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1. Introduction

The purpose of this report is to consider the problem of nonuniform distribu-
tion of bone seeking radionuclides, such as the alkaline earth elements, and the
effect of age on the retention of these radionuclides in organisms via a mathe-
matical study of a compartmental system in which the connections between
the compartments are random variables. In most compartmental studies it is
generally assumed that the contents of the compartments are uniformly dis-
tributed (see for example, Sheppard and Householder [7], Berman and Schoenfeld
[1], Hearon [4]). This is not a realistic assumption for the case of bone seeking
elements such as radium, where it has been well demonstrated that hot spots
of activity occur as many as 20 or 30 years after intake of 226Ra by man [5].
Rowland states that the concentrations in the hot spots exist in regions of bone
where new mineral was laid down at the time the radium was acquired and that
in this mineral the original concentration of Ra, expressed as the ratio of Ra to
Ca, was essentially the same as the Ra to Ca ratio that existed in the blood
plasma at the time the new mineral was formed. There is also a second type of
distribution which is much lower in concentration and rather uniform. This is
believed to be the result of an exchange process which continually transfers
Ca and/or Ra atoms from blood to bone and back again and which is charac-
terized by an unusually long time constant.

It is customary to think of bone tissue in terms of two types-the trabecular
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or spolngy tissue and the cortical or hard boiy material. A process called re-
modeling of these tissues takes place during life and this amounts to the erosion
or resorption of one region of bone and the laying down or rebuilding in another
region. It is during this process of absorption anid resorptionI that "hot sp)ots"
are formed in bonie.

There is a growing trend to consider turnlover rates in bone in terms of at
least two "subcompartments," trabecular bone and compact bone. The turn-
over rates in these two types of bone are observed to be different, faster in
trabecular bone and much slower in the compact bone. Lucas has suggested
that the biological half life for Ra in trabecular bone is about 7 to 14 years and
twice as long in compact bone. Also, the hot spots of Ra would disappear from
the bone after perhaps 200 years since by then the whole bone would be re-
modeled and turned over. How may we more ade(quately represent these phe-
nomena in terms of a compartmental approach?
One way to gain more insight into this problem is to consider the bone-blood

system as a set of j randomly colnected compartments; let the first compart-
ment represent blood, in which the element is uniformly mixed, and the other
j -1 compartments represent bone. Take a subset of r compartments, r < j-1
and call these trabecular bone. Let the other j - r - 1 compartmeints be
cortical bone. Assume that the flows between the blood and boine are ranidom,
that is, of the j -1 compartments only one of them is connlected to the blood
in the interval 0 to ti, while in the interval t1 to t2, one of them is also conneeted
but not necessarily the same one that was conniected in the first interval of time,
and so on, for other intervals of time. Thus, some of the j - 1 compartments
trap the concentration that existed in the interval 0 to ti. (This represents the
laying down of new bone.) They may release it at a later time (this represents
the remodeling of bone), or they may never reopen and connect with the blood
stream (this represents a hot spot), thereby maintaininig the same coiicenitration
that existed at time ti.
The above constitutes the geiieral compartmental system wve want to study.

We need to determine the behavior of the system-what are the coneciltrationis
in a given compartment as a function of time-how long must one wait until a
compartment releases the trapped material-how many randomly connected
compartments are required to represent the available data oIn reteiltion in boIne?
We find that these are difficult questions and that before we can get some
answers to the general case we have to initiate our studies on a simpler system,
namely, that of only two compartiiments with random flows. Here we gaiin somc
insight into the behavior of the general system. Thus, we begin by presenitilng
the results of the study of this simpler model, which has been described by
Bernard and Uppuluri [2]. They consider the radioactive material retained in
animals (dogs, and so forth) by introduciing an open system consisting of two
compartments S and B which refer to the blood stream and the bone structure
respectively.

