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1. Introduction

Let X be a family of martingales on a probability space (Q, sl, P) and let (D
be a nonnegative function on [0, oo]. The general question underlying both [2]
and the present work may be stated as follows: If U and V are operators on X4
with values in the set of nonnegative sl measurable functions on Q), under what
further conditions does

(1.1) ,q~~~POP(Vf > A) < cilufliplpOi'°f
imply E(F(Vf ) . cE(F(Uf ), f E X ? Here E denotes expectation, integration over
Q with respect toP, and the letter c denotes a positive real number, not necessarily
the same number from line to line. In most applications, the first inequality can
be proved easily for only one particular value of po, usually for po = 2,
although it is the second inequality that is really needed. Therefore, it is important
to know conditions under which the second follows from the first.

In [2], the function (D may be any nondecreasing function that satisfies a
mild growth condition. The above question is then answered by suitably restrict-
ing the martingale f. In this paper, (D is restricted to be convex, but no con-
ditions are placed on the martingale f.
We state our main results in Section 2. Here, we mention one special but

important application. Iff = (fl, f2, **) is a martingale, we write

n

f== dk, n>1
k= 1

(1.2) f sup Ifn I,n

1/2
S(f) = 21

The maximal function f* and the square function S (f) are closely linked.
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THEOREM 1.1. Suppose that (D is a convex function from [0, oo) into [0, co)
satisfying 1D(0) = 0 and the growth condition

(1.3) (D(2A) _ c4(D(), A > O;
set I(Doo ) = limA_ 0(Dq(A). Then

(1.4) cE(D(S(f)) . E(D(f*) < CED(S(f))

for all martingales f. The choice of c and C depends only on C(l 3), the growth
parameter of (.

This result is already known for convex powers 4>(A) = AP; see [1], for the
case where 1 < p < oo and [3] for p = 1. (Also, the inequality holds for
0 < p < 1 if f is restricted; see [2].) However, Theorem 1.1 gives new infor-
mation about the quadratic variation of right continuous martingales X =
{X (t), 0 < t _ 1}. Defining Sj to be the usual approximation to the quadratic
variation of X, we show that {Sj} converges in L1 if and only if the maximal
function of X is integrable (see Theorem 5.1).

Condition (1.3) is a necessary condition for (1.4) to hold for all martingales
f on a nonatomic probability space (see Remark 6.2).

In this paper, we use some of the methods developed in [2] together with
the decomposition of martingales introduced in [3]. However, this paper may
be read independently, or nearly independently, of [2] and [3]. One new tool
of special interest is Theorem 3.2, which may be stated as follows. Let z1, z2,...
be a sequence of nonnegative sl measurable functions, 1, 2,-- a monotone
sequence of sub-a-fields of X, and 4( a convex function as in Theorem 1.1.
Then

(1.5) E( EE(zk I ak)) (cED Zk

and the choice of c depends only on c(1 3)*

2. Main results

Let (Q2, X, P) be a probability space and let dc0, s1, * be a nondecreasing
sequence of sub-a-fields of a?. Let X be the set of all martingalesf = (fi, f2, )
relative to .I1, d2, - We consider operators T defined on X with values in
the set of nonnegative a? measurable functions. Examples of such operators are

f SUP. ~If"I,
I=1<nUpI

'o 1/2
(2.1) S(f) = E d2]

sf 1/2

s(f ) = LE E(dk |?k-1
k= 1
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where d = (d1, d2, * is the difference sequence of f:
n

(2.2) ffl= Edk, n_ 1.
k=1

Other examples are discussed below.
An operator T is quasilinear if

(2.3) T(f + g) _ y(Tf + Tg)

for some real number y _ 1 and all f and g in A#. An operator T is symmetric
if T(-f ) = Tf and is local if Tf = 0 on the set {s (f ) = 0}, f E 4. For example,
the operators S, s, andf -.f* satisfy these conditions.
A stopping time r is a function from Q into {0, 1,--, oo} such that

{T _ n} E d,,, n _ 0. If p and v are stopping times, let Ufv denote the sequence
n

(2.4) E I(y < k _ v) dk, n > 1,

where I(A) is the indicator function of the set A. Iff is in X#, then Mfv, f started
at p and stopped at v, is also in .. Write fv for ofv; in particular, fn is the
martingale f stopped at n.

If T is an operator, let Tnf = Tf", 0 < n < oo,

T*f = s Tnf,
(2.5) T**f = T*f v Tf.

