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1. Introduction and summary

Decision making problems are often encountered in the medical sciences. In
this paper, two types of problems are investigated, namely, medical diagnosis
and planning of medical research. For medical diagnosis, we consider the use
of statistical decision functions in minimizing the risks and error probabilities,
and methods and advantages in some semiautomated diagnoses. The existence
of certain types of optimal decision functions are proved, and methods for ob-
taining some of these decision functions are discussed. For planning of medical
research, an optimal method is given for the selection of research projects under
budget limitation. A certain estimation problem related to that optimal method
is investigated. Both parametric and nonparametric methods of estimation are
given,

2. Medical diagnosis

2.1. A description of the problem. By medical diagnosis we mean the act of
recognizing the disease of a patient, and of classifying his state of health. In
terms of the standard statistical decision theory, the problem may be analyzed
and formulated as follows.

2.1.1. The state space. Let 8 denote the disease that a given patient has (or
the state of health of a given person). The state space @ is defined as the set
of all diseases having similar symptoms to those which the patient shows. We
assume that @ contains a finite number of elements 8y, - - - , 6,, where the 6;
correspond to either no disease, or one or several diseases. The probability that
6 = 9;, that is, the patient has disease 6;, is denoted by p;, which may be known
or unknown.

2.1.2. The action space. The objective of medical diagnosis is, of course, to
identify the disease of the patient. However, in some cases, a clean cut decision
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may be very difficult to reach. In other cases, an inconclusive type of decision,
such as the patient has either disease 8; or 6;, may also serve some useful pur-
poses. For example, as a guide for further diagnosis or initial treatment. Using
the terminology of decision theory, any decision is called an action. The action
space A is defined as the set of all the actions that are allowed to be taken.
Depending on the preference of the decision maker, the action space may or
may not contain inconclusive types of actions. An element of 4 is denoted by a;.

2.1.3. Experiments of diagnosis. As is well known, conventional methods for
diagnosis include questions, laboratory tests, X-rays, and so forth. The combina-~
tion of some or all of these is called an experiment. The results of such an exper-
iment are, in general, subject to random variations, and will be denoted by a
random vector X. The choice of an experiment, or equivalently, that of X, is
an important and often difficult problem. In this paper, we assume that X has
already been chosen. We also assume, for mathematical generality, that a meas-
ure p is defined on a o-field of sets in the space S of all possible values = of X,
and that with respect to u, f(z|6;) is the probability density function of X
given that 0 = 6.

2.1.4. Randomized decision functions. A randomized decision function ¢ =
¢(jlz) is a function defined for every x € S and a; € A such that ¢(jjz) = 0
and X 4ca ¢(jjr) = 1. If 2 is the observed value of X, then ¢(j|z) is the prob-
ability that action a; will be taken. If for all j and z, ¢(jjz) = 0 or 1 only, then
¢ is called a nonrandomized decision function. Both kinds of decision functions
are of interest to us.

2.1.5. Optimal decision functions. An important problem for decision making
in general is the selection of decision functions that in some senses are optimal.
For medical diagnosis, we shall consider decision functions which minimize the
average risk and error probabilities of various kinds, subject to some additional
requirements. Details will be given in the next section.

2.1.6. Automation and subjective judgment. In recent years electronic com-
puters in medical diagnosis have been used in different ways. One type of semi-
automation of medical diagnosis is the following. Based on the outcome of the
experiment X, the computer makes the necessary computation and tries to
reach a decision concerning the diseases of the patient. If no conclusion can be
made, then the medical specialist takes over the responsibility of diagnosis.
However, the process by which a specialist reaches his decision may involve
some subjective judgments which are not statistical in nature. In this paper,
we investigate this type of semiautomated medical diagnosis from the view-
points of both cost and error probability.