Initially (time t = 0 or stage zero), the compartments hold uinit mass of
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radioactive material (henceforth abbreviated to "material"), and compartment
B holds zero mass, and the connecting valve is closed. At the end of a unit time
interval At (stage 1) there occurs a random event which determines the opening
or closing of the valve connecting the two compartments. If the valve at the

_ Compartment B

-|-A- Random Connection (Valve)

Blood

Compartment S

FIGURE 1

Two compartment model.

end of time At is closed, then the amount of material in S is reduced by a factor a
(the attenuation factor). Thus, in this case the amount in S at the end of the
first interval of time would be a X I = a. whereas the amount in B is still zero.
If, however, the valve opens at the end of time At, then the total amount in the
two compartments is reduced by a factor a, and reapportioned in equal amounts
between S and B. Thus, if the system has initially unit material in S and zero
in B, then at the end of time At the compartments contain the amounts shown
in figure 2. The sketch at the left in figure 2 shows the result if the valve remains

Amount = 0 Amount= a2

- Amoua Amout

FIGURE 2
States of system after At.

Left: valve remains closed at end of At with probability 1 - p.
Right: valve opens at end of At with probability p.

closed at the end of At (with probability 1 - p), and the one on the right, the
result if the valve opens at the end of At (with probability p). Similarly, the
state of the compartments with respect to the amount of material held at the
end of the second time interval At can be constructed and will be seen to consist
of four possibilities as shown in table I.
The scheme in table I could be continued so as to show the possible amounts

of material in S and B at the end of m intervals of time At. Clearly, there would
be 2m values for the amounts in S, B with corresponding probabilities, in this
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TABLE I

STATE OF THE SYSTEM AT END OF TIME 2At

State of System f At Closed Closed Open Open
at End of 2At Closed Open Closed Open

Probabilities (-p)(l -p) (1- p)p p(l -p) p2

Amount in S a2 a2 2
Amount in B 0 ja2 la a2

Total amount in the system a2 a2 ia(a +±) a2

branching process. We shall denote the amounts in S and B at the end of time
mAt by Cs,. and CB,m, respectively; these are then random quantities obeying
the following stochastic recursive relations [2]

Cs,m = Xm 2 (Cs,m-, + CB,m-,) + a(1 - Xm)Cs,m.-,

(1.1) CB,m = Xm a (Cs,m._ + CB,m-l) + (1 - Xm) CB,m_-,
m = 1, 2,***,with Cs,o = 1, CB,O =O.

In these equations Xm is a random variable associated with the state of the valve
at the end of the mth interval. If the valve is open, then Xm takes the value
unity (probability p); if, however, the valve is closed, then Xm takes value zero
(probability 1 - p). We thus see that the state of the system at time mAt is
ultimately related to the initial state, and this is succinctly expressed in matrix
form by the equation

(1.2) [CBsm] (rr1...- rl) [C ]

where
aXi + a(l - Xi) +aX 3](1.3) =' L 2a~~ X+1X)

We note that in general the matrices ri are noncommutative.
In a previous account of the subject [2], expressions were derived for the

expected amounts in the system at time mAt. Our objective here is to extend
this initial work and consider and discuss several further aspects centered
around the following topics: (i) multicompartment systems; (ii) principles of
mixing when several compartments are connected; (iii) association of the system
with a branching process; (iv) higher moments of the amounts in the compart-
ments at time mAt; and (v) feasibility studies.
We now discuss some of these in general terms and refer to them again in the

sequel.
There are many varieties of multicompartment systems which are feasible in
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the present situation. Some of these also occur in connection with tracer experi-
ments in steady state systems and reference may be made to Sheppard and
Householder [7] and Sheppard [6]. It is to be remembered that interest here
centers mainly on the connectivity aspect of a system. One that is studied in
some detail is the so called mammillary system shown in figure 3.

Random Valve (connection) Peripheral Compartment

Stream

FIGURE 3

Mammillary system.
(Each peripheral compartment communicates with the stream.)

