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1. Introduction and summary

Let X® = (X, .-, X{™) be a random vector having a multinomial distri-
bution with parameters N and p = (py, - ** . pu),
N
™ — = : X1 ... %
IRY PN = alp) = el m
where x = (x,, "', x}) is a vector with nonnegative integer components with
sum N, and p is any point in the simplex
k .
(12) Q = {(yl’.'.,yk)l Z yi = lsyi g OfOI'T: = 1"”;1‘;}-
i=1
By Z®™ = (Z{™,---, Z{M) we denote the random vector with components
XM .
(1.3) zZMN = - i=1,- k.
For N = 1,2, - -, consider tests based on Z™ for the hypothesis H: p € A,

against the alternative K: p € A, where A, and A, are disjoint subsets of (2 and
A = Ay U A may be a proper subset of Q. It is assumed that the sizes ay of the
tests depend on N in such a way that ay — 0 for N = . The likelihood ratio
test based on Z™ for H against K rejects H for large values of the statistic

K
(1.4) inf sup ) Z™ log

T
_’
peAo meA =1 P

possibly with randomization on the set where the statistic assumes its critical
value.

In [2] W. Hoeffding considered a special case of this situation where A = Q,
in which case the likelihood ratio statistic (1.4) reduces to
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k Z{N)
(1.5) inf Y ZM™ log —.

peAo i=1 i

The paper [2] is devoted to making precise the following proposition in this case:
“If a given test of size ay is ‘sufficiently different’ from a likelihood ratio test. then
there is a likelihood ratio test of size < ay which is considerably more powerful
than the given test at ‘most’ points p in the set of alternatives when N is large enough,
provided that oy — 0 at a suitable rate.”” By ‘‘considerably more powerful” is
meant that the ratio of the error probabilities of the second kind at p of the two
tests tends to zero more rapidly than any power of N. The condition that
“ay = 0 at a suitable rate” will typically imply that ay tends to zero more
rapidly than any power of N. that is. that —log ay/log N — oc.

If the likelihood ratio test is much better than a given test for most alter-
natives. it is natural to ask how much worse it can be for the remaining alter-
natives or sequences of alternatives. Let ffy denote the power function of the
size ay likelihood ratio test based on Z™ for H against K and let S5 be the size
oy envelope power for testing H. that is. B35 (p) is the power at p of the size ay
most powerful test based on Z™ for H against the simple alternative p. The
shortcoming of the size ay likelihood ratio test for a given N is defined by

(1.6) Ry(p) = B (p) — Bu(p). peA;.

The main purpose of this paper is to show that for a simple hypothesis H and
under a condition concerning the speed of convergence of ay to zero. the short-
coming of the likelihood ratio test converges to zero uniformly on the set of
alternatives. We note that for testing the simple hypothesis H: p = p°. p®e A
against K: pe A; = A — {p°} the likelihood ratio statistic (1.4) reduces to
k .
(1.7) sup Y ZMlog .
meA =1 Pi
TuroreM 1.1.  Let A be an arbitrary subset of Q. p° an arbitrary point of A
and let Ry denote the shortcoming of the size ay likelihood ratio test based on
ZW for H:p = p® against K: pe A; = A — {p°}. If

(1.8) Al,im oay = 0, —log ay = o(N) for N — oo,
then
(1.9) Al’l_'n}o 21/{) Ry(p) = 0.

Although Hoeffding’s result and Theorem 1.1 are complementary in the sense
mentioned above, we wish to point out that they are of an entirely different
nature. Hoeffding’s theorem concerns fixed alternatives and the performance of
the likelihood ratio test is compared to that of a fixed sequence of tests by con-
sidering the ratio of error probabilities of the second kind. The alternatives at
which the likelihood ratio test is considerably more powerful in Hoeffding’s
sense are necessarily alternatives where the power of the likelihood ratio test
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tends to one very rapidly. Since also the convergence of ay to zero is assumed to
be fast, the probabilities to be considered under the hypothesis as well as under
the alternative are all probabilities of large deviations. The tools used to estimate
these probabilities are Theorems 2.1 and A.1 in [2] which are reproduced here
as Lemma 2.6.

In Theorem 1.1 on the other hand the performance of the likelihood ratio test
is compared at each alternative to that of the most powerful test for that alter-
native. The comparison is in terms of power difference and the result is uniform
on the set of alternatives. Alternatives or sequences of alternatives for which the
power of the likelihood ratio test tends to one play a role only in so far as uni-
formity is concerned and the theorem is basically concerned with sequences of
alternatives for which the power of the likelihood ratio test remains bounded
away from one. Under alternatives we only have to compute probabilities of
small deviations which is done by applying the central limit theorem. As ay is
allowed to tend to zero either slowly or fast, we are dealing with intermediate as
well as large deviations under the hypothesis. In the former case where
—log ay = o(N'®), Theorem 1.1 was first proved by using classical limit
theorems by J. Oosterhoff in [3] under the additional assumptions that A = Q
and that p° is an interior point of Q. We shall use this result (Lemma 3.1) as a
starting point for our investigation in the case where ay tends to zero slowly. In
the case where ay tends to zero fast the resulting probabilities of large deviations
are dealt with in the same manner as is done in [2].