2.2. Average risks. 1In this section, we investigate the use of Bayes decision
functions which minimize the average risk, and that of inconclusive type of
actions. As was described before, the state space @ contains ), - - - , 6,; and an
element in the action space A is denoted by a;. If 6 = 6; and action a; is taken,
we assume that a loss w;; = 0 is incurred. Let ¢ be a randomized decision func-
tion given in section 2.1.4. The risk in using ¢ when 6 = 6; is defined as



DECISION MAKING METHODS 927

@1) 10 8) = T [ wib(il2)f(@l6) du.
a;CA
The average risk in using ¢ is then defined as
(22) p(p) ¢) = igl r(oiy ¢)pf7
where p = (py, - -, Pm). One type of optimal decision functions, known as
Bayes decision functions, is any ¢* that satisfies
(2’3) P(P; ¢*) = P(p, ¢))

for all ¢ = ¢(j|x) defined on A and S. Bayes decision functions can be obtained
without difficulty and need not be randomized ([1], p. 152 and p. 157). The
corresponding average risk is given by

(2.4) = mln {Z wi;gi(x) ¢ dp,
je4 1
where ¢;(z) = f(z|0:)p;, ¢ = 1, - -+, m, and minjes denotes the minimum taken

over all a; € A. Therefore, when a Bayes decision function is used, the average
risk is minimized, and the average risk taken is p*.

Obviously, the quantity p* depends, among other things, on A. Assuming
that all other factors are fixed, we shall use the notation p¥ to emphasize its
dependence on 4, and investigate how p% may be reduced by expanding A. The
main objective is to find conditions under which the inconclusive type of actions
described in section 2.1.2 may be profitably used.

TareoreEM 2.1. Let B be an action space and A C B. Then p¥ < p% and in-
equality holds if and only if P{E} > 0, where

2.5) E={zes: min 3 wigk) < min 3 w;jg;(x)};
JEBA i=1 JEA i=1

and

(2.6) PE) = [, ¥ 0:@) du,

and A’ is the complement of A.
Proor. Since A C B, it follows from (2.4) that

@.7 ph — ph = / [mm Z wijgi(x) — mm Z w,,g.(:c)] du.
A 1=1

Hence p% > p} if and only if u(E) > 0. From the definition of £ and theorems

on integration in measure theory, ([5], p. 104) we see that u(E) > 0 is equiv-

alent to P{E} > 0.

Theorem 2.1 states an advantage of using Bayes decision functions. Namely,
if the inclusion of an additional action can reduce the average risk, then Bayes
decision functions will take that action with positive probability.

ExampLE 1. Suppose that A = {ay, - -+, an}, wWhere a; is the action of
deciding that 6 = 6;. Let a, denote the action of making no decisions, and
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Ao = {ao, a1, ** - , @m}. Assume that if 6 = 6; and the action a, is taken, the
corresponding loss wiy = wo for all ¢ =1, --- , m; and that w;; = 0, if ¢ = j,
and w;; = w;, if 7 = j, where 7, j = 1, - - - , m. In the type of semiautomated

diagnosis mentioned in section 2.1.6, w, may be viewed as specialist’s fee and
w;, the loss due to incorrect diagnosis by the computer, when § = 6;. From (2.5),
the corresponding

28)  E= {53 wi— wg@ > wig@,i =1, ,m}.

In order that P{E} > 0, a necessary condition is that E # 0, that is, nonempty
By summing with respect to j, the two sides of the inequality in E, we see that
E 5 0 only if wy < (1 — 1/m) max; w;. This result indicates that in a semi-
automated diagnosis system, specialist’s service may often be needed if losses
due to incorrect decisions are great. On the other hand, if, compared with wo,
all the w; are small, then E is likely to be empty and diagnosis by computer
alone may be sufficient.

ExampLE 2. Following the previous example, we may also consider actions

such as a,, where u = (k, j), and for fixedk = 1, --- ,m,andj =1, -- -, (m),

k
thus a. denotes the action of identifying k specific elements of Q: 8y, - - -, b4,
as possible values of 8. For a given k, we use 4; to denote the set of all a,, where
u = (k, 7). In this new and more general notation, a;, for ¢ =0, 1, ---, m, of
example 1 become @ni, au, -+ -, and aim, respectively, and A = {ay, - -+, @n}