The amounts in the compartments at time mAt can be considered as compo-
nents of a random vector Cm, the number of components being the same as the
number of compartments (including the stream). In general, the sample space
of Cm can be defined recursively by products of matrices operating on Co, but
the description of the sample space at time mAt in closed form presents consid-
erable difficulties. From another point of view the sample space description
involves an evaluation of the iterates of an initial vector under a series of non-
commutative linear transformations. This problem is greatly simplified when
the attenuation factor is taken to be unity, but even here formulae relating to
sample spaces for vectors of more than three components have proved intrac-
table. Even a complete description of the sample space for two component
vectors is out of reach.
The complete specification of a solution to a given system would demand the

evaluation of the joint distribution of the components of Cm. Thus, being given
the physical structure of a system (that is, the number of compartments and
the connectivity complex), we also require the probabilistic structure associated
with the valves. The general distributional problems are beyond the scope of
this report and we confine ourselves to the evaluation of the means and covari-
ances of the variates in Cm.

2. Description of the model

2.1. The basic stochastic recursive relation. The state of the system is repre-
sented by a (j -1)-tuple, j > 3. Thus, if the first valve is open, the system is
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represented by el = (1, 0, - * *, 0) and if the ith valve is open then the system
is said to be in state ei where ei has unity as its ith component, all other compo-
nents being zero. Clearly, the states el, e2, * * *, eji- are mutually exclusive and
exhaustive. At any instant the system can be in one and only one of the states
ei, e2, e*, l

Let r = (E1, E2,* * * Ej_) denote a state of the system. For example
= (El, E2, * * * , Ej1) =el implies that E1= 1, E2 = E3 = ... = Es- =°

Let P{ = ei} = pi > O for i = 1, 2, * ,j-1 and Et--l pi = 1.
Let Cs,. denote the amount of substance in the stream, and Ci,m, i = 1, 2, **,

j - 1, denote the amount of substance in the peripheral compartments at time
mAt for m = 1, 2, *-- . We shall suppose that the initial amounts are given as
Cs'o = 1, and Ci,o = , i = 1, 2, * * *, j -1.
At any time mAt, if the system is in state ei, let us suppose that instantly the

amount in the stream and ith peripheral compartment becomes

Cs,_ = a(Cs,mi- + Ci,m-1),
(2.1)

Ci,m . a(Cs,.m- + Ci,m-i),

and the amounts in the rest of the compartments remain the same as at time
(m - 1)At. This apportionment stems from the fact that the total amount in
the communicating compartment and the stream is divided in proportion to
their volumes-it being assumed that the volumes of the j - 1 peripheral com-
partments are the same, and the volume of the stream is j -1 times that of any
peripheral compartment.
This may be written as

- 1 ___1
Cs,m - aEl(Cs,m.-,+ C + ji 1iaE2(Csn_l + C2,m_-)

+ * + . - 1 aEj_.(Cs,m.. + Cj-i,m-l),

Cl,m = El(Cs,m- + Cl,m_-) + (E2 + E3 + * + Ejl)Ci,m-i,a

(2.2) EiC2,mElC2,m._ + j-E2(Cs,m_l + C2,m-1)
+ (E3 + E4 + * + Ej-i)C2,m-l,

a
Cj_l,m = (E1 + E2 + * + Ej_j)Cj_l,m_l + Ej- i(Cs,m_i + Cj-i.ml-).

We note that the random variates Ei, with i = 1, 2, * - , j - 1, are assumed
to be independent of time. The above can be compactly expressed as
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(2.3)

Cs,m 2 . 1 aE . aEi j aE, j*. aE1. CS,m-l

C1.m a 0+ (a _ 0I O* * * Cl,m-i3~~
= 0 E+ (a1)E2 0

C2j-.m aE2,_ 0 0 E + -

where hl = Ei+ E2 + - + E3-i and m= 1, 2,
Let Cm denote the j X 1 column vector with the ith component as Ci,m for

i = S, 1, 2, * , j -1, and T denote the random matrix
(2.4) T = E1A, + E2A2 + E,A, + * + Elj-Aj-1,
where the j X j matrix A,. = (bf)) is given by

(2.5) bffr) = a, iff = 1,

a if g=

1 otherwise,

(2.6) bt, ji. Ia, if f = ,g =r + ,

a iff=r+

= 1 otherwise,
It may be noted that in general ArAu id A.A,.
Now (2.3) can be written as

(2.7) Cm = TCr,_n, m = 1, 2, 3,
which is the basic recursive relation, and being given CO, this describes the
system completely.