The operator T is measurable if Tnf is An measurable for n _ 1, f e M. For
example, Sn(f) = (En d 2)1/2 so that S =S- = S** and S is measurable.
We are now ready to state some of our main results. In the following theorem

A* = SUP1SI<n, An, where An = T(n-lf). Throughout the paper, if f =
(fl, f2, * * ) is any sequence of functions, then f* denotes the maximal function
off.
THEOREM 2.1. Let 0 < po < oo. Suppose that T is a local, quasilinear, sym-

metric, and measurable operator on M such that

(2.6) APOP(Tf > A) _ C|c*|fp°o
for all . > 0 and f in .. If(D is a convex function as in Theorem 1.1, then

(2.7) ED(T**f) < cE(D(f*)

for all f in M provided that

(2.8) E(D(A*) _ cE(D(f*), fE M,

(2.9) ED(Tf) _ cE4I(D dkI) f e M.

The choice of C(2.7) depends only on the parameters of the assumptions, that is,
on the quasilinearity constant y, po, C(1.3), C(2.6), C(2.8) and C(2.9).
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REMARK 2.1. Conditions (2.8) and (2.9) are necessary for (2.7). This follows
from A* < 2yT**f, from Tf _ T**f, fromf* < I -1 dkI, from (1.3), and from
the fact that (D is nondecreasing. To prove the first inequality, notice that

(2.10) An = T(n-lfn) = T(fn _ fnll) < y(Tfn + Tfn-1) < 2yT*f.
THEOREM 2.2. Let 0 < po < oo. Suppose that T is a local, quasilinear, sym-

metric, and measurable operator on X such that

(2.11) APOP(f* > A) _ CIIT*fIPPo
for all A > 0 and f in .A If (F is a convex function as in Theorem 1.1, then

(2.12) E(F(f*) . cEcD(T*f)

for all f in X provided that

(2.13) E(F(d*) . cEO(T*f), fE

(2.14) Tf . c E ldkl, fE.
k= 1

The choice of C(2.12) depends only on v, PO, C(1.3), C(2.11), C(2.13), and C(2.14)-
Since d* _ S(f) = k= Id,, the operator S satisfies (2.13) and (2.14) and

it is elementary to check that S satisfies all of the conditions of Theorems 2.1
and 2.2 with po = 2. Therefore, Theorem 1.1 follows from inequalities (2.7)
and (2.12). More generally, consider any operator M of matrix type:

_0 n \2- 1/2
(2.15) Mf = [ (lim suP k aj,k dk)_=1 n- oo k= 1

Here aj, k is an dfk- 1 measurable function and
00

(2.16) < , ajk C, k 1.
j=1

THEOREM 2.3. If M is an operator of matrix type and (F is a convex function
as in Theorem 1.1, then

(2.17) cE(F(M**f) . E((f"*) . CE(D(M*f)

for all f in f4. The choice of c and C depends only on C(1.3), C(2.16), and C(2.16)
This generalizes the first part of Theorem 6.1 in [2], which should be con-

sulted for further discussion and examples.
PROOF. We prove the left side first, and, indeed, a little more. Letting

_r n \2- 1/2

(2.18) M***f = E sup E aj,k dkl:51 n<00o k=1

we have that

(2.19) E(D(M***f) _ cE(D(f*).
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Only the right side of (2.16) is needed for (2.19). Let T = M***; then T is local,
sublinear (y = 1), symmetric, and measurable. Condition (2.9) holds; in fact,
the stronger condition (2.14) holds, since

X OD 2
(2.20) (Tf)2 < Iaj,k dk

j=1 k= I

_ E ( E aJk|d|4)(lkl |dkl) . d1J)
j=1 k=1 k=1 k=l

by the right side of (2.16). Therefore, (2.8) holds also, since An = T(-1f') <

cId,I < cf* by (2.14). Finally, using the fact that {k= aj,k dk, n _ 1} is a
martingale, we have that

