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1. Summary and introduction

Consider a Markov process whose probability law depends on a k dimen-
sional (k > 2) parameter 0. The parameter space 0 is assumed to be an open
subset of Rk. For each positive integer n, we consider the surface En defined by
(z - 00)'F(z - 00) = dn for some sequence {dJ} with 0 < dn = O(n-1); Vis a
certain positive definite matrix.
For testing the hypothesis H: 0 = 00 against the alternative A: 0 # 00, a

sequence of tests is constructed which, asymptotically, possesses the following
optimal properties within a certain class of tests. It has best average power over
En with respect to a certain weight function; it has constant power on E. and is
most powerful within the class of tests whose power is (asymptotically) constant
on E,. Finally, it enjoys the property of being asymptotically most stringent.

In this paper, we are dealing with the problem of testing the hypothesis
H: 0 = 60 when the underlying process is Markovian. The parameter 0 varies
over a k dimensional open subset of Rk denoted by 0. Since the alternatives
consist of all 0 E 0 which are different from 00, one would not possibly expect
to construct a test whose power would be "best" for each particular alternative.
Therefore interest is centered on tests whose power is optimal over suitably
chosen subsets of 0. The class of subsets of 0 considered here consists of the
surfaces of ellipsoids centered at 00. The question then arises as to which
restricted class of tests one could search and still obtain an optimal test. The
discussion detailed in Section 5 produces a class of tests, denoted by .F, which
consists of those tests each of which is the indicator function of the complement
of a certain closed, convex set. The precise definition of F is given in (4.4) and
the arguments leading to it are due to Birnbaum [1] and Matthes and Truax [14].
The main steps of these arguments are summarized in an appendix for easy
reference.
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The main results derived in this paper are of a local character. In order to
give a brief description of them, we introduce the following notation. For each
positive integer n, consider the surface En defined by

(1.1) E.= {z E Rk; (z - 00)'F(z - o0) = d.}

where 0 < dn = O(n 1) and F is a certain positive definite matrix. Also let C be
a positive valued function defined on Rk - {00} whose (surface) integral over
each En is equal to 1. This function is given in (3.10) and (3.9). Then the test 4)
defined below by (4.5) has the following optimal properties. The power function
of 4, weighted by the function 4 and integrated over E, is asymptotically largest
when the competitor tests lie in # This is made precise in Theorems 4.1 and 6.1,
the latter being a certain uniform version of the former. Next, the power of 4 is
asymptotically constant on E, and the test 4 is asymptotically most powerful on
E, among those tests in 9 which have asymptotically constant power on E,.
This is the content of Theorem 4.2. Finally, the test 4 is asymptotically most
stringent according to Theorems 8.1 and 8.2. Again, the latter of these theorems
is a certain uniform version of the former.

In Section 9, the extra Assumption 5 is added under which the test 0 is
globally optimal in the sense that its power tends to 1, as n -o cc, under nonlocal
alternatives.
The hypothesis testing problem considered here has been considered by Wald

[24] who also provided a solution to it (see Theorems I, II and III in Wald's
paper). However, the discussion and solution to be presented here differ from
those of Wald in the following respects. The assumptions made here are sub-
stantially weaker than those used by Wald. In particular, while Wald's results
are formulated in terms of the maximum likelihood estimate, the present paper
makes no reference to its existence. The present method of attacking the problem
is that of utilizing available results obtained in Roussas [19], [20] and Johnson
and Roussas [8], [9], which in turn were derived by exploiting the concept of
contiguity introduced by LeCam [10]. (See also LeCam [11] and Hajek and
Sidaik [7], Chapter VI, and Roussas [21], [22].) As a consequence, the approach
employed here is different and much less cumbersome than that of Wald.
Finally, the present results also include the Markov case, whereas Wald's
results were established for the independent, identically distributed case only.
However, the classical methods have been used by Wald [24] and also Neyman
[15] for testing composite hypotheses.
A test statistic similar to the one used here was also proposed by Rao [16] for

the independent, identically distributed case and under the standard assumptions
(of pointwise differentiability and so forth). However, no asymptotically opti-
mal properties of the test were discussed except for its asymptotic distribution
under the hypothesis being tested. Finally, some general results of a similar
nature have been obtained by Chibisov [2]. The same author (Chibisov [3])
also obtained some average power type asymptotically optimal results in con-
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nection with the problem of testing a distribution function. An earlier version
of the present paper appeared as a Technical Report, Roussas [23].
The relevant notation and assumptions are presented in Section 2. Auxiliary

results necessary for the formulation of the main results are obtained in Section
3 and subsequent sections.

2. Notation and assumptions

Let 0 be a k dimensional open subset of Rk and for each 0 E 0. consider
the probability space (X. s?. PO): (, a?) = rlHjO(Rj. j). where (Rj, 4j) =
(R, A@) denotes the Borel real line and Po is the probability measure induced on
sl by a probability measure po() on X and a transition probability measure
po(H; *) defined on R x A. For each 0 E 0), the coordinate process {X,1}, n > 0,
n an integer, is a Markov process with initial measure po(-) and transition
measure p. ( *; * ).

Let 4i denote the a-field induced by the random variables X0, X1, *,Xn
and let Pn, , denote the restriction of Po to Y4,. By the assumptions to be made
below, the following quantities exist and are well defined up to null sets. For
0, 0* E 0, let

p = q(X0; 0, 0*),

(2.1) dP1,6~ = q(X0, X1; 0, 0*).dP1, 6

Also set

(2.2) q(Xj Xj1; 0, 0*) = q(Xj_1, Xj; 0, 0*)/q(Xji; 0, 0*)

and

(2.3) 0j(0, 0*) = [q(XjIXj-1; 0. 0*)]1/2.

It follows that

(2.4) dPn, 0 = q(X0: 0, 0*) H k1(0. 0*)
dP., O j=1

The Assumptions stated below are extracted from those used by one of the
present authors in another paper (see Roussas [19]) and are stated here for the
sake of completeness.

ASSUMPTION 1. For each 0 E E), the Markov process {X,,}, n _ 0 is (strictly)
stationary and metrically transitive (ergodic). (See, for example, Doob [4],
pp. 191, 460).
AssUMPTION 2. The probability measures {Pn,O; 0 E E0} are mutually abso-

lutely continuous for all n _ 0.
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ASSUMPTION 3. (i) For each 0 E E0, the random function 041 (0. 0*) is differen-
tiable in quadratic mean (q.m.) with respect to 0* at the point (0, 0) when PO is
employed. (See, for example, Loeve [13] or LeCam [10].)

Let 41 (0) be the derivative in q.m. of 01 (0, 0*) with respect to 0* at (0. 0). Then
(ii) P1(0) is V, x W mneasurable. where W is the a-field of Borel subsets of E).

Let F(O) be the covariance function defined by
(2.5) F(0) = 4&0[1 (0)tj4 (0)]

Then. (iii) F(O) is positive definite for every 0 E E).
ASSUMPTION 4. For each 0 EC 0, q(Xo0 X1; 0, 0*) -+ 1 in P16, probability as

0* -.+ 0.
REMARK 2.1. In the independent, identically distributed case, Assumption 1

is automatically satisfied (see. for example. Doob [4], p. 460). The random
function 01(0, 0*) is equal to [q(X1; 0, 0*)]112 and Assumption 4 is redundant
(following from Assumption 3 (i)).
For later reference, we now introduce the k dimensional random vector An(0)

which plays a fundamental role in this paper. Actually, An(00) replaces the
maximum likelihood estimate, as will become apparent in the sequel.

2 n
(2.6) An(0) E )j(0),

n j=

where 4j(O) is given in Assumption 3.
In closing this section, we should like to mention that all results in this paper

(except for Theorem 9.1) will be derived under the basic Assumptions 1 to 4
and this will not be mentioned again explicitly. Also the notation Pn,0 and PO
will be used interchangeably and all limits will be taken as {n}. or subsequences
thereof, converges to infinity unless otherwise specified.

3. Further notation and preliminary results

We recall that the problem of interest is that of testing H: 0 = 00. In the
sequel, dependence of various quantities on 00 will not be explicitly indicated.
For instance, we shall write F, An rather than r(0O), An(0O) and so forth.

Since the matrix F is positive definite there exists a nonsingular matrix M
such that

(3.1) M'M = F.

From (3.1), it immediately follows that

(3.2) (M-1),FM-1 = MF-1M' = I,
where I is the k x k unit matrix.
Consider the following transformation of Rk onto itself

(3.3) M(z- 00) = v-00,
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where v = u + 00 - MOO and u = Mz. For c > 0, let E(c) be the surface (of
an ellipsoid) defined by

(3.4) E(c) = {z e Rk; (z - O0)'F(z - 00) = c}.
Then the transformation (3.3) sends the surface E(c) onto the surface (of a
sphere) S(c), where

(3.5) S(c) = {z e Rk; (z - 00)'(z - 0o) = C}.

