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1. Introduction and summary

Let X(N) = (X(N) * , X(N)) be a random vector having a multinomial distri-
bution with parameters N andp = (Pi, .Pk),

(1.1) p(X(N) = xlp) = N! .. .pXk

where x = (x1,I , Xk) is a vector with nonnegative integer components with
sum N, and p is any point in the simplex

(1.2) Q = (Yl, Yk) Yi = 1, Yi 0 for i = 1, k

By Z(N) = ( * **, Z(N)) we denote the random vector with components

x(N)
(1.3) Z(N) N' i = 1,* * *, k.

For N = 1, 2, * , consider tests based on Z(N) for the hypothesis H: p E Ao
against the alternative K: p E A1, where Ao and A1 are disjoint subsets of Ql and
A = Ao u A1 may be a proper subset of Q. It is assumed that the sizes aXN of the
tests depend on N in such a way that aXN -O 0 for N - oo. The likelihood ratio
test based on Z(N) for H against K rejects H for large values of the statistic

k

(1.4) inf sup IZ(N) log
peAo ieA i=1 Pi

possibly with randomization on the set where the statistic assumes its critical
value.

In [2] W. Hoeffding considered a special case of this situation where A = Q,
in which case the likelihood ratio statistic (1.4) reduces to
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k Z(N)
(1.5) inf IZ(N) log

peAo i = 1 Pi

The paper [2] is devoted to making precise the following proposition in this case:
"If a given test of size cIN is 'sufficiently different' from a likelihood ratio test. then
there is a likelihood ratio test of size _ aN which is considerably more powerful
than the given test at 'most' points p in the set ofalternatives when N is large enough,
provided that oN 0 at a suitable rate." By "considerably more powerful" is
meant that the ratio of the error probabilities of the second kind at p of the two
tests tends to zero more rapidly than any power of N. The condition that
aN - 0 at a suitable rate" will typically imply that CaN tends to zero more

rapidly than any power of N. that is. that - log aN/log N -+ o.

If the likelihood ratio test is mueh betteir than a given test for most alter-
natives. it is natural to ask how much worse it can be for the remaining alter-
natives or sequences of alternatives. Let AN denote the power function of' the
size ON likelihood ratio test based on Z(N) for H against K and let ,BN be the size
aN envelope power for testing H. that is. fl/ (p) is the power at p of the size aN
most powerful test based on Z(N) for H against the simple alternative p. Trhe
shortcoming of the size aN likelihood ratio test for a given N is defined by

(1.6) RN(P) = flN (P) - flN(P) P E A.

The main purpose of this papeir is to show that for a simple hypothesis H and
under a condition concerning the speed of convergence of a,N to zero, the short-
coming of the likelihood ratio test converges to zero uniformly on the set of'
alternatives. We note that for testing the simple hypothesis H: p = p0. p0 E A
against K: p E A1 = A - {p°} the likelihood ratio statistie (1.4) reduces to

k
r

(1.7) sup E Z(N) Iog" i
itEA i= 1 Pi

THEOREM 1.1. Let A be an arbitrary subset of Q. p0 an arbitrary point of A
and let RN denote the shortcoming of the size ¾N likelihood ratio test based on
Z(N)forH:p =po againstK:peA1 = A - {p}.If

(1.8) lim N = 0, -log aN = o(N) foI N oo
N-oo

then

(1.9) lim sup RN(P) = 0
N-05 Pe,

Although Hoeffding's result and Theorem 1.1 are eomplementary in the sense
mentioned above, we wish to point out that they are of an entirely different
nature. Hoeffding's theorem concerns fixed alternatives and the performance of
the likelihood ratio test is compared to that of a fixed sequence of tests by con-
sidering the ratio of error probabilities of the second kind. The alternatives at
which the likelihood ratio test is considerably more powerful in Hoeffding's
sense are necessarily alternatives where the power of the likelihood ratio test
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tends to one very rapidly. Since also the convergence of oN to zero is assumed to
be fast, the probabilities to be considered under the hypothesis as well as under
the alternative are all probabilities of large deviations. The tools used to estimate
these probabilities are Theorems 2.1 and A.1 in [2] which are reproduced here
as Lemma 2.6.

In Theorem 1.1 on the other hand the performance of the likelihood ratio test
is compared at each alternative to that of the most powerful test for that alter-
native. The comparison is in terms of power difference and the result is uniform
on the set of alternatives. Alternatives or sequences of alternatives for which the
power of the likelihood ratio test tends to one play a role only in so far as uni-
formity is concerned and the theorem is basically concerned with sequences of
alternatives for which the power of the likelihood ratio test remains bounded
away from one. Under alternatives we only have to compute probabilities of
small deviations which is done by applying the central limit theorem. As aN is
allowed to tend to zero either slowly or fast, we are dealing with intermediate as
well as large deviations under the hypothesis. In the former case where
-log1 N = o(N 116), Theorem 1.1 was first proved by using classical limit
theorems by J. Oosterhoff in [3] under the additional assumptions that A = Q
and that p0 is an interior point of Q. We shall use this result (Lemma 3.1) as a
starting point for our investigation in the case where aN tends to zero slowly. In
the case where ON tends to zero fast the resulting probabilities of large deviations
are dealt with in the same manner as is done in [2].
The condition - log aN = 0(N) in Theorem 1.1 is unduly restrictive and occurs

there only for the sake of simplicity. In fact we shall show. that it may be replaced
by the assumption that there exists E > 0 such that for all sufficiently large N