The condition —log ay = o(N)in Theorem 1.1 is unduly restrictive and occurs
there only for the sake of simplicity. In fact we shall show that it may be replaced
by the assumption that there exists ¢ > 0 such that for all sufficiently large ¥

(1.10) ay = (1 — po)V et

where p? is the smallest positive coordinate of p°. Moreover, further refinements
of this condition are possible.

The reason that we need an assumption of this type at all. is to avoid com-
plications arising from the fact that under sequences of alternatives converging
sufficiently fast to certain boundary points of Q. the distribution of the likelihood
ratio statistic degenerates too rapidly. The nature of these complications is most
easily made clear for alternatives located at the extreme points of Q (that is. the
points with a coordinate equal to one).

ExampLE 1.1. Take for p° the point with coordinates p) = k™ 1i=1,--- k,
and suppose that A contains all extreme points of Q. Choose ay = k~~. The
statistic (1.7) assumes its maximum value if Z{™ =1 for some i. Since

P(ZM = 1|p°) = k" for each i, the size ay likelihood ratio test rejects
H:p = p° with probability k~* if Z™ = 1 for some i and hence its power at
each of the extreme points of Q is equal to k~'. For each i, the size oy most
powerful test for H:p = p° against the simple alternative p; = 1 rejects H if
Z™ = 1 and has power one at p; = 1. The shortcoming of the likelihood ratio
test at each of the extreme points of Q is therefore equal to 1 — k™' for every N.
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It is of course easy to modify this example in such a way that no randomization
occurs.

Whereas Hoeffding’s result is restricted to the case where A = Q but allows
a composite hypothesis i, Theorem 1.1 places no restriction on A but deals only
with a simple hypothesis H. In Section 4 we shall show by means of a counter-
example that even for the case where A = Q Theorem 1.1 does not hold in
general for a composite hypothesis H.

Section 2 of this paper contains some preliminary results on the multinomial
distribution. In Section 3 we prove Theorem 1.1 and show that the condition
—log ay = 0(N) may be replaced by (1.10). Section 4 is devoted to the case
where the hypothesis H is composite.

2. Preliminary results

For any set A = Q we shall denote by A" the set of all y € A for which Ny has
integer coordinates.

LemMa 2.1. For any A = Q for which A is nonempty, the function f(p =
P(Z™ e Alp) assumes its maximum value only at points p in the convex hull of A".

Proor. Let 7 be a point in the complement of the convex hull of A¥. Since
AN contains only finitely many points its convex hull is closed and hence there
exists a hyperplane separating m and A", that is. there exists a vector
a = (a;, -, a,) such that £ a;(z; — m;) > 0 for all z€ A". Because L z; =
Y n; = 1, we may choose a in such a way that £ a;n; = 0 and Z a;2; > 0 for
all ze AN. As T a;m; = 0 and a; = n; = 0 whenever 7; = 0, the points with
coordinates m; + ea;m; are points of Q for all sufficiently small ¢ > 0. Hence

|
M»

k
(2.1) Y aiTci%f(p)h:n =Y a Y P(Z™ = z|n) Nz
i=1 i

1 zeAN

M=

a;z;

=N Y PZ™ =z|n)

zeAN i=1

is a directional derivative of f at 7 in a direction in Q multiplied by a nonnegative
constant. Note, however, that a;n; may be equal to zero for all i if n; = 0 for
some i.

If f(r) > 0, then (2.1) is positive because £ a;z; > 0 for all z € A" and con-
sequently f does not have a maximum at 7. If f(m) = 0 the same conclusion holds
since A" is nonempty. Q.E.D.

For z, p € Q we define
k

2.2) Iz p) = Y zlog 2,

i=1 i
where z; log (2;/p;) = 0 by definition if z; = 0. It is well known that for fixed p
this function is convex in z, positive unless z = p and finite if p; 5 0 for all i.
In Lemma 2.2 we show that under p the random variable I(Z™, p) is of order
at most N™! in probability uniformly in p.
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LeEmMA 2.2. For every € > 0 there exists A > 0 such that for all N

A
(2.3) sup P(I(Z(N),P) = ﬁ|P) Se
peQ
Proor. For0 <z <1,0<p, =1

 — Y . — s 2

24) log——zlog(1+ P < BB (g gy ¢ BB
V4 Di D y 2

Since uncer p, Z{M = ZM™ log (Z(M/p,) = 0 a.s. if p; = 0, we have under p

N _ o\2
(2.5) 0= I(Z(N) )< Z (.?_p_l)i

with probability one. It follows that
pi(l — pi) < k-1
Np, = N~

13

(2.6) ELZM, p)p) = ¥
p;#0
Application of Markov’s inequality completes the proof.
Let Q denote the interior of Q,

