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1. Introductory summary

The late John von Neumann first realized that self-reproduction, as observed
in biological systems, was a legitimate problem of mathematics, specifically of
automata and algorithm theory. He founded the study of self-reproduction in
systems of “natural automata.”’” This report deals with the self-organizing prop-
erties of a new type of cellular self-reproduction model. The action of enzymes
is simulated by Turing machines acting as molecular automata or computers,
with their highly standardized coding corresponding to genes of the cell. Com-
puter experiments have been done to test the stability and logical homeostatic
properties of a 36 gene cell model. It is shown that the system will continue to
organize itself and reproduce in spite of a variety of environmental deficiencies
and disturbances, and also to repair itself after certain kinds of injury. The most
pertinent organizational criteria for the described model are amounts of “energy”’
and ““time cycles” needed to reach maturity and reproduce. Comparisons are
drawn between these organizational measures and thermodynamic informa-
tional parameters such as Gibbsean chemical potential and entropy. The total
amount of genetic and cellular information can be quantified in the cell model
and this helps clarify some confusing aspects of genetic information measures.
The model is highly idealized. It bears somewhat the same relationship to real
cells as computer circuits do to the brain, but shows that automata theory can
be applied to molecular biology in a meaningful way.

2. A model of self-reproduction based on Turing machines

Previous reports [1], [2], [3] described a cell model in which the principal
logical tool is a molecular automaton that acts upon substances encoded as
strings of symbols. The cell consists of a group of such enzyme automata that
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travel about a ““cell contents tape,” which contains all substances and structures
of the cell in symbolic form. The molecular automata are coded in the notation
of the Turing machine [4], [5], which is an absolutely standard format consisting
of a quintuplet of elementary symbols. The Turing machine or automaton is a
classical tool of algorithm theory [6], [7], [8], which has been used to prove a
number of theorems in logic. Its use to simulate molecular automata is new and
of interest because it makes it possible to represent cellular control algorithms
in a manner compatible with modern automata theory.

The cell model consists of 36 enzyme automata with their ‘“genetic coding.”
It is in no sense a quantitative simulation of cellular enzyme kinetics and is not
intended to predict any biochemical facts. The system is a qualitative logical
model designed to study the nature of control algorithms required for self-repro-
duction and self-organization. An excellent precedent for such highly idealized
studies of biological units is the McCulloch-Pitts [9] “logical neuron,” which
is not an accurate model of any neuron, but made possible the design of ‘“thinking
networks.” The “logical neuron’’ was well known to von Neumann and, in fact,
played a rather important role in stimulating development of modern digital
computers, first designed in about 1947—49.

Most reports dealing with ‘self-organizing systems” are based on the
McCulloch-Pitts neuron, usually incorporated into a learning network which
organizes itself in the sense of reacting purposefully to a certain kind of environ-
ment, that is, it learns to adapt to a given set of somewhat predictable environ-
mental inputs. In the model of this paper, self-organization is of a different type,
more comparable to cellular differentiation, in that the 36 molecular automata
function cooperatively to produce a variety of complex products, cause the cell
to reproduce, and adapt to environmental conditions.

3. Method of computer simulation

The cell model is run on a SDS-920 computer using a specially written compiler
called TASP (Turing Automaton Simulation Program), which is fully described
in a report by Coffin, Goheen and Stahl [10]. This simulator functions in the
manner of a ‘“universal Turing machine,” as this term is used in the technical
literature. It accepts the coding for any Turing machine (such as an enzyme
automaton), together with some appropriate coding region upon which it is
supposed to act (the cell contents), and simulates action of the Turing machine
defined by the coding. The simulator operates at processing rates of 1000 to 5000
commands per second, has various necessary provision for editing, printing,
error detection, and so forth. Direct printouts from TASP runs are reproduced
in figures 4 to 6 below.

Because of its indirect mode of action, which is doubly removed from actual
machine logic and circuitry, the TASP simulator is rather slow. Recently, there-
fore, another type of simulation program called CLPP (Cellular List Program
Processing) was designed and speeds up operation by about a factor of 1000 on
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the same machine. This compiler will be described in detail elsewhere, but is
fully operational and now being used to study colonies of cells similar to the
ones described in this report.

4. Operation of the cell

Details of operation of the self-reproducing cell are given in recent reports [3],
{11] and will be reviewed only in brief. Figure 1 is a graphical representation of
the cell model contents and represents the overall cell structure. Basic function-
ing of the cell model is exemplified by action of the enzyme automaton with a
gene identification number 1411. This number is the greatly shortened surrogate
for the 1000 or so numerical Turing machine code instructions that are actually
used in the TASP simulator. It symbolizes the fact that the enzyme coding can
be written in absolutely standard numerical form, accepted by a universal
Turing machine. The enzyme represented (encoded) by gene program 1411
carries out the “string synthesizing” step: W 4+ A = SA4, in which W and 4
are elementary substances of the cell and SA4 is a more complex one, being the
mnemonic for “sugar A.”” This step proceeds if, and only if, there are adequate
levels of W and A, there is not too much of SA, there is enough energy E, and
also is controlled by presence of a special controller string J. If all these threshold
conditions are met, enzyme automaton 1411 produces six units of SA per time
cycle, with corresponding losses of A, W and E.

All the enzymes function in this manner. The complete set of gene enzymes
specifications is available elsewhere [3], but are shown in abbreviated form in
table I. Figure 2 indicates the overall flow chart of the cell. The basic idea is to
use elementary ‘‘diet letters’” as the starting point for all cell products, which
are generated through sequences of interlinked enzyme automaton steps. The
cell makes the symbols 1, 2, 3, 4, which represent DNA coding (I, 2, 3, 4
for RNA coding) and A, B, C, D, which are the equivalents of amino acids. It
also contains various biochemicals such as FA, FB, SA, and so forth, simulated
organelles, such as OA, which stands for a mitochondrion and is needed to gen-
erate energy E, and OB, which functions as a ribosome. Chiaraviglio [12] has
suggested that the ribosome can be regarded as a “sequential machine” (finite
automaton) during its mRNA to amino acid transeription processing, and there
is clear analogy to this in the cell model.