(1.10) aN >- ( )Pm) e

where p° is the smallest positive coordinate of p0. Moreover, further refinements
of this condition are possible.
The reason that we need an assumption of this type at all. is to avoid com-

plications arising from the fact that under sequences of alternatives converging
sufficiently fast to certain boundary points of Q, the distribution of the likelihood
ratio statistic degenerates too rapidly. The nature of these complications is most
easily made clear for alternatives located at the extreme points of Q (that is. the
points with a coordinate equal to one).
EXAMPLE 1.1. Take forp° the point with coordinatesp9 = k- 1i = 1 * *, k,

and suppose that A contains all extreme points of Q. Choose acN k-N. The
statistic (1.7) assumes its maximum value if Z!N) = 1 for some i. Since
P(ZIN) - lip0) = k-N for each i, the size ¾N likelihood ratio test rejects
H: p = po with probability k-1' if Z!N) = 1 for some i and hence its power at

each of the extreme points of Q is equal to k- 1 For each i, the size caN most

powerful test for H: p = p0 against the simple alternative pi = 1 rejects H if
Z(N) = 1 and has power one at pi = 1. The shortcoming of the likelihood ratio

test at each of the extreme points of Q is therefore equal to 1 -k- 1 for every N.
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It is of course easy to modify this example in such a way that no randomization
occurs.
Whereas Hoeffding's result is restricted to the case where A = Q but allows

a composite hypothesis H, Theorem 1.1 places no restriction on A but deals only
with a simple hypothesis H. In Section 4 we shall show by means of a counter-
example that even for the case where A = Q Theorem 1.1 does not hold in
general for a composite hypothesis H.

Section 2 of this paper contains some preliminary results on the multinomial
distribution. In Section 3 we prove Theorem 1.1 and show that the condition
-log aN = o(N) may be replaced by (1.10). Section 4 is devoted to the case
where the hypothesis H is composite.

2. Preliminary results

For any set A c Q we shall denote by AN the set of all y E A for which Ny has
integer coordinates.
LEMMA 2.1. For any A c Q for which AN is nonempty. the function f(p =

p(Z(N) E A |P) assumes its maximum value only at points p in the convex hull ofA N.
N~~~~~~~~~~~~~~~~~~PROOF. Let 7r be a point in the complement of the convex hull of AN. Since

A' contains only finitely many points its convex hull is closed and hence there
exists a hyperplane separating 7r and AN, that is, there exists a vector
a = (a,..* * , ak) such that E ai(zi- i) > 0 for all z e AN. Because X zi =

7ri = 1, we may choose a in such a way that Y ai i = 0 and I aizi > 0 for
all z e AN. As aai7i = 0 and ai = zi = 0 whenever ;i = 0 the points with
coordinates 7ri + sai7ci are points of Q for all sufficiently small E > 0. Hence

k a k
N

(2.1) k _Pi af( iE P(Z=Na = z7r) NziZa7i= afp)Ip= i=1 ZEAN
k

= N E p(Z(N) = Z17t) E aizi
ZEAN i=1

is a directional derivative off at 7r in a direction in Q multiplied by a nonnegative
constant. Note, however, that ai7i may be equal to zero for all i if 7i = 0 for
some i.

If f(7t) > 0, then (2.1) is positive because X aizi > 0 for all z EAN and con-
sequentlyf does not have a maximum at 7t. Iff(7z) = 0 the same conclusion holds
since AN is nonempty. Q.E.D.
For z, p E Q we define

k

(2.2) I(Z,P)= L Zi log-'
i=1 Pi

where zi log (zi/pi) = 0 by definition if zi = 0. It is well known that for fixed p
this function is convex in z, positive unless z = p and finite if pi ¢ 0 for all i.
In Lemma 2.2 we show that under p the random variable I(Z(N). p) is of order
at most N-' in probability uniformly in p.
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LEMMA 2.2. For every E > 0 there exists A > 0 such that for all N

(2.3) su (( XP lp) _ S.

PROOF. For 0< zi < 1, 0 < pi <

(2.4) Zi log = Zi log (I+ ) i = (zi-pi) + p

Since uncer p, Z(N) = ZiN) log (Z(N)/pi) = 0 a.s. if pi = 0, we have under p

(2.5) 0 _ I(Z(N), p) < E (
Pi*O Pi

with probability one. It follows that

(2.6) E(I(Z(N), p)lp) E
y pi(pi) <k- I

_1+ Npi N

Application of Markov's inequality completes the proof.
Let Q denote the interior of Q,

k

(2.7) Q = {(Y1, Yk)I E yi = 1, yi > O for i = 1, k}
i= 1

and define for po E Q, p E Q2,

(2.8) a2 (P' PO) = Pi (log -(Epij log )2.

