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1. Introduction

This paper deals with estimating regression coefficients in the usual linear
model. Let y be a T-component random vector with expected value

(1.1) Cy= Zf.

where Z is a T x p matrix of numbers and J is a p-component vector of para-
meters. (All vectors are column vectors,.) For convenience we assume that the
rank of Z is the number of columns, p. The covariance matrix of y is

(1.2) w(y) = &(y - Zi)(y - Zf)' = E

(Transposition of a vector or matrix is denoted by a prime.) Again for con-
venience we shall assume that I is positive definite. The problem is to estimate
l on the basis of one observation on y when Z is known.
When E is known or is known to within a constant multiple. the Markov or

Best Linear Unbiased Estimate (BLUE) is given by

(1.3) b = (Z'E1Z)-Z'E 1y.
The least squares estimate is given by

(1.4) b* = (Z'Z) Z'y.

The covariance matrix of the Markov estimate is

(1.5) t(b) = (Z'Y1Z)-1.
The covariance matrix of the least squares estimate is

(1.6) 16(b*) = (Z'Z)-' Z'Z(Z'Z)- .

Both of the estimates are linear and unbiased.
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The optimality property of the Markov estimate implies that W(b*) - W(b) is
positive semidefinite; that is. any linear functioni of the Markov estimate has a
variance no larger than the variance of that linear fufnction of the least squares
estimate. Since the least squares estimate can always be calculated. but the
Markov estimate is unavailable if the covariane e matrix E is not known to within
a constant of proportionality, an interesting problemii is to find the conditions
under which the least squares estimate is identical to tlle Markov estimate. It
will be noted that they are identieal when E is a multiple of the identity. I. The
general answer is given by the followinga theoremii.
THEOREM 1. The least squares estiniate (1.4) is identical to the best linear

unbiased estimate (1.3) if and only if Z = V*C. where the p columns of V* are p
linearly independent characteristic vectors of E and C is a nonsingular nmatrin%
The sufficiency of the condition was essentially given by myself in 1948 in

Skandinavisk Aktuarietidskrift [1]. In that paper I showed that if y is normally
distributed, then the least squares estimate is identical to the maximum likelihood
estimate; under normality, of course, the maximum likelihood estimate is best
linear unbiased. Watson [9] studied a measure of efficiency of estimates from
which the necessity of the condition can be deduced; Magness and McGuire
[7] explicitly deduced the necessity (while Zyskind [11] announced it).
A problem that is more explicitly and specially a time series problem occurs

in the case where the residuals constitute a stationary stochastic process. The
property a, = a(s - t), where E = (ars), denotes stationarity in the wide sense.
In general, the least squares estimate and the best linear unbiased estimate will
be different. The characteristic vectors of E depend on the values of the serial or
lag covariances and hence the best linear unbiased estimate depends on these
parameters, which are generally unknown.

In this case we consider the covariance matrices of the estimates. normalize
them suitably and identically, and consider the limits of them as T - X0.
Grenander in [4], Rosenblatt in the Third Berkeley Symposium [6]. and these
two authors in [5] found conditions for which the two limiting covariance
matrices are the same. They did not indicate that their results were asymptotic
analogues of the result for a finite sample, and the statement of their results
and their methods of proof do not make it easy to see the relationship.

In this paper I shall prove the results for the finite dimensional case and the
limiting case in a similar fashion in order that the relationship between the
results be clearer and that the asymptotic results be more easily understood.
The emphasis here is on the linear algebra; the rigorous derivation of the limits,
which is rather involved, is omitted (but is given in Section 10.2 of [3]).
The method of proof is not the most direct for Theorem 1. because the proof

uses covariance matrices instead of the structure of the estimates themselves.
On the other hand. the asymptotic results must be derived in terms of the
covariance matrices because the order of the observation vector increases, and
thus the structure of the estimate changes. To obtain comparable proofs.
covarianee matrices must be used throughout. A byproduct of my proof of the
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theorems is a different statement of the conditions of Grenander and Rosenblatt.
which, I hope, is more enlightening than the original. Watson [9] related the
two sets of results by considering the finite sample case in the framework of the
approach of Grenander and Rosenblatt.