Operation of gene 1411 will be traced through to illustrate how the machine
cell functions. The cellular gene enzyme automaton is identified in the TASP
simulator as automaton program 1411 and activated once in each time cycle.
Its first step is to find the simulated DNA region “D1411” and see if it is “‘on,”
as shown by a +. If this is the case, a complementary RNA is generated from
the symbols I, 2, 3, 4, namely “R4I44”, in the presence of a special enzyme
acting as a RN A polymerase. If R4144 and the ribosome automaton are present,
an “enzyme string”’ DADD is produced (all enzymes are coded in the 4, B, C, D
alphabet). These steps involve the coordinated action of the whole cell, which
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D1114-D2114-D3114-D4114~
D3124-D3134-D3144-D3334~
)4111-D4112-D4113-D3333-

IFigure 1

Graphic representation of the algorithmic cell model.
All substances are shown as letter strings,
including the bounding membranes of the cell and nucleus.
The genes are shown with an activation state symbol (+ or —).
Enzymes are represented by the complex geometric blocks
whose ends represent multiple tape reading sites.
Space limitations prevent showing the full number of
- strings in the cell model.

generates the necessary symbols 1, I, 2, 3, 4, and 4, B, C, D, as well as E, and
so forth. If an enzyme has been generated symbolically'in the above manner,
then finally it can function within the cell, to produce SA from W and 4, under
the stated threshold conditions.



ot
P
Ny |
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TABLE I

SumMMARY OF GENE ENzyME AUTOMATA ACTIONS

A complete table with rates and threshold conditions is given in Stahl [11].

A complementary copy is made of DNA number in RNA symbols; the enzyme matches
the RNA number and is made by action of a ribosome automaton; the numbers and letter
sequences are surrogates for much longer coding regions defining the Turing automata
(which are too long to show in the cell model).

Asterisk indicates enzyme not produced by these genes,
whose RNA is a regulator or controller.
Dagger indicates distribution to two daughters is slightly randomized.
Later models of this system have a more detailed simulation
of cell wall formation, organelle distribution, and so forth.

DNA Gene RNA Copy Enzyme Action
1111 4444 DDDD Z +Y = E + G (energy generation)
1212 4343 DCDC V 4+ Z =1 (RNA nucleotide)
1211 4344 DCDD U+ V =1 (DNA and RNA nucleotide)
1221 4334 DCCD U + W = 2 (DNA and RNA nucleotide)
1231 4324 DCBD U + X = 3 (DNA and RNA nucleotide)
1241 4314 DCAD U+ Y =4 (DNA and RNA nucleotide)
1311 4244 DBDD V +Z = A (amino acid)
1321 4234 DBCD V + W = B (amino acid)
1331 4224 DBBD V + X = C (amino acid)
1341 4214 DBAD V + Y =D (amino acid)
1411 4144 DADD W+ 4 =84 (sugar 4)
1421 4134 DACD W + B = 8B (sugar )
1431 4124 DABD Y+ A =FA (fat A)
1441 4114 DAAD Y + B = FB (fat B)
2211 3344 CCDD SA + FA = MA (membrane A)
2212 3343 cene SB + FB = MB (membrane B)
2213 3342 CCDB MA + FA + 1 = OA (mitochondrion)
2214 3341 CCDA MB + FB + 2 = OB (ribosome)
2222 3333 ceee I+ 2 4+ 3 = SR (soluble RNA)
1114 4441 DDDA I+1+4+4+ A4 =0T (test automaton)
1121 4434 DDCD W + X = U (alternate source U)
2111 3444 CDDD D + 1 = J (maturation controller)
2221 3334 CcCcCD C 4+ MA + 3 = Q (reproduction initiator)
1122 4433 DDcC RNA polymerase action
2114 3441 — maturation sequence status (via J)*
3114 2441 — checks premitosis ready status (via Q)*
3124 2431 — premitosis check step one*
3134 2421 — premitosis check step two*
3144 2411 — mitosis possible*
3334 2221 — deactivate maturation genes*
4114 1441 — deactivate long string genes*
4111 1444 ADDD DNA polymerase action
4112 1443 ADDC split all reservoir in twot
4113 1442 ADDB separate gene strings (print)

4114 1441 — activate general growth genes*
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Computational flow chart for the cell model.

Figure 3 is the computational flow chart for the cell model. Each gene enzyme
automaton is activated once per time cycle of operation, which is sufficiently
short to simulate parallel operation of the gene enzyme molecular automata.
There are a number of heuristic provisions for error stops; changes of substance
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levels during test runs; keeping counts of total use of energy and total time
cycles of operation; printing output configurations of the cell, and so forth,
which shall not be discussed further in this report. Table I shows the “string
synthesizing’’ and other actions of the 36 cell gene enzyme automata.

6. The self-reproduction algorithm

The general course of self-reproduction is evident from figures 3 to 6. At birth
certain basic genes for production of energy, RNA polymerase, the RNA and
protein symbols, and so forth, are operational in the cell. There is a progressive
buildup of longer strings and generation of special controller strings, such as Q
or J, which turn on genes that were not active at the outset. The change in pat-
tern of positive genes is very obvious between figures 4 and 5. The self-repro-

(INORMAL BUILD UP IN PROGRESS c=/5
/IIII+RE /I1212+RE /I12I1+RE /1122 +RE /
/1211+ RE /1221+RE /I231+RE /1241 +RE /
/1311+RE /I321+RE /I33I+RE /1341 +RE /
/1411 +R /1421+R /1431+R /1441 +R /
/ 221l- /2212~ /2213~ /2214 - /
/ 2111+R /2221~ /2222- /4444~ /
/1114~ /214 - /3114 - /4114 - /
/ 3124 - /3134 - /3144 - /3334 - /
/41l - /4112- /4113 - /3333~ /

S/E=009//6=30/
/U=45//V=53//W=73//X=64//Y=95//Z7=94/
/1=68// 2=64//3=59//4=12// 1=40/

/ A=07// B=00//C=00// D= 05/

/ SA=00//SB=00//FA=00//FB=00/

/ MA=02//MB=02//6A=02// ©B= 04/

/ 4=00//Q=00//SR=02//6T=00/

FIGURE 4

Computer printout of cell configuration
during an early stage of processing.
The comment on top line is an heuristic for
use of operator and not part of the cell algorithm.

duction algorithm is basically a program to synthesize all the cell symbols,
including the gene (Turing machine) coding numbers, which are taken to exist
in the cell in the manner of “alphabet soup.” After accumulation of sufficient
symbols specific enzymes simulate action of DNA polymerase to put together
another copy of the gene coding actually using symbols 1, 2, 3, 4—this repre-
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sents copying of the DNA chain. Noncomplementary direct transcription is
used for purposes of convenience, but double stranded complementary coding
could be simulated easily. The cell model thus replicates the numerical coding
programs of all the cellular automata in a standard manner.