2.2. Sample space.
2.2.1. General case. This case may be described as the branching process

(figure 4) where at each instant of time we have (j - 1) possible linear trans-
formations A1, A2, *---, Aj-, which can transform any j X 1 vector u =

(ul, U2, ... , uj) of the previous stage into Aju with probability pi for i = 1,
2, . ,j- 1.
The sample space after m independenit trials is represenited by the totality

of j component vectors such as

(2.8) (Ar,.A'i-*,.. . A'eAr4)uo, Ai, c (A1, A2, Aj),
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uO is the initial j X 1 vector of amounts in the system, and r1, r2, * , r. is a
partition of m, with the associated probability
(2.9) p, . pt.

It is understood that some of the p may be equal, so that after m trials we
may have several entirely different realizations with the same probability.

Alu

pi A2u A/A u

V ; X _ A I~~~~~AU :Z:Ai

--~~~~~~~~~~~~~~~~~P-

AJpIu Aj-1 AjU
FIGURE 4.

Illustration of branching process.

2.2.2. Sample Space when j = 3. As an illustration of the sample space we
consider a three compartment system in which the peripheral compartments
communicate with the stream with probabilities pi and p2. We then have for the
random amounts in the compartments at the mth stage

/Cs' m f2a _a 0
2/a 3\a /Cs M_l

NN~~~~~~

(2.10) |Clm El| 0 + E2| 0 1 0 |C1 m-l

N ~~~~3
NN~~~~~~~~~~

\C2,m. 0 0 1 / - ° 3 C2,m-1/

N~~~~~~~~~~

m= 1, 2, -.

Taking a I introduces a further simplification, for now the matrices in (2.10)
are not only stochastic but also idempotent. The sample space and associated
probability structure may now be written in the form
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(2.11) (PiAi + p2A2)(p1A1 + p2A2) . .. (p1A1 + p2A2)Co
= (piAl + p2A2)mCo

where the expression in (2.11) is to be evaluated with due regard to the fact
that A1 and A2 art not commutative, and where

23 3 0 /3 0 23\

(2.12) A1 = ( I3 ° A2=@ 1 U
0O 0 1 3 0 3

For example, we have from (2.11) with m = 2, 3, *. *,
(piAl + p2A2)2Co = (p2iAl + p1p2A1A2)Co

(2.13)
+ (p2p,A2A, + pMA2)Co

(plAl + p2A2)3Co = [p3Ai + (P2p2 + p2pi)AlA2 + p2p21AlA2Ai]Co
+[pIpIA2AlA2 + (p2pi + pip2)A2A, + pzA2]Co.

These may be written as a sum of complementary terms. Thus,
(2.14) (piAi + p2A2)2 = 42(pl, P2, Al, A2) + 42(p2, pi, A2, A1),
where the second term is derived from the first by the interchange pi " P2,
A, l-+ A2; and similarly for the third power. We shall now prove a more general
theorem.
THEOREM 2.1. If A1 and A2 are two idempotent matrices (of the same order),

then for any positive integer m,
(2.15) (p1Al + p2A2)m = cIm(pI, P2, A1, A2) + F.n(p2, pi, A2, A1)
where

(i) 2m(p,p2 A1, A2) = a(m)(pl, p2)Al + a2m)(pi, p2)AlA2 + aim)(pi, p2)AiA2Ai
+ aVm)(p1, P2)(A1A2)2 + * + 'A4V(pl, P2)(AlA2)XA%,