We shall have to consider the asymptotic distribution of

(2.9) TN(N) = Z!N) log-P
i=1 P

under p for fixed p0 E Q and varying p E Q. The distribution of T(N) under p is
degenerate if and only if the positive coordinates of p are proportional to the
corresponding coordinates of p0 (as before we take 0 log 0 = 0 by definition).
For p # po and p _ E > 0 (that is, Pi _ E for all i = 1, , k) the following
lemma provides a uniform normal approximation. By cD we denote the standard
normal distribution function.
LEMMA 2.3. For anyfixed po E Q and E > 0,

TPN (p,p0) 1(2
(2.10) lim P (P- N < alp) = (a)
uniformly for all a and allp E Q) with p # p0 andp > E.
PROOF. Under p the distribution of NTpN) is the same as that of EL 1 Yi

where Y1, * YN are independent and identically distributed random variables
with
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(2.11) p Yj = log-O=Pi i = I, * k.

Hence

(2.12) E(TpN)Ip) = I(p.p°).
(2.13) 62(T(N)lp) = N!-1a2(p.pO).
Let FN, p be the distribution function of

(2.14) 0(ppO)
and for m = 2, 3, let vm,p denote the mth absolute central moment of Yj. Since
the distribution of Yj is degenerate only if the positive coordinates ofp are pro-
portional to the corresponding coordinates of po, vm, p is positive and finite if
p =k p0 and p e Q. Hence by the Berry-Esseen theorem (see [1]) we have for
all a and N and for allpe ,p # p°.

(2.15) IFN,P(a) - (I(a)l . CV3 v73'2Np 12

where c is a constant independent of a, N and p. By (2.11)
k pj

k

(2.16) V"kp=ZjnT ij log = P PlogP
j=1 pio i P

if p * p0 and p _ e then pt3 = maxjpj q3 is positive and finite and as a result

(2.17) v3,pv2 pl kpt? @,,t)3I = kPt <_ ke'I

Together with (2.15) this proves the lemma.

LEMMA 2.4. For everyfixedpoEC and E > 0 there exist 0 < M1 < M2 < x
such that

(2.18) Mll(p.p°) . a2(p,p) _ M2(P, PO)
for all p e Q withp _ E.

PROOF. By expanding the logarithms involved we find that for p e Q with
maxIpi -p? <

!k (pi -p)2 ()1 (P, PO) =
I

E + ° (3),
(2.19) k (pi +q)2

U2(p ~ Y
.Z + Q(63).
i=1 Pi

The proof is completed by noting that for p outside a neighborhood of p0 and
P _ s, both I(p, po) and a2(p, po) are bounded away from zero and infinity.
For pO e A c Q we shall have to consider

kSZ o
(2.20) sup Y Z~N) log -,

i=eA Pi
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where zi log (Ji/p'9) = 0 by definition if zi = 0. Note that under p e1A this
random variable is defined (possibly + co) with probability one.
LEMMA 2.5. Let A be an arbitrary subset of Q, po an arbitrary point of A and

define A1 = A - {po}. Furthermore, let CN and aN, N = 1, 2. be sequences
of nonnegative real numbers such that

NaN(2.21) lim cN = 0. lim NCN = C, lim = 0.
N-oc N -o N-,o cN

Then
7 k Nr

(2.22) sup P (sup E ZCN)10g . cN + aN, I(Z p) > CN - aN P
peA I nTEA i= Pi

tends to zero for N-+ cx.
PROOF. Underp e A1,

k 1i k

(2.23) SUP E Z(N) log > ZZ(N) log Pi = I(Z(N)° - I(Z(N) P)
irc-A i= 1 Pi i=1 Pi

a.s. since under p, 0 . I(Z(N). p) < cc a.s. Hence the lemma is proved if we
show that

(2.24) sup P(CN aN . I(Z(N)po) . CN + aN + I(z(N),p)|P)
peA I

tends to zero for N -. oo. By Lemma 2.2 it suffices to show that for every A > 0,

(2.25) suP P(CN - aN . I(ZN,po) . CN+ aN +N|P) -° 0

for N -* oo. We consider three cases.

(i) Suppose that p0 e 6. Since cN + aN + AN`' 0 for N -- co. there exists
e > 0 such that for all sufficiently large N the set {z z eQ,I(z, pO) .
CN + aN + AN 1}is contained in the convex set {zIze Q, Zi > E fori -1. k}.
By Lemma 2.1 the supremum over Q in (2.25) may therefore be replaced by the
supremum over the set of all p E Q with p . E. Furthermore, we may again use
the fact that under p

(2.26) I(Z(N). pO) = Z(N) log P + I(Z(N). p)
i=1 Pi

and 0 . I(Z(N). p) < cc a.s. It follows from Lemma 2.2 that to prove (2.25) it
is sufficient to show that for every A > 0 and E > 0.