Figure 6 shows a ‘“daughter cell” as it actually is produced by the TASP

(7) DAUGHTER 2 c=/3

/1M1 +RE /1212 +RE /1121 +RE /1122 + RE

/1211 + RE /1221 + RE /1231 + RE /1241 + RE /
/133l + RE

/1311 + RE /1321 + RE 31 /1341 +RE /
/1411 - /142 - /143 - /144] - /
/2211 - /2212 - /2213 - /2214 - /
/2111~ /2221 - /2222 - / 4444 - /
/1114 + /2114 - /3114 - /4114 - /
/3124~ /3134 - /3144 - / 3334~ /
/4111 - /4112 - /4113 + RE /3333- /

S/E=024//G=40/
/U=20//Vv=30//W=22//X=24//Y=22//2=20/
/1=30//2=12//3=04//4=00//1=16/
/A=14// B=18// C=20//D=06/
/SA=06//SB=06//FA=06//FB=06/
/MA=06// MB=04//0A=04// 6B=04/
fJ=06//Q=04//SR=04//0T=00/

FIGURE 5

A number of substances have been built up and genes turned on;
a sequence of gene tests of reproduction conditions have been met.

system. This configuration can be recycled automatically in the simulator and
will continue to reproduce itself provided only that it is supplied with a sufficient
quantity of “diet letters” within a certain time period; if it is not, the cell
reaches a point of irreversible internal insufficiency and “dies.” The action of
the cell model is not rigidly mechanical and in any given time cycle there is no
obligatory completion of any fixed number of steps. The ‘‘self-organizing”’
nature of this process will be discussed below.

The basic strategy of the cell program, which represents a new concept of
artificial self-reproduction proposed by the author, is as follows: (1) everything
in the cell is represented by symbols on a long tape; (2) all substances are buil
up by “string synthesis” from elementary “diet letters” supplied from the out-
side; (3) the cellular automata move within the cell contents space and synthesize
products with “conservation of letters’”; (4) the cellular synthetic automata
function at fixed rates but have multiple threshold determinants for substrates,
products and controller strings; (5) energy (the string E) is required for any
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enzyme to {function (but not for threshold testing) and must also be generated
from the diet; (6) special automata function as mitochondria, ribosomes, RNA
or DNA polymerase, and even simulate “active transport” or diffusion through
the cell walls; (7) self-reproduction consists in building up all the necessary
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_ (3)REPRODUCTION POSSIBLE c=1/
JILII+RE /1212+RE /1121+RE /I1122+RE /
/J1211+RE /1221 +RE /1231+RE /1241 +RE /
JI311+RE /1321 +RE /1331+RE /1341 +RE /
/1411 +RE /1421 +RE /1431+RE /1441 +RE /
/2211 +RE /2212 + RE /2213+RE /2214 +RE /
/2111+RE /2221 + RE /2222+RE /4444- /
/1114 + /2116 +R /3114 +R /4l14- /
/3126+R /3134 +R /3144+R /3334~ /
/4111 + /4112 - /4113~ / 3333~ /

S/E=082//6=50/
/U=40//V=70//W=46//X=50//Y=94//2=80/
/1=84//2=62// 3=42//4=99// 1=46/
/A=31// B=43// C=42// D=40/
/SA=14//SB=12//FA=14//FB=14/
/MA=12//MB=10// ©A=08//06B=08/

/J=12//Q=08//SR=08//08T=00/
FIGURE 6

This shows one of two new “daughter cells” printed by the TASP system.
They need not be quite identical in quantities of strings,
but are both in the required starting gene configuration.
Comment on top line is for use of operator and not part of
cell model proper.

symbols to make a new cell configuration, as shown in figure 6, with template
copying of the gene coding and splitting up of reservoirs of all strings in the
cytoplasm.

Gene (DNA) reproduction is symbolized by copying of the four place gene
enzyme identification numbers; the actual Turing machine coding can easily be
written in the (1, 2, 3, 4) coding, but would, of course, be much longer than the
four place gene identification number. In principle, however, copying the iden-
tification number at the proper phase of cell development shows that the whole
Turing machine coding for each gene enzyme automaton could have been copied
at this juncture in the reproduction algorithm. A considerably larger cell, but
not one that is logically more complex, would be needed to actually copy the
entire automata codes.
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Probably the most important single idea in the whole model is that the gene
program codes are not “written’”’ but assembled out of symbols that have been
made synthetically, and are floating in the cell as in alphabet soup. No other
known model of self-reproduction uses this approach to construction of a new
program code in “‘empty space,” defined by indefinitely extended tape of a
Turing machine (or machines). It is conceptually related to the von Neumann
kinematic model which was to make a new physical machine in a ‘“‘sea of parts.”
His tesselation model had a highly structured space in which new configurations
were to be reproduced. The described system is fully operational on a computer;
insofar as is known, the other von Neumann models have not yet been fully
simulated on a computer.

6. Relationship of model to biological cells

Table IT compares the contents of the cell model with a real cell. The validity
of such a highly abstract model is discussed much more fully in other reports [2],
[3]. It is never possible to prove a model is “true” and models are frequently
most valuable in an heuristic, conceptual sense.

The described model does not deal with quantitative biochemical phenomena
of cells, and in this regard is completely different from the enzyme kinetics
models deseribed by Chance, Higgins and Garfinkel [13], Garfinkel and Hess
[14], and others. It does include a great many qualitative relationships and
control mechanisms that are presently believed to operate in cells, as described
in books on molecular biology by Bonner [15], Watson [16], Morowitz [17],
F. W. Stahl [18], or Paul [19]. The model specifically incorporates the principles
of DNA regulation by RNA suggested in the work of Jacob and Monod [20],
and Changeux [21], various biochemical feedback mechanisms cited by Eagle
[22], or Morowitz [23], and represents DNA in the basic roles described by
Commoner [24], Zuckerkandl and Pauling [25] and others.