° k
(27) Q={(yl5“"yk)lZyi=l’yi>0fori=l’.”’k}
i=1

and define for p® e Q, p e Q,

2.8) 2.5% = 3 pi1 AR S AN
. p,p)= Zpi ngo Zpi ogpo .
i i=1

i=1 i

We shall have to consider the asymptotic distribution of

k
(2.9) ™ = Y ZM log L
i=1 ¥
under p for fixed p° € §} and varying p € Q. The distribution of 7" under p is
degenerate if and only if the positive coordinates of p are proportional to the
corresponding coordinates of p° (as before we take 0 log 0 = 0 by definition).
Forp #+ p® and p = & > O (that is, p; = e for all i = 1, - - -, k) the following
lemma provides a uniform normal approximation. By ® we denote the standard

normal distribution function.
LemMma 2.3. For any fixed p° eQand e > 0,

™ — I(p,
(2.10) lim P(—L—% N2 < a|p> — ®(a)
i N-o (p.p")
uniformly for all a and all p € Q withp #+ p® and p = e.
ProoF. Under p the distribution of NT{™ is the same as that of Z}_, Y,
where Y,, - -+, Yy are independent and identically distributed random variables
with



36 SIXTH BERKELEY SYMPOSIUM: OOSTERHOFF AND VAN ZWET

2.11) P<Yj=log]%> = o, i=1,-k
Hence
(2.12) E(TV|p) = I(p. p°).
(2.13) (T |p) = N~ 'a?(p. p°).
Let Fy , be the distribution function of

TV — [ 0
2.14) I~ lp.p7)

o(p,p”)

and for m = 2, 3, let v, , denote the mth absolute central moment of Y;. Since
the distribution of Y; is degenerate only if the positive coordinates of p are pro-
portlonal to the corresponding coordinates of p°, v, , is positive and finite if
p # p° and p € Q. Hence by the Berry Esseen theorem (see [1]) we have for
all @ and N and forallpeg’p #+ p°.

(2.15) |Fy,pla) — @(a)] < cvy vz 32 N2
where ¢ is a constant independent of a, N and p. By (2.11)

k
log%)— Zpilog%

J i=1 i

k
(2.16) Vm,p = Zl P
i

if p # p® and p 2 ¢ then p,n} = max;p;n; is positive and finite and as a result
(2.17) Vi, pv2 p kPr'h (Pz’?z T2 = kp, 12 = ke~ 1/
Together with (2.15) this proves the lemma.

LemMA 2.4, For every fixed p° € Qande > 0 there exist 0 < M, < M, <x
such that

(2.18) M I(p.p% £ o*(p.p°) £ M,1(p, p°)

SJorallp e Quithp =
Proor. By expandlng the logarithms involved we find that for p € Q) with
max|p; — p{| < 9,

k p—
I Z =, o)

i l

(pi _Opi) + 08

1 Pi

The proof is completed by noting that for p outside a neighborhood of p° and
p = ¢, both I(p, p°) and o*(p. p°) are bounded away from zero and infinity.
For p° € A = Q we shall have to consider

l\)[»—'

(2.19)

Mz—

a*(p.p°) =

i

(2.20) sup Z Z™ log ——.

meA =1 pz
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where z; log (n;/pf) = 0 by definition if 2; = 0. Note that under p e A this
random variable is defined (possibly + c0) with probability one.

LeEmMA 2.5. Let A be an arbitrary subset of Q, p° an arbitrary point of A and
define Ay = A — {p°}. Furthermore, let cy and ay, N = 1,2, - - -, be sequences
of nonnegative real numbers such that

Naj

(2.21) }im cy = 0, gim Ney = o0, lim = 0.

N-ow Cn

Then

(2.22) %upP(sup Y zZ®™ log L<cey 4 ay, [(ZM™M p°) = ¢y — aN|p>

peAy neA =1 pl

tends to zero for N — o0.
Proor. Underpe A,

(2.23) sup z z™ log — T > Z zZm log =1(Z™ p°% — 1(Z™. p)

% 0 9
a.s. since under p, 0 < I(Z™), p) < o0 a.s. Hence the lemma is proved if we
show that

(2.24) sup Pley —ay S I(ZW™, p°) < ey + ay + I(Z™, p)|p)

tends to zero for N - oo. By Lemma 2.2 it suffices to show that for every 4 > 0,

A
(2.25) sug P(cN —ay S IZM p°) < cy + ay + A_7|p> -0
pe

for N - oo. We consider three cases.

(i) Suppose that p° € Q. Since ¢y + ay + AN~ - 0 for N - oo, there exists
¢ > 0 such that for all sufficiently large N the set {z|zeQ.I(z,p°) <
cy + ay + AN~ '} is contained in the convex set {z|2€Q.z; = efori = 1,- -+ k}.
By Lemma 2.1 the supremum over Q in (2.25) may therefore be replaced by the
supremum over the set of all p € Q with p = &. Furthermore, we may again use
the fact that under p

k
(2.26) 1ZD.°) = ¥ 2z 1og1% + 1(Z™. p) as.
i=1 i
and 0 < I(Z™), p) < 20 a.s. It follows from Lemma 2.2 that to prove (2.25) it
is sufficient to show that for every 4 > 0 and ¢ > 0.