A kA
(2.27) 5 N- < ZIN) log Pi cN±a+SP_PE (CN aN N - iZ 0=oO< CN + aN + A P)tends Nti= Pz N

tends to zero for N -+cx.
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The condition NCN °+ O implies that CN is positive for all sufficiently large N;
together with the condition Nac- 1 - 0 it also yields

(2.28) aN + A =O= o(CN)

for N -. oo. Hence CN - aN - AN` > 0 for all sufficiently large N. As for
p = po the random variable in (2.27) is equal to 0 a.s., the supremum in (2.27)
may be restricted to the set of all p * po with p _ E. Applying Lemma 2.3 we
find that it suffices to show that for every A > 0 and s > 0

(2.29) (CN + aN + AN` I(p, Po) N112

( CN- aN - AN - I(p, Po) N' ,2

tends to zero for N -0 0, uniformly for all p ¢p0 with p sE.
Define, for N = 1, 2,

QN,1 = {P PCEQ P Po, P >,I(p, Po) CN

(2.30) {N
QIN, 2 =l| E Ql P * °o, > E,I(P, Po) > 2-

For p E QN, , (2.29) is bounded above by

(2.31) 1 - (DCN - aN - AN` N"21
and by (2.28) and Lemma 2.4

2 -Ca AN` 1/ 1/2 CN 1/2
(2.32) !CN - aN N' 12-CNN >- NN

a (p p°) 2a(p, po) 2[M2I(p pO]1/2

> (M for)2o N .

Forp E QN 2, (2.29) is bounded above by

(2.33) aN + ON N 12 _ (aN + AN1)(M1 I(p°))"a(p,Po) mip
I2N 1/2

< (aN + AN-) (M,)N,/

by the mean value theorem, Lemma 2.4 and (2.28). Hence the suprema of (2.29)
over both QN, 1 and QN, 2 tend to zero which proves the lemma for po E 6.

(ii) Suppose thatp0 is a boundary point but not an extreme point off; without
loss of generality we assume that for some 2 < m < k- 1, Pi° * 0 for
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i=1,* m andp° = O for i = m + 1,, k. Since I(z,p°) = oo ifzi * °
for some m + 1 _ i _ k, the set {z|z EQ, I(z,pO) _ CN + aN + AN 1} is con-
tained in the convex set {zIz E Q, zi = 0 for i = m + 1, * * *, k}. By Lemma 2.1
the supremum over Q in (2.25) may therefore be replaced by the supremum over
all p E Q with pi = 0 for i = m + 1, k. But under any p with pi = 0 for
i = m + 1, ,k,

mz(N) PO)ZN z (N)
(2.34) I(Z(N)YpE)= E ZiN) log O a.s.

i=1 Pi
and (Z( N), Z(N)) has a multinomial distribution with parameters N and
(Pi, * , pm). Thus we have reduced the problem of proving (2.25) to the same
problem in a lower dimensional parameter space where (p°, * , p°o) is now an
interior point. This has been dealt with in (i).

(iii) Suppose that p0 is an extreme point of Q. This implies that I(Z(N), p0) can
only assume the values 0 and Oo. Since CN - aN > 0 for all sufficiently large N,
(2.25) is immediate. Q.E.D.
We remark that in the proof of Lemma 2.5 we have made use of the condition

CN -+ 0 only to ensure that in case (i), for every A > 0

(2.35) {zIzE Q, I(z, PO) _ CN + aN + AN-1} c {zlz E Q z e}

for some s > 0 for all sufficiently large N, whereas in case (ii) it is needed that
the same condition holds for the reduced lower dimensional problem. As
aN + AN` = o(CN) by (2.14), Lemma 2.5 will continue to hold if we replace
the condition CN -+ 0 by the following assumption. For all sufficiently large N
the set {z z E Q, I(z, pO) . CN} remains bounded away from the set of all points
z E Q that have zi = 0 for all i for which P° = 0 but also for at least one i with
PIP * 0. This extension of Lemma 2.5 is the main step in relaxing the condition
-log CAN = o(N) in Theorem 1.1 (see Section 3).
We complete this section by stating the result on large deviations of
W. Hoeffding in [2] that we already referred to in Section 1. For a nonempty
set A c Q and p E (Q, define

k z.
(2.36) I(A, p) = infI(z,p) = inf E zi log-i

zeA zeA i=1 Pi

If A is empty we take I(A, p) = + oo. We recall that for any A c Q, AN denotes
the set of all z E A for which Nz has integer coordinates.
LEMMA 2.6 (Hoeffding). Uniformly for all A C Q and all p E Q,

(2.37) P(Z(N) E Aip) = exp {-NI(AN, p) + O(log N)} .

Moreover, for any p E Q and any sequence AN C' Q with complex complements,

(2.38) I(AN, p) = I(AN, p) + O(N -1 log N),
hence

(2.39) p(Z(N) e ANIP) = exp {-NI(AN, p) + O(log N)}.
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3. Proof of Theorem 1.1

The size cxN likelihood ratio test based on Z(N) for H: p = po against K: p pPo
rejects H if

k Z(N)
(3.1) I(Z(N), >= E Z=N)log > CN

i=l Pi

with possible randomization if equality occurs. For this case, where A =Q.
Oosterhoff [3] showed that Theorem 1.1 holds under the additional assump-
tions that po E Q and that oGN tends to zero slowly. In his proof he found that
under his conditions - 1og OAN NcN for N - oo. which implies the conclusions
concerning CN in the following lemma.
LEMMA 3.1 (Oosterhoff). Let po be an arbitrary point of Q and let RN denote

the shortcoming of the size OXN likelihood ratio test (3.1) for H: p = po against
K: p E Q- {p°}. If

(3.2) lim AN = 0, -log X_ = o(N16) for N -X
N-

then

(3.3) lim sup RN(P) = 0,
N-'cr p*p0

and NCN O', CN - 0 for N -~ oo.