For z E Rk, with z * 00, set c(z) = (z -OO)'F(z - 00). Then this quantity
is positive, since F is positive definite by assumption. By means of E(c(z)) and
S(c(z)), define the function 4 as in Wald [24], p. 445. Namely, for any p > 0,
define co(z, p) by

(3.6) co(z, p) = {u e E(c(z)); ||u - z -p}

and let co'(z, p) be the image of the set co(z, p) under the transformation (3.3).
Also denote by A(co(z, p)) and A(co'(z, p)) the areas of the sets co(z, p) and
co'(z, p), respectively. Then the function 4 is defined as follows

(3.7) c(z) = lim A(co'(z, p)) 0A(co(z, p)) a .0

Thus one has the positive valued function 4 defined on Rk - {0 } and it can be
seen that its explicit form is

(3.8) <(z) = [IFI(z 00)'F(Z OO1)],2 z * 00.IFI(z - OO)I
REMARK 3.1. The significance of the function 4 defined by (4.6) may be seen

from the relation

(3.9) X (z) dA = area of S(c) to be denoted by A(c),

where E(c) and S(c) are defined by (3.4) and (3.5), respectively, and the integral
in (3.9) is a surface integral.
By setting

(3.10) ((c; Z) = A(Z) zeE(c),

one obtains a weight function 4(c; ) (integrating to 1) over each one of the
surfaces E(c).

In the sequel, we will be interested in parameter points O,1 of the form

hk(3.11) On=0+ , heRk.

Also the h eventually, will be required to satisfy the condition h'Fh = c", c, > 0,
so that (0. - 00)'F(O, - Oo) = cn/n which we denote by d,. Since 00 E 0 and
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0 is open, there exists a do > 0 such that the surface (0 - 00)'P(O - 00) = do
lies in 0. We have

(3.12) En = E(dn) = {z E Rk; (z - 00)'F(z -00) = d"}
with dn = cnln, and let

(3.13) En = E*(c") = {z E Rk; z'Iz =C
Choose cn satisfying the requirement

(3.14) 0 < Cn < do for all n, 0 < dn-do for all n.

Then, with On being the form (3.11), it follows that

(3.15) O,n e En if and only if h E E", En '- 0 for all n.

REMARK 3.2. Let Zn = 00 + z//n. Then from (3.8) it follows that ((Zn) =
4(z): In particular, if On is given by (3.11), then c (0n) = ((h), where on e En a 0,
so that h E E". (See relations (3.12) to (3.15).)

4. Formulation of some of the main results

In the present paper, the problem we are interested in is that of testing the
hypothesis H: 0 = 00, for some fixed parameter point 00, against the alternative
A: 0 7 00. To this end, let

(4.1) °h = N(Fh,F), heRk

and define the set D as follows

(4.2) D = {zeRk;zF-Jlz _ d}, Y0(D) = 1-a, 0 < a < 1.

Also define the class 1' by

(4.3) = {C E ; C is closed and convex},

and set

(4.4) s = {f; f = I[CC],Ce W}I
where I is the indicator of the set in the brackets.

In particular, set

(4.5) = I[Dc].
Then, clearly, D E %, so that 0 E 9.

All tests herein will depend on the random vector A,n defined by (2.6) for
0 = 00 and for reasons to be explained in Section 5, we may confine ourselves
to tests in .
For / E A that is I= J[Cc] for some C E %, set

(4.6) #n(0; Cc) = #n(O; ql) = 6O*(A.)
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REMARK 4.1. As will be seen in the theorems to be stated below, the sequence
of tests {0(An)} possesses certain optimal asymptotic properties, where k is
defined by (4.5). Also with On and Yh defined by (3.11) and (4.1), respectively,
it will be shown later (see Lemma 6.1 (i)) that

(4.7) &00. (A.) = Po.(A. E DC) - 70(DC).
Thus, if we decide to restrict attention to tests in the class F of asymptotic

level of significance cx-which we shall do-we must have Yo(DC) = a. This
fact provides the justification for the equation Yo(D) = 1 - a employed in
(4.2).

Unless otherwise explicitly specified in all that follows and for each n, we
shall consider only parameter points 0, of the form On = 00 + h/ ni with
h EEn, so that on E E. (see (3.12) and (3.13) for the definition of En and En).
Although On and hn would be a more appropriate notation, we shall simply
write 0 and h, when no confusion is possible, with the understanding that
0 = 0 + h/A/n and h e E,* so that 0 e EEn. This will somewhat simplify an
already cumbersome notation.
The first main result in this section is presented in the following theorem.
THEOREM 4.1. Let En be defined by (3.12) with cn satisfying (3.14) and let

C. = C(dn; *) be defined by (3.10). Also let 4 be given by (4.5) and let {ni} be any
sequence of tests in 9 of asymptotic level of significance cx. Then one has

(4.8) lim inf[ fln(0;4PC.(0)dA f /3n (0; /n) ,n(0) dA] . 0,

where f3n(0; 0) and 3,,(0; On) are defined by (4.6).
It is clear that one can take the sup over c. belonging to a compact set before

taking the lim inf in (4.8). This follows immediately since one can obtain (6.11)
in the proof of Theorem 4.1 by passing to a subsequence of ellipsoids. (For a
uniform version of the result just presented and also its interpretation, the
reader is referred to Theorem 6.1.)
The second main result herein is the following one.
THEOREM 4.2. Let En,, 4, {if,}, f(0; 4) and fi,n(0; /n) be as in Theorem 4.1.

Then one has (i) lim {sup [,,(0; ); 0 E En] - inf [1n(0; 4); 0E En]} = 0

and (ii) lim inf {inf [fin(0; 4) - /3n (0; fn)r; 0 En]} > 0
for any tests / as described above and for which f3n(0; i,n) satisfies (i).

As in the previous theorem, lim inf may be replaced by lim inf sup in (ii), since
by passing to a subsequence of ellipsoids we can obtain (7.14).
The interpretation of the theorem is clear. Part (i) states that the power of the

test 4 on the surfaces En is asymptotically constant. The second part asserts
that, within the class of tests whose power on En is asymptotically constant, the
test 4 is asymptotically most powerful.
The formulation (and proof) of the third main result in the present paper is

deferred to Section 8, since it requires substantial additional notation.
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5. Restriction to the class of tests 37

Suppose that we are interested in testing the hypothesis H: 0 = 00 against
the alternative A: 0 =& 00 at asymptotic level of significance cx. All tests are to
be based on the random vector An and power is to be calculated under Po,,.
where On = 00 + hI/n. This can be done without loss of generality by
Theorem 6.1 in Johnson and Roussas [9]. By Theorem 6.3 in [9]. one has that for
any tests Ofn (not necessarily in E) and any bounded subset B of Rk.

(5.1) sup [ nQI(An)- `0 On (A*)|;h eB] -O 0,
where A* is an appropriate truncated version of An defined by (4.6) in the last
reference above. Therefore from an asymptotic point of view, it suffices to base
any tests on the random vector A* rather than An. This is so regardless ofwhether
we are interested in pointwise power or average power (see Theorem 4.1).
Power is still to be calculated under P,,. Next. by virtue of (5.2) in Johnson and
Roussas [9]., one has

(5.2) dRn,h/dPo0 = exp {-Bn(h) + h'A}n
where exp {RB(h)} = e0j(exp {h'An}). h E Rk. In the family of probability
measures Rn h'. the parameter is h and its range is all of Rk. Since for any 0 E e,
0 = 00 + h/l/n for some h E Rk. namely. h = n(0 - 00), it follows that
0 = 00 if and only if h = 0. For h = 0, it follows from (5.2) that Rn, o = Pfoc
By Theorem 5.1 in Johnson and Roussas [9],

(5.3) sup( Po.-Rn,h |; h B) O0,
where B is any bounded subset of Rk. Thus for any tests On', one has

(5.4) sup {
114 Q//(A*) - &D[On(A*) Rn,h] he B}

< sup (Po. - Rn,hh h c- B) -O0.

Therefore it follows that, from an asymptotic power viewpoint, powers may be
calculated under Rn h rather than Po.. Furthermore this is true regardless of
whether our interest lies in pointwise power or average power in the sense of
Theorem 4.1.