Recent surveys of progress in exobiology by Pattee [26], [27], Morowitz [17],
and Bernal [28], have made it increasingly clear that cellular self-reproduction
should be regarded as a general process, not necessarily dependent entirely on
availability of materials on the earth such as DNA. In a general sense the cell
model described in this report is comparable to the PPLO organism, which has
been discussed extensively by Morowitz and Tourtellotte [29]; figure 1 even
looks like the illustration these authors gave for the PPLO organism.

An important measure of organizational complexity of a cell is its total con-
tent of molecules, macromolecules and genes. A thorough analysis of the PPLO
(which is probably the smallest organism with a membrane) by Morowitz [30],
[17], reveals that even this very simple structure includes about 10® to 10°
molecules other than water molecules (compare letters in the model), about 107
monomer units (DNA, RNA protein coding letters in the model), some 18,000
large molecules (longer strings of the model), and 400 enzymes or proteins.
Hutchinson [31] calculates that a normal cell has 10" atoms of hydrogen and
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TABLE II

A CompaRIsON OF Coping AND CONTROL MECHANISMS IN THE STRING PROCEsSING MODEL

AND REAL CELLS

Natural Cell Automaton Cell Model

Coding Four letter DNA code, with about | Turing quintuplet code, with automata
1000-2000 nucleotides per gene; | identified by ‘“‘gene numbers.”” About
100,000 or more genes per cell. 1000 Turing commands per enzyme au-

tomaton and 36-80 automata per cell.

Copying DNA subcopied via four letter | Automata (gene) coding copied symbol-
mRNA, under operator, repressor, | ically via RNA subcopy strings. Actual
etc., control. Direct copying by | copying is from tape into core memory
DNA polymerase. of computer, once for each gene during

each processing (time) eycle.

Enzyme Chains of mRNA serve as templates | The Turing code of a particular enzyme

formation | for ribosomes, which act as univer- | automaton is processed in computer,
sal polypeptide constructional ma- | acting as universal Turing machine,
chines. which simulates each enzyme in turn.

Enzyme Cell synthesis and logical activity | All biochemicals and cell properties rep-

action controlled by enzymes which can | resented as symbols on program tape.
recognize and operate on all bio- | Enzyme automata can perform any de-
chemicals and cell structures. sired operation on these symbols. No
other means of manipulating them is
used.
Structural Proteins and other biochemicals | Automata combine and transform vari-
features build up complex cell structures | ous biochemicals to give complex two
such as membranes and organelles. | dimensional arrays or structures, which
can polymerize.

Redundancy | Many copies of genes, enzymes, | There is one copy of basic coding, but
ribosomes, all biochemicals, cell | cell is operated as if there are many
wall elements, etc. Much error tol- | copies of RNA, enzymes, proteins, bio-
erated, except in certain key genes. | chemicals, etc. Considerable error toler-

ated in rates and some aspects of coding.

oxygen, 102 to 10'? of carbon and nitrogen, 10" to 102 of phosphorous, sulphur
and a number of other elements, and even 10* to 10° molecules of mercury,
uranium, and so forth, present as trace contaminants (these correspond rather
loosely to certain heuristic programming symbols used in the TASP program).
The automaton cell does not approach this size, but it could perhaps be made
to do so within the foreseeable future. Even so, it takes many millions of ele-
mentary logical enzyme automaton steps to mature.

The described cell simulation is a rather more plausible model of biological
cellular self-reproduction than the so called “tesselation model’”’ of von Neumann
[32], as it has been developed in the hands of Moore [33], Burks [34], Myhill
[{35], Arbib [36], [37] or Barzdin [38]. In the tesselation model there is an
indefinitely large grid of squares, each of which contains a completely prepro-
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grammed identical specific finite automaton, which is quiescent until activated
by adjacent cells. Reproduction in this model is of a configuration in the grid,
and not of the automata in each cell of the grid as such. Arbib [36], [37] has
recently suggested some very interesting variants on the tesselation model in
which the program code of a Turing machine can be self-reproduced into adjacent
cells, but the surrounding region is by no means “empty’” and in fact highly
structured. The model described in Stahl [3] is the only known automata theory
model of a cell which generates a new cell next to itself, from elementary parts,
repeatedly, and also the only such known model which attempts to use known
mechanisms of molecular biological control. In some respects it is a (molecular
biological version) of von Neumann’s original kinematic model, which was
intended to reproduce an actual physical array of transistorlike parts in space.
It does, of course, have its own deficiencies, connected principally with quite
arbitrary definitions of environment, enzymes, genes, and so forth.

7. Testing of self-organizing ability of the cell model

Tables III, IV and V deal with computer experiments in which the normal
cell model, which reproduces as described above, was subjected to various kinds
of interference. Normal maturation time with the TASP compiler was 2 to 3
hours, and only 5 to 10 minutes with the new CLPP system. Both compilers
have a provision for interrupting cell operation (at the end of any processing
cycle), with arbitrary readjustment of levels of any substances, rates, activation
condition of genes, and so forth, and also for applying perturbations at the end
of every normal operational cycle (continuing disturbances).

A large variety of numerical parameters can be extracted during operation
of the cell model, such as total use of any “diet’’ string, turnover rates of certain
strings, relative ratios of strings, and so forth, but the following seemed the
most natural and significant indicators of cellular self-organizing power: (1)
number of operational time cycles to reach maturity (as signaled by appearance
of a certain control string J); (2) number of operational cycles to reproduce in
accordance with the full normal self-reproduction algorithm, and (3) total
energy E expenditure for reproduction (it will be recalled that E is made by an
enzyme automaton from elementary diet strings). More complex criteria are
of value for certain tests, but will not be discussed here.