We begin by removing, as far as possible, the restriction p0 E Q in Lemma 3. 1.

LEMMA 3.2. Let po be an arbitrary point of Q and let RN denote the shortcoming
of the size AiN likelihood ratio test (3.1) for H: p = p0 against K: p E - {p°}.
If
(3.4) lim AN = 0, -log a,N = (N 6) for N -X oo.

then

(3.5) lim sup RN(P) = 0.
N-'co p#p0

Moreover, NCN °O, CN - 0 for N -+oo unless po is an extreme point of Q.
PROOF. If po Ec Lemma 3.2 is merely a repetition of Lemma 3.1. Ifp0 is an

extreme point of Q, then the likelihood ratio test is uniformly most powerful and
hence its shortcoming is identically equal to zero for all N. We may therefore
suppose that p0 is a boundary point but not an extreme point of Q; without loss
of generality we assume that for some 2 . m < k - 1,p 0 for i = m
and p9 = 0 for i = m + 1, k.

In this case any admissible size GiN test for H: p = p0 against K: p pP0
rejects H with probability one if Z(N) # 0 for at least one i = m + 1, k,
and with probability ON(Z1, Zm) if Z(N) = zi for i = 1. ,m and Z(N) = 0
for i = m + 1, * , k. The size OAN likelihood ratio test (3.1) is of this type with



LIKELIHOOD RATIO TEST 41
m Z

I if E Zi log - > C
i=l Pi

(3.6) ON(Z1 ZM) if E z log N,

0 if z log < CN,
i1 Pi

where 0 < 6 . 1
Let us introduce an auxiliary random vector Z(N) =(Z("N)' * *,N)) such that

NZ(N) has a multinomial distribution with parameters N andjp = (fi ,m
where p is any point in

m

(3.7) = {(y1, , Ym) Yi = 1, Yi _ 0 for i = 1. ,m}.

Since P(Zm+ = = Z(N) = °IP°) = 1 we have for the size aN likelihood
ratio test as well as for any admissible size aiN test

(3.8) aN = E(4N(Z())[P )

where p~= (P?, *.*, Po). For the power of such a test at p + p0 we have

if pi== P.=0'
(3.9) 1N(P) = - +±TNE(ON(Z(N))I)5) otherwise,
where

m
7r Pi. ~~~Pi(3.10) ic= E P- i=- for i =1 . m.

For the random vector Z(N), consider the auxiliary problem of testing
fi p = po against K: p =# p', where p denotes the parameter vector of the dis-
tribution of Z(N). A test for this problem will reject H with probability 4N(Z) if
Z(N) = z. Such a test has size aN if and only if ON satisfies (3.8), and its power at
P is given by

(3.11) AN(P) = E(4NN(Z(N))IP).
Thus there exists a one to one correspondence between the class of size aN tests
for H based on Z(N) that reject H with probability one if ZIN) * 0 for at least
one i = m + 1, k,kand the class of all size aiN tests for f based on Z(N). Here
corresponding tests have the same function ON and hence by (3.9) and (3.11)
we find that for all p with pi + 0 for at least one i = 1, , m, their power
functions satisfy

(3.12) AN(P) = 1 - N + 7tN (P)
where 7t and p5 are defined by (3.10). Let AN+ and AN+ denote the size aN envelope
power functions for testing H on the basis of Z(N) and H on the basis of Z(N),
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respectively. Since only admissible size aN tests for H enter into the determination
of ANZ, it follows from (3.9) and (3.12) that

(3.13) /N (P) = { - ,tN + 7tN + (P3) otherwise,

where 7t and p3 are defined by (3.10).
The likelihood ratio test for the auxiliary problem of testing H against K is

based on the statistic I(Z(N), pO). As the function 4N for the size 0aN likelihood
ratio test given by (3.6) satisfies (3.8), this function is also the test function of the
size aN likelihood ratio test for H against K. In the first place this implies that the
critical values of the two size aN likelihood ratio tests are both equal to the same
number CN. In the second place it means that (3.13) will continue to hold if the
envelope power functions ,+ and A are replaced by the power functions AN and
/8N of the size aN likelihood ratio tests. Hence, if RN and RN denote the short-
comings of the size aN likelihood ratio tests for H against K and for H against
K, respectively. then

(3.1) RN(P) fo if pi= P.= 0
(3.14) RN(P) = >RNN(P) otherwise,

where 7r and p5 are defined by (3.10). Since 7r . 1 and RN(P0) = 0,

(3.15) sup RN(P) . SUP RN(P)j
P+P° P$PO

As po is an interior point of Q we may apply Lemma 3.1 to the auxiliary testing
problem to conclude that the right side of (3.15) tends to zero and that
NcN --

OlD CN -°0 for N -X ol. Q.E.D.