00 n \2 Xo n \2
(2.21) II2 = E E sup

I

ajkdkdI <4E sup E aj,k dk
j=1 n k=l j=1 n k=l

= 4 E E Eaj2d <Cd2S(f)l - 2-
j=1 k=1

This implies (2.6) for po = 2, and (2.19) follows from Theorem 2.1.
Turning to the proof of the right side of (2.17), we note that M satisfies (2.14),

since Mf _ M***f. By the left side of (2.16),

(2.22) cIdnl _ (E Iaj,ndn)12 = M(fn _fn-1) < 2M*f
j=l

so that d* < cM*f and (2.13) is satisfied. Also,
X0 n 2

(2.23) IMnfII2 = E i ( aj,kdk)
j=1 k= 1

0 n

= Zi E Eaj k dk > C11Sn(f)II2 = c 2IfI,
j=1k=

so that

(2.24) 22P(f* > A) _ sup IfnII2 2cIIM*fII,
which is (2.11) with po = 2. The right side of (2.17) now follows from Theorem
2.2.
EXAMPLE 2.1. Here is an operator satisfying the conditions of Theorem 2.1,

but not all the conditions of Theorem 2.2:
_ 0 1/2

(2.25) f E+ [E(I dk| Ik 12
k = I

In fact, the conclusion of Theorem 2.2 need not hold. These statements are
proved in Section 6, where an application of this operator to the theory of
random walk is presented.
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3. Preliminary results

The next section contains the proofs ofTheorems 2.1 and 2.2. Here we develop
the necessary tools, some of which are interesting in their own right.
THEOREM 3.1. Let 0 < po < oc. Suppose that U and V are local, quasilinear,

symmetric, and measurable operators on M such that

(3.1) APOP(Vf > A) _ cIIU*fIIPP
for all A > 0 and f in M. Let eD be a convex function as in Theorem 1.1 and f a
martingale in M'. Suppose that w,, is an da?" 1 measurable function satisfying

(3.2) U(n- Ifn) < w.
and An = V(n-lfn), n > 1.

Then

(3.3) E(D(V*f) . cEcD(U*f) + cE(D(A*) + cE(D(w*)
with the choice of c depending only on Yu and yv, the quasilinearity constants of
U and V, respectively, and on C(1.3), C(3.1), and po.

Actually, much less than the convexity of D is needed for this theorem; the
precise condition is described below. We need the following lemma. Let
y = Yu V Yvv
LEMMA 3.1. Suppose that U and V satisfy

(3.4) Uf _ Vf, fe ,

in addition to the conditions of Theorem 3.1. Let oa > 1 and ,B > y6. Then

(3.5) P(V*f > A) . cP(cU*f > A) + cP(cA* > A) + cP(w* > A)

for all A > 0 satisfying
(3.6) P(V*f > A) . axP(V*f > P3A).
The choise of C(3.5) depends only on a, fl y, po, and C(3. 1)
The proof is similar to, but simpler than, the proof of Theorem 4.1 in [2].

We need two elementary facts. First, if T is a local, quasilinear, and symmetric
operator on M and T is a stopping time, let Tjf = Tjf on the set {T = n},
O _ n . oo. Then
(3.7) Y-1T,f _ Tf _< YTJf.
This is Lemma 2.1 in [2]. Second, if h is a nonnegative sa? measurable function,
A E X, and a and b are positive numbers such that

(3.8) J' h > 2aP(A) and f h2 < b2P(A),

then

(3.9) P(A) . (.P(h > a).
S a 5

See Chapter 5, Section 8.26 of Zygmund [5]. In our application,I A = I{V*f > Al.
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PROOF. We first examine the case in which U(' -f') is uniformly bounded.
(a) Let a _ 1 and ,B > y4. Suppose that (3.6) and

(3.10) U( - fn) < 2 n > 1,
are satisfied. Then

(3.11) P(V*f > A) < cP(cU*f > A) + cP(cA* > A).

Let 0 = I(/y-4 - 1). Either

(3.12) P(V*f > A) . 2oeP(V*f > PA, A* < 62)

or

(3.13) P(V*f > 2) . 2aP(A* > 02).

The latter possibility leads directly to (3.11); assume the former. Let

p = inf {n: Vf > A},
(3.14) v = inf {n: Vnf > #A},
and g = PfV. Since V is a measurable operator, p and v are stopping times. If n
is a positive integer, then

(3.15) Vnf = V(fn-' + n-lfn) _ y(Vn-lf + An),
so that VLf _ y(A + A*) on the set where i is finite. On {V*f > #2, A* < 62},
p _ V < O,

(3.16) /2A < Vvf < yV(fp + g) < y3(V8f + Vg) . y4(2 + 02 + Vg),

and so

(3.17) Vg > (3y-4 - 1 - 6)2 = 62.

Therefore, by (3.12),

(3.18) P(Vg > 62) > P(V*f > PA, A* <62) > cP(V*f > A).

Since U is a local operator,

(3.19) {V*f . A} = {p = o} - {s(g) = 0} c {U*g = O},
so that, by (3.1), we have the lower estimate

(3.20) JV*f>A)(U> )P PO

> c(02)P"P(Vg > O6) > cAPoP(V*f > 2).