¢ A £ (N) pi A
(2.27) T;ZQP cy — ay — ¥ < i;I VA logp—0 Scy +ay + }|p

i

tends to zero for N — oc.
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The condition Ncy — co implies that cy is positive for all sufficiently large N ;

together with the condition NaZcy! — 0 it also yields

1/2
(2.28) ay + % = o((%’) ) = o(cy)

for N - . Hence ¢y — ay — AN~! > 0 for all sufficiently large N. As for
p = p° the random variable in (2.27) is equal to 0 a.s., the supremum in (2.27)
may be restricted to the set of all p # p° with p = ¢. Applying Lemma 2.3 we
find that it suffices to show that for every 4 > 0 and ¢ > 0

Cn + ay + 1‘11\7_1 - I(P,pO)Nuz)
a(p, p°)

(2.29) (D(

_ ®(CN — ay — 141\7—01 - I(tho) N1/2>
o(p, p°)

tends to zero for N — 00, uniformly for all p # p°® with p = &.
Define, for N =1,2, - -,

b

0|2

Qy, = {plpeﬂyp +0%p2¢el(pp°) <
(2.30)

|\

QN,2={p|pEQ,p#PO:p 8vl(p7po)>

For p e Qy 1, (2.29) is bounded above by

o]

ey — — AN7?
(2.31) 1 - @(2"” I — N“z)
o(p,p)
and by (2.28) and Lemma 2.4
1 — - -1 1/2 1/2
(2'32) ch a/N OAN 1/2 - CNN 5 —2. CNN —
a(p, p°) 20(p, p°) = 2[M1(p,p°)]

New\1/2
= (21;};) — o0 for N = o0.

For p e Qy ,, (2.29) is bounded above by

ay + AN"' } N 12
T N2 < (g + ANTY [
a(p, p°) N M,I(p, p°)

1/2
g(aN+AN")(1;N ) -0

1CN

(2.33)

by the mean value theorem, Lemma 2.4 and (2.28). Hence the suprema of (2.29)
over both Qy ; and Qy , tend to zero which proves the lemma for p° € (0}

(ii) Suppose that p? is a boundary point but not an extreme point of Q ; without
loss of generality we assume that for some 2 <m <k — 1, p? # 0 for
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i=1, ,mandpl—Oforz'—-m+1 kSinceI(z,p°)=ooifzi3é0
forsomem +1=i5ktheset {z|2€Q,I(z,p°) < cy + ay + AN '} is con-
tained in the convex set {z|]z€eQ,z,=0fori =m + 1, -, k}. By Lemma 2.1
the supremum over Q in (2.25) may therefore be replaced by the supremum over
all pe Q with p;, = 0 fori =m + 1, -+, k. But under any p with p; = 0 for
i=m+1,---k,
Z(N)

(2.34) I(Z®™, p°) = Z ZM log —5- a.s.

= l

3

and (Z{M, -+, Z™) has a multinomial distribution with parameters N and
(p1, "+, pm)- Thus we have reduced the problem of proving (2.25) to the same
problem in a lower dimensional parameter space where (p?, - - -, p2) is now an
interior point. This has been dealt with in (i).

(iii) Suppose that p° is an extreme point of Q. This implies that I(Z™", p°) can
only assume the values 0 and . Since cy — ay > 0 for all sufficiently large N,
(2.25) is immediate. Q.E.D.

We remark that in the proof of Lemma 2.5 we have made use of the condition
¢y — 0 only to ensure that in case (i), for every 4 > 0

2.35) {2|2€Q,I(z,p°) S ey +ay + AN '} c {z|z€Q, 2z 2 &}

for some & > 0 for all sufficiently large N, whereas in case (ii) it is needed that
the same condition holds for the reduced lower dimensional problem. As
ay + AN"! = o(cy) by (2.14), Lemma 2.5 will continue to hold if we replace
the condition ¢y — 0 by the following assumption. For all sufficiently large ¥
the set {z|z € Q, I(z, p°) < cy} remains bounded away from the set of all points
z € Q that have z; = 0 for all i for which p? = 0 but also for at least one i with
p? # 0. This extension of Lemma 2.5 is the main step in relaxing the condition
—log ay = o(N) in Theorem 1.1 (see Section 3).

We complete this section by stating the result on large deviations of
W. Hoeffding in [2] that we already referred to in Section 1. For a nonempty
set A = Q and p € Q, define

2.36 I(4, p) = infI(z, p) = inf log =
(2.36) 4, p) = infI(z p) = inf IZ z ogpl
If 4 is empty we take I(4, p) = + 0. We recall that for any 4 = Q, A" denotes
the set of all z € A for which Nz has integer coordinates.
LemMa 2.6 (Hoeffding). Uniformly for all A = Q and all p € Q,

(2.37) P(Z™ e A|p) = exp {—NI(4A", p) + O(log N)}.

Moreover, for any p € Q and any sequence Ay = Q with complex complements,
(2.38) I(A¥, p) = I(4y, p) + O(N~'log N),

hence

(2.39) P(Z™ e Ay|p) = exp {—NI(4y, p) + O(log N)}.
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3. Proof of Theorem 1.1

The size ay likelihood ratio test based on Z™ for H:p = p° against K:p # p°
rejects H if

(3.1) [(Z™, p°) Z Z™ log

i=1 1

7 (N)

>CN

with possible randomization if equality occurs. For this case, where A = Q,
Oosterhoff [3] showed that Theorem 1.1 holds under the additional assump-
tions that p° € Q and that oy tends to zero slowly. In his proof he found that
under his conditions —log ay ~ Ncy for N — oo, which implies the conclusions
concerning cy in the following lemma.