2. The finite sample case

We shall now proceed to prove Theorem 1 by considering the conditions for
which the two covariance matrices, (1.5) and (1.6). are identical. To study this
problem it will be convenient to transform the coordinate system in the T-
dimensional space to the coordinate system defined by the characteristic vectors
of the covariance matrix E. Let

(2.1) A= :: i )

where 2A _ A22-. -_ T(>0) are the characteristic roots of' E. Let V be a
T x T matrix with columns as corresponding normalized characteristic vectors.
These properties can be summarized in the two matrix equations

(2.2) YV = VA,

(2.3) V'V = I.

which imply E = VAV' and I = VV'. We can refer the matrix of independenlt
variables to this coordinate system. Then

(2.4) Z = VG,

where

(2.5) G' = (g1 ' g9T )

and gt is a p-component vector, t = 1, . T. The two covariance matriees
depend on three matrices involving Z and E. These call be writteln in terms of
A and G as

T

(2.6) Z'Z = G'V'VG = G'G = E gtgt
t = I

T

(2.7) Z'EZ = G'V'EVG = G'AG = E kgtg.
t = 1

(2.8) Z J-'Z = G'V'L-1VG = G'A-'G = E >-ggt.
t=1 Al

The columns of V are characteristic vectors ofE` corresponding to roots which
are the reciprocals of the characteristic roots ofE. We shall follow these matrices
along.
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The characteristic roots may not all be different. Let us indicate the multi-
plicity of the roots by writing the diagonal matrix A in the partitioned form

vlI 0 0

(2.9) A 0 V21 ... 0

A=( O HI
where v1 > V2 > * > V, (>0) are the different characteristic roots. The orders
of the diagonal blocks are the multiplicities of the corresponding roots, say
in1. in2, mH (S1=1 11h = 7'). We partition V anid G similarly.

(2.10) V = (V(1), V(2), .V()
G
G(2)

(2.11) G

G(H)
Now let us go back to the matrices we considlered previously, and express them
in these new terms. Z is written as

(2.12) z = E
h= 1

The three matrices appearing in the covariance matrices are
H

(2.13) Z'Z = E G(h)'G(h)
h= 1

H

(2.14) Z'EZ = E v,hG(h)G(h)
h= 1

(2.15) ZhE' z = - G'h G

The definition of a submatrix of V may have some indeterminacy in it. We can
replace V(h) by V(h) Q(h) and replace G(h) by Q(h) G(h), where Q(h) is an orthogonal
matrix of order mh. Such a transformation leaves each of the last four equations
invariant.
Theorem 1 shall be shown to be equivalent to the following theorem.
THEOREM 2. t'(b) = 6(b*) if and only if

H

(2.16) E p(G(h)) =,
h= 1

where p(G(h)) denotes the rank of G(h).
In order to simplify the study of the conditions for the equality of the

covariance matrices, it is convenient to transform the matrices again. Let P
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be a nonsingular matrix such that

(2.17) P'(Z'Z)P = I,

(2.18) P'(Z'EZ)P = D.

where D is a diagonal matrix with d,, _ d22 >_ * dpp > 0. (These are
the characteristic roots of Z'EZ (Z' Z) - '.) Let us also make the transformation
of the other matrix, P'(Z'-'Z)P. The covariance matrix of P-'b is the
inverse of this last matrix. The covariance matrix of P- 'b* is D. (This can be
seen from the original expression for the covariance matrix of b*. (1.6), by
multiplication on the left by P`1 and on the right by P'` and with use of the
properties of the matrices we have just discussed.) The question of equality of
the original covariance matrices has now been reduced to the problem of when
the covariance matrix of P- 'b is D.
The three matrices in W(b) and W(b*) can be written

H

(2.19) I = P'Z'ZP = C(h).
h= 1

H

(2.20) D = P ZIZP = I vhC(h).
h= 1

(2.21) p Z E 1zp = C(h).
h=1 Vh

where C(h) - P'G(h)'G(h)P. Note that p(C(h)) = p(G(h)). Let us consider the
diagonal elements of each of the last three equations. They are