In order to summarize: the original hypothesis testing problem H: 0 = 00
against A: 0 =& 00 at asymptotic level of significance a, where tests are to be
based on the random vector An and power is to be calculated under Po., may
be replaced by the equivalent hypothesis testing problem H*: h = 0 against
A*: h * 0 at asymptotic level of significance oc, in connection with the family
of probability measures defined by (5.2). where tests are to be based on the
random vector A* and power is to be calculated under Rnfh.
Now we introduce the random vector Z*, where

(5.5) Z* = r['An
Also the following notation is needed.
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(5.6) Y n,O = S°(A*IP), 0 c, = E°(A|Rfhh)= heRk
and

(5.7) Ln,h = Y(ZnlRn,h), he Rk.
The following result holds true.
LEMMA 5.1. (i) Let 7no and Y7n*,h be defined by (5.6). Then for every h e Rk,

one has Yn*, h << Yn*,oO and

dy,h k(5.8) dg e = exp { -Bn(h) + h'z}, z Rk.

(ii) Let h*n,h be defined by (5.7). Then for every h e Rk. one has Ln4 h << Ln,o and

(5.9) -dL*n^,h = exp {Bn(h) + h'Fz}, z e Rk.dL*n, 0

PROOF. (i) For A e .6k and by virtue of (5.6) and (5.2), one has

(5.10) 7n, h(A) = Rn,h(A*EA) = { exp {-Bn(h) + h'A*} dPo.n (A*A)n

= TA exp {-Bn(h) + h'z} d (A*IPo.)
A

= TA exp Bn(h) + h'z} d4n*,0O,A

as was asserted.

(ii) With A as above and by virtue of (5.2), (5.5) and (5.6), one has

(5.11) L*,h(A) = R GA,h(Zn) = { exp -Bn(h) ± hAn}dP60
= T(ZJ6) exp {-Bn(h) + h'FZ} dP0o

Z*.EA)

T exp {-Bn(h) + h'Fz} d[(ZjPo.)
A

= TA exp {-Bn(h) + h'Fz} dY(ZIRn, o)
A

because Rn,o = P00 by means of (5.2). Now since Y(ZIRn, 0) = L* o, we have

(5.12) Ln,h(A) = TA exp {-Bn(h) + h'Fz} dLn, 0,
as was asserted.

From (5.5), it follows that, in testing the hypothesis last described, our tests
may be based on the random vector Zn rather than A*.
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Now for each n, the family of probability densities

(5.13) d., = exp {-Bn(h) + h'Fz} z E RkdL7n, 0

is of the form (A.9) in the Appendix. Therefore, Corollary A.1 in the Appendix
applies and we conclude that an arbitrary test V4 based on Zn may be replaced
by a test n based on Z' of the form (A.4). Thus for each n, we consider tests
n based on Z* such that

I if ze-C'
(5.14) n(Z) ={(O if z E C° for some Cn E

where l is given by (4.3); the test may be arbitrary (measurable) on C', and
'[0n(Z*) |Rn,0-] .

Now it would be convenient to avoid arbitrariness of tests lk on C'; for
instance, it would be convenient to set frn(z) = O for z E C', so that ltn(z) = I[Cf].
In order for this modification to be valid, we would have to show that by changing
the test lk on C' in any arbitrary (measurable) way, both its asymptotic power
and size remain intact. That this is, in fact, the case is the content ofLemma 5.3.
In order to be able to prove the lemma, some additional notation and some
preliminary results are needed. To this end, let

(5.15) W = {C E _k; C is convex}

and also set

(5.16) Yn, O = y(An IPo,) .

Then by Theorem 6.2 in Johnson and Roussas [9], for 0* = 00 + h/ n/ with
hn h ERk, n,

°n Yh, where 'h is defined by (4.1) and => denotes weak
convergence of probability measures. Also PO6(An #An ) 0 by Proposition
4.1 in Johnson and Roussas [9]. Therefore Yn*, °* => £h, where £n' ° is given
by (5.6). On the other hand, P-PoR-fRn, h. 0, as was mentioned before, so
that Y7 hn => h. That is, we have

(5.17) Y.,°n- Yh XYn, hn :2h -

The lemma below shows that these convergences are uniform over the class '.
More precisely, we have the following result.

LEMMA 5.2. Let on, Yh, Y,*,, O 'n,h and V be defined by (3.11), (4.1), (5.6)
and (5.15), respectively. Then for any bounded subset B of Rk, one has

(i) sup {sup [I.,on(C) - Y'h(C)I; C cEV]; hcB}O 0

and

(ii) Sup {SUp [I4,h(C) - Yh(C)I; C c- V]; h B}O. 0.
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PROOF. (i) The proof is by contradiction. Set

(5.18) 3 (h) = sup [I,(C) = 2'h(C)I C E 16*]
and suppose that sup [3n(h): h E B] +- 0. Then there is a subsequence {m.} c {n}
and hm e B such that 3m(hm) , for some 3 > 0. Equivalently,
(5.19) sup [Y., 0- (C) - Yhm(C); C ] -* 3,
where 0,, = 00 + hm/mf/.Let {h,}J {hm} be such that hr -~ t E Rk. Then one
has, by virtue of (5.17), Y,* * Y,. Thus Theorem 4.2 in Rao [18] applies and
gives

(5.20) sup [|r,'0(C) - ft(C)I:;C- ] 0

On the other hand, we clearly have

(5.21) sup [|h,(C) - Y't(C)I; CeC]-6 0.

Relations (5.20) and (5.21) then imply that

(5.22) sup [I>*,, (C) - h'hr(C) ; C e W*] *0
However, this contradicts (5.19) with m replaced by r.

(ii) We have

(5.23) 11 -n,O h = 2 sup [I0, (A) - X,* h(A) A ECk]
=2sup [IPOfl(A* cAe) - Rn,h(A* c A)l; AC Vk]
< 2 sup [|PO (E) -Rn,h (E)I; E c f] = || PO, -RR, h 1-

But sup (I1 PO. - Rn, ;h E B) 0. Therefore,

(5.24) sup (||n, 0 - 27n,h;heB) O0.

Clearly, (5.24) implies that

(5.25) sup {sup [IOn,0(C) - Yn h(C)|C ']; he B} - 0.

This last convergence together with the first part of the lemma yields the desired
conclusion.
The result just obtained is a strengthening of Lemma 2.1 in Chibisov [2] in

that taking the sup over h, we allow h to vary over bounded rather than compact
sets.
LEMMA 5.3. Let Z*, L*,h and W* be defined by (5.5), (5.7) and (5.15), respec-

tively. Then for any bounded subset B of Rk and any sets Cn E C*, one has

(5.26) sup [Rn, h(Zn E C'); h eB] = sup [L*,h(Cn); heB] 0.

PROOF. For any A E 4k one has Z* E A if and only if A* E A, where

(5.27) A = {ueRk;u = Fz,zeA}.

Let A' and A denote the interior and the closure, respectively, of the set A.
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We then have, by means of (2.3) and (1.1)

(5.28) L* h(C) = Yn,h(CO) = Yh(C) - Y, h()
= [ynh(n) - Yh(Cn )] - [yn,h(no) - Yh(COn)]

for any Cn E W* The equality h(CO ) = 2hh(Cn°) holds because Cn E 6' if and
only if Cn E V* and the boundary of any convex set in Rk has k dimensional
Lebesgue measure zero and hence Yh measure zero. It is also well known that
both the closure and the interior of a convex set are also convex.

Taking the sup of both sides of (5.28) as h varies in B, one obtains the desired
result from Lemma 5.2 (ii).

Returning now to the discussion following the definition of the test /n by
(5.14), we conclude that we may restrict ourselves to tests On based on Z* and
having the following form

(5.29) /n = I[Cn] for some (n Ee

and

(5.30) n[(Zn)IR,,o]a

6. Proof of the first main result

For the proof of the first theorem, we shall need some additional notation
and also some preliminary results. Set

(6.1) Zn = r An
and

(6.2) Ln,O =$(Z,|PO), 0 E.
Then Zn E A if and only if An E A^, where A is given by (5.27). Also set

(6.3) Lh = N(h, F), hERk.

One then has the following result.
LEMMA 6.1. (i) Let Yh, V* and f,,, be defined by (4.1), (5.15) and (5.16),

respectively. Then

(6.4) sup {sup [Yn, on(C) - £h(C)I; Ce62*]; h eB} O,
where 0n is given by (3.11) and B is any bounded subset of Rk.

(ii) Let On. 'W and B be as above and let Ln,, and Lh be defined by (6.2) and (6.3).,
respectively. Then

(6.5) sup {sup [ILn on(C) - Lh(C)I; C E- *]; hE B} -+ 0.

PROOF. (i) The proof is similar to that of Lemma 5.2 (i) and the details are
left to the reader.