now becomes A,. Let w(6;, a,) denote the loss due to action a, when 8 = 6;. It
seems reasonable to assume for every 6; € Q, that w(8;, a.) £ w(8;, a,), where
both a, and a, € A, but 8; € {0, -+, 6}, and 6; & {6u, - - - , 6}. Now con-
sider the case where for all 6; € @ and a., w(8;, a.) = w if 0 & {6, -~ -, Ous}
and w(0;, a,) = wi, if a, € Ax and 0; € {fu,, - -, 6u}. For example, if a. =
{6y, 8;} and a, = {02, 05, 6}, then w(by, a,) = w, w(by, a.) = weand w(by, a.) = ws.
In general, for every fixed a, € A; and ¢ > k, there exists an a, € 4. such that
{Bus, -+ 5 Oy & {60y - -, Ou}. For simplicity, let us assume that the two sets
are {01, -+, 6} and {6y, - - -, 8.}, respectively. If we = w;, then

o F w0500 = w X 0@ +v 3 0@

i=k+1
k t m
= W igl gi(x) + w; i;_‘_lgz‘(x) + w ‘,gﬂgi(x)

m m
> w(; an)gi(x) = min 3 w(b;, a.)g:(x).
i=1 acAri=1

By theorem 2.1, we see that if all elements a, in A, are already contained in the
action space, then the minimum average risk p* will not be further reduced by
introducing into consideration any a, in A; where k < ¢, but wi = w..

The results obtained in the above examples may be interpreted as follows.
To avoid an incorrect diagnosis, inconclusive type of decisions may be considered
so that further investigation may be planned and conducted. On the other hand,



DECISION MAKING METHODS 929

more definitive types of diagnosis should be attempted, only if .there is possibly
something to gain. We also note that the results obtained for the inconclusive
types of actions are preliminary in nature. An extensive investigation is needed
in order to explore their full potentiality. Finally, for previously done work con-
cerning inconclusive types of actions, we cite references [2], [6], [8].

2.3. Error probabilities. An often raised objection to the use of Bayes decision
functions is that the losses w;; due to incorrect actions are often difficult, if not
impossible, to estimate. As an alternative, we shall consider certain optimal
decision functions based on minimizing the error probabilities. An existence
theorem will be proved and some applications discussed. We point out that
even though the w,; still appear in the theorem, they are no longer necessarily
losses. In most cases, they are constants to be chosen for specific purposes.
Also, to simplify the proof and notations, we shall assume that S is countable
and use 7 and j to denote 6; and a;.

THEOREM 2.2. Let By, ---, B, and B, be subsels of @ X A = {(z,j)|t € Q,
j € A} such that for certain jo€ A, (2, jo) &€ By, for all i€ Qand k=1, ---,
s, unless wij = 0. Let ¢, 20, k=1, --- , s, be given constants. Then the set T
of dll randomized functions ¢ satisfying the following is nonempty:

(2.10) Bk(@) é ck’ k = 1, tee, s’
where w;; = 0 and ,
(2.11) Bue) = L [woelimg@ dy, k=1, s+1.

There also exists a ¢* € T which minimizes B,y1(9).

Proor. Let ¢ be a randomized decision function such that for all z € S,
¢o(jolz) = 1 and go(j|z) = 0 for all j 5 jo. Then Bi(po) = Oforallk =1, -+, s.
Hence, ¢o € T and T is nonempty. Next we show that there is a ¢* € T satisfying

(2.12) Bi1(¢*) = inf Biii(e).
=T

Let ¢* be a sequence of elements in T such that B,1(¢*) — inf,er B.yi(p) as
k — o, For all fixed 2 and j, ¢*(j|z) is & bounded sequence of k, therefore by
the Bolzano-Weierstrass compactness theorem, it contains a convergent sub-
sequence. Since S is assumed to be countable, it follows from the well known
diagonal method that there exists a subsequence ¢® such that for every z and
7, e®(jlz) = ¢*(jlz) as k — ».Obviously, ¢* is a randomized decision function.
By the dominated convergence theorem ([7], p. 125), ¢* € T and satisfies (2.12).