To obtain an upper estimate, consider U*g. Since p < v, we have U*g =
U*(fv - fl) _ 2y2U *". On {v = oo}, by (3.4) and the definition of v, U1*f _
V*f < /3A. On {v = n}, n a positive integer,
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Uv*f= U"*f
= U*(fn-I + n-lfn),

(3.21 ) Unt-If- Vnt-1f -`5R
by (3.10), U*(n-lfn) = U(,-'fn) < 2, so that U,*f _ y(fl32 + A). Therefore,
U*g _ 2y3(f3 + 1)2, and we have the upper estimate

(3.22) JIV*f>A} (U*g)2P0 = IDU*gll2pI(3.22) f(~~V*f > A)}p
< CA2p°P(V*f > A).

Applying (3.9) with A - {V*f > A} and h = (U*g)PO, we obtain

(3.23) P(V*f > A) . cP([U*g]PO > c2P°).

Since U*g _ 2y2U*f, inequality (3.11) follows.
(b) We now complete the proof of Lemma 3.1 by reducing the general case

to that considered in (a). It follows from (3.6) that either

(3.24) P(V*f > A) _ 2aP(V*f > PA, w* < A)

or

(3.25) P(V*f > 2) . 2aP(w* > A).

The latter possibility implies (3.5). Assume the former and let h = fG, where a
is the stopping time

(3.26) a = inf {n _ 0:w+1 > A}

Note that, by (3.2),

(3.27) u(r lhn) = U(n-lfnAa) < yU (n fn) < yW0 _ yA,
so that h satisfies (3.10) with 2 replaced by AO = yA. We now show that h satisfies
(3.6) with 2 replaced by AO, a by 2a, and ,B by P3o = fly-2. Since V*h < yV,*f _
VV*f,
(3.28) P(V*h > 2A) . P(V*f > A)

< 2aP(V*f > /PA, w* < A)
- 2aP(V,*f > PA,i= 0c)
< 2aP(yV*h > /A2)
= 2aP(V*h > /3oAo).

Therefore, by (a), P(V*h > AO) _ cP(cU*h > AO) + cP(cA* > AO). Here,
A0 n = V("-lh') . YAn and U*h . yU*f so that

(3.29) P(V*f > A) . 2aP(V*h > /O2O) _ 2acP(V*h > AO)
< cP(cU*f > A) + cP(cA* > A).

This completes the proof of Lemma 3.1.
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LEMMA 3.2. Let I be a nonnegative measurable function on the real line
satisfying la 0 /(t)dt < oo for some real number a.IfB = {t: iI(t) < rif(t + 1)}
for a real number r > 1, then

(3.30)~~~ 0*(t) dt- 1 0/ (t + l ) dt.

The proof of this is straightforward; see [2].
Now consider a convex function ID from [0, oo) into [0, oo) with (D(0) = 0.

As usual, set (D(oo) = limA-. (D). It follows that there is a nonnegative non-
decreasing function p on (0, oo) such that

(3.31) @D(b) = (,) d2, 0 < b < oo.fo= =

(See Zygmund [5], Chapter I, Section 10.11.) Furthermore, if D satisfies the
growth condition (1.3), then T satisfies

(3.32) Tp(2A) < c (iA), A > 0.

This follows from

(3.33) 2AAp(2A) _ I p(t) dt < 4F(4A)

< C2@(1D) = C2 <(t)dt < C2)(A).
The converse also holds [2]. Since cD is nondecreasing,

(3.34) (D [a + b]) . ¢(a) + 4)(b).

Therefore, the growth condition (1.3) implies that

(3.35) 'D(a + b) < c[cD(a) + D(b)]
for all a and b in [0, oc].
PROOF OF THEOREM 3.1. In the proof we may assume that relation (3.4)

holds. For if (3.4) does not hold, replace U by U* and Vf by U*f v Vf. Then
the new pair of operators satisfies both (3.4) and the conditions of Theorem 3.1.
Furthermore, by (3.35), the inequality (3.3) for the new pair implies (3.3) for
the original pair.
The proof is now similar to the proof of Theorem 3.2 in [2]. Let k be the

least positive integer j such that 2-' > y6, p = 2k, and b = log P. Let

ifr(t) = bf3'(p(It)P(V*f > /3')
(3.36) B = {t: 0/I(t) < 2q/(t + 1)},
and notice that

(3.37) X f(t) dt = X(A)P(V*f > A) dA < 4D(1) < o,
f-0 fo
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so that, by Lemma 3.2, (3.31), and Fubini's theorem,

(3.38) EcD(V*f) = I 9(p)P(V*f > A)d2 = ifr(t) dt

. 2 { (t + 1) dt.=

B

If t E B, then 2 = ,Bt satisfies

(3.39) bA(p(A)P(V*f > A) < 2bBA(p(13A)P(V*f > 13A).