Table I1I shows the results of studies in which a certain fraction of the total
quantity of all small substances (one and two letter strings) was removed from
the cell at the end of each time cycle. This corresponds to ‘leaky’ cell walls,
with loss in proportion to total quantity, dN/dt = kN. Table III shows that
the cell could reproduce with loss rates up to about 30 per cent, and simply
survive with considerably higher leakage rates (up to at least 50 per cent,
though this is not shown in table ITT). Loss rates up to 8 per cent had little effect
on time and total energy to reproduction, while values of 16 to 30 per cent caused
considerable delay. Maturation with production of large cell strings and organ-
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TABLE III

TEsTS OF THE ORGANIZING ABILITY OF A CELLULAR SELF-ORGANIZING MODEL
oN TuriNG AuTOMATA
Effects of Leakage of All Small Substrates
Gene enzyme automaton model with TASP simulator (9/65).
Leakage of all one and two letter strings, at end of each time cycle,
at percentage of their total contents shown.
NR indicates no reproduction in 1000 time cycles; it will probably never take place.

Organizational Criteria

Leakage Rate

(per cycle Cycles to Cyecles to Total Energy to Reproduce
in per cent) Mature Reproduce (rounded to units of 50)
none 35 46 1550
2 35 46 1600
4 38 60 1700
8 66 75 1750
16 72 87 2000
25 72 100 3300
28 76 121 4000
30 89 360 11900
32 89 NR NR

elles was not nearly so demanding a self-organizing task as reproduction, which
is to be expected.

Table IV illustrates comparable testing in the situation that certain specific
“diet” substances were in short supply. Dropping the input available on each
processing cycle of the diet strings W, U and V to 25 had very little effect on
the standard organizational measures. Decrease of Z or Y caused more difficulty

TABLE IV

TesTs oF THE ORGANIZING ABILITY OF A CELLULAR SELF-ORGANIZING MODEL
Basep oN TURING AUTOMATA
Effects of Environmental Deficiencies
Thirty six gene enzyme automaton model with TASP simulator (9/65).
The normal outside letter diet supplied each cycle is curtailed in manner shown.
NM indicates no maturation and NR, no reproduction in 1000 eycles.

Organizational Criteria

Nature of Cycles to Cyecles to Energy to Reproduce
Shortage Mature Reproduce (rounded to units of 50)
none 35 46 1550
259 normal W 38 56 1550
25% normal U 53 59 1700
25%, normal V 87 98 1600
12.59%, normal Z 203 338 16900
12.5%, normal ¥ 220 358 17900

6.29, normal Z M NR NR
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-and inputs of 12.5 per cent of normal for these materials caused a major slow-
down in reproduction, which, however, was completed in due course, with a
normal daughter cell configuration, but with use of over 10 times the normal
energy amount. Reduction of the substance Z to 6.2 per cent of normal environ-
mental values (at each operational cycle) was beyond the organizing limit of
the cell: it did not die, in the sense that its £ level dropped finally to zero, but
was not able to mature.

Table V shows the results of a different sort of testing, in which during normal

TABLE V

Tests OF THE ORGANIZING ABILITY OF A CELLULAR SELF-ORGANIZING MODEL
Basep oN TURING AUTOMATA

Effects of Abrupt Reduction to Zero of Certain Substances
Thirty six gene enzyme automaton model with TASP simulator (8/65).
Normal operation in optimum environment, without leakage,
and some materials are suddenly ablated (dropped to zero).

NR indicates no reproduction in 1000 operating cycles;
self-reproduction algorithm not viable.

Organizational Criteria

Cyecles to Cycles to Energy to Reproduce

Nature of Disturbance Mature Reproduce (rounded up in units of 50)
Normal 38 47 1600
Destroy RNA enz. of genes 43 51 1700

1411, 1421, 1431, 1441, at 17th

cycle then proceed
Ablate J, D, and I on 18th 40 52 1700

cycle and proceed
Ablate reservoirs of I, 2, 3, and 43 53 1800

SR on 38th cycle and proceed
Ablate reservoirs of @, 4, RA, 41 53 1800

MA, SA, and C on 39th cycle
and proceed
Turn off permanently gene 47-200 NR NR
1122 or 2114 or 3114 or 3334
at 10th cycle

maturation there was a sudden complete removal (ablation) of one or more
substances, with subsequent continuation of the test run. It shows that the cell
would recover easily from loss of certain of its simulated equivalents to messen-
ger RNA or enzymes, simply by making more copies of these materials. The
cell system would also recover easily after dropping of most string reservoirs to
zero at any arbitrary processing stage. This sort of action is possible because a
wide variety of interlocking feedback loops, similar to end product inhibition
of allosteric enzymes, and Jacob and Monod RNA regulation mechanisms, are
built into the cell control algorithm [11]. Multiple threshold tests for the enzymes
cause them to maintain the proper levels of their principal products rather
independently. Sudden loss of a reservoir results in a propagated release of
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thresholds and rather rapid resynthesis of needed strings, at which time the
basic reproduction algorithm proceeds.

The last line of table V deals with disturbances which cannot be restored by
the cell. Turning off of a gene at an arbitrary time may result in configuration
which the cell cannot reverse. For example, if the normal maturation sequence
calls for activation of gene no. 2114 at the end of cycle 8, but it is then arbi-
trarily deactivated on cycle 10, the cell algorithm is unable to reorganize itself
and never again returns to the configuration recognized as appropriate for
turning on gene 2114.

This response is somewhat reminiscent of, but not identical with, the ‘“Garden
of Eden” configurations described by Moore [33] in his studies of von Neumann’s
tesselation models. Such configurations cannot be reproduced and are forever
eliminated in Moore’s system. In the described model recovery is possible fol-
lowing deactivation of some genes, particularly those involved in premitotic
testing, but not most of the important controller genes, which indicate general
level of cell maturation. Interference with the genes involved specifically with
reproduction during the mitotic process itself usually has disastrous effects.

The self-repair capacity of self-reproduction models of the von Neumann
tesselation type has been studied fully by Lofgren [39], who finds that certain
kinds of error in the “grid”’ can be restituted by a given self-reproduction algo-
rithm, which is programmed identically in all cell automata. The problem of
self-repair through multiplexing of information channels was first clearly raised
by von Neumann [40]. More recently, Winograd and Cowan [41] and Cowan
[42] have increased the error resistance or self-organizing ability of neuron nets
by more subtle types of computational redundancy. Much the same concept is
present in the algorithmic cell design, in which each enzyme automaton is
assumed to be present in a small number of multiple copies and ‘“‘computes” a
string synthesis which may influence a variety of other automata and gene
control conditions. The cell model has considerable capacity for self-repair;
models under study now include provision for lysis and elimination of enzyme
automata, or whole cells which do not appear to be functioning properly, with
replacement by new units.