ReEMark. Under certain conditions, any ¢* in the above theorem satisfies
the equalities of (2.10). One set of such conditions is: for all ¢ € , (2, jo) € Buyy;
if (4, 1) € Bey, then wy;, < wijy; and for at least one 7,

(2.13) [ wi,jige* (Gol2)ga(@) dp > 0.

The following is a proof. There exists a § > 0 such that u(H) > 0, where
(2.14) H = {x €8: ¢*(olz) = 5, gi(x) > 0}.
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Now suppose that Bi(¢*) < ¢1 and (4, j1) € B, for some ¢ and (¢, j1) € B, for
t=1,--+,k Let ¢'(olz) = ¢*(jolz) — & and ¢'(jilx) = ¢*(julz) + &, for all
z € H; and ¢'(j|lz) = ¢*(jlz) for all j = j, and 7, or ¢ H. Obviously, ¢’ is a
randomized decision function and Bi(¢’) < ¢, if 8 is sufficiently small. Now

m k
@19 Bune®) = Bun(e) = 8 [ £ [, woite) du = 2 [, wiote) au
If the second summation in the bracket is 0, then

(2.16) Bun(*) — Bunr(¢) 2 6 [, wiig(®) du > 0.
If the second summation is positive, then
k
2.17 B, i(¢*) — B,i(e’) 2 in (wij, — wij i .
(217)  Bua(¢*) — Bunle') 2 olmin (wiss — win)] [, 35 0:(@) du > 0

It follows that ¢* does not satisfy (2.12). Contradiction! Hence Bi(¢*) = ¢), and
similarly Bi(¢*) = ¢x forallk =1, ..., s.

The following are some applications of theorem 2.2.

ExampLE 3. (Neyman-Pearson lemma). Suppose that Q@ = {8, 6.}, 4 =
{ay, as}, and a; is the action of deciding that 8 = 8;. Let wy; = wo = 0, w1z = 1/p,
wy = 1/ps, and ¢, = a, where 0 < a < 1 is given. Let B) = {(1,2):7 = 1, 2},
s =1,and B,y1 = {(, 1):¢ = 1,2}. Then j, = 1, and (2.10) becomes

Bi(s) = [ o@)f(alty) du < o,

Bun(®) = [ ¢(1)f(alts) du

Hence there exists a ¢* such that Bi(¢*) £ « and B,,i1(¢*) is minimum. This is
a part of the Neyman-Pearson lemma.

ExampLE 4. Conirolling the average error probability. Consider the action
space Ao and the loss structure of example 1, with wo = w; = 1, forall ¢ = 1,
coo,m. Let s=1, By= {(Z,5):4,5=1,---,m}, and B,y = {(7,0):¢=1,
.-+, m}. Then

(2.18)

(2.19) Bile) = X [ [1 = ¢(0i) — o(Gl)]o:@) d,
and
(2.20) Bunle) = X [ ¢(O)g:(x) du

Hence for a given a, 0 < a < 1, there exists a ¢* for which B,;1(¢*) is minimum.
However, such a ¢* may not satisfy Bi(¢*) = a. An example is the case where
decisions concering 6 can be made without any error. Then Bi(¢*) =
B.11(¢*) = 0. In the kind of semiautomated medical diagnosis discussed pre-
viously, Bi(e) is the average probability of error in computer diagnosis and
B.1(e) is the average probability of calling upon a specialist for further diagno-
sis. We also note that decision functions of the above kind were previously con-
sidered in connection with problems of computer character recognition [2].
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ExampLE 5. Controlling the error probabilities. Consider again the action

space Ao of example 1. Let s = m, By = {(k,/):j=1,---,m},k=1,---,5s,
and B,y = {(5,0):i=1, ---, m}. Let wy; =0, wy; = 1/p;, with ¢ 7, for
5, J=1,--+-,m,and weog =1, fori=1, ---, m, and let ¢x = o, where 0 <

ar < 1l,fork=1,.--,s. Then

Bu(e) = [[1 — o(O) — o®i))f(elo) dus,  k=1,--+,5,
(2.21) -
Bii(p) = El f ¢ (0|x)g:(x) du.

Hence there exists a ¢* such that Bi(¢*) < ax, k =1, -+, s, and B,;1(¢*) is
minimum. In this way, all error probabilities are controlled under specified levels.