LemMa 3.1 (Oosterhoff). Let p° be an arbitrary point off) and let Ry denote
the shortcoming of the size ay likelihood ratio test (3.1) for H: p = p° against
K:peQ — {p°. If

(3.2) 131m ay = 0, —log ay = o(N'®) for N — o0,
then
(3.3) Jim sup, Ry(p) =0,

and Ncy = o0, ¢y = 0 for N - 0.
N N

We begin by removing, as far as possible, the restriction p° € Qin Lemma 3.1.

LEMMA 3.2.  Let p° be an arbitrary point of Q and let Ry denote the shortcoming
of the size ay likelikood ratio test (3.1) for H: p = p° against K: pe Q — {p°}.
If

(3.4) h}lm ay = 0, —log ay = o(N'/®) for N - o0.
then
(3.5) 1‘}13.10 sgg Ry(p) = 0.

Moreover, Ncy — o, cy = 0 for N = o0 unless po is an extreme point of .
Proor. Ifp°e Q) Lemma 3.2 is merely a repetition of Lemma 3.1. If p° is an
extreme point of Q, then the likelihood ratio test is uniformly most powerful and
hence its shortcoming is identically equal to zero for all N. We may therefore
suppose that p° is a boundary point but not an extreme point of Q; without loss

of generality we assume that forsome2 < m < k — L.p? # O0fori=1,---,m
andp,p =0fori=m+1,--- k.

In this case any admissible size ay test for H:p = p° agaimt K: p # p°
rejects H with probability one if Z{™ # 0 for at least one i = m + 1, - . k,
and with probability ¢y (2, - -, z,) if ZIN) =2z, fori =1.---.mand Z(N’ =0

fori =m + 1, .-, k. The size ay likelihood ratio test (3.1) is of this type with
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1 if Z zilogz—; > Cy-
i=1 Di
(3.6) Gy(zy. " zy) =16 if Y zilogz—g= Cns
i=1 D;
0 if Y zlog—; < cy.
i=1 pi
where 0 < 0 £ 1.

Let us introduce an auxiliary random vector Z®™ = (Z(M, - -, Z®™) such that
NZ™ has a multinomial distribution with parameters N and p = (py. " * * . P)-
where 7 is any point in
(3.7) Q= {(yl,'~',y,,,)|Azlyi =1,y 20 for i=1"-"" m}

Since P (ZMN), = --- = Z{") = 0|p°) = 1. we have for the size ay likelihood
ratio test as well as for any admissible size ay test
(3.8) ay = E(gy(Z2™)[p°)
where § = (p?, - - -, p3). For the power of such a test at p # p°® we have
1 if pyp=-=py=0,
3.9 = ~
(3:9) Pulp) {1 — 1V + 7VE(dn(Z™M)|p) otherwise,
where
< - P .
(3.10) =) p. pi—; for i=1.---.m.
i=1

For the random vector Z™, consider the auxiliary problem of testing
H:p = p° against K: p # p°, where p denotes the parameter vector of the dis-
tribution of Z™. A test for this problem will reject H with probability ¢y(z) if
Z™ = 2z Such a test has size ay if and only if ¢ satisfies (3.8), and its power at
P is given by

(3.11) Bn(B) = E(on(Z™)|P).

Thus there exists a one to one correspondence between the class of size oy tests
for H based on Z™ that reject H with probability one if Z{™ # 0 for at least
onei =m + 1, -, k and the class of all size ay tests for H based on Z™. Here
corresponding tests have the same function ¢y and hence by (3.9) and (3.11)
we find that for all p with p; # 0 for at least one i = 1, - - -, m, their power
functions satisfy

(3.12) Bu(p) =1 — 7% + 2By,

where 7 and § are defined by (3.10). Let 4 and B3 denote the size oy envelope
power functions for testing H on the basis of Z™ and H on the basis of Z),
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respectively. Since only admissible size ay tests for H enter into the determination
of By . it follows from (3.9) and (3.12) that

1 if py=-"=p,=0.
1 — 7" + 2¥BY(p) otherwise,

(3-13) Bx (p) = {

where © and g are defined by (3.10).

The likelihood ratio test for the auxiliary problem of testing A against K is
based on the statistic I(Z™), $°). As the function ¢ for the size ay likelihood
ratio test given by (3.6) satisfies (3.8), this function is also the test function of the
size a likelihood ratio test for A against K. In the first place this implies that the
critical values of the two size ay likelihood ratio tests are both equal to the same
number cy. In the second place it means that (3.13) will continue to hold if the
envelope power functions B and fj are replaced by the power functions fy and
By of the size ay likelihood ratio tests. Hence, if Ry and Ry denote the short-
comings of the size ay likelihood ratio tests for H against K and for f against
K, respectively. then

0 i pr=-=pn=0
3.14 R = 3
( ) ~(p) {nNRN (p) otherwise,

where 7 and § are defined by (3.10). Since 7 < 1 and By (5°) = 0.
(3.15) sup Ry(p) < sup Ry(p).

p#r° p#p°

As 5% is an interior point of Q we may apply Lemma 3.1 to the auxiliary testing
problem to conclude that the right side of (3.15) tends to zero and that
Ney = 0. ¢y = 0for N > o0, Q.E.D.