An entirely different self-organizational adaptive problem is considered in the
reports [11] dealing with what the author has called algorithmically unsolvable
problems for the cell model. To demonstrate this result a ‘“‘test automaton” is
included in the gene program of the cell and has the hypothetical task of
“computing” the composition of a new gene needed by it to fulfill a certain
adaptive need. It can then be shown that for any well defined cell algorithm
programmed in a standard manner one can always find a test situation or cell
configuration which prevents effective adaptive action by the computational
automaton. This result implies that direct genetic adaptation does not occur
in nature because it involves fundamental logical paradoxes or dilemmas. The
entire question is discussed in detail in the cited recent report.

From tables III through V, it is clear that the algorithmic cell model has
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potent self-organizing capacities and will reproduce itself in spite of a wide
variety of individual and combined disturbances. It does, of course, have its
limits and sufficiently great losses or arbitrary interferences with certain sub-
stances or genes causes it to die, in the sense of entering into a progressive
decline of basic substances and energy.

8. Other models of biological self-organization

Study of available symposia volumes on self-organizing systems edited by
Yovits and Cameron [43], Yovits, Jacobi and Goldstein [44], Bernard and
Kare [45] and von Foerster and Zopf [46], and also a recent volume in Russian
by V. M. Glushkov [47], reveals that the self-organizing model described above
is new, and that most prior work on self-organization has been concerned with
learning in adaptive neural networks. The described model does not ever “learn
the organization” of its environment, though its specific gene activation state
can reflect the “diet” available in the environment. The specific difference
between the cell model and neuron models is that threshold levels for the enzymes
are never altered during normal cell operation in the former, whereas this step
is the crux of learning and adaptation in almost all neural network models, the
vast majority of which are based on the McCulloch-Pitts [9] “threshold logical
neuron.”

The described model also differs greatly from certain “automata games”
proposed by Tsetlin [48], Gel'fand, Pyatetskii-Shapiro and Tsetlin [49],
Borodyansky [50] and other Soviet authors interested in biological cybernetics.
These authors are concerned with much smaller sets of automata, which are
generally conventional finite automata existing in perhaps a dozen states and
connected by binary signal channels. Working with Glushkov, Letichevskiy
and Dorodnitsyna [51] developed a model of an adaptive automaton that feeds
on binary bits scattered on its environment tape; this automaton must learn
the presentation pattern of 1’s on its tape or die of starvation, but it does not
interact with other automata and there is no cell as such.

Important theoretical discussions of the problem of self-reproduction have
been presented by Ashby [52], [53], Mesarovic [54], Muses [55], and von
Toerster [56]. These authors treat self-organization as an abstract problem, but
commonly refer to a learning network as the prime example of biological self-
organization. Generally speaking they draw attention to what coded represen-
tation can be made of the environment, what takes place in the system during
Jearning, and how its internal organization reflects the structure of its surround-
ing environment. All of these concepts are applicable to the algorithmic cell
model of this report, but in a sense somewhat different from that appropriate
to memory networks. Andrew [57] has discussed organizational systems in
terms of their ability to maintain a stable external environment (as by a robot),
but this task is rather different from that of maintaining a stable molecular
miliew interior in the cell.
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The described cellular model also differs in principle from those of evolu-
tionary adaptation described in recent reports of Bremermann [58]. This author
has provided interesting and detailed analysis of the informational selective
processes implied by natural selection of a genome. He does not, however,
propose a self-reproducing model as such, and self-organization in his type of
system is treated from the standpoint of information theory.

In a series of fascinating and provocative papers McCulloch [59], [60], [61]
discusses biological computers in a broad context and proposes the use of ele-
mentary logical tools for representing biological events. This same view was
strongly emphasized by von Neumann [32]. The work of the author is the first
attempt to use a large and complex system of Turing automata to simulate a
biological cell engaged in molecular processing; it is also the first mechanical
implementation of a universal Turing machine, which is the proper compiler
of Turing machine codes, on an ordinary computer.

The model incorporates a number of complex biochemical regulatory mech-
anisms. The cell has been considered as a complex cybernetic regulatory system
in recent reports of von Foerster [62], Beer [63], Apter and Wolpert [64], Frank
[65], Dechev and Moscona [66], Aleksandrov [67], Kafiani [68], David [69]
and others.

A large number of recent reports in molecular biology contain the terms feed-
back and molecular regulation in their titles, which illustrates the trend in
molecular biology towards a mathematical cybernetic viewpoint. To the present
there has been no agreement on what sort of model will be most useful for
application of mathematical control and automata theory to molecular genetics.
The model of this report is a possible vehicle for merging automata and control
theory with molecular biology, but a number of others doubtless will be devel-
oped and studied in the near future.

9. Entropy and statistical measures of self-orga.nizatioh

In his small but provocative book What Is Life?, Schrodinger [70] some time
ago raised questions about the relationships of statistical processes in large
molecules, as viewed by quantum mechanics, and the organization of life. The
applicability of quantum mechanical and statistical mechanical principles to
cellular organization to cells have been discussed in reports by Elsasser [71],
[72], Rosen [73], Longuet-Higgins [74], Karreman [75], and others, without
formation of a consensus. Goodwin [76] provides a statistical mechanical
approach to cell enzyme kinetics. The relationships between entropy and evolu-
tion or natural selection are considered in reports of Trincher [77], [78] and
Ursul [79], without reference to a specific cell model or automata theory. It is
of interest to attempt to compare the statistical organization measures of
thermodynamics with those given above for analysis of organizational tasks in
the cell model. »

The first law of thermodynamics states that £ 4 H = W, namely, total
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energy is conserved but partitioned into heat energy and work. In the cell model
there is a total quantity of strings or available energy E at any one moment,
but the correspondence to heat and work energy is not immediately obvious.
Temperature should be a factor causing an increased collision rate between all
strings and hence augmenting all string reaction processes. Increase in temper-
ature is expected to result in an increased content of heat (assuming a constant
specific heat). In the cell model one might suppose that all strings are moving
about randomly and have a kinetic energy proportional to size (number of
letters) times their velocity. The equivalent of temperature will then be a mean
linear veloeity of motion within the cell. As the cell is actually modeled, what is
moving is not strings but the string processing automata, which travel about
the cell contents tape at finite “stepping rates.” Random motion is represented
in a similar manner, by an automaton adding random variables to all strings
at a rate which depends on the postulated model temperature.