H

(2.22) 1 = E )
hi=1

H

(2.23) dii = VhCIi,
h= 1

(2.24) E ± c(i
h=1 Vh

Since the matrix C(h) is positive semidefinite, each diagonal element is non-
negative. For each i the sum of these nonnegative components is 1; hence, the
elements in the ith diagonal position can be considered as probabilities. Let
Xi be a random variable that takes on the value vh with probability cIt), =
1, *, H. Then dii is the expected value of this random variable. The last
expression is the expected value of the reciprocal of this positive random
variable. If the two covariance matrices are to be the same, the ith diagonal
element of the last matrix must be the reciprocal of that diagonal element of the
second matrix. Thus, the random variable just defined can take on only one
value with probability 1. (This is basically the condition for equality in the
Cauchy-Schwarz inequality.) This implies that for each i, c(i) = 1 for one index
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h and isO for other values of h because the Vh are distinct. These facts imply that
the diagonal elements of the matrices C(h) are I's and O's. The matrices C(h) have
diagonal elements as follows:

(2.25) 1 0

1 ~~~~~~~~~0
0 1

c(l) = .. C(2) =. .
0 1

0 0

L 0 O_

If a matrix C(h) has 1 in the ith diagonal position. the other matrices have 0 in
that position. (Then dii = Vh. Since the vh and dii are numbered in descendilig
order, the I's in C(') are in the upper left corner, and so on.) Some matrices
may only have O's on the main diagonal. Since CV') is positive semidefinite. a
diagonal element of 0 implies that the entire corresponding row an(l column
are 0. Thus

(2.26) C1) = C(2) =

Since the C(h) sum to I. and the nonzero blocks are not overlapping,

(2.27) C(1) = [ ]. C( = [0 0]

We have then C(') with an identity in the upper left corner and so on. The rank
of each C(h) is equal to the number of diagonal elements that are 1. Thus. the
sum of the ranks is equal to p. Therefore, the equality of the covariance matrices
implies that the sum of the ranks is p.
The converse can be obtained by use of Cochran's theorem. (See Lemma 7.4.1

of [2], for example.) However, we shall use a simplified proof of a generalization
of one part of Cochran's theorem due to Styan [8]. We assume the sum of the
ranks of the C(h)'s is p. Let the nonnull C(h)'s be L1..., LK . K . p. and let the
ranks of these matrices be rl, * rK, respectively. Then Lj can be writteni AjAj.
where Ai is rj x p, j = 1, * * , K. Let U be the diagonal matrix with jth diagonal
block of order rj consisting of ujI, respectively. where uj is the jth value of
V, * -I-, VH corresponding to a nonnull C(h). j = 1. - - - K. Let
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(2.28) A=

A,

Then (2.19) and (2.20) are

(2.29) I = A'A,

(2.30) D = A'UA.

Equation (2.29) shows that A is orthogonal as Y_ 1¼j p. an(d so it follows
from (2.30) that

(2.31) D-1 = A'U-'A
which is (2.21). Since

H K
(2.32) E p(C( ) I=E = p.

h= 1 j= 1

Theorem 2 is proved. (That equality of covariance matriees implies the rank
condition can be proved by the method used in the eonzverse. but it does not
generalize directly to the case of stationary residuals.)

As was indicated earlier. G(h) in Z = -hHV(h)G=h) can be replaced by
Q(h)'G(h) where Q(h) is orthogonal. In particular, Q(h) can be chosen so that G(h)
has as many nonzero rows as its rank. (For the nonrmull C(h) or G(h), the resulting
matrices are A1. AK.) This proves Theorem 1 for the finite-dimensional case.