Our next step will be to remove the restriction A = Q.

LEMMA 3.3.  Let A be an arbitrary subset of Q, p° an arbitrary point of A and
let Ry denote the shortcoming of the size oy likelihood ratio test based on Z™ for
H:p=p%against K:pe A, = A — {p°}. If

(3.16) A}im ay = 0, —log ay = o(N'%) for N — oo,
then
(3.17) 131_{130 sup Ry(p) = 0.

Proor. Ifp?is an extreme point of Q, the likelihood ratio test for H against
K is uniformly most powerful against K and hence its shortcoming is equal to
zero for all p € A; and all N. We may therefore suppose that p is not an extreme
point of Q.

The size ay likelihood ratio test for H against K rejects H if

k
(3.18) sup 3 ZM log = = c}.
p.

neA (=1 i
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possibly with randomization if equality occurs. Let us compare this test with the
size ay likelihood ratio test (3.1) for H against p # p°. By Lemma 3.2 the short-
coming of the latter test vanishes uniformly for all p # p°® for N - o and
hence Lemma 3.3 will be proved if we show that

k

; *

(3.19) sup P(sup Y ZMlog — < ey, [(Z™. p%) 2 cN|p>
peA;  \meA i=1 i

tends to zero for N — oo, where cy is the constant that occurs in (3.1). As p° is

not an extreme point of Q, Lemma 3.2 also ensures that ¢y = 0 and Ncy » ©

for N > 0. Furthermore we note that under any p € A

k

(3.20) sup Y. Z" log i(') < 1(ZW™, p°) a.s.
neA =1 Di

Since the tests (3.1) and (3.18) have the same size it follows that cy and cy may

be chosen in such a way that cy < cy. To prove Lemma 3.3 it is therefore

sufficient to show that

peAy neA =1 i

K
(3.21) sup P(sup Y z®™ log% < ey, [(ZM, p°) = cN|p)

tends to zero for N —» 0. As ¢y = 0 and Ncy — o for N — oo, this is the
content of Lemma 2.5 for ay = 0. Q.E.D.
We now turn to the case where ay tends to zero fast.
LeEmMA 3.4.  Lemma 3.3 holds if the conditions (3.16) concerning ay are replaced
by
—log ay

(322) 131_1;1010 W = 00, —IOg Uy = O(N) for N — .

Proor. For the same reason as in the proof of Lemma 3.3 we may restrict
attention to the case where p° is not an extreme point of Q. Consider the size ay
likelihood ratio test (3.1) for H:p = p° against p # p°. The convexity of

I(z, p°) in z ensures that the sets
Ay = {z|2€Q,I(z,p°) 2 ¢y},
(3.23) By = {z|z€Q,1(z,p°) > cy}

have convex complements. By the second part of Lemma 2.6

(3.24) oy < P(I(Z™),p°) = cy|p°)
= exp {—NI(4y,p°) + O(log N)} = exp {—Ncy + O(log N)},

or Ney £ —log ay + O(log N). This implies that ¢y = 0 for N —» oo by the
second part of (3.22). For z € Q, the function I(z, p®) assumes all values in the
interval [0, —log p2] where p? is the smallest positive coordinate of p°. As p°
is not an extreme point of Q, —log p® > 0 and hence 0 < ¢y < —log pS for all
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sufficiently large N. For these values of N, I(By, p°®) = cy and by the second
part of Lemma 2.6

(3.25) ay = P(I(Z™, p°) > cy|p®) = exp {—Ncy + O(log N)}.
Hence
(3.26) ay = exp {—Ncy + O(log N)}, Ney = —logay + O(log N):
together with (3.22) this yields

AT
(3.27) lim —N _— . lim ey = 0.

N-w (log N)? N—w

By the first part of Lemma 2.6 there exists a number 0 < a < oo independent
of N, such that for every N and every 2™ € QY with I (2™, p°) < ¢y — a(log N)/N,

(3.28) P(Z™ = 2™|p°®) 2 exp {—Ncy + alog N + O(log N)} = Noy.

Obviously, any size oy test for H: p = p° cannot reject H with probability larger
than N~ if Z™ assumes one of these values z'™). Hence the size ay envelope
power By for testing H satisfies

(3-29) Bu(p) £ N7 + P(L(Z™, p°) 2 cy — ay|p)
for all p # p° where

alog N

(3.30) ay = —

0<a< 0.
We note that (3.29) is a slightly modified form of a conclusion due to
W. Hoeffding in [2].

It follows from (3.29) that the shortcoming Ry (p) at p of the size ay likelihood
ratio test (3.18) for H against K is bounded above by

k

o 1

(3.31) P(sup Yz logl(') S e . HZM™, p°) = ey — aN|p> + ¥
neA =1 pi

By the reasoning given in the proof of Lemma 3.3 we may assume that cy < cy

and hence Lemma 3.4 is proved if we show that

k

(3.32) sup P(sup Y Z™M log l(i) Sen. I(Z™, p°%) = ey — aN|p>
PeA; meA i=1 pi

tends to zero for N — 0. By (3.27) and (3.30), ¢y — 0, Ncy — o and Na3 /cy — 0

for N — oo. Application of Lemma 2.5 completes the proof.