A good model of physical work development in a biological system is found
in muscle, which is a structure that forces randomly oriented chemical processes
to proceed along a particular axis. That is, regardless of the direction of motion
of an ATP molecule when it arrives at a muscle fiber, this macromolecular
machine releases the ATP energy along its fiber axes, which slide back and forth.
No exact analogue to this mode of action is at present found in the cell model,
but it could be added. An alternative generation of work is by a piston which
forces random molecular motion to act in a particular direction. Work may be
said to be an energy vector directed in a geometric physical or abstract phase
space.

The second law of thermodynamics states that entropy AS increases with
time in all physical processes into which there is no influx of “organizing energy.”
Entropy is commonly defined by AS = Aq/6, with Ag being reversible heat
content and @ temperature, and has the dimensions of heat content per degree.
From the above definition of temperature, for the algorithmic cell model increase
of entropy would correspond to an increasing ability of strings to move randomly,
or with more degrees of freedom, thereby giving a higher total movement energy
for a given cell configuration. This could be interpreted to mean that with
increased temperature more strings will become free and not bound in aggregates
or complex structures or pathways in phase space. Polymerization of “‘strings”
was represented in a prior string processing cell model [80], and disruption of
organized aggregates of strings appears as a natural result of increasing rate of
string motion in this system.

The third law of thermodynamics states that entropy will be zero at absolute
zero, which could correspond easily to complete cessation of all motion in the
model. In figure 1 this would refer to a stopping of all string motion and contact
of strings with enzyme automata, while in the actual TASP simulation it
implies a dead stop of the computer, with freezing of a given configuration. It
is of much interest that the cell model can be restarted after such a stop. Re-
cently, Skoultchi and Morowitz [81] showed that cysts of the invertebrate
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organism Artemia could be brought to absolute zero and then revivified, dem-
onstrating that all genetic information necessary for survival of this organism
was carried in its structure, and not in the pattern of electronic or molecular
momentum distributions. The cell model of this report exists as a frozen cell
algorithm until placed in the TASP computer simulator.

Entropy may also be defined by an equation of the form —AS = R log (p:/p1),
in which p, and p, are probabilities of a certain configuration or “state’”’ and
R is the gas constant. This equation can be interpreted to mean that entropy
is decreased (—AS) when probability of a given configuration (among all possible
ones) is increased. In the cell model increased orderliness is associated with
regularities in enzyme automata configuration charts or the appearance of the
cell (see figure 1), particularly in connection with aggregation of strings in
certain regions at appropriate times, and formation of complex aggregates. In
the model the string E is used for all logical work, and energy has to be expended
to form any pattern (make its occurrence more probable in a statistical sense
for the cell model).

Another very important concept of thermodynamics is that of chemical free
energy AF or Gibbsean chemical potential AG. Defining equations for chemical
free energy include

(9.1) AG = AH — 6AS,
(9.2) AG = R log Ko,
(9.3) AG = Rolog (C/Cy)

in which AH is total heat energy, R is the gas constant in units of cal/mole deg,
6 is temperature, K,, is a mass action constant representing a ratio of probability
of formation over probability of destruction of a compound, C: and Ci, a higher
and lower concentration of a given substance on two sides of some sort of barrier.

The first equation (9.1) can be interpreted in the model to mean that the
total energy of effective organized motion (in a phase space) of the strings is
given by their total motion less purely random motion; this has a reasonable
counterpart in figure 1 and the automaton system. The second equation (9.2)
states that free energy is required to shift a mass action constant in the
direction of a desired product. In automaton cell model every enzyme makes
product by simply using one unit of £ per “bond,” so concentration of product
is linearly related to energy use, but a logarithm function will arise if a physio-
chemical randomizing automaton simulates breakage of bonds at a fixed prob-
ability for all bonds, as a function of temperature.

There is also a reasonable analogue for (9.3) in the model. In the latter work
must be done, and the string E expended, to concentrate a particular string in
a given region (or phase space), but there is no obligatory occurrence of the
logarithm function relating energy use to a string concentration ratio. Such a
function may arise if the randomizing automata carries out a passive physio-
chemical disruptive action act on all strings (particularly in the high concentra-
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tion C, region), while the concentrating automaton moves one unit of C; across
the barrier per unit of E, as done in the model ordinarily.

These examples show that provocative analogies to the concepts of chemical
thermodynamics may be found in the cell model. However, total energy or time
cycles for maturation or reproduction do not have an immediate counterpart in
the basic measures of thermodynamics. But it has never been shown that nega-
tive entropy or free energy really are appropriate or the best organizational
measures for biological cells, which are much more highly organized than any
regular solid such as a crystal. Thermodynamic measures are not even particu-
larly appropriate for transistors, and definitely not suitable for analysis of
miniaturized solid state circuit or computer assemblies, which also have high
levels of organization. They do not apply at all naturally to computers and
neuron net models of organization.

10. Measures of information in the cell model

Possible applications of information theory in biology were discussed in some
detail in a symposium edited by Yockey, Platzman and Quastler [82]. Informa-
tion theory analyses have been made of the base sequences in DNA by Apter
and Wolpert [64] and Gatlin [83], and of evolution by Bremermann [58]. An
informational interpretation of aging has been given by Johnson [84], with the
assumption that each cell contains a great deal of redundancy. Many works are
available on informational processes in the nervous system, at membranes,
during human communication, and so forth, but will not be cited. The cell
model of this report makes it possible to explore some basic problems in the
interpretation of genetic information content.