Our next step will be to remove the restriction A = Q.
LEMMA 3.3. Let A be an arbitrary subset of Q, p0 an arbitrary point of A and

let RN denote the shortcoming of the size LN likelihood ratio test based on Z(N) for
H:p = po against K:ppA1 = A - {p°}. If

(3.16) lim ON = 0, -log aN = o(Nl16) for N -- oo,
N-.

then

(3.17) lim sup RN(P) = 0
N- o peAi

PROOF. Ifpo is an extreme point of Q, the likelihood ratio test for H against
K is uniformly most powerful against K and hence its shortcoming is equal to
zero for all p E A1 and all N. We may therefore suppose that p is not an extreme
point of Q.
The size aN likelihood ratio test for H against K rejects H if

(3.18) sup E Z -N)log CN'
7neA i=1 Pi
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possibly with randomization if equality occurs. Let us compare this test with the
size a?N likelihood ratio test (3.1) for H against p * p0. By Lemma 3.2 the short-
coming of the latter test vanishes uniformly for all p :&po for N -+ oo and
hence Lemma 3.3 will be proved if we show that

k

(3.19) supPP sup E Z(N) log .
< C,I(Z(N), PO) > CNP)

peA1 ircA i= 1 Pi

tends to zero for N -+ co, where CN is the constant that occurs in (3.1). As po is
not an extreme point of Q, Lemma 3.2 also ensures that CN -* 0 and NCN °° CO
for N -X cc. Furthermore we note that under any p E A

k 7C
(3.20) sup E Z(N) log- I I(Z(N),p°) a.s.

IIEA i= 1 Pi

Since the tests (3.1) and (3.18) have the same size it follows that cN and CN may
be chosen in such a way that cN _ CN. To prove Lemma 3.3 it is therefore
sufficient to show that

(3.21) supP sup Z(N) log - < CNN, I(Z( ).PO) _ CN|P)
pEA I nEA i= 1 Pi

tends to zero for N --+ X. As CN -+ 0 and NCN -. cc for N -+ oc. this is the
content of Lemma 2.5 for aN = 0 Q.E.D.
We now turn to the case where aN tends to zero fast.
LEMMA 3.4. Lemma 3.3 holds if the conditions (3.16) concerning aN are replaced

by

(3 .22 ) iN- (log N)= -log aN = o(N) for N -+ oo.

PROOF. For the same reason as in the proof of Lemma 3.3 we may restrict
attention to the case where p0 is not an extreme point of Q . Consider the size aN
likelihood ratio test (3.1) for H: p = p0 against p + p°. The convexity of
I(z, po) in z ensures that the sets

AN = {ZIZ E Q,I(Z,PO) > CN},
(3.23) BN = {ZIZCEQ,I(Z,P0) > CN}
have convex complements. By the second part of Lemma 2.6

(3.24) aN < P(I(Z(NP°) > CNIP°)
= exp { -NI(AN, p0) + O(log N)} = exp { -NCN + 0(log N)},

or NCN . -log aN + O(log N). This implies that cN -4 0 for N ooby the
second part of (3.22). For z E Q, the function I(z, po) assumes all values in the
interval [0, -log po] where p° is the smallest positive coordinate of p0. As p0
is not an extreme point of Q, - log p° > 0 and hence 0 _ CN < - log pm for all
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sufficiently large N. For these values of N, I(BN, PO) = CN and by the second
part of Lemma 2.6

(3.25) CaN - P(I(Z(N), PI) > CNP0) = exp {-NCN + O(log N)}.

Hence

(3.26) aN = exp {-NCN + O(log N)}, NCN = -log caN + O(log N):

together with (3.22) this yields

(3.27) li NCN = . lim CN = 0.
N (log N)' N- o

By the first part of Lemma 2.6 there exists a number 0 . a < x independent
of N, such that for every N and every z(N) E QN with I(z(N),po) < CN - a(log N)/N,

(3.28) P(Z(N) = z(N)Ip) _ exp {-NCN + a log N + O(log N)} > NcXN.
Obviously, any size aN test for H: P = p cannot reject H with probability larger
than N` if Z(N) assumes one of these values Z(N). Hence the size CaN envelope
power #+ for testing H satisfies

(3.29) /N (p) _ N + P(I(Z(N), p ) > CN - aN P)
for all p =6 p°, where

a log N
(3.30) aN = N 0 < a <co.

We note that (3.29) is a slightly modified form of a conclusion due to
W. Hoeffding in [2].