Proor oF THEOREM 1.1. The theorem is proved by splitting up the sequence
ay into two subsequences satisfying (3.16) and (3.22), respectively, and applying
Lemmas 3.3 and 3.4.

In Section 1 we claimed that the condition —log ay = o(N) in Theorem 1.1
may be relaxed. To see how this can be achieved we obviously need not consider
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the proof of Theorem 1.1 for the case where ay — 0 slowly; we only have to
inspect the proof of Lemma 3.4.

In proving Lemma 3.4 we have made use of the condition —log ay = o(N)
only to conclude that ¢y — 0 for N — oo, provided that p° is not an extreme
point of Q. This fact was needed on two occasions. In the first place it was used
to ensure that, if p° is not an extreme point of Q, we have 0 < ¢y < —log p2
for all sufficiently large N, where p2 denotes the smallest positive coordinate of
p°. As the function I(z, p°) assumes its largest finite value —log p> at those

extreme points z € Q for which z; = 1 for some i with p? = p2. the assertion
0 < cy < —log pg is equivalent to saying that the set
(3.33) Cy = {z|2€Q, I(z,p°) < cy}

does not contain these specific extreme points of Q. We recall that C'y is the
closure of the acceptance region of the size ay likelihood ratio test (3.1) for
H:p = p° against p # p°.

In the second place, the fact that ¢y — 0 was used to ensure applicability of
Lemma 2.5. However, in the remark following the proof of this lemma we
pointed out that the lemma remains valid if the condition ¢y — 0 is replaced by
the following assumption.

AssumPTION 1. For all sufficiently large N the sets Cy defined in (3.33) remain
bounded away from the set D, of all points z € Q that have z; = 0 for all i for
which p? = 0 but also for at least one i with p? #+ 0.

This assumption obviously implies that, for all sufficiently large N, the set C'y
does not contain any extreme points of Q, unless p? itself is an extreme point. It
follows that Theorem 1.1 will continue to hold if the condition —log ay = o(N)
is replaced by Assumption 1. Note that Assumption 1 imposes no restriction if
p° is an extreme point of Q.

One easily verifies that for p® < 1 (that is, p? < 1 for all i),

: oy _ _ . 0
(3.34) inf I(z.p°%) = ~log (1 = pp).

where p2 is defined as above. Since I(z, p°) is convex and uniformly continuous
on the set of all z that have z; = 0 forall i with p? = 0, Assumption 1 isequivalent
to the requirement that if p° < 1, there exists ¢ > 0 such that for all sufficiently
large N, cy < —log (1 — pS) — & Going over the proof of Lemma 3.4 we find
that this, in turn, is equivalent to

AssumMPTION 2. There exists € > 0 such that for all sufficiently large N,
—logay < N(—log (1 — pd) — &), where pl, denotes the smallest positive co-
ordinate of p°.

Note that if p° is an extreme point of Q, Assumption 2 imposes no restriction
on the sequence ay. As Assumptions 1 and 2 are equivalent, the condition
—log ay = o(N) in Theorem 1.1 may be replaced by the obviously weaker
Assumption 2.

By sharpening Lemmas 2.3 and 2.5 one can show that Theorem 1.1 will still
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continue to hold if C'y does approach D, for N - o, but does so sufficiently
slowly. In Assumption 2 this corresponds to allowing & to tend to zero for
N — o0, provided that this convergence is sufficiently slow.

4. The case of a composite hypothesis

In this section we show by means of a counterexample that Theorem 1.1
breaks down in the case of a composite hypothesis H even when A = Q. We
consider the binomial case k = 2 and write Z™ = Z™M. 1 — Z®™ = ZM
p=p,and 1 — p = p,. Thus NZ™ has a binomial distribution with para-
meters N and p where p is an arbitrary point in [0. 1]. Forz€ [0, 1]. p € [0, 1]
and Ay < [0, 1] we define

z 1 -z
4.1) I(z,p) = zlog— + (1 — z)log
P Il —p
and
(4.2) I(z. Ay) = inf I(z, p).
peAo

If Ay is a proper subset of [0, 1], one may consider the problem of testing
H:peAjagainst K: p¢ Ay. A nonrandomized likelihood ratio test for H against
K rejects H if

(4.3) I(Z™, Ay) 2 &y
the size of this test is
(4.4) ay = sup P(L(Z™, Ay) = Ex|p).
peho

Consider any fixed sequence of positive numbers ¢y such that
(4.5) 1\111-{20 cy = 0. 131_{23 Néy = o0.
We choose two positive integers a and b and a sequence dy such that 0 < dy < Cy
for all N and Ndy — 0 for N — co. Next we construct a set A, < [0, 1] with
the following property: there exists an infinite sequence of positive integers
N, < N, < -+ such that for every i the following conditions are satisfied :

(i) A, contains points p; ; < p; , with

(4.6) 1(1‘\‘—,,10,.,,.) = éy, — dy, for j=1,2.
(ii) Ao contains points p; 3 < p; 4 with
b
(4.7) 1<1 - v,pm) = Cy, for j =3, 4.
v

(iii) Ao does not contain points in (p; 1, p; 2) Y (Pi 3. Pi, a)-
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To see that this construction is possible we note that for sufficiently large N,
1<a,b £N — 1 and hence

a a b b
(4.8) I(ﬁ’0>=1<i’ 1) =I(1 _ﬁ’()) =I(l - ¥ 1>= 0.