A Turing machine may always be coded in binary notation (as can any com-
puter or robot), and this allows one to ascribe an information content to a region
of cell coding. The information content of the model cell can be estimated from
the following facts. It contains 36 genes with about 1000 Turing machine com-
mands per gene enzyme automaton; a command consists of a quintuplet of
symbols with a mean information content of about 24 bits. This makes a total
of roughly 864,000 coding bits. The cell contents tape consists of some 1400
symbols, with about 6 bits per symbol, making a total of 8400 bits in the cell
configuration. By way of comparison, Vogel [85], Bremermann [86], and others
have suggested that the human genome contains 3 X 10° nucleotide pairs
equivalent to 6 X 10° bits (at 2 bits per base pair), with roughly 500 base pairs
per gene or 7 X 10% genes per haploid chromosome set. Bremermann points out
that the human genome is roughly equivalent to 5000 books of 400 pages each,
assuming the normal information content of English.

The chief difficulty in applying information theory to cell structure has been
the lack of a mechanism, model, or theory which related the information content
in bits of the code and the supposed information content of the cell. In the cell
model one sees that there is no simple, and possibly no deterministie, relation-
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ship between the bit content of a region of Turing enzyme automaton coding
and the informational selective action this coding exerts in the cell, as measured
by increasing the probabilities of certain states in a phase space or structures
of the cell configuration. That is, the cell configuration pictured in figure 1
could in principle be used as an information coding device, with arbitrary
assumptions of what aspects of the whole configuration would carry useful
information. The problem would then be to relate the total enzyme automaton
coding in bits to the information carrying capacity of the cell configuration in
bits.

There would not seem to be any simple straightforward way of accomplishing
this result, even though the cell is entirely algorithmic in operation, and even
if it is not subjected to action of the environmental randomizing and leakage
automata. Difficulties arise both from the standpoint of Turing machine coding
and nature of the cell configuration. From experience with writing of hundreds
of Turing automata, some of them with more than 1000 states, it has become
perfectly evident to the author that Turing machine codes are just as arbitrary
as any other computer codes and cannot be minimized in any unique way. That
is, one can write a Turing machine to recode two adjacent binary 1’s by a 0
with use of coding whose own information content might be a few dozen to
many hundreds of bits, depending on programming strategy. In the case of
enzyme automata the problem is much more complex.

A simpler standard test paradigm might be used. For example, all Turing cell
automata might be required to function in a similar “style.” Instead of having
a cell configuration as complex as shown in figure 1, one might use string syn-
thesizing automata to build a long chain polymer whose sidechains represented
a binary signal, or special two dimensional patterns (as bar and square) standing
for 1 and 0, or even use the positive and negative states of the genes in the cell
model for information transmission. The point of this is to convert machine
coding bits into configuration bits. However, numerous arbitrary assumptions
would be required in such a highly artificial situation. A quite similar problem
is encountered in transmission of words or numbers on TV, in which there is
no obligatory relationship between the information content of the actual written
message and the minimal numbers of bits needed, above a very low noisy limiting
level given by Shannon’s theory.

The cell is not a TV screen, but its genetic machinery and organelles define
a level of organization greatly beyond the elementary thermodynamic one, and
not necessarily well expressed by the apparent bit content of a sequence of DNA
coding. The latter does represent a lower limit, as does channel capacity for a
TV message transmission, but the actual level of organization is influenced by
the coding of the cell configuration, entropy of the environment, mode of oper-
ation of enzyme automata and other factors. Lehninger [87] and Eigen and
DeMaeyer [88] have analyzed information storage in general cellular structures,
such as arrangements of lipids and proteins, in particular reference to memory.
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The pertinent level of organization in this case is macromolecular, and not
even molecular, to say nothing of atomic or electronic.

The applicability of quantum mechanical and statistical mechanics to cellular
organization has been discussed fully by Elsasser [71], [72], who concludes that
biological organization does not contradict any laws of quantum mechanics,
but also is in no way predicted by quantum physics. The discussion above
would suggest that one of the main problems is the organizational gap between
the quantum level defined by an electron volt, the thermodynamic level defined
by a Boltzman of energy, and the cellular level, which is perhaps defined by
the hydrogen bond or ATP free energy level.

A quite similar dilemma, arises in consideration of information processing in
a computer regarded as a thermodynamic device. Even the pertinent energy
levels needed to encode one bit, in presently available microcircuits or core
memories, are many orders of magnitude removed from the thermodynamic bit
level defined by the Boltzman equation

(10.1) Ey = Kp,log; (p2/p1),

in which E, is the energy of any elementary selection or informational repre-
sentation process, shown by the probability ratio p:/p1, and Kg, is the Boltzman
constant, whose actual value is 1.38 X 10~ ergs per degree. The Boltzman
constant has the same dimensions as entropy. In the cell model it could be con-
strued to mean the minimum unit of energy for either moving past one square
of a finite grid containing figure 1, or moving one square on the cell contents
tape traversed by the cellular enzyme Turing automaton. The cell model, TV
screens, computers, and so forth, normally have much wasted motion compared
to really impartant motion, and the limiting information packing density is
never approached.

11. Conclusions

The cell model of this report bears somewhat the same relationship to real
cells as the McCulloch-Pitts logical neuron has to a real nervous system: loose,
nonquantitative, but based on fundamental mathematical concepts, and gen-
erally provocative. It provides a tentative framework for study of questions
interrelating automata theory, information theory, molecular genetics and cell
morphogenetics. It does not, and was not intended to, yield any quantitative
facts about enzyme levels, and is at least four to five orders of magnitude simpler
than even the simplest PPLO organism.

The type of self-organization in the cell model is quite-different from those
appropriate for neural network adaptive systems. The described measures of
organization, namely, total time and energy for reproduction, are not appro-
priate for analysis of computers, memory networks, and previously described
abstract self-organizing models. They would seem, however, to be very reason-
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able measures of reproductive efficiency for real biological cells or tissues. An
additional result achieved with the Turing enzyme automaton cell model is the
partial clarification of certain troublesome questions pertaining to informational
content of cell coding and apparent information stored in cell structures.

The presented model is best regarded as a new conceptual aid for understand-
ing real cells and will no doubt be subject to much future modification and
improvement. It does demonstrate that modern theoretical automata theory
can be applied to molecular biology in a meaningful way.
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