In particular, p(fA) = 9(2kA) _ ck9(p) by the growth condition, so that (3.6)
holds with cx = 2flck. Also, 2qf(t + 1) _ a*(t), since P(V*f > PA) _ P(V*f > A).
Therefore, by Lemma 3.1,

(3.40) E@(DV*f ) _ a fB * (t) d t

< a f bfltq(p1t)G(flt) dt,

where G(2) is the right side of (3.5). This implies (3.3).
REMARK 3.1. It is clear that Theorem 3.1 holds for any (F satisfying (3.31),

(3.32), and cD(1) < oo, for some nonnegative function p. If 0 < p < oo, the
power function (D(A) = AP satisfies these conditions so convexity is not required.
Convexity is required in the next theorem.
THEOREM 3.2. Let (D be a convex function as in Theorem 1.1 and let

Z1, Z2, * be a sequence of nonnegative d measurable functions. Then

(3.41 ) E (D E E(zk fldk-1)) _ cE (D E Zk)
and the choice of c depends only on C(l.3).
The function Zk need not be slk measurable.
PROOF. Let Wk = E(Zk I dk-), let W, = zk=1 Wk, and let Z = S=k1 Zk, for

1 _ n . cx.
For each integer j, let

yj = inf {n: W. > 2 i or w+1 > 2
(3.42) v; = inf {n: W,, > 2j+1 or w,+1 > 2j-'}.
Then uj < vj < /+1 and letting

Aj = {Wm > 2j+1, w* < 2i- },
(3.43) Bj = {W. > 2i},
we have that Ai c Bj, both

00

(3.44) W = E I(j < k _ Vj)wk
k= 1
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and
00

(3.45) j = I ( pj < k_.vj) Zk
k= 1

vanish off Bj, and

(3.46) Wi > 2j'-I(A ).

As a consequence, we have that if _Vj is the smallest a-field containing Bj and
its complement, then, on Bj,

(3.47) E(Z jj_j)P(Bj) = fB, Zi dP
= EZ' = Y E[I(yj < k < vj)E(Zkj|k-l)]
= EW1> 2j-iP(Aj).

Here, we have used (3.46) and the fact that I(tj < k . vj) is 4k1 measurable.
Note that, by (3.31) and (1.3),

(3.48) ED(W.) = Y I p(A)P(W. > A) dA
j=_ 002.020

=< E (D(2j+')P(Bj) _ C E 0 (j),
j = - x) j = - oo

where /(j) = eD(2j)P(Bj). By the obvious analogue of Lemma 3.2 (and which
is implied by it),

(3.49) Y o(j) . 2 Y f(j + 1),
j -oo0 jeJ

whereJ= {j: /i(j) < 2if(j + 1). IfjeJ,thenP(Bj) < xP(Bj+1)and2iI(j + 1) _
aor(j) with a = 2c(1.3), so that either

(3.50) P(Bj) . 2aP(Aj)
or

(3.51) P(Bj) < 2cP(w* > 2j-').
Therefore, J c Jl u J2, where Jl and J2 correspond to the two possibilities, and

(3.52) E(D(W,) _ c Y 0(j) + c
_ f(j).

jeJi ijJ2
Suppose that j e Jl. Then, by (3.47),

(3.53) 2 jI(Bj) < 2(xPA <((B1) - E(ZiIj),
and, using Jensen's inequality for conditional expectations, we have that
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(3 .54) (D(2 j)I(Bj) _ 02(4otE (Z i | RAj)
_ c(D(E(Zi -j)) _ cE[D(Zj)j|j].

Taking expectations of both sides, we obtain (D(2J)P(Bj) < cED(ZJ).
We now need to use the superadditivity of the convex function (D: if a,, a2,**-

are nonnegative numbers, then
000

(3.55) E 0>(ak) -<-ED ak).
k =1 (k= 1

This is an immediate consequence of the easy special case: if a and b are non-
negative and finite, then
(3.56) 4>(a) _ (D(a + b) -@D(b).