(ii) X = [mi], = m -2[m] with [x] referring to the greatest integer less

than or equal to x,
) (pi, p2) (plp2)r E ( r - PsP21

r= 1, 2, -,28]
- 0 otherwise,

F r+l r (-r1r+s\im -r-s -2 Sm2r-s-Il
=Pi P2 _ , k - ,12( 8-o ~~(r )( .r 1P)

(iv) a2mr+i(pi, P2) if r 1, 2
m

= pi', if r = 0,
= 0 otherwise,

and similar expressions for (Pm(P2, Pi, A2, A1).
PROOF. By induction, the cases for m = 2, 3 are verified easily. We assume

the formulae in (2.15) hold up to and including m. Then
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(2.16) (p,A, + p2A2)m+l
= ['m(Pl, P2, Al, A2) + 4m(P2, pi, A2, Al)] [piAi + p2A2],

and so

(2.17) a2",1(pl, P2) = p2a2(T,-1(p1, P2) + p2arn)(pl, P2), r = 1, 2, ... +
and
(2.18) a2(mr+J1)(pi, P2) = pla2.r)(pl, P2) + pia2+1(p1, P2), r = 1, 2, . .. [2]
From (2.17) and (2.15),

rmn,2r1 -r+ s - m -r 1 -2r-s+(2.9)aP+(P, +)P1AP2E' k - A - )12

m-2r - l)(m- rs2-rs)
+(p1p2)pr ( p2r+1s

since

(2.20) a rr r() (-

(2.21) 2r~(pi, P2) = (p1p2)? 1 (r +2 1)(m -r -ss) 2rs+1

which agrees with statement (iii) of the theorem with (m + 1) for m. Hence the
formula is universally valid. Similarly, the formula for af7,"4,?) can be proved.
A proof using combinatorial analysis proceeds as follows. We have to evaluate

probabilities associated with terms of the form (A1A2)r, (A1A2)tA1. For the proba-
bility of (AlA2)t we consider the products

(2.22) AIt'A2'Alr'A?' *-A.

where EI..i (r, + s,) = m, with r3, sj > 0 and j = 1, 2, * , r.
Since each A1 and A2 in (2.22) occurs with an index of at least unity, the

probability associated with this term is (p1p2)r multiplied by the probability
associated with

(2.23) AnA+A'An2 * -n

where21(t) + Uj) =m-I2r, t,, Uj > 0,forj = 1,2, ,randm -2r . 0.
The problem now reduces to a classical occupancy case. We require the

number of ways in which m -i2r objects can be placed in r cells of one kind and
r cells of another kind. Now s indistinguishable things can be placed in r cells in

A+pr ) ways (see, for example, Feller [3]). The two kinds of cells refer to
A1 and A2 which in turn carry with them probabilities P1 and p2, respectively.
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Since the m - 2r objects can be partitioned into categories with s belonging to
Al and m - 2r -s belonging to A2,where s = 0, 1, ** *, m- 2r, we have

(2.24) a = (plp2)rE (r + 1)(m -r-s - 1)Ps m-2r-s

r = 1, 2, ... [2

We treat (AlA2)rAi in a similar way considering the arrangements of m - 2r - 1
objects into r + 1 cells of one kind and r cells of another kind and verify state-
ment (iv) of theorem 2.1.

In the special case when pi = p2 = 1/2 the expressions for a2"r and a2r+i may
be simplified by using identities arising from the coefficient of tr-2r in (1 - t)-r
(1 - t)-r and the coefficient of t--2'-' in (1 t)-r(1 -t)-r-1. We find

(2.25) a(m) = ( -2)/2m, a2"l = (m-2-1)/2
so that the probabilities associated with various vectors are binomial prob-
abilities. The sample space itself is defined by

(AiA2)rCo, (A2A1)rCo, r = 1, 2, m

(2.26) U

(A1A2)rA1C0, (A2A1)rA2C0, r = 0,1, *- -

where

-112- 1 2 -3 2

(A1A2)r =f 4 1 - L2r] 4a 4l
1 i 1 3 = 3 9 3

-T 11 4~~1

(A1A2)rA =[ 4 4 + 2r -1 -4

(2.27)
-1 1 1- 1 - 1 1 3g

(A2Al)r 4 i4-3L2r 41 4ill

r2 2 2- 6 -- 6

(A2Al)rA2 = 14 4 3+3 -1 3 -1

Evidently the sample space in the limit, as m oo, reduces to (1/2, 1/4, 1/4)
irrespective of the initial amounts in the compartments.