ExampiLE 6. Consider the action space > §-1 Ax, where A; is defined in
example 2. For each ¢ = 1, - - - | m, we may choose B; to be the set of all (0;, a.),
where a, denotes the action of identifying k specific elements of @, fu, - - - , Ou,
as possible values of 6, but 6; is not one of them. We may also choose B4 to
be the complement of > }'.1 By in the space of @ X Y A;. Using theorem 2.2,
we obtain decision functions for which the error probabilities are under control
while the probability of further diagnosis is minimized.

To conclude this section, we note that we have only proved the existence
of certain types of optimal decision functions. To actually construct such decision
functions is another matter. For the case described in example 3, the Neyman-
Pearson lemma provides the answer. For the case described in example 4, a
method of constructing the decision functions is given in [2]. However, we do
not have a method of construction in general.

3. Planning of medical research

Planning of research, medical or otherwise, is often a very difficult and com-
plicated job. On the one hand, the planner is usually faced with limitations
imposed by the availability of the various kinds of resources, such as manpower,
funds, time, and so forth. On the other hand, there are different and possibly
conflicting objectives that the planner may wish to reach. The objectives may,
in general, be difficult to measure numerically; the number of research projects
that the planner may select are often large, and furthermore, there may be
some not known to the planner when selection must begin. Hence, the problem
of optimal planning is certainly not simple. In this paper, we shall consider a
very simplified version of the problem where there is only one requirement to
meet and there is only one objective to reach, where both can be measured
numerically. Whether this type of model is suitable for the planning of medical
research is, of course, open to question. However, in medical research, the most
important objective by far is probably the discovery of new drugs and technol-
ogy and the severest limitation is probably the available fund. Hence, the one
requirement and one objective assumption may be applicable.
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For this simplified problem, an optimal selection procedure is given. For the
case where not all research projects are known to the planner, a related method
of estimation is investigated. We note that the results are modifications of some
of those obtained previously for automatic abstracting in [3].

3.1. An optimal selection procedure. Mathematically, the problem of optimal
selection described previously may be stated as follows. Suppose that a finite
population is given, whose elements are denoted by (z;, ¥:), where z;, y: > 0,
fori=1,---,N.Letu;=0or 1. Find u;, i = 1, ---, N, such that 3{_, uy:
is maximized subject to the condition that 3/ u.r; £ @ XLz where
0 < a <1 is given. In other words, z; and y; are, respectively, the cost and
return of the ¢th research project. Due to budget limitation, the planner wishes
to select, in terms of cost, a given fraction of all the proposed research projects
in such a way that the total return is maximized. When all z; and y; are known,
the problem can be solved by either integer or dynamic programming. A more
general problem for the case where the given population may be infinite is the
following. Let F(z, y) be a given cumulative distribution function defined on a
given sample space S of elements (z, ¥), where z, ¥y > 0. By a randomized selec-
tion function we mean a function ¢(z, ) defined on 8 such that 0 = ¢(z,y) < 1.
Find ¢(z, y¥) which maximizes

CRVI Js e vy dF @, y),
subject to
B2 . fs«a(x, Yz dF(z,y) £ a /xdF(z, ¥), 0<a<l

The problem is very similar in form to a selection problem considered in [4], and
may be solved in a similar way. For simplicity, we assume that both [z dF
and [ y dF are finite,

THEOREM 3.1. There exists a randomized selection function ¢*(z,y) of the
following form which marimizes (3.1) subject to (3.2). Furthermore, o*(z,y)
satisfies the equality in (3.2). And

1 if y> ez,
(3.3) ¢ @, y) =<p if y=czx,

0 if y<ez,
where 0 S p<landc=0.

‘Proor. Let T, T, and T; denote, respectively, the sets {(z, y) € Sly > cz},
{(z, y) € Sly = cz}, and {(r,y) € S:y < cx}. Let ¢(z, y) be any randomized
selection function for which (3.2) holds. Assume, for the time being, that it is
possiblé to determine ¢ and p so that the corresponding ¢*(z, y) of (3.3) satisfies
the equality in (3.2). Then

@9 [l —eyar = % [, 1"~ ey dr

;ii T‘[w*—w]cxdF=cLafxdF—[goxdF] = 0.