By superadditivity,
00

(3.57) Z ?(j) . cE , 4D(Z-) . cEF(D Zi < cE(D(Zoo).
jeJI jeJi j - 0

Considering the other sum in the bound on E(D(W,), we have that

(3.58) y f(j) . 2a E (D(2j)P(w* > 2j-')
jeJ2 JEJ2

. 2a , J (p(A)P(4w* > 2j+')dA
j = - 00

. 2oeE4D(4w*) < cE'D(w*).

Using 1)(w*) _ I (D(Wk), Jensen's inequality, and superadditivity, we
obtain
(3.59) EO2(w*) < E E(D(Wk) < EO(Zk) _ E(D(Zm)

k=1 k=1

This completes the proof of Theorem 3.2.
LEMMA 3.3. Under the conditions of Theorem 2.1,

(3.60) E(D(T**f) < cE(D Idkl f e

PROOF. Since (D(T**f) . cD(T*f) + (D(Tf), we need to prove only

(3.61) EFD(T*f) _ cED(D I dkl),

and this only for martingales in X satisfying f = fN for some positive integer
N. Except for the trivial case in which ID vanishes identically, ID(oo) = oo, and
this implies that T*f < oo: by (2.9),

N Nn \

(3.62) E@(T*)_EE(T*f) ¢E| dk| < oo,n=1 n=l k= /

assuming, as we may, that the right side of (3.61) is finite.
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Let To = 0; if j _ 1 and Tj 1- is a stopping time, let

(3.63) Tj = inf {n > Tj -I: Tf > 2v Trj.f}
Then Tj is a stopping time and the finiteness of T*f imples that Q = U J- Aj,
where

(3.64) Ai = {Tj < 00, Tj+1 = 00}.

On A0, T*f = 0. Let j > 1. Then, on Aj, and in fact on {Tj < o,

(3.65) 2v3T_j <f< . 'yT(fTi-' + hj)
= y3[TTj 1f + Thj],

where hi is the martingale f started at Tj_- and stopped at Tj. Therefore, on Aj,
Tj lf _ Thj and, since Tj+I = oo implies that T*f _ 2v3TTjf, we have

(3.66) T*f < 2y6[T?1 1f + Thj] < 4y6Thj.
Therefore, by (1.3), (2.9), and (3.55), we have

00 ~~~~~~~~00

(3.67) E4!(T*f) = r ((T*f) < c
-

(D(Thj)
j=1 fAj j=1 fA

< c , E@( Y I(Tj < k _ Tj)Idk|) . cED(D I(dkIJ
j=1 k=l k=l

proving (3.61) and completing the proof of the lemma.

4. Proofs of the main results

PROOF OF THEOREM 2.1. If f is in .#, then f = g + h, where g and h in .
are defined by

n n

gn = E ak = Z [Yk - E(yk Idki-1)],
k=l k=l

(4.1) n n
hn = Z bk = Z [Zk + E(Yk Sik )]

k=l k=l

with

Yk = dkI(IdkI . 2d*-1),
(4.2) Zk = dkI(IdkI > 2dk_ 1),
and d* = supO .j.5k |dj with do = 0. This decomposition was introduced in
[3]. Note that I kT _ 2dk*_1 so that Yi = 0 and

|ak| _4k- 1,

a bound which is slk - 1 measurable. For k > 2, E (dk slk - 1) = 0, which implies
that E (yk I sik-1) = -E (Zk Atk- ), so that
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(4.4) E Ibk, E |Zkj + E E(IzkI1k 1).
k= 1 k= 1 k= 1

On the set {IdkI > 2d*- 1

(4.5) IdkI + 2d*-1 < 21dk = 2d.
Therefore,

00 00

(4.6) E |Z1j - E 2(dk - d*- 1) = 2d* < 4f*,
k=1 k=1

and, by (3.35) and Theorem 3.2, we have

(4. (D
)

bl< C(D )-lkk=l k=l
_ cED(d*) . cED(f*).

This implies, by Lemma 3.3, that EOF(T* *h) . cE<D(f *). To complete the proof
of the theorem, we show that

(4.8) ED(T* *g) < cE(D(f*)-

Let Uf =f* and V = T. Note that U(n-1gn) = la.1 _ 4d*1, so that, by
Theorem 3.1 and (2.8) applied to g,

(4.9) E(D(T*g) . cE(D(g*) + cED(4d*).
Since d* < 2f*, the last term is dominated by cE4D(f*). Since g* = (f - h)* <

f* + h* and h* < I' IIbkI, we have, by (4.7), that

(4.10) EID(g*) . cEcD(f*).