(ii) ForA E _,kwe have Ln,,6(A) = Y,,,, (A), where A is given by (5.27) and
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A W* (A e I) if and only if A e *(A e '). It is also readily seen that

(6.6) Lh(A) = Yh(A).
Therefore

(6.7) sup [IL,o (C) - Lh(C)I; C E CC] = sup [I-en.n(6) <h(c)I;h e W*]
= sup [I9Y,1(C) - 7h(C)I; C E '].

Then taking the sup of both sides of this last relation as h varies in B and
utilizing the first part of the lemma we obtain the desired result.
From (6.1) it follows that An E A if and only if Z. E A , where

(6.8) A = {u E Rk; u = F-'z, z E A}.

Therefore by setting

(6.9) P.i(0;A) = Po(A. A), P.n(O;A) = Po(Z.eA),AeC_k,
we have

(6.10) #.(0;;A) = P. (0;), 06e ,Ae. k.

We may now proceed with the proof of the first main result.
PROOF OF THEOREM 4.1. The proof is by contradiction. Suppose that (4.8)

is not true. Then there is a subsequence {m} c {n} for which

(6.11) r Im(0; )m(0) dA - f Pm(l0;Om)cm(0) dA -+6, for some 6 < 0.

By employing the notation in (4.6), this is rewritten as follows

(6.12) f m(0; DC)Cm(0) dA - X m(0; ff)Cm(0) dA - 6,

or

(6.13) {/m/m(0; C.) m(0) dA - .m(0; D)Cm(0) dA 6.

By virtue of (6.10), this becomes

(6.14) f{A.(0; 0m)Cm(0)dA - fmm(0; D)Cm(0) dA X 6.

Now set

(6.15) fl(h;A) = Lh(A), he Rk, AE 4k,

where Lh is given by (6.3).

Then on account of (6.9) and (6.15), Lemma 6.1 (ii) implies that for arbitrary
sets Dm E W*

(6.16) sup [I.(Om; Dm) - fl(h; Dm)I; hA B] -+ 0
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for any bounded subset B of Rk. In particular,

(6.17) sup [I Pm(Om; Dm) - fl(h;Dm) |; h E] -O0,

where E. is given by (3.13).
At this point we set

(6.18) fi(h;A) = $( m(O.m - 0o);A) = (O.m;A), A Ck

and we recall that, by (3.15), h , E* if and only if Om c Em. The convergence in
(6.17) then becomes

(6.19) sup [Ii m(Om; Di) -3((Om;Dm)I; O,meEm] -°0,
or

(6.20) sup [I|m(O; Dmi) - *(O; Dm)I; 0 c Em] 0.

Utilizing (6.20) with Dm replaced by Cm and D successively, we obtain

(6.21) r fim(; C.m) Cm(0) dA - TEr P*(6; Cm) Cmm(0) dA 0

and

(6.22) f Pm(O; D)Cm(0)dA - fE *(O; -)0m(.)dA O.

From (6.14), (6.21) and (6.22), we obtain

(6.23) fE P* (; Cm).m(0)dA -#T(E ; D)m(0)dA ,

or equivalently,

(6.24) fEj P*(; D Cgm(0) dA -ET f*(O; Cmc)Cm(6) dA -.

Thus for all sufficiently large m, m _iml, say, we have

(6.25) J(E ;
m

%m(0) dA < 2*(O; c)C.(O) dA + 2

(recall that 3 < 0), or by means of (6.18),

(6.26) fE -O((o);DC))m(O)dA
T<r i(j-00);Cc)Cm(3) dA + 2 forallm _ m,.

E 2

Let Am = JEm (Z) dA (see also (3.9)). Then, on account of (3.10), (6.26) becomes
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(6.27) f (O 0-0); Dc)c(O) dA

< im(m(6 - Oo); Cmc (0) dA + 2 forall m _ mi.

Set

(6.28) m(O-00) =h sothat 0 = 00+ h/,/ , heEm*,
where E, is given by (3.13). Then by virtue of (6.18) and Remark 3.2, the
inequality in (6.27) becomes

(6.29) |,(h; Dc)(h)dA < f|l(h; Cm),(h) dA + 3Am forallm > ml,

where the scaling factor Jm results from the transformation in (6.28). It is not
hard to show that IJml = m-(k 1)/2, whereas Am, which is the surface area of
the sphere with radius (Cm/M)112 corresponding to Em in (3.12), is equal to

Irk/2 C(k-1)/2
(6.30) m2Cm

2
as is well known. Therefore

(6.31) AI k/2m(k)
2

Now, on the basis of (3.14) and by passing to a subsequence if necessary, we

may assume that cm -+ c > 0. First consider the case that c > 0. Then for all
sufficiently large m, m _ M2, say, we have cm _ c/2, so that Am/2IJmI _ 61,
where

7rk/2 C (k-1)/2

(6.32) = )2
2

Hence for m _ m3 = max {m1, m2}, (6.29) becomes

(6.33) fE f(h; F)c)(h) dA < f f(h; C7) (h) dA + 2,

where

(6.34) 62 = ^1 < 0.

At this point, we recall that fl(h; C7m) = L.(Oc) by (6.15). On the other hand, it
is clear from (6.8) that Ic = Ac-, whereas A-' = A, as it follows in an obvious
manner from (5.27) and (6.8). Therefore one has Lh(COc) = Lh(Cc,) and, by (6.6),
this is equal to Yh (Ccr) = Yh(cC). Summarizing

(6.35) 4(h; 0Cm) = L.(C h()= Cc
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By (5-16) Sm,0,_(Cn) = Po,(Am E Cm), so that Ym,0(Cr) = Poo(Am. Cm) and
this converges to a. Then Lemma 6.1(i), in conjunction with (6.36), gives
LO (c-) a. Now let C E f be such that Lo(CC) = a. Then LO(Cc-) -

Lo(CC) 0 and from this it also follows that

(6.36) sup [ILh( Cmr) -Lh(CC)|;heB] O,

for any bounded subset B of Rk.
Since Emremains bounded as m oo, it follows that for all sufficiently large

m, m _ M4, say, one has Lh(Cm,) _ Lh(CC) + £. This, together with (6.15), gives

(6.37) jB(h; C-)c,(h) dA < f B(h; CC),(h) dA + sAm, m _ M4.
fE* E

Combining this inequality with (6.33), we obtain that for m __5 =
max {m3, M4},

(6.38) f /3(h; bc),(h) dA < f f(h; CC),(h) dA + sAm + 52.
From the expression of Am given above, it follows that Am -. 0. This result,
together with (6.34), implies that for m ._ M6, some M6, and some 63 < 0,

(6.39) f 4(h; Dc) ,(h) dA < f ,(h; Cc,)E(h) dA + 63.

By (6.15), f3(h; A) is the power of the test / = I[A], based on the random vector
Z whose distribution, under h, is Lh = N(h, r- 1) (see (6.3)). On account of (6.8),
the set D) is given by

(6.40) D = {ueRk;u = IF-z,zeD}.

By taking into consideration (4.2), one has D = {u E Rk; u'Fu < d}. Applying
(6.6) with A = D and h = 0 and also utilizing (4.2), we obtain Lo(D) = 1 -a.
That is D = {u ERk; u'Fu < d}, Lo(D) = 1 -a, and Lo(C) = 1 -a. Also
since E*m = {h E Rk; h'Fh = cm}, we have that both D and E*m(for m > M2)
are of the type required by Proposition II in Wald [24] for testing the hypothesis
h = 0 in connection with the distribution Lh = N(h, Fr-1). Hence relation (6.39)
cannot hold true. The desired result is then established.

In order to complete the proof of the theorem, we have to show that its
conclusion is true if c = 0; that is, if cm - 0. In this case, by substituting hm for
h in h'Fh = cm, we find that hm -. 0, or equivalently m/-(Om - Oo) - 0. Then
repeating the arguments employed in the last paragraph of the proof of Theorem
4.1 in Johnson and Roussas [8], we obtain P_ - Po. -+ 0. From this and
by a simple contradiction argument, we also get sup ( Po_ Po. 11 ; Om e Em) 0.
Therefore uniformly in #/m in . and Om Em, one has fPm (0m; Im) -

pm(0O; )/m) - 0. Hence fm(Om; 'I)aino uniformly in I//m JF and OmGEm,
since flm(0o; 'urm) - o. Applying this result for 'Im = 4), we obtain flm(Om; 4)) -

13m(Om; Im) -)0 uniformly in /I,, E F and O.m E Em, so that
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(6.41) fE 1m(0; ¢k)Cm(0) dA - fE fPm(0; qIm) C.(0) dA 0.