It follows from (3.29) that the shortcoming RN(p) atp of the size aN likelihood
ratio test (3.18) for H against K is bounded above by

SU

k
(, lo

<'
C

IZ(

1
O

(3.31) P(up E Z log = N,c.I(Z(N).po) _ CN - aN|p + N

By the reasoning given in the proof of Lemma 3.3 we may assume that cN . CN
and hence Lemma 3.4 is proved if we show that

7 k 7

(3.32) sup P sup E Z(N) log
7

. CN. I(Z(N), PO) . CN -(33)y i <CK _C aNIP)pEA I irEA i = 1 Pi

tends to zero for N -- oo. By (3.27) and (3.30), CN -O 0, NCN -O o and NaN/cN O 0
for N -* oo. Application of Lemma 2.5 completes the proof.
PROOF OF THEOREM 1.1. The theorem is proved by splitting up the sequence

aN into two subsequences satisfying (3.16) and (3.22), respectively, and applying
Lemmas 3.3 and 3.4.

In Section 1 we claimed that the condition -log CaN = o(N) in Theorem 1.1
may be relaxed. To see how this can be achieved we obviously need not consider
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the proof of Theorem l.l for the case where aN -+ 0 slowly; we only have to
inspect the proof of Lemma 3.4.

In proving Lemma 3.4 we have made use of the condition -log cxN = o(N)
only to conclude that CN -+ 0 for N -+ x, provided that po is not an extreme
point of Q. This fact was needed on two occasions. In the first place it was used
to ensure that, if po is not an extreme point of Q, we have 0 _ CN < -logp°
for all sufficiently large N, where p° denotes the smallest positive coordinate of
p°. As the function I(z,p°) assumes its largest finite value -log po at those
extreme points z E Q for which zi = 1 for some i with p° = p, the assertion
0 _ CN < -log Pm is equivalent to saying that the set

(3.33) CN = {ZIZ E Q, I(Z, pO) _ CN}

does not contain these specific extreme points of Q. We recall that CN is the
closure of the acceptance region of the size aN likelihood ratio test (3.1) for
H: p =p against p p.p

In the second place, the fact that CN -* 0 was used to ensure applicability of
Lemma 2.5. However, in the remark following the proof of this lemma we
pointed out that the lemma remains valid if the condition CN -. 0 is replaced by
the following assumption.

ASSUMPTION 1. For all sufficiently large N the sets CN defined in (3.33) remain
bounded away from the set Dpo of all points z EQ that have zi = Ofor all i for
which p9 = 0 but also for at least one i with p9 * 0.

This assumption obviously implies that, for all sufficiently large N, the set CN
does not contain any extreme points of n,, unless p0 itself is an extreme point. It
follows that Theorem 1.1 will continue to hold if the condition -1g aN = 0(N)
is replaced by Assumption 1. Note that Assumption 1 imposes no restriction if
po is an extreme point of Q.

One easily verifies that for po < 1 (that is, p9 < 1 for all i),

(3.34) inf I(z, p0) = -log (1 - Pm).
zc-D,PJ

where p° is defined as above. Since I(z, p0) is convex and uniformly continuous
on the set of all z that have zi = 0 for all i withp ° = 0, Assumption 1 is equivalent
to the requirement that if p0 < 1, there exists e > 0 such that for all sufficiently
large N, CN _ -log (1 - p°) - E. Going over the proof of Lemma 3.4 we find
that this, in turn, is equivalent to
ASSUMPTION 2. There exists E > 0 such that for all sufficiently large N,

-log CaN N(-log (1 - po) - e), where p° denotes the smallest positive co-

ordinate of p°.
Note that ifp0 is an extreme point of Q, Assumption 2 imposes no restriction

on the sequence CaN. As Assumptions 1 and 2 are equivalent, the condition
-log aN = o(N) in Theorem 1.1 may be replaced by the obviously weaker
Assumption 2.
By sharpening Lemmas 2.3 and 2.5 one can show that Theorem 1.1 will still
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continue to hold if CN does approach DP,O for N -x c, but does so sufficiently
slowly. In Assumption 2 this corresponds to allowing E to tend to zero for
N -- oo, provided that this convergence is sufficiently slow.

4. The case of a composite hypothesis

In this section we show by means of a counterexample that Theorem 1.1
breaks down in the case of a composite hypothesis H even when A = Q. We
consider the binomial case k = 2 and write Z(N) = ZlN). I - Z(N) = Z2N),
p = Pi and 1 -P = P2. Thus NZ(N) has a binomial distribution with para-
meters N and p where p is an arbitrary point in [0. 1]. For z E [0. 1], p E [0, 1]
and Ao c [0, 1] we define

z -z
(4.1) I(z. p) = z log - + (I - z) log

p -p

and

(4.2) I(z. AO) = inf I(z. p).
pEAo

If Ao is a proper subset of [0, 1], one may consider the problem of testing
H: p E Ao against K: p 0 Ao. A nonrandomized likelihood ratio test for H against
K rejects H if

(4.3) I(Z(N), Ao) >_ CN;

the size of this test is
(4.4) XN = sup P(I(Z(N). Ao) > CNIP).

Consider any fixed sequence of positive numbers CN such that

(4.5) lim CN = 0. lim NCN = Xc.

We choose two positive integers a and b and a sequence dN such that 0 < dN < CN
for all N and NdN -+ 0 for N -+ oc. Next we construct a set AO c [0, 1] with
the following property: there exists an infinite sequence of positive integers
N1 < N2 < * such that for every i the following conditions are satisfied:

(i) Ao contains points pi, 1 < Pi, 2 with

(4.6) I(NPi i j)=JN= dNd for j = 1, 2.