Hence, ¢* maximizes (3.1) subject to the condition (3.2).
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Let I(¢*) and p, denote [ ¢*z dF and [ z dF, respectively. We now show that
c and p may be determined so that the corresponding ¢* satisfies the equality
in (3.2), that is, I(¢*) = au,. It is easy to see that I(¢*) is a nonincreasing func-
tion of ¢ and tends to 0 as ¢ — ». For a given ¢, let ¢; and ¢? denote functions
of the type (3.3) for which p = 1 and 0, respectively. For a given «, with 0 <
a < 1, let c, be the greatest lower bound of all real ¢ = 0 such that I(e}) < ap..
Then I(¢}) < au,, if ¢ > ¢, and I(p}) = au,, if ¢ < c.. Using known results
concerning the indicators of monotonic sequences of sets and their limits ([7],
p. 59) and theorems on monotone convergence ([7], p. 124), we see that
I(¢l) = ap, and I(o2) < au,. Hence I(¢*) = au,, if ¢ = ca; and

(3.5) Qg — I(@?«)

IR {CAEY ()
if the denominator is not 0, and p = 0, if it is 0.

3.2. A problem of estimation. The optimal selection procedure obtained in
the previous section can be determined only if we know the distribution fune-
tion of the population = from which selections are to be made. If this is not the
case, we will have to estimate the distribution function and use some approx-
imate methods. In the following we shall see two such methods of approxima-
tion. One is for the case where the population = is finite, and the other for the
case where the distribution function may be approximated by a bivariate
normal distribution. ,

3.2.1. Finite population. Suppose that the probability function of the given
population = is p(z, y). Then the optimal selection function ¢*(x, y) satisfies the
relation X ¢*(z, y)zp(x, y) = o) zp(z,y). Let a random sample of size n
be taken from , and p.(z, y), the sample probability function. Using p.(z, ¥),
we may determine ¢xi(z,y) such that X oi(z, y)xp.(z, ¥) = a X zpa(z, y).
Now apply ¢i(z, y) to the entire population . Since it has the form (3.3), it
is also an optimal selection procedure. The question which needs to be investi-

gated is whether I(¢}) = ap.. We now show that I(¢%) — au. in probability, as
n—> o,

(3.6)  I(eh) — au. = T oi(x, y)z[p(z, ¥) — Palz, )]
+ a X z[pa(z, y) — p(z, ¥)].

By the law of Large Numbers, for every fixed z and y, p.(z, y) = p(z, y) in
probability as n — . Since = is finite and ¢} is bounded, it is clear that both
terms on the right side of (3.6) tend to 0 in probability, as n — .

3.2.2. Bivariate normal distribution. Consider the case where the given pop—
ulation has a bivariate normal distribution f(z, y). For simplicity, we shall
assume that the correlation of « and y is 0. (If not, see [9], p. XXVIII). Let the
means and variances of z and y be u, us, o3, o3, respectively. Let u = (x — u1)/ou
and v = (y — p2)/0.. Then the constant ¢ in the corresponding ¢* of (3.3)
satisfies the following equation

3.7 gl /f ug(u)g(v) du dv + / g(u)g(v) du dv = ap,
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where g(u) = (1/27)'2%~*/2 and the integrals are to be evaluated over the
domain: cou — a9 = pp — cuy, and —o < u, v < . The first integral may be
evaluated by first integrating with respect to u. The second integral may be
evaluated by the fact that coiu — o9v is normally distributed with mean 0 and
variance equal to c26? 4+ o3. Hence (3.7) becomes

(3.8)  [cal/(c2t + )2 1g[(ue — cur)/(c2a} + 03)V/]

+ mG (e — )/ (%t + 0d)?] = (1 — a)u,
where G(z) = [7 g(y) dy. The parameters ), s, o3, and o3 may be estimated by
drawing a random sample, and an approximate solution of ¢ may then be
obtained by numerical methods.
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