Thus the left side of (4.8) (with lim inf replaced by lim) is equal to zero. The proof
is completed.
From Lemma 6.1(i), it follows that from asymptotic power viewpoint (both

in the pointwise and the average power sense), rather than considering asymp-
totic level ca tests, we may restrict ourselves, for each n, to tests lying in the
class .F0 defined below by (8.2). In this case, the proof of Theorem 4.1 is
considerably simpler in that one may deduce the desired contradiction from
(6.29). This is so because ,B(O; Cm) = a. Also, in this case, one may formulate
and prove a uniform version of Theorem 4.1. More precisely, one has the
following result.
THEOREM 6.1. With the same notation as that employed in Theorem 4.1 one has

(6.42) liminf {inf fEl#(0; )4C.(0)dA - J' f3 (0; b)C.(0) dA ; q eoI} = 0.

PROOF OF THEOREM 6.1. Suppose that (6.42) is not true and let the left side
of it be equal to some 6 < 0. (Clearly, 6 may not be positive.) Then there is a
subsequence {m} _ {n} such that

(6.43) inf[f EPm(0; 4)Cm(0)dA - TE(rn ; q)cm(0)dA eJo] = 6.

From this it follows that there exists a sequence { om}Of tests in EF such that

(6.44) TErn flm(0; )4Cm(0) dA - fPm(0; I/m)t m(0) dA .+ 6.

This is the same as relation (6.11) and a repetition of the arguments used in the
proof of Theorem 4.1, leads us to (6.29). The desired contradiction then follows
as indicated above.

7. Proof of the second main result

The following inequalities will be useful in the proof of the second theorem.
Let {aj, j E I} and {f%, j E I} be any collections of bounded real numbers and

let I be any index set. Then the following inequalities hold.

(7.1) sup (j; j E I) -sup (#j, j e I)I < sup (Ixj- Bjl; j E I)

and

(7.2) inf (cj; j E I) - inf (,Bj; j E I)I _ sup (I c-j jl;j E I).
A few more facts will be needed before we proceed with the proof of the theorem.

Let A stand for the identity mapping in Rk. Also Lh = N(h, [I") by (6.3).
Therefore Y(AILh) = N(h, F-1) and hence (see, for example, Rao [17],
p. 152)
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(7.,3) (A FA L,) = k,(h),
where b(h) = h'Fh. From the definition (6.8) of At it is immediate that
A = AC'. On the other hand, as was mentioned in the proof of Theorem 4.1,
A-^ = A, where A is given by (5.27). Utilizing these facts with A = DC- = DC),
relation (6.6) becomes

(7.4) Lh(DC-) = Yh(DC).
The quantities Yh and D are defined by (4.1) and (4.2), respectively. From (7.3)
and (7.4), one obtains

(7.5) yh(DC) = 1 - P[X2a(h) < d] = constant on each E,

where En is given by (3.13).
Finally, let he En and let 0in = 00 + h/ln, so that On c En,x where En is defined

by (3.12). Then by virtue of (6.15) and (6.18), we have Lh(A) = f3*(0,; A). Taking
A = DC- and employing (7.4). one obtains 13*(On: DC-) = Yh(Dc). This, together
with (7.5) implies then

(7.6) ,*(O; DC.) = constant on each En.

We may now start with the proof of the result.

PROOF OF THEOREM 4.2. (i) By employing (7.6). we have

(7.7) |sup [ln(O; 4)0 c- E.] - inf [ln(0: (/) 0 c- E.]

< sup [fn(04q): 0e En] - sup [fl*(0; DC-); 0e En]
+ Iinf [3n(0;4));0eEn] - inf[f* (O; DC-);0 E1En

and by means of (7.1) and (7.2), the right side above is bounded above by

(7.8) 2 sup [3n (O:4 ) - ,*(O.DC.)I0 OEn]
= 2 sup [lfln(O; DC) - *(O; DC); 0 E En]
= 2 sup [I3ln(O:--D) - 1*(0;D)|; 0IEn]

Set on = 00 + h/ In with h e E*. Then on account of (6.9) and (5.16), one has

(7.9) fn(O,n; D) = Po.(An, D) = Yn on(D)-

From (5.27) and (6.8), if follows that D- = D. Therefore, by virtue of (6.18),
(6.15) and (6.6), we have

(7.10) * (On; D) = f(h; D) = Lh(D) = Yh(D).
Hence

(7.11) 2 sup[1ln(O; D) - #*(O; D)|; OEEj
= 2sup [ ln, 0° (D) - fh(D):; h E*].



APPLICATIONS OF CONTIGUITY 213

Thus

(7.12) sup [P. (0; 4); 0 E.] - inf [P.(0; 4); 0 E.]j
_ 2sup [I Y,o,(D) - 'h(D)I; hEn].

Since the expression on the right side above converges to zero by Lemma
6.1(i), the proof of part (i) is completed.

(ii) We first show that

(7.13) lim inf{sup [Pn(0;4) - fin(Ot;On); 0 En} > 0.

The proof is by contradiction. Suppose that (7.13) is not true and let the left
side of it be equal to some S < 0. Then there is a subsequence {m} _ {n} such
that for all sufficiently large m, m _ ml, say, one has

(7.14) sup [fim(0; ) -pm(0; q); 0 Em] <
2

This is equivalent to

(7.15) Jm(0; )- flm(0; Im) < 2 for all 0 EEm and all m _ ml,2
or

(7.16) [m(°; 4)) -fm(0 m)](m(O) < 2 Cm(0)

for all0 E Em and all m _ m.
Hence

(7.17) lim inf[J fm(0; 4))m(0)CmdA fim(0 /I)Cm(O) dA <

since fE-mlm(0) dA = 1, and this contradicts (4.8).
We now continue as follows

(7.18) inf [f) (0; 4) -fln(0; qn); 0 c E.]
=inf{#n/(0; 4) + [- fln(0;iAn)];0 En}
> inf[f3n(0; 4); 0 c E.] + inf[- fln(0;in); 0 c En]
=inf[fln(0; 4); 06En] - sup [fn(0; ln); 0E].

Adding and subtracting appropriate quantities, the last expression on the right
side above becomes

(7.19) inf[fin(0; 4); 0 En] - sup [fin(0;A n); 0 En]
= - {sup [fn(0; 4); 0 c En] -inf[In(0;A ); 0e Ej]}
- {sup [fin(;A 4n); 0 eEn]-inf [fln(0; n); 0 En]}
+ {sup [fln(0; ); 0 En] -inf [fi(n;Ain); 0 cEn]}
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The third of these terms is further written as sup [f3n(O; 4); 0 e Em] +
sup [- fn(0; m); °n EE.] and this is bounded below by sup [/n(0; 4))-
fn(O; ,J); 0 e En]. Combining these results, we obtain then

(7.20) inf [n(°; 4)) - fn(0;i0.); 0 eE.]
> - {sup [fl(0;)¢); 0 En] - inf [fn(O; ()); 0 E Enj}

- {sup[fln(0;O ):0 eE.] -inf [fl.(0;iVI);0eE.}
+ sup [f3B(0; 0) - fl(0; 0.); 0eEj.

Now letting n - oo (7.20) we have that the limit of the first term on the right
side is equal to zero by the first part of the theorem. the limit of the second term
on the same side is equal to zero, by assumption, and the lim inf of the third
term on the same side is _ 0 by (7.13). This establishes (ii) and hence the
theorem itself.

8. Formulation and proof of the third main result

Up to this point vwe have dealt with tests Oin in E defined by (4.4), depending
on the random vector An and having asymptotic level of significance ax. In this
section. we are going to further restrict the class E of tests by introducing
another class contained in E and denoted by J0. The reasons for this restriction
are implicit in the definition of the envelope power functions by (8.13) and
(8.17) and also Lemma 8.2 below which is needed in the proof of Theorem 8.1.
However, in order for the restriction under question to be legitimate, we must
show that, asymptotically, nothing is lost in the process, either in terms of
power or in terms of asymptotic level of significance.

Set
(8.1) W° = {C e ,4k; C is closed, convex and Y0o(C) = 1 -a},

where Yo is given by (4.1), and define the class Y0 by

(8.2) Eo = {I; i = I[CC], C%6 I}.
Since Y(AniP0o) = Y7n 00 N(0, F) = Yo by Theorem 3.2.1 in Roussas [19],
we have that Yn, 00(Cn) -o0(Cn) -. 0 for any sets Cn E (6*; this is so by
Theorem 4.2 in Rao [18]. Thus wn = I[Cc] inm0, implies that YO(Cn) =
1 -o and the last convergence above gives Y, 0. (Cc) -ao. That is, tests in Y0
are of asymptotic level of significance cx. Thus it suffices for us to show that every
test On in Y which is of asymptotic level of significance cx, can be replaced, from
asymptotic power point of view, by tests (On in Y0. More precisely, it suffices to
establish the following result.
LEMMA 8.1. For any sequence of tests {nI} in E for which 6o000n(An) -a Ox,

there is a sequence of tests w,)n in F0 such that

(8.3) SUP [I0n0n(A,n) - &oo,,0n(An)I; hE B] -- 0,
where On = 00 + h/ n/ and B is any bounded subset of Rk.
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PROOF. Since OnE-E and 6,g0/n(An) a-+ , we have Orn = I[Cn] for some

Cn cE and Yn,0(Cn) -*1 - a. Setting h = 0 in Lemma 6.1 (i), we obtain
X" °o n) - 'o(C.) - 0, so that

(8.4) o(Cn) 1- .

