (λ, µ) for λ = λ0, the fundamental weight
at the affine node of I, and θ(αi) = 1 for all i, the standard stability condition. The
highest-weight module L(λ0) is the basic representation. The stabilizer of λ0 in the
affine Weyl group W is the finite Weyl group W0, so every element of Q0 has a
unique representative ν0 ∈ Q such that λ0 − ν0 is W -conjugate to λ0. The weight
spaces L(λ0)λ0−ν0 are one-dimensional. We write every ν ∈ Q uniquely as

ν = ν0 + nδ, n ∈ Z,

with ν0 the distinguished representative of its coset. The weight space L(λ0)λ0−ν is
non-zero, and the quiver variety MΓ

1(λ0, ν) is non-empty, if and only if n ≥ 0. For
such ν set

YΓ,ν = MΓ
1(λ0, ν).

Proposition 7.2.7. With ν = ν0 + nδ as above, the quiver variety YΓ,ν is a
crepant resolution of C2n/Γn.

One way to prove this is to use Nakajima’s reflection functors [68] to identify
YΓ,ν with MΓ

θ (λ0, nδ) for a different stability condition θ. Now MΓ
θ (λ0, nδ) is pro-

jective and birational over the affine quiver variety MΓ
0 (λ0, nδ) and it is not hard

to show that MΓ
0 (λ0, nδ) ∼= C2n/Γn.

There is another, more illuminating, way to understand Proposition 7.2.7. The
quiver varities YΓ,ν are exactly the irreducible components of the fixed loci HΓ

m in
the Hilbert schemes Hm, for all possible m. This fact, which is well-known to the
experts, is a consequence of the McKay correspondence and results of Kronheimer
and Nakajima [53], Nakajima [67], and Crawley-Boevey [14]. It develops that these
fixed loci also have the following geometrically explicit description.

Proposition 7.2.8. For each distinguished coset representative ν0 as above,
there is a unique Γ-invariant ideal Iν0 ⊆ R = C[x, y] such that char(R/Iν0) = χν0 ,
the character of Γ corresponding to ν0. Set ν = ν0 +nδ and m = χν0(1)+n|Γ|. The
quiver variety YΓ,ν is the closure of the open set in HΓ

m parametrizing subschemes
S ⊆ C2 of the form V (Iν0 )∪ T , where T is a union of n disjoint non-zero Γ-orbits.

From the proposition we see that the image of YΓ,ν under the Chow morphism
consists of algebraic cycles of the form χν0(1) · 0 + C, where C =

∑n
i=1

∑
g∈Γ gPi.

But C2n/Γn can be identified with the set of cycles C, and subtracting the terms
χν0(1) · 0 gives an isomorphism of the image of YΓ,ν onto C2n/Γn.

Definition 7.2.9. An ideal Iν0 as in Proposition 7.2.8—i.e., a Γ-invariant ideal
in C[x, y] with no Γ-invariant deformations—is a Γ-core.
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The motivation for this definition is the remarkable fact that for Γ = Z/rZ, the
Γ-cores are exactly the monomial ideals Iµ such that the partition µ is an r-core in
the classical sense (see §7.2.4, below).

In terms of the picture given by Proposition 7.2.8 we distinguish an open set
U ⊆ YΓ,ν consisting of points with at most one degeneracy: either one orbit collapses
to zero or two orbits coincide. For a given n, the quiver varieties YΓ,ν are all
birational to C2n/Γn and hence to each other.

Proposition 7.2.10. For fixed n and ν = ν0 + nδ, ν′ = ν′0 + nδ, the birational
map YΓ,ν ∼ YΓν′ is given by an isomorphism of the open set U ⊆ YΓ,ν described
above with the corresonding open set U ′ ⊆ YΓ,ν′ . Moreover these open sets meet
every divisor.

The proposition identifies all the Picard groups Pic(YΓ,ν) for a given n with the
Picard group Pic(UΓ,n) of their common open subvariety. We can regard the quiver
varieties YΓ,ν as different projective completions of UΓ,n over C2n/Sn, distinguished
by different ample cones in Pic(UΓ,n).