2.3. Functional equation satisfied by the moment generating function. Let
= (t., tl, t2, - X, t_1), and ckm (Tr') denote the moment generating function of
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Cm where Cm is the column vector (C,,m, Cim, * *, Cji,,m) and E denotes the
expectation operator. Then by definition
(2.28) lim(T') = E exp (T'Cm)

{Eexp {' )EiA i)C.-}

= E exp { (EiT'Ai)Cmi}
Invoking the principle of independence, we therefore have

j-l
(2.29) Ekm(T) = E piE exp (T'AiCmi-)

j=1

j-1
= E PijOm_i(T'Aj), m = 1, 2, ...*

where oo(T') = exp (r'Co) and CO is the vector referring to the initial amounts in
the j compartments. From the recursive relation (2.29) between the moment
generating functions at the mth stage and (m - 1)th stage, we can obtain
expressions for the mean amount Mm and covariances.

2.4. Mean amounts in the compartments.
2.4.1. General case. For the mean amounts in the system at the mth stage

j-1
(2.30) jm = E(Cm) = E pjAjAm-j

= MmCo, m = 1, 2, * *

(2.31)

a a PiP a P2 ... a pj-1

apJ ap + 1-p Oap a 0 *...

M= ap2 0 ap2+ 1-P2 0*

apj-l 0 0 ap.-l+ 1 p_

and o = CO.
2.4.2. Eigenvalues of the first moment matrix. Since for the vector of mean

values IMm = MImA, = MmCo, for m = 0, 1, 2, ... , it is clear that a consideration
of the eigenvalues of M may be useful. Now the eigenvalues are roots of f(X) = 0,
where
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(2.32) f(X)

_____ _ i-i a2(j I)p2= ta (i 1)- ' (a ( .tn( pi + I pi x
is the expression arising from the expansion of the determinant IM - XII by
elements in its first row and first column. Now it may be seen that there is one
eigenvalue located in each of the following intervals,

(2.33) o,a.P+i P1,p2 + 1 P2, , pj-+l+ pj-, 1,

where we have assumed that 1 > Pl > P2 > ... > pj-l- (See, for example,
Householder and Sheppard [7]). This result is of considerable value in approxi-
mating the eigenvalues especially when j is large.

In the sequel we shall also consider the case when a is near unity (when a =1,
M is stochastic), and especially how the largest eigenvalue depends on 1 -a.
By using a perturbation method it turns out that if a = - e (E small and
positive) then to the second order of small quantities

(2.34) Xmax''1 -2(j -1) - {2(j - 1) 8(j - 1)4 ip}
The interesting point here is that the first order term in Xma, is independent of
the pi.

2.4.3. Equiprobable case. In this case Pl = P2 = = P- /(j-1)
with j > 2, so that from (2.30)

j-1ia-
js,= a s.,Sjm-1 + 11&-m-b

(2.35)
a

/Ii,m =JZ(j - 1) /MS,m-1 + .i,m-1, i = 1, 2, * * ,j - 1,

where m = 1, 2, * , and 0 = a/j(j - 1) + (j - 2)/(j - 1). Clearly,
(2.36) Ai,m - /k,m =(jUi,m-1 juk,m-1)

= E(Ci,o Ck,o), i, k = 1, 2, * ,(j - 1)
Hence if the j - 1 peripheral compartments contain the same amount initially,
then their means are identical at any stage. This property is intuitively obvious.
Hence, equation (2.35) for the means in the j compartments reduces to the
matrix equation

AS,71) (j a ) 1S,m-
(2.37) [ ;=1 a im1
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Thus,

I.LS,m a a CSo
(2.38) = m = 1,2,..