Thus for all sufficiently large n, n _ n1, say, Y'0(Cn) > 0. This implies that for
n n1,. the sets Cn are k dimensional since otherwise their k dimensional
Lebesgue measure and hence Y4 measure would be zero.
Then for each n _ n1, consider the following modification of the set Cn: if

Y0(Cn) < 1 -a, enlarge Cn. so that it remains closed and convex and
90(Cn) = 1 -a. IfYo(C) > 1 - cc shrink the set Cn until SO(Cn) = 1 -

If Y°0(Cn) = 1 -a, the set Cn is left intact. Denote the resulting set by Cn 0.
Then Cn, 0 is closed and convex and

(8.5) 7o (C.n,0) = 1 -a

Thus setting (On = I[C', 0], we have Cw)n E Fo . From (8.4) and (8.5), it follows that

(8.6) Yo(C.) - o(Cn,o)()
From the process of arriving at Cn,,0, it follows that Cn,o C,n or C., o Cn
Therefore for each h E Rk, we have

(8.7) Yh(CnACn,O) = Yh(Cn - Cn,0) = Yh(Cn) - Yh(C,.o) if Cn, o Cn
and

(8.8) 97h(CnACn,o) ='h(Cn,o Cn) = Y'h(Wn,O) - Yh((-n) if C,,0 _ Cn
Thus

(8.9) Y°h(CnACn,O) = lyh(Cn) - Yh(Cn,0)1
For h = 0 Yh(CnACn,O) - 0 by (8.6). On the other hand, S/h << So for every
h EKk. Thus Yh(CnACn, 0) -- 0. It can be further seen that for any bounded
subset B of Rk, one has

(8.10) sup ['h(CnAC,, o): h c- B] O 0.

Therefore, (8.9) and (8.10) give

(8.11) sup [I 7h(Cn) - 7h((C.,0)I: h B] -0.

Now, for any B as described above, one has

(8.12) sup [nI&OI,(A,) - fn(On (A,n)I; h B]
= sup [7n,0(C,n) - , On(C-,0)1; h eB]
< Sup [Y,0,(C,n) - Yh(Cn)LI hc B]

+ Sup [Yn,On (Cn,0) - 7h(Cn,O)I' h eB]

+ Sup [Kh(C.) - 7h(C.,O)I hcB],
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and each one of the terms on the right side above converges to zero on account
of Lemma 6.1(i) and (8.11). The proof of Lemma 8.1 is completed and we have
the justification for confining ourselves to the class of tests. Y0.

Before we are able to formulate the third main result, we shall have to intro-
duce a further piece of notation. To this end, let fln(0:-fr) = f(A5n), as given
in (4.6) and suppose that the test f lies in Y0 ={f; 4 = I[CC], C E%0},
where %o = {C ECk. C is closed, convex and YO(C) = 1 -cx}; we also recall
that Yo = N(O. F). Next define the modified envelope power function fln(0; xa) by

(8.13) f3n(0; aX) = sup {/3-(0:)If0) }o

It is to be noted that the tests involved in the definition of the modified
envelope power function f,n(0; oa) are not those of exact level a for finite n but,
as with 4, they have level cx under the limit distribution Y%.
Then the third main result in this paper is as follows.

THEOREM 8.1. Let En and 4 be defined by (3.12) and (4.5), respectively, and
let Oin be any tests in Fo. where YFo is given in (8.2). Also let fBn(0I)) and f,,(0 ,n)
be defined by (4.6) and let f3n(0; cx) be given by (8.13). Then one has

(8.14) lim sup {sup [/3n(0; a) - fn(0 4); 0 c En]
- sup [/n(0; ax) - fBn(0; /n); 0EEn]} _ 0

Again we could replace lim sup by lim sup sup since relation (8.28) in the proof
is obtained by passing to a subsequence of ellipsoids.
The interpretation of the theorem is that within the class Y>O. the test 4 is

asymptotically most stringent on En. We recall that in the present framework
and for each n, the test n would be said to be most stringent on En within the
class F0, if the quantity sup [/n3(O c0x - f3n(O: I/,n); 0 c En] were minimized for
0. = On,.
For the proof of Theorem 8.1. a couple of auxiliary results will be needed.

For their formulation. let us recall once again that M'h = N(Fh, F) and set

(8.15) ~ (h; A) = hh(A), h E Rk. A E _k.

For each n, let h e En and transform h to 0 E En through the transformation
O = 00 + h/ln. We recall that En and En are given by (3.12) and (3.13),
respectively. Set

(8.16) /3(h;A) = J( /n(O - 0o);A) = fl'(0;A).
Next by means of /3'(0; A), define the envelop power function /1'(0; ax) as follows

(8.17) j3'(0; cx) = sup [/3'(0; CC): cec6].

The first auxiliary result is given in the following lemma.
LEMMA 8.2. The function /3'(0: a) defined by (8.17) remains constant on each

En?, where En is given by (3.12).
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PROOF. Clearly, f3'(O; cx) = ,(h; oa), where

(8.18) J(h; a) = sup [F1; Cc); C E- W], h = /n(O - 0).
Thus it suffices to show that ,(h; a) stays constant on each En,X where En is given by
(3.13). With M defined by (3.1), consider the transformation t = Mh. Then,
by (3.2), En is transformed into Sn = {t E Rk; t't = llt|l2 = c,}. Also the class
of sets 'o is transformed into the class of sets W*, where

(8.19) W* = {C E 0k; C is closed, convex and No(C) = 1 - o}

and

(8.20) Nt = N(MM't, MFM'), t e R .

Therefore, by setting

(8.21) /3°(t;A) = N,(A), tcRk, A E k,
/30(t; aX) = sup [130(t; Cc); C E W],

it suffices to show that 130 (t; ac) is constant on each S> To obtain a contradiction,
suppose that this is not so. Then there exist tl, t2 E Sn for which Po3(tl; cx) ¢
PO (t2; oa) and let

(8.22) 130(tl;ca) < 10(t2; a).
From the definition of 130(t; ax), there exists a set C = W such that

(8.23) 130 (t1; X) <13° (t2; cc).

Now, clearly, P3o(t2; CC) = Nt2(CC) is equal to the N(t2, I) measure of the set
(MM') -'Cc, and by symmetry, this is equal to the N(tl, I) measure of D,
where D is the symmetric image of (MM')1 cc with respect to the hyperplane
through the origin that is perpendicular to the line segment connecting the
points t1 and t2. But the N(tl, I) measure of D is equal to N,,((MM')D), and,
clearly, (MM')D is the complement of a closed convex set, C', say. Then by
symmetry, one clearly has No (Cc = 1 -oa, so that C0 E W, and also 10(t2; CC) =
130(t1; Cc ). Then (8.23) gives 10(t1; ax) < (1(t1; Cs). However, this contradicts
the definition of 130(tl; cx) by (8.21). We reach the same conclusion if the in-
equality in (8.22) is reversed. Thus the proof of the lemma is completed.
The second auxiliary result referred to above is the following lemma. This

lemma, as well as the one just established, are of some interest in their own right.