Each quiver variety YΓ,ν with ν = ν0 +nδ carries a tautological bundle M whose
fibers are C[x, y]Γ-modules with character n ·1Γ

1 (the character corresponding to nδ)
and a distinguished Γ-invariant section. To define M , we once again identify YΓ,ν

with MΓ
θ (λ0, nδ) for a different stability condition θ; thenM is the usual tautological

bundle of quiver data.
We are now almost ready to formulate our conjectured extension of Theo-

rem 5.2.1. It would be absurd to conjecture that YΓ,ν is isomorphic to the Hilbert
scheme C2n//Γn. Not only do we get different crepant resolutions as ν0 varies, but
in general C2n//Γn is not a crepant resolution (this already happens for Γ = Z/2Z

and n = 2). Our conjecture instead will be that YΓ,ν is a moduli space of stable
constellations.

Definition 7.2.11. Let G be a finite subgroup of GL(V ). A G-constellation
is a G-equivariant C[V ] module that affords the regular representation of V . Let
θ : X (G) → R be a linear function on characters of G with θ(1G

1 ) = 0. A constel-
lation M is θ-stable if for every proper G-invariant C[V ]-submodule N ⊆ M we
have θ(N) < 0. A family of G-constellations on a scheme Y is a locally free sheaf
P of G-equivarient OY ⊗ C[V ]-modules whose fibers as a vector bundle over Y are
G-constellations.

When θ(1) = 1 and θ(χ) < 0 for all χ �= 1, a constellation is stable if and
only if it is a quotient of C[V ], in which case it is called a G-cluster. By standard
geometric invariant theory techniques one constructs for generic θ a scheme Mθ

projective over V/G that parametrizes θ-stable G-constellations, in the technical
sense that it represents the relevant functor of families. The schemeMθ is the moduli
scheme of θ-stable constellations. The G-Hilbert scheme V //G is an irreducible
component of the moduli scheme of clusters. The definition and construction go
back to Kronheimer [52], although the terminology of constellations and clusters
seems to be due to Reid.

Note that if P is a family of Γn-constellations, normalized so that the line
bundle of invariants PΓn is trivial, then its subbundle of Γn−1-invariants PΓn−1 is
a family of C[x, y]Γ-modules with a distinguished Γ-invariant section and its fibers
have character n · 1Γ

1 .
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Proposition 7.2.12. On the open set UΓ,n ⊆ YΓ,ν there is a unique family of
Γn-constellations P such that PΓn−1 coincides with the tautological bundle M .

We remark that although the open set UΓ,n is common to every YΓ,ν , the
restriction of the tautological bundle M to UΓ,n depends on which Weyl chamber
in Q0 contains ν0).

Conjecture 7.2.13. On every YΓ,ν there is a family of Γn-constellations P ,
unique by Proposition 7.2.12, such that PΓn−1 coincides with M . Moreover, P is a
family of θ-stable constellations for some θ.

The proof of the Bridgeland-King-Reid theorem in [10] goes through almost
verbatim with V //G replaced by the component birational to V/G in a moduli space
of stable G-constellations. Hence Conjecture 7.2.13 has the following consequence,
which should be important for the study of the quiver varieties YΓ,ν .

Corollary 7.2.14. Assume Conjecture 7.2.13 holds. Then the functor

Φ = RΓ(P ⊗−) : D(YΓ,ν) → DΓn(C2n)

is an equivalence of categories.

Conjecture 7.2.13 is true for ν0 sufficiently far from the walls of its Weyl cham-
ber. In this case YΓ,ν coincides with the Hilbert scheme of points Hilbn(XΓ) on the
unique minimal resolution XΓ of C2/Γ, and the conjecture can be deduced from
Corollary 5.2.2 applied to Xn

Γ/Sn.
I have checked Conjecture 7.2.13 by computer for Γ = Z/2Z and n = 3. This

case implies that Conjecture 7.2.3 holds locally at the points of X(sp6) lying over
principal nilpotent pairs in sp6, confirming our improved analog of the n! conjecture.
Recall that among these pairs are couterexamples to the more naive analog of the
n! conjecture.

Further evidence for Conjecture 7.2.13 lies in phenomena it predicts for Γ =
Z/rZ, as I will now explain.

7.2.4. Cores, wreath Macdonald polynomials, and a new positivity conjecture.
For the rest of the discussion, fix r and Γ = Z/rZ, the group of 2 × 2 matrices[

ωk 0
0 ω−k

]
, ω = e2πi/r.

In this case, the representation of Γn on C2n splits into two invariant subspaces
h ⊕ h∗, with Γn acting as the complex reflection group G(r, 1, n) on h.