3. Large sample theory for stationary residuals

We now turn to the problem involving stationary time series. The elements of
the covariance matrix of y are

(3.1) a, = (S- t) = f" ei(s-t)Af(A) dA,

where f(A) is the spectral density, which is assumed to exist. Also we assume
that the spectral density satisfies the inequalities

(3.2) 0 < 2 -f(A) <

when m andM are some positive constants. In developing the asymptotic theory,
I shall not attempt to state all of the conditions. (They are given in Section 10.2.3
of [3].) We write

(3.3) f(A) = 2
27r h=-
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Let the diagonal matrix DT be defined by

(3.4) diag (Z'Z) = diag (DT),

where we take the positive square roots. Since we are interested in T -+ oo, we
shall use the index T when convenient to emphasize that we have a sequence of
estimates. The suitable normalization of the estimates is multiplication by this
matrix DT. We consider the limits of the covariance matrices of DTb and of
DTb*. The question is what are necessary and sufficient conditions on the
independent variables and the spectral density such that

(3.5) lim 6(DTb) = lim 6(DTb*).
T-oc T-.c

Let

(3.6) Z = (Z1 ZT )

Consider the sum on t Of ZI+hz; and multiply on each side by DT 1to obtain the
matrix of lagged correlations of order h. Let the limit of this matrix as 7' -* be

(3.7) R(h) = lim D` E Z,+hZtDT.

We assume that these limits exist for t = 0. + 1, +2, Then this sequence
of matrices has the spectral representation

(3.8) R(h) = f7n eiAh dM(A),

where M(i) has complex-valued elements. is Hermitian, and has increments that
are positive semidefinite.
We shall now consider the limits of the covariance matrices of the normalized

estimates. Those covariance matrices involve the limits of the matrices
D-'Z'ZD-', D-'Z'LZD-1. and D-'ZE-'ZD-1. In fact,

(3.9) lim (6(DTb) = lim (DT'Z'E'ZD+')',
T-.o-xo T

(3.10) lim W(DTb*) = R-'(0) lim D-'Z'EZD-lR-l(0).

The second matrix is
T-1

(3.11) lim D`' E E Zt+hZ;a(h)D-1 = Y R(h)a(h)
T-o,o h=-(T-1) t h= -oo

= jw E a(h)ei"h dM(i)

= f 2 tf(2) dM(X)
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Of course, these operations need to be justified to give a rigorous proof. but that
requires considerable detail. The full proof is given in Section 10.2.3 of my book
[3] and is along the lines indicated by Grenander and Rosenblatt [5]. The three
matrices we are interested in can be written

(3.12) lim DT-1Z'ZD-1 = dM(A),
T-oo-f

(3.13) lim DT- 1 Z'ZDT- 1 = 2cf (A) dM(A),
T-oo T-xf

(3.14) lim D-'Z',1'ZD-1 = dM(2).(3.14) T~-.coTT
The derivation for the third matrix is an involved demonstration also given in
[3]. These three expressions are the analogues of (2.6), (2.7), and (2.8) in the
finite-dimensional case. Carrying the analogy to the finite-dimensional case
further, we shall write these integrals in another manner to resemble (2.13),
(2.14), and (2.15). Let

(3.15) S(u) = {I12nf(A) _ u}, ni _ u . M,

(3.16) T(u) = fj dM(4).

The component functions of T(u) are real. Then our three matrices can be
written as

(3.17) lim DT'Z'ZD-' = I dT(u),T-oo m

(3.18) lim DT-'Z'ZDT-' = r u dT(u),Tm

(3.19) lim D-'ZE-'ZD-' =| dT(u).
T-3oJi U

Similar to the finite-dimensional case we let P be a nonsingular matrix such
that

(3.20) P'I dT(u) P = I,

m(3.21) PI u dT(u) P =D.

where D is diagonal and d1l . d22 > * - > dpp > 0. The same transforma-
tion is applied to the third matrix, JmM u 1 dM(u), which is the inverse of
limT_, W(DTb). The other limiting covariance matrix is limT-,,,, (DTb*) = D.

If we let

(3.22) L(u) = P'T(u)P,
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then the three matrices of interest are

(3.23) I = lim P'DT Z'ZDT1P=P dL(u),
Tot ~~~~m

(3.24) D = irm P'DT Z'LZDT1p = FMudL(u),

(3.25) lim P'Df!Z'E-1ZD P dL(u).