Therefore,

(4.11) ED(T*g) _ cED(f*)
which is not quite (4.8). To complete the proof, we may assume that (D does
not vanish identically and that EFD(f*) < 00. Then, by (4.10), g* < 00 and
this implies that

(4.12) Tg . y3T*g

as we now show. Clearly, (4.11) and (4.12) imply (4.8). Let A > 0,

(4.13) T = inf {n: lgnl > A or d* > Al
and G = g'. Then, by (4.3) and the definition of T, G* < 5A, so that G converges
almost everywhere and there exist n, < n2 < ... such that

(4.14) PI(oiG)*IIp _ (2-J)PO+ Jj 1.

Therefore, by (2.6),
IA 15)\ P(T(/jG >, 2-j) < .c2-
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and limj b. T('jG) = 0 almost everywhere. Since

(4.16) TG = T(g"Ani + 'JG) _ v2[TT fl,g + T(njG)],
it follows that TG < y2T*g.

Moreover,

(4.17) Tg = T(G + tg) . y[TG + T(Qg)],
so that Tg < y3T*g on the set

(4.18) {T(Tg) = 0} {T= 00}o = {g* < A, d* < A},
which converges almost everywhere to Ql as A increases. This gives (4.12) and
completes the proof of the theorem.
PROOF OF THEOREM 2.2. Here let U = T and Vf = f *. Again, for any f in

X#, let f = g + h, where g and h are defined as in (4.1). By (2.14) applied to
n-lgn and by (4.3),

(4.19) U(r Ign) = T(n- gn) < c|a |

and

(4.20) V( -1gn) = IanI _ 4dn*_1.
Therefore, by Theorem 3.1 applied to g, we have

(4.21) EeD(g*) < cED(T*g) + cEcD(d*).

By (2.14) applied to h,
(4.22) T*g _ y(T*f + T*h) . yT*f + c E IbkI,

and so, by (4.7), we obtain E(D(T*g) . cE(D(T*f) + cE(D(d*).
Since h* < '=i IbkI, we also have E(D(h*) . cE(D(d*). An application of

(2.13) now gives

(4.23) ED(f*) _ cE(D(g*) + cEcD(h*) _ cED(T*f),
completing the proof of the theorem.

5. Quadratic variation of right continuous martingales
Let X = {X(t), 0 _ t _ 1} be a right continuous martingale and

0 _ 1/2

(5.1) Si = X(tj 1)2 + E (X(tj,k) - X(ti,k-1))2

where 0 = tj 1 < t.2 <* < 1 for j . 1. Note that Sj = S(fj), wherefj =
(fi lfj 2, * * I is the martingale defined by fj, n = X(t, n). We assume that
tj,k = 1 fork > kj, and

(5.2) sup (tijk - tj,k-1) - 0
2<k<co
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as j increases. Let X* denote the maximal function of the process X: X*=
supo_t_l X(t)j.
THEOREM 5.1. The sequence {S,} converges in L1 ifand only ifX* is integrable.
We need the following elementary lemma.
LEMMA 5.1. Let Y _ 0 be an integrable random variable. Then there is a

convex function (Dfrom [0, oo) into [0, oc), with (D(O) = 0, satisfying the growth
condition (1.3),

(5.3) lim ( ),
A-*o 2

and

(5.4) E@D(Y) < oo.

PROOF OF THEOREM 5.1. Suppose that X* is integrable. Choose cD to satisfy
Lemma 5.1 with Y = X*. By Theorem 1.1, we then have

(5-5) E(D(Sj) _ cE(D(fj*) _ cE(D(X*),
which implies the uniform integrability of {Sj}. Since, by a result of Doleans
[4], {Sj} converges in probability, the convergence in L1 follows.
To go the other way, we note that if {Sj} is uniformly integrable or converges

in L1, then supj ESj < oo. Therefore, since X* = limj3. fj' by right continuity,
we have

(5.6) EX* < lim infEfj* < c supESj < oo.

Here, we have used the right side of (1.4) for the special case of cD the identity
function, the case treated in [3].
PROOF OF LEMMA 5.1. Choose 0 = aO < a, < a2 < ... to satisfy (a) aj -

a > 2aj- for-j > 1 and (b) E(YI(Y > aj)) < 2-jEY forj _ 0. Let 4>(i) =
fl (p(t) dt be defined by 9 = j on [aj , aj). Since p is increasing, cD is convex,
and since lim-. T(A) = oo equation (5.3) is satisfied. By (a), if A E [aj 1, aj)
then 22 < aj+ so that <p(2A) _ (j + l/j)9(A) . 2Tp(2) for all 2 > 0, and thus

(5.7) (D(22) = J (t) dt = 2 T(2t) dt < 4 (p(t) dt = 4(D(().