The torus group T2 in (82) commutes with Γ and acts on YΓ,ν . By Proposi-
tion 7.2.8, each Γ-core Iν0 must be a monomial ideal. Using this to identify ν0 with
a partition, the T2-fixed points of YΓ,ν are monomial ideals Iµ for suitable partitions
µ ⊇ ν0. To see which partitions are involved, we first need to recall the combina-
torial theory of r-cores and r-quotients (see James and Kerber [44] or Macdonald
[61]).

A ribbon in a partition λ is a connected skew subdiagram λ/ν containing no
2 × 2 rectangle. To each cell x ∈ λ corresponds a ribbon of size equal to the hook
length h(x), running from the end of the leg of x to the end of its arm.

Definition 7.2.15. The partition λ is an r-core if it contains no ribbon of size
r. The r-core Corer(λ) of any λ is the partition that remains after one removes
as many r-ribbons in succession as possible (the result is independent of choices
made).
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Here is an example for r = 4, with the numbered cells showing one possible
sequence of 4-ribbon removals. The blank cells form the 4-core.

2 2 2
4 4 2 1 1 1

4 4 3 3 1
3 3

Define the content of a cell x = (i, j) ∈ λ to be c(x) = i − j. Let y, z be
the cells at the end of the arm and leg of x, and define the row-residue ρ(x) and
column-residue γ(x) to be the residues of the contents c(y), c(z) (mod r). Observe
that h(x) ≡ 0 (mod r) if and only if γ(x) ≡ ρ(x) + 1. For each residue class i, the
cells x ∈ λ with γ(x) ≡ i and ρ(x) ≡ i− 1 form an “exploded” copy of the diagram
of a partition λi, with rows and columns not necessarily adjacent, and with a shifted
origin.

Definition 7.2.16. The r-quotient of a partition λ is the sequence of partitions

Quotr(λ) =
def

(λ0, . . . , λr−1)

constructed as above.

Here is an example with r = 3. In the first picture the ends of rows and
columns are labelled with their contents (mod 3). In the second, the cells forming
the exploded diagrams are labelled by their γ(x) value.

2
0 1 2 0 1 2

0
1
2 0

0
1 1

2 2 2
1 1

Quot3(λ) =
(

, ,

)

Proposition 7.2.17. For any partition λ, if Corer(λ) = ν is its r-core and
Quotr(λ) = (λ0, . . . , λr−1) is its r-quotient, then

|λ| = |ν| + r
∑

i

|λi|.

For any fixed r-core ν0, the map λ �→ Quotr(λ) is a bijection from {λ : Corer(λ) =
ν0} onto the set of all r-tuples of partitions.

Now we can describe the fixed points of YΓ,ν .

Proposition 7.2.18. For Γ = Z/rZ, the Γ-cores are exactly the monomial
ideals Iν0 , where the partition ν0 is an r-core, and the T2-fixed points of YΓ,ν0+nδ

are the monomial ideals Iµ where |µ| = |ν0|+ nr and Corer(µ) = ν0. In particular,
they are in natural bijective correspondence with r-tuples of partitions (µ0, . . . , µr−1)
of total size

∑
i |µi| = n.

We have abused notation by writing ν0 for both an r-core and a character of Γ.
Explicitly, the character corresponding to ν0 is

∑
i miχi, where mi is the number

of cells x ∈ ν0 with content c(x) ≡ i (mod r), and χi(
[

ωk 0
0 ω−k

]
) = ωik.

Recall the standard indexing of irreducible characters of Γn by r-tuples
(λ0, . . . , λr−1) of partitions with

∑
i |λi| = n. If V λ is an irreducible Sn-module

and Wi = C considered as a Γ-module with character χi, then V λ ⊗Wi becomes a
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Γn-module via natural homomorphisms Γn → Sn and Γn → Γ. Setting ki = |λi|,
the induced module (

r−1⊗
i=0

(V λi ⊗Wi)

)
↑Γn

Γk0×···×Γkr−1

is irreducible, and we write χ(λ0,...,λr−1) for its character.
Assuming Conjecture 7.2.13 holds, the fiber of the family of constellations P

over a fixed point Iµ in YΓ,ν is a doubly-graded Γn-equivariant C[x,y]-module af-
fording the regular representation of Γn, and we should expect its character to be
an analog of the Macdonald polynomial H̃µ(z; q, t). We could define the Frobenius
series of a graded Γn-module as a symmetric function in r sets of variables, but it
is simpler to work in the space Xq,t(Γn) of virtual characters with coefficients in
Q(q, t). So, for a doubly graded Γn-module A =

⊕
i,j Ai,j , set

FA(q, t) =
∑
i,j

tiqj charAi,j .