Thus, for any sequence Ny < N, < --- with N; — 1 = max (a, b), points p; ;
with properties (i) and (ii) exist for every i. Notice that obviously 0 < p; ; <
aN;7' <p,,and p;3 <1 —bN;' <p,, < 1. Since &y - 0 for N - o0, we
can also ensure for every 0 < & < $thatp, , <& <1 — & < p, 3 by choosing
N, large enough. Having chosen Ny = max (a, b) + 1 in such a way that the
above holds for some 0 < ¢ < }, we proceed to choose N, for i = 2,3, -~
sequentially in such a way that

a a .
Fi < pPi-1,1; I(i’pi—l,l> > &y, — dy,,

1 > P {1 Pi- > ¢
N- i-1,4> DT! i-1,4 N;-

This is clearly possibleasp;,_; ; > 0,1(0,p;—; 1) > 0,p;—1,4 < LLI(1,p;_1,4) >0
for all i 2 2 and ¢y — 0 for N - co. However, this implies that p;, , < p;_; ,
and p; 3 > p;_y,4 for every ¢ = 2. Because we already made sure that
P1,2 <& <1 — g < p, 3, condition (iii) will be satisfied if A, does not contain
other points in an & neighborhood of 0 and 1 besides the points p; ;.

For an arbitrary sequence ¢y satisfying (4.5) and for a corresponding set A,
that we have just constructed, we consider the sequence of likelihood ratio tests
(4.3) for H: pe Ay against K: p ¢ Ay. We shall show that ay defined by (4.4)
satisfies the conditions ay — 0 and —log ay = o(N) of Theorem 1.1, but that
the shortcoming of this sequence of likelihood ratio tests does not tend to zero
uniformly for all p ¢ A,.

By (4.2) and (4.4)

(4.10) ay < sup P(I(Z™, p) 2 &y|p),

and since Néy — o0, ay — 0 for N - o by Lemma 2.2. Let p, be an isolated
point of Aq with 0 < p, < 1, for example, p, = p,,,. For zin a sufficiently small
neighborhood of py, I(z, Ag) = I(z, py) and the absolute value of the derivative
of this function is smaller than . Since ¢y — 0, the set

(4.11) Ay = {2]0 £ 2 S 1,I(z, Ay) Z &y}

will contain, for all sufficiently large N, a point 2™ for which N2V is an integer
and I(2™, po) < &y + 6N~ !. Hence by Lemma 2.6

(412)  ay Z P(I(Z™, Ao) Z Ex|po) Z exp {—Néy — 6 + O(log N)},

and as ¢y —» 0, —log ay = o(N) for N — oo.
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For N = N; we need a sharper asymptotic lower bound for ay. By properties
(i1) and (iii) of the set Ay

b b
(4.13) I<l N A0> = 1(1 - Fapi.3> = Cp,

for all i. It follows that for every ¢ > 0 we have for all sufficiently large i

b
(4.14) oy, Z P(Z‘”" =1-—|p 3>
Ni ’

b b
exp {—Ni(;Ni}P<Z(N.~) -1 — ~ 1 — A_v)
_b bb ~
(1 - 8) e aexp {_ATiCN,-}-

v

Also, by properties (i) and (iii) of the set A,

a a .
(4.15) 1<F’ A0> = I(FsPi,j) = Cy, — dy,

forj = 1,2 and all i. Because Ndy — 0 for N — oo this implies that for every
a
Pl Z®) = —
max ( N,

e>0
pi,j)
ji=1,2

- , a,a
= exp { —N;(Cy, — dn,)} P<Z(N') = KV‘.IN-)

(4.16) sup P<Z(N" = %lp)

peAo

=1 +¢g e_aa_,eXP {—Niey}
a!

for all sufficiently large i. Together with (4.14) this implies that there exists a
number 0 < ¢ = 1 such that the test 7y that rejects H with probability ¢ if
Z™M = gN~! has size at most ay whenever N = N, and i is sufficiently large.
Hence, if 85 denotes the size oy envelope power for testing H, we have shown
that for every ¢ > 0

(4.17) B, <Ai7> > d,p(z(Ni) - %

a

a _.a
iTV_,) Z ¢(1 —¢)e prt

for all sufficiently large 7. On the other hand, property (i) of the set A, ensures
that for N = N, the critical region Ay of the likelihood ratio test does not contain
points in the interval [p; ;, p; , |. If By denotes the power of the size ay likelihood
ratio test, this means that for all ¢

(4.18) B, <Ai,> < Bu(pis) + Bui(pi2) < 2oy,
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where the right side tends to zero for ¢ - c0. Together with (4.17) this proves
that the shortcoming of the likelihood ratio test does not tend to zero uniformly

forall p ¢ A,.
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