Also note that >(D) _ j2 if 2. aj, since 9(2) _ j if A < aj.
Therefore,

(5.8) E@D(Y) = E EcF(YI(aj.. < Y < aj))
j= 1

00E(YI(Y aj-1))< y ~+1
j=2 aj_
<0E 2 j+'EY
< J2y E + 1 < cc,
j=2 a,

completing the proof.
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6. Further applications and remarks

Let
-0 1/2

(6.1) r(f) = [ [E(I dkIIk-1)]]
k = 1

forf in A. This is the operator mentioned at the end of Section 2. Let (D be a
convex function as in Theorem 1.1. Then

(6.2) EqD(r(f)) _ cE(D(f*), f E

and the choice of c depends only on C(I.3). We check that the conditions of
Theorem 2.1 are satisfied. Since r(f) _ s(f), the operator r is local and satisfies
(2.6) forpo = 2:

(6.3) lir(f) ._ s(f)ll1 = E E d2k
Il k1< 1 12_ sup 2lfnlI <l=f 112

Clearly, r is sublinear, symmetric, and measurable. Since

(6.4) r(f) . E E(| dkl I-k - 1)
k= 1

we have, by Theorem 3.2, that condition (2.9) is satisfied. To check (2.8) note
that

(6.5) r(n -1fn) = E(ld"|II 4n - 1)
_dn*-I + E(dn*- dn*- 1-4an- ) _ d* + Yi E(dk*- dk*-I1-4k- )

k= 1

so (2.8) follows from Theorem 3.2 and the fact that d* < 2f*. Therefore, (6.2)
follows from Theorem 2.1.
The formula (6.2) has a simple consequence in the theory of random walk.

Let X be a martingale in X and write Xn = k1 Xk for n _ 1. Assume that
there is a positive number c such that

(6.6) E(jXkj 1-4fk- 1) >_ ' k _ 1.

For example, this condition is satisfied if x = (x1, x2,**) is an independent
sequence of identically distributed random variables with ExI = 0, E Ixi I > 0,
and slk is the smallest a-field with respect to which xo, * - *, Xk are measurable
(xo = 0), k _ 0. Let T be a stopping time and f = Xr. Then

(6.7) E(I dkII J3?k 1) = I(T > k)E(IXklIlSk 1) >_ 6(T _ k)
so that r(f) > &T1/2 and, by (6.2),

(6.8) ED(T I2) . cE4D[(Xr)*].
The choice of c in (6.8) depends only on z and C(13). See Section 5 in [2] for
related results.
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REMARK 6.1. Here we show that the conclusion of Theorem 2.2 need not
hold for the operator r. Consider ¢D(i) = A and an independent random variable
sequence d = (d1,d2, - ) satisfying P(dk = -1) = P(dk = 1) = (2k)-1 and
P(dk = 0) = 1-k'. We assume that slk is generated by do * , dk with
do = 0. Then

OD \1/2(6.9) E(IdkI1|4k_1) = El dkl = k- so that Er*(f) = E k-2 < 00
k=1

Suppose that (2.12) holds here. Then Ef* < oo, which implies that f converges
almost everywhere. Hence, d converges almost everywhere to 0. But this con-
tradicts the fact, which follows from the Borel-Cantelli lemma, that, with prob-
ability one, IdkI = 1 for infinitely many k. If n > 2, then r('-1f') = n-1 but
dn = 0 on a set of positive measure. Therefore, r fails to satisfy (2.14).
REMARK 6.2. Suppose that (Q, sl, P) is nonatomic. Then the growth con-

dition 'D(22) _ ceD(A) is a necessary condition for either side of the conclusion
of Theorem 1.1. For example, suppose that the left side holds and h is a mar-
tingale satisfying IIS(h)1j > 2 and 11h*IL1 = 1 so that oa = P(S(h) > 2) > 0.
Then, for A > 0 and f = Ah, we have

(6.10) ocD(22) = FD(22)P(S(f) > 22)
_ ED(S(f)) _ cED(f*) . c@(i).

Such an h exists. Let x = (x1, x2, * * ) be an independent sequence satisfying
P(xk =-1) = P(xk = 1) = 2, k > 1, X the martingale with difference sequence
x, and T = inf {n: IX,l = 2}. Then h = 4X' satisfies h* = 1 and IIS(h)Ik = °°.
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