Conjecture 7.2.13 and some plausible extra assumptions about the geometry of YΓ,ν

lead to the following conjecture/definition. The first part of the conjecture is an ana-
log for Γn characters of the definition of Macdonald polynomials (Definition 3.5.2)
and makes no explicit reference to quiver varieties.

Conjecture 7.2.19. Fix r, Γ = Z/rZ and an r-core ν0. Let h = Cn be the
defining representation of the complex reflection group G(r, 1, n) ∼= Γn.

Existence: there exists a basis {Hµ(q, t)} of Xq,t(Γn) indexed by partitions µ of
size |µ| = |ν0| + nr with Corer(µ) = ν0, characterized by the following properties.

(i) Hµ(q, t)⊗∑i(−q)i char(∧ih) ∈ Q(q, t){χQuotr(λ) : λ ≥ µ, Corer(λ) = ν0};
(ii) Hµ(q, t) ⊗∑i(−t)−i char(∧ih) ∈ Q(q, t){χQuotr(λ) : λ ≤ µ, Corer(λ) =

ν0};
(iii) 〈Hµ(q, t), 1Γn〉 = 1.
Terminology: The characters Hµ(q, t) (assuming they exist) are wreath Mac-

donald polynomials.
Positivity: The wreath Macdonald polynomials have coefficients in N[q, t, q−1, t−1].
Geometry: The wreath Macdonald polynomials are the graded characters of the

fibers P (Iµ) of the family of Γn-constellations in Conjecture 7.2.13 on YΓ,ν0+nδ,

Hµ(q, t) = FP (Iµ)(q, t).

I will close with a few remarks about this conjecture. Like Conjecture 7.2.13
(and for the same reasons), it is true for ν0 sufficiently far from the walls of its
Weyl chamber. The wreath Macdonald polynomials for such ν0 depend only on
the chamber and can be written explicitly in terms of the classical Macdonald
polynomials H̃µ(z; q, t). Note that although there are infinitely many r-cores ν0,
they induce for each n only finitely many different orderings on the characters
χQuotr(λ), and the wreath Macdonald polynomials depend only on the ordering.
Similarly, there are only finitely many non-isomorphic quiver varieties YΓ,ν0+nδ for
each Γ and n.

The existence and positivity assertions in the conjecture are easy to check by
computer, and I have done so for a fairly large number of cases. The geometry
assertion is much harder to verify. The basic trouble is that there is a description
analogous to the n! conjecture only for the image of C[x,y] in P (Iµ), which is nearly
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always a proper subalgebra. However, the existence and positivity can themselves
be regarded as evidence for the geometry, especially because the geometry predicts
other properties of the characters Hµ(q, t) that are confirmed by the computations.

Let q−k be the lowest power of q that occurs in Hµ(q, t). We can regard
Hµ(t) =

def
qkHµ(q, t)|q=0 as wreath Hall-Littlewood polynomials. They are char-

acterized (for fixed ν0) by suitable orthogonality and triangularity properties. The
generalized Green functions for G(r, 1, n) defined by Shoji [79] satisfy the same or-
thogonality as our Hµ(t) but a different kind of triangularity. For us, the ordering of
characters depends on ν0 via the r-quotient, whereas Shoji uses an ordering based
on generalized Lusztig symbols. Shoji’s ordering is incompatible with ours in gen-
eral, resulting in different polynomials, although some of them are (accidentally?)
the same for small r and n.

Finally, when r = 2, Γn is the Weyl group of type Bn or Cn. It turns out
that ν0 = 0, corresponding to the empty partition, is type Cn, while ν0 = α0,
corresponding to the partition (1), is type Bn. The reason for this is that there are
canonical Ad(G)-invariant morphisms

(108)
Creg(sp2n) → YΓ,0+nδ

Creg(so2n+1) → YΓ,α0+nδ.

The preimages of T2-fixed points in YΓ,ν are the principal nilpotent pairs in Creg(g).
In contrast to (103), the above morphisms are not surjective, and YΓ,ν has many
T2-fixed points that are not images of principal nilpotent pairs. One can show that
in this situation, the restriction of Conjecture 7.2.13 to the image of the morphism
in (108) is equivalent to Conjecture 7.2.3, restricted to the part of X(g) lying above
Creg(g).
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