LEMMA 8.3. Let 13((O; cx) and 13'(O; a) be defined by (8.13) and (8.17), respec-
tively. Then for each n, one has

(i) sup [JPn(0; a) - 1'(6;a)J;0 EE] -°0
and

(ii) sup [1n(0; a);0 eEJ] - inf[1(0; cx);0 E.] -0,
where En is given by (3.12).
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PROOF. (i) In the first place, relation (7.1) justifies the inequality below

(8.24) IM(0; cx) - 1'(O; a)I
= Isup [P.(0;);?/,eo] - sup[fl (O; CC); CE to]|
= sup [P.(0; CC); C %o] - sup [fl' (0; CC); Ce'o]I
< sup [IfP.(0; CC) - f'(0; cc)I; C to]
= sup [IBi(0; C) - f3'(6; C)1; Cc to]>

and this last expression is equal to sup [IY.,((C) - h (C)I; C %'o], where
h = \/n(O - 00), since f,3(O ; C) = P (An e C) = Yn,0(C) and fi'(O; C) =
f(h; C) = Yh(C). That is, with h = vn(O -00),

(8.25) lfn(6; ax) - fi'(0; a)| = sup [Iy',O(C) - Yh(C)I; Ce6 0.
Hence

(8.26) sup [I#,,(0; ax) - f'(; oa)I;06 EJ]
= sup {sup [I Y.,'(C) - Yh(C)I; C to]; h EEE},

and the expression on the right side converges to zero by Lemma 6.1(i).
(ii) Letting 0 E En and utilizing Lemma 8.2 and inequalities (7.1) and (7.2),

one has

(8.27) |sup [fln(0; oc); 0 E] - inf [fln(0; a); 0 e EnI
sup [fn(O; ac); 0eE ]-E i'(O; x)I + Iinf[fl (0; a); 0eE ]-E l'(O; 0)

= lSUP[fin(0; a); 0eEn] -sup [fl'(O; cx); 0eEn]iI
+ Iinf [fn(0; a); 0 E] -inf[f'(O; o); 0eEn]

2 sup [Ofn(0; ax) - #'(O; a)|; 0c E],

and this last expression tends to zero by part (i). This establishes the lemma.
We may now proceed with the proof of the third main result.
PROOF OF THEOREM 8.1. The proof is by contradiction. Suppose that the

theorem is not true and let the left side of (8.14) be equal to 46 > 0. Then there
exists a subsequence {m} ' {n} for which

(8.28) sup [f,m(0; a) - P.m(0;6); 0 c E.]
> sup [P.m(0; ax) - m(0; *M); 0cEm] + 36

for all sufficiently large m, m _ mi1, say.
The left side of the inequality above is bounded from above by

(8.29) sup [P.m(0; a); 0 E Em] - inf [f,m((; 4); 0 Em]
and its right side is bounded from below by
(8.30) inf [pm(; a); 0 EEm] - inf [fP. (0; t/m); 06 E. ] + 36

by virtue of (7.2).
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By means of (8.29) and (8.30), relation (8.28) gives that, for all m > ml
(8.31) sup [/3m(0; a); O E Em] - inf [fm(O; 4'); Oc Em]

> inf [1n(O;oa); 0 E Em] - inf [13in(O; ifr); 0 e E.] + 36,
or

(8.32) sup [/3m(0; a);OEEm] - inf [fim(O );o n0 1E
> inf[flm(0;0);0eEm] - inf[#.m(0; fm);0eEm] + 36.

By Lemma 8.3 (ii), the left side of (8.32) tends to zero and hence it remains less
than 6 for all sufficiently large m, m _ m2, say. On the other hand, Theorem
4.2(i) yields

(8.33) inf [fn(0; 4);OeEm] > sup [lm(; i); E Em] -6

for all sufficiently large m, m > M3, say. On account of these facts, inequality
(8.32) then becomes

(8.34) 6 > sup [fhn(0; 4);0eEm] - inf[flm(0; /im):0eE.] + 26,
or

(8.35) inf[f1m(O; /im);OeEm] -6 = inf[flm(OA/m) - 6;0eEm]
> sup [flm(O; t); Em]

for all m _ m4 _ max {m1, M2, m3}. Hence

(8.36) flm(0; 4.) 6 > 3m(f. 4)
for all m >. M4 and every 0 E Em. Therefore

(8.37) ffm(;k)'m(0) dA - fE flm(0; m)m(0) dA < -6

for all m _ M4, and this implies that

(8.38) lim inf f3.m(0; 4)m(0) dA m( (0) dA <

However, this contradicts Theorem 4.1. The desired result follows.
The following uniform version of Theorem 8.1 is also true.
THEOREM 8.2. With the same notation as that employed in Theorem 8.1, one

has

(8.39) lim sup {sup [In(0; a) - fln(0; 4); 0 e En]

- inf {sup[fn(0; Oc) - f3n(0; /) O En1EE]; }=0 0.
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PROOF. Suppose that the theorem is not true and let the left side of (8.39)
be equal to some 3 > 0. (Clearly, 3 may not be negative.) Then there exists a
subsequence {m} ' {n} such that

(8.40) sup [P.m(O; a) - 13n(O ; 0c) Em]
-inf{sup[fr(O:a) -fm(O;0):0OeE.]; IYo}o- .

Thus for E > 0 and all m > mS1. say. one has

(8.41) sup [/m(0;o) - r(0: 0E) E.] 3 £
< inf{sup [flm(0; oa) -m(0; ); 0 eE.]; e F0}
< sup [fi,,(O: ai:) - flm(0) ; 0 E Em] 3 + 8.

Therefore, for each m _ m5, there exists a test V/r e F0 such that

(8.42) sup [fm(0; a) - fn(O:):0 E Em] E

< sup [Pm(O ae) - flm(O:mOeEm]
< sup [13n(O' aC) - /m(O; 4); 0 eEr1 - + 8,

or equivalently

(8.43) 3- E < suP[m(0; a) - m(0; ); 0 Em]
- sup [13m(O: a) - /3r(O; V/r); OEEm] < 3i + 8,

provided m _ M5 .

It follows that

(8.44) sup [,f3(O: ) - (0; 0);0meEm]
- sup [13n(O>X) - 13m(0; m)0 eEm] ^(> 0).

However, this result contradicts (8.14). The proof of the theorem is completed.

9. Behavior of the power under nonlocal alternatives

Recall that 0 = I[DC], where D is given by (4.2). Also recall that the power
of the test 4¢, based on An = A,(0O), has been denoted by fln(O: 4'). 0 Ec 0. Then
the theorems formulated and proved in the previous sections, provide us with
some optimal properties of the test 4. However, these properties are local in
character, since the alternatives are required to lie close to the hypothesis being
tested; actually, they are required to converge to 00 and at a specified rate.
The underlying basic Assumptions 1 to 4 employed throughout this paper,

do not suffice for establishing optimal properties of the power function at
alternatives removed from 00 or not converging to it at the specified rate.
This can be done, however, under the following additional condition,
Assumption 5.
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ASSUMPTION 5. Consider a sequence {I&} with On E 0 for all n. Then
An(O0) -IO in Pn Onprobability whenever 11n(0n - O)) c1°.
The following result can now be established.
THEOREM 9.1. Under Assumptions 1 to 5, for testing the hypothesis H: 0

00 against the alternative A: 0 + 00 at asymptotic level of significance a. the test
defined by (4.5) possesses the optimal properties ,nentioned in Theorems 4.1, 4.2,
6.1, 8.1, 8.2 and also has the property that its power converges to 1., that is,
3n (0n; 4) -- 1, whenever 1n(0 - 0o) 11 c.
PROOF. The proof is immediate. Since F is positive definite, so is F-1.

Thus there exists a positive number p such that z'F - 1z p 1zZ12 for all z E Rk.
Therefore

(9.1) fn3(0n; 4) = 06n94(An) = Po,,(An e DC) = P0 (A,F-'An > d).
However, this last quantity is greater than or equal to Po.(p 11An|12 > d) which
converges to 1 by Assumption 5. Thus 3,Bn(On; 4 -- 1, as was to be seen.

APPENDIX

At the beginning of Section 5, it was pointed out that for testing the hypo-
thesis H: 0 = 00 against the alternative A: 0 #L 00, it suffices to consider the
class of tests based only on A*. Furthermore, each such test function is essentially
the indicator of the complement of a closed, convex set in Rk. The reason for
this is that the distribution S4,* h of A*, under Rn h (defined in (5.6)), is of the
standard exponential form, so that results obtained in Birnbaum [1] and
Matthes and Truax [14] apply (see also Theorems 1.1 and 1.2 in Chibisov [2]).
The purpose of this appendix is to elaborate further on this point.

In order to simplify the notation, in all that follows we shall omit the subscript
n, since there is no danger of confusion.
From Lemma 5.1(i), one has

(A.1) d Yh = exp {-B(h) + h'z}, z, h E Rk.

where Y.* = Y(A*IRh). Then the hypothesis testing problem above, described
in terms of the family (A. 1), becomes

(A.2) H*: h = 0 against A*:h * 0.

For any test /, the associated risk corresponding to the usual zero-one loss
function is

(A.3) R,(O) = /4+(0), R, (h) = 1 - /4(h) for h # 0,

where /,0(0) is the size of the test 4 and ,B,(h) is its power at h.
The Bayes, or global risk, with respect to any prior probability distribution W

on _4k that is associated with the test 0 is given by
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(A.4) r(o, W) = f R,(h) dW1T.

The following theorem is obtained in Birnbaum [1].
THEOREM A.1. In connection with the fanmily (A.1).for testing the hypothesis

H*: h = 0 against the alternative A*: h # 0 on the basis of A*, any Bayes test
4'w with respect to the prior distribution W, is given by

(A.5) kw(Z) = I if z e Cw

where Cw is a closed, convex set in Rk. The test may be defined in an arbitrary (but
measurable) manner on the boundary C' of Cw.