(ii) Ao contains points Pi 3 < Pi 4 with

(4.7) I(1 -
b

= for j = 3,4.

(iii) Ao does not contain points in (Pi 1, Pi. 2) U (Pi, 3, Pi, 4)-
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To see that this construction is possible we note that for sufficiently large N,
1 < a, b < N - 1 and hence

(4.8) I(')=I-')=I1--N )=I1 -yo = oD.

Thus, for any sequence N1 < N2 < ... with N1 - 1 _ max (a, b), points pi.
with properties (i) and (ii) exist for every i. Notice that obviously 0 < pi 1 <
aNF1 <Pi,2 andpi,3 < 1 -bN-1 <Pi,4 < 1. Since cN-0forN-+cD,we
can also ensure for every 0 < s < 1 that PI, 2 < E < 1 - <<P1, 3 by choosing
N1 large enough. Having chosen N1 _ max (a, b) + 1 in such a way that the
above holds for some 0 < e < 2, we proceed to choose Ni for i = 2, 3, *
sequentially in such a way that

a < Pi- , I a( Pi- 1, I > aNi - dNiNi Ni'~~~~~N N

1Ni >i14, I1 Ni XPi-1.4) > '6Ni-

This is clearlypossibleaspi-1, I > 0,I(0,Pi -1, I) > 0,Pi- 1,4 < 1,I(lPi -1,4) > 0
for all i _ 2 and CN -+ 0 for N -+ oo. However, this implies that Pi, 2 < Pi- I, i
and Pi, 3 > Pi- 1, 4 for every i _ 2. Because we already made sure that
P1,2 < < 1 - <P1, 3, condition (iii) will be satisfied if Ao does not contain
other points in an E neighborhood of 0 and 1 besides the points pi, j.
For an arbitrary sequence CN satisfying (4.5) and for a corresponding set Ao

that we have just constructed, we consider the sequence of likelihood ratio tests
(4.3) for H: p E Ao against K: p 0 Ao. We shall show that aN defined by (4.4)
satisfies the conditions cN -+ 0 and - log aN = o(N) of Theorem 1.1, but that
the shortcoming of this sequence of likelihood ratio tests does not tend to zero
uniformly for all p 0 Ao.
By (4.2) and (4.4)

(4.10) ON _ SUpP(I(Z(N), p) _ ZN IP)

and since NCN - 00, eN - 0 for N -00 by Lemma 2.2. Let po be an isolated
point of Ao with 0 < po < 1, for example,po = P1, 1. For z in a sufficiently small
neighborhood ofpO, I(z, Ao) = I(z, po) and the absolute value of the derivative
of this function is smaller than 5. Since CN - 0, the set

(4.11) AN = {z10 < z < 1, I(z, AO) > CN}
will contain, for all sufficiently large N, a point z(N) for which Nz(N) is an integer
and I(z(N,PO)o) CN + 3N1. Hence by Lemma 2.6

(4.12) aN > P(I(Z(N), Ao) _ cNIPO) _ exp {-NCN - 6 + O(log N)}
and as CN -+ 0, -log aN = o(N) for N -+ 00.
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For N = Ni we need a sharper asymptotic lower bound for OCN. By properties
(ii) and (iii) of the set Ao

(4.13) I(1 -N AO) = - v Pi,3) = CNi

for all i. It follows that for every E > 0 we have for all sufficiently large i

(4.14) OCNi P(Z( = 1 NPi, 3)

= exp {-NiCNi} P(Z(Ni) - 1 _b I_ b )

- b bb> (1 - E) e - exp {-NicN1}.b !

Also, by properties (i) and (iii) of the set Ao

(4.15) It A)A = I p Ni -

for j = 1, 2 and all i. Because NdN -+ 0 for N xo this implies that for every
E > O

(4.16) sup P(Z(Ni) =-IP) = max P(Z(Ni) =
a

Pi i
pEAo Ni j= 1, 2 Ni

= exp {-Ni(Ni - dNi)} P(Z(i) = I

< (1 + E) ea exp{-NiaNi}a !

for all sufficiently large i. Together with (4.14) this implies that there exists a
number 0 < 4 < 1 such that the test TN that rejects H with probability 4 if
Z(N) = aN-' has size at most aN whenever N = Ni and i is sufficiently large.
Hence, if 1+ denotes the size OCN envelope power for testing H, we have shown
that for every E > 0

(4.17) f3Z. (a ) .> cp(Z(Ni) = a >ia)_ q(1 - 8) -a

for all sufficiently large i. On the other hand, property (i) of the set Ao ensures
that for N = Ni the critical region AN of the likelihood ratio test does not contain
points in the interval [pi 1' Pi, 2]. If f,N denotes the power of the size aN likelihood
ratio test, this means that for all i

(4.18) Ni(Ni(<) NiPi(pi,) + AN,(Pi,2) _ 2aNi
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where the right side tends to zero for i -+ oo. Together with (4.17) this proves
that the shortcoming of the likelihood ratio test does not tend to zero uniformly
for all p 0 AO.
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