A diagonal element of L(u). say lii(u), has the properties of a cumulative
distribution functioni. The correspondinig diagonal elements of (3.24) and (3.25)
are fm u dlii(u) and fm u- 1 dlii(u), which are the expected values of the random
variable with this distribution and its reciprocal. Thus, if the two limiting
covariance matrices are equal, the matrix (3.25) is the inverse of (3.24) and

nM -r~~~M 1 -(3.26) Tu dlii(1) Lfidlii(u)
this implies that lii(u) has one point of increase and the increase is 1 at this
point. Let the points of increase be u1 _ U2 ... _ UK . 0. and let Lj be the
increase of L(u) at uj, j = 1, K. Then the three matrices can be written

K

(3.27) I = lim P'DT-' Z'ZDT 1 p = E
T -,~~~~o j~=1

K

(3.28) D = lim P'D-'Z'EZDT 1 p = EujLj,
K 1

(3.29) lim P'DT'Z 'E1ZD p = L
j=1 Uj

We are now back to the same forms that we had for the finite-dimensional case,
(2.19). (2.20). (2.21). The only difference is that in the earlier case we had not
culled out the vacuous matrices C(h). From this point on the reasoning is the
same. The matrices L1. L2. ... . LK have the form of (2.27): that is, the
diagonal blocks are Is and O's and off diagonal blocks are O's.
The converse is similar to the finite-dimensional case. If L(u) has K points of

increase and the sum of the ranks of the increases is p (and the increases are
positive semidefinite with sum of I and weighted sum of D), then by the
previous reasoning, they are of the form (2.27) and (3.29) is D- 1. We put these
properties in terms of M(i) and summarize them in a theorem.
THEOREM 3. The limiting covariances of DTb and DTb* are identical if and

only iff (A) takes on no more than p values on the set of ifor which M(i) increases
and the sum of the ranks of f dM(A) over the sets of Afor whichf (A) takes on these
ralues is p.
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The set of A for which M(i) increases is called the spectrum of M(i). The sets of
A for which f((A) assumes its values are called the elements of the spectrum. The
properties of L1, LK (idempotent and orthogonal) determine these sets;
Grenander and Rosenblatt used them, though indirectly.
When the residuals are uncorrelated, f(2) = a(0)/(27r) and the conditions of

Theorem 3 are satisfied. However, we may be interested in conditions on the
independent variables also which insure that least squares be asymptotically
efficient regardless off(i).
THEOREM 4. The limiting covariances of D,b and DTb* are identical for all

stationary processes with spectral densities which are bounded and bounded away
from 0 if and only if M(A) increases at not more than p values of 2. 0 . 2 .7_, and
the sum of the ranks of the increase in M(i) is p.

If the number of points at which M(i) increases is at most p. 0 _ A < ir. then
the spectrum of M(i) consists of these p points and their corresponding negative
values. The spectral density (which is symmetric) can then take on at most p
values, namely, its values at these p points, 0 . A < 7r. On the other hand if
M(i) increases at more than p points, 0 < A . ir then anf(2) can be constructed
so that it takes on no more than p values.
An example of independent variables {zjt} such that M(i) has one point of

increase is Zjt= j,p,t=1,2,t: the jump is at 0 and the
increase in M(i) at 2 = 0 is a positive definite matrix

(3.30) M = ((2j - 1j)I/2(2k- 1)1/2

In this case R(h) = MO h = 0. _ 1, If
H

(3.31) Zt = XO + E (xj cos vjt + fij sin vjt),
j= 1

then M(i) has an increase of rank 1 at 2 = 0 and an increase of rank 2 at
A = vj (with 0 < vj < rc), j = 1, , H. In these examples the spectral distri-
bution function of each independent variable is a pure jump function, which
can be considered as the opposite of a density. Trigonometric functions act like
characteristic vectors of a covariance matrix in the sense that they are involved
in spectral representation. Comparison of E = VAV' and (3.1) suggests that
columns of V correspond to functions eiS., the diagonal components of A
correspond to the values of 27tf (2), and summation with respect to the index of
diagonal components of A corresponds to integration with respect to A/(2it).
The analogue of V'YV = A is (3.3), which involves a limiting procedure.

The author is indebted to George Styan for helpful discussions.
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