PROOF. If wo is the mass assigned to {O} by I", one has from (A.4)

(A.6) r(0, W) = f R,,(h) dW = wo[2/3 (0) - 1] + f [1-I f(h)] dWr

= (1 - wo) + 2wo f q(z) dYo

-J [f k(z) exp {- B(h) + h'z} d ] dW

= (1- wo) + f [2wo - fexp B(h) + h'z} dW]4(z) dYo.

Clearly, the Bayes risk is minimized by the test

1 if zeA1 = [zeRkk2wUo J<exp{- B(h) + h'z}dW]
(A.7) w (Z) =

10 if zeA2 = [zeRk:2wo > fexp{- B(h) + h'z}dW];

'w may be defined arbitrarily (but in a measurable way) on the set

(A.8) A3 = Lz e Rk: 2wo = f exp { -B(h) + h'z} dl]

which is the boundary ofA 2 u A 3. From the definition of exp {B (h)} in (5.1), it
easily follows that exp { -B(h)} is bounded over bounded sets of h in Rk.
Therefore for any probability measure W on _k, one defines a a-finite measure
pw on _ikas follows

(A.9) iw(B) = fBexp {- B(h)} dW.

Then

(A.10) f exp {- B(h) + h'z} dW = f exp {h'z} d4uw = f exp {z'h} dpw
and by Theorem 9 on p. 52 in Lehmann [12], it follows that I exp {- B(h) +
h'z} dW is continuous (as a function of z). Next by using the inequality
(A.l1) exp {Ju + (1 - A)v} < A exp {u} + (1 - 2) exp {v} 0 < A < 1
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with strict inequality unless u = v, one has that

(A.12) f exp {-B(h) + h'[AzI + (1 - A)Z2]} dW

A exp{-B(h) + h'zl} dW + (1-A) fexp{ B(h) + h'Z2} dW

. 2wo whenever z1, z2 eA2 uA3 = C.

Thus Cw is a convex set. It is also closed, since f exp {- B(h) + h'z} dW is
continuous, as was shown above.

According to the weak compactness theorem for tests, for any given
sequence of tests {j,n}, there is a subsequence {4)m}. which converges weakly
to a test 4 in the sense that

(A.13) f 4)mgdYo -+ f gdfo

for every Y* integrable function g defined on Rk into R. A proof of this
theorem can be found in Lehmann [12], pp. 354-356.
REMARK A.1. As a consequence of the weak compactness theorem stated

above, one has that, if {41m} converges weakly to 4. then ,l,_(h) -- f,,(h) for
every h e Rk. This follows from (A.13) above by replacing g(x) by the Y*0
integrable function exp {-B(h) + h'z}.
Now consider the class of tests 4 of the following form

(A.14) +(z) ={ if z e C°

where C is a closed, convex set in Rk. The test may be defined in an arbitrary
(but measurable) manner on the boundary Cb of C. The Bayes tests given by
(A.5) are also of the form (A.14). However, in the following, we will be interested
in tests of the form (A.14) which may not correspond to any prior W on Xk.
We shall show below that the weak limit of a sequence of tests, each one of

which is of the form (A.5), is also of the same form. To this end, denote by Sr
the closed, solid sphere of radius r centered at the origin, and for any two
closed subsets of S,, A and B, consider their Hausdorff distance, d(A, B),
defined as follows

(A.15) d(A, B) = inf {E > 0; A c NE(B), Bc NE(A)}.

Here NE(A) = {yeRk; (y - z)'(y - z) < forsomezeA} and similarly for
NE(B).
The following standard result on convex sets, which is established in

Eggleston [5], p. 64, will also be needed.
THEOREM A.2. (Blaschke selection theorem). Given any sequence of closed,

convex subsets of S,, {C,,}, there exists a subsequence {Cm} and a nonvoid,
convex subset C of Sr such that d(CmC) O 0.
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By utilizing Theorem A.2, one can establish the following result, as in
Matthes and Truax [14], p. 684.
THEOREM A.3. If {4.m} is a sequence of tests of the fornm (A.14) which con-

verges weakly to the test 0 in the sense of (A.13). then 0 is also of the same for/n
a.s. [So]
The following definition refers to the essential completeness of a class of tests,

namely.
DEFINITION A.1. A class of tests is said to be essentially complete for testing

the hypothesis H*: h = 0 against the alternative A*: h =6 0 in the family (A.1), if
f'or any test i not in the class there i.s a test 0 in the classfor wvhich flp(0) . fl3p(0)
and /3,(h) _ 14, (h) for h 7 0.
We now show that tests of the form (A.14) form an essentially complete

class. More precisely,
THEOREM A.4. For testing the hypothesis H*: h = 0 against the alternative

A*: h 7& 0 in the family (A.1), the class of tests of the form (A.14) is essentially
complete when WV varies over the class of all probability distributions on 4k

PROOF. Assume that the test X is not of the form (A.14) and define the new
risk R* associated with a test ¢> as follows

(A.16) R,*(h) = R,t,(h)- R4(h), h E Rk,

where R, and Rp, are given by (A.3) (with 4 replaced by f for the latter). Let
{h,} be a dense sequence in Rk with h1 = 0 and distinct terms. We claim that
for each j = 1. 2, , there exists a test 4j of the form (A.5) with

(A.17) R.*j(hi) _ 0, i = 1. 2., ,j.

Suppose for a moment that (A.17) has been established. Then by considering the
sequence {¢j} there is a subsequence {(tm} which converges weakly to a test ¢,
by the weak compactness theorem. Furthermore, the test 4 is also of the form
(A.14) a.s. [Y;]. This is so by Theorem A.3. Now according to (A.17),
R* _(hi) _ 0 for all i and m. or equivalently, R,,_(hi) _ Rq,(hi) for all i and in,
as follows from (A.16). From Remark A.1, one then has that /3l,(O) _ ,B¢(O)
and fl3,,(hi) _ /3o(hi) for i = 2, 3, . . By the fact that the power function of
any test is continuous (by Theorem 9 on p. 52 in Lehmann [12]) and the choice
of the sequence {hi}, one has that f,3,(h) < f,,(h) for all h E Rk. h =k 0.
Thus it suffices to establish (A.17). For each j = 1. 2. , consider the risk

set, Cj(R*) consisting of points of the form (R (h1,), , R' (hj))' for some test 4,.
It is then an easy matter to show that Cj(R*) is closed and convex. As is well
known, the minimax test qj, say, is obtained by finding the point in Cj(R*) on
the equiangular line with the smallest coordinates. To this end, define dj by
dj = inf{:3(1, , 1)' E Cj(R*)} and set

(A.18) C(dj) = {z = (x1. xjx)' e Ri: xi < dj. i = 1. j}.

Then C(dj) and Cj(R*) are disjoint, convex sets. By the separating hyperplane
theorem (see. for example, Ferguson [6], pp. 73-74), it follows that there exists
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hyperplane w'z = a with U1'z > a for z E Cj(R*), w'z < a for z E C(dj) and
w'z = a for z = dj(1 1)'. The coordinates wi, i = 1, ,j of w are _ 0
because otherwise xi - oc would lead to a contradiction. Therefore we may as
well assume that (wi, wj)' is a probability distribution over {h1. , hji.
Since w'z _ a for z e Cj(R*) and w'z = a for z = dj(1, *, 1)', it follows that
the minimax test Oil corresponding to the point dj(1. 1)', is also Bayes
relative to the distribution (w *, wj)' and hence 4pj is of the form (A.14).
Next from (A.16) it follows that R*,(hi) = O i = 1. ,j, and since 4kj is
minimax, one has that R* j(hi) _ 0 for all i = 1, , j. The claim in (A.17) is
established and the proof of the theorem is completed.
To Theorem A.4, there is the following corollary.
COROLLARY A.1. For testing the hypothesis H*: h = 0 against the alternative

A*: h #& 0 in the family of probability densities given in Lemma 5.1(ii), namely

(A.19) L; = exp {-B(h) + h'Fz}. z. h cRk.

where L* = (F-lA* Rh), the class of tests of the form (A.14) is essentially
complete.

PROOF. The transformation t = Fh brings the family (A.18) into the form
(A.1) and then Theorem A.4 applies.

This appendix is closed with the following remark.
REMARK A.2. As follows from Theorem A.4 and also Corollary A.1, when

testing the hypothesis H*: h = 0 against A*: h 0. for any test f not of the
form (A.14), there exists a test of that form with no smaller power and no
larger size whatever the size of 4. Consequently, whatever criterion is proposed
in terms of power, it is possible to restrict ourselves to members of the class of
tests of the form (A.14).
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