Lt,m j(j 1) J L J
If we now take Cs,o= u,Ci,o= (1-u)/(j-1), where i =1, 2, j-1
and 0 . u < 1, and let uB,,,, = ,_-- 1 /U,m, then it is straightforward to show that

,U, = 3. [1 + (j - 2)u]0l + ut62,

(2.39) l.LB,m = [, U + 0(1- U)]Oi + (1 - U)2,

At,m = JUS,m + l.B,m

= a [1 + (j- 1)u] +0(1-U)}Oi+ 82

where

(2.40) O1 = (XY' - 2^)/(X1 -

02 =(X1X'2 - X2Xv1)/(X1 - 2),
and X1, X2 are the eigenvalues of the reduced 2 X 2 matrix, given by the roots
of the equation

(2.41) - ~~~ [a(j - )aj-2(2.41) X2 - X I (i . )+ 09 + (j 2 = O.

2.4.4. Case when the system consists of two groups of equiprobable peripheral
compartments. We now suppose that the j - 1 peripheral compartments are
such that ni and n2 of them have probabilities r1 and r2, respectively, of opening.
We let

01-(2.42) ri=-' r2= n ' <0<1, 0.n.<j-1,

where n1 + n2 = j - 1. If in addition the expected amounts at the mth stage
in the stream in the first group of ni peripheral compartments and the second
group of n2 peripheral compartments are denoted by ps,m, ni,u,,ni, n2,u2,m, respec-
tively, then from

liRS,m a(j-1) a(j - 1) aj 1)r2j j ni j n2
aD a ni(1 -u)(2.43) ngul,m = a.r1+ 1-ri 0

a(l-() aa n2(1-u)
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where initially m = 0, the amount in the stream is u, 0 < u < 1, and the
amount in each of the peripheral compartments is (1 - u)/(j - 1).

2.4.5. Modified concentrations. At any time mAt, if the system is in state ei,
let us suppose that instantly the amount in the stream becomes

(2.44) Cs,. = a# (j - 1) (Cs . i + Ci l),f3(j - 1) + 1 (Cm + im-)

and the amount in the ith peripheral compartment becomes

(2.45) Ci,m = (j 1) + 1 (C,sm-i + Ci,m.-),

where ,B > 0 and the amounts in the rest of the compartments remain the same
as that at time (m - 1)At. This modified apportionment can be viewed as
equivalent to a system consisting of a stream of volume ,BV and the peripheral
compartments of volume V/(j - 1) each. This leads to the new system of
recursive relations between the vectors PLm and PIm-I,

i-i
AS,m = Kips,mi- + K1 E Pipi,m-1,

(2.46) 1i,m = K2pipS,m-1 + [1 + (K2 - 1)pi]pi,m1,
iP= 1,2, *- ,j-l,m= 1,2,*

where K1 = a,B(j - 1)/[1 + ,B(j - 1)] and K2 = a/[1 + f3(j - 1)] and the
initial amounts Pis,o and Pii,o are arbitrary.

2.5. Covariances.
2.5.1. General case. For the covariance (uncorrected) matrix Qm of the

amounts in the system at the mth stage, we have

(2.47) Qm = E[CmCm']
E[TCm..C -_1T']

= E[(~2Ef Ai)CmE..iC4mi ( EtAl

j-1
= s piAiQmA m= 1, 2,*-

t=1

where Qo = CoCo. More explicitly, if we define the uncorrected covariances as

PSS,m = E(C2,.)

(2.48) Psi,m = E(Cs,mCi,m),
Pii,m = E(C2m),

Aik,m = E(Ci,mCk.m), i, k = 1, 2, * j*, - 1,
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then

- )\ [ i-= -i 1
/;Si,m = J, {pipss,m-1 + 1 + lp]u1,-

Ishs,m = all sm-1 + 2 PIPi,sim-i + ( PiAii,m-iI

a(j-1) ~a Pi2am-

/.ii,m (~)2Pij_pSS,m_i ± 2Asi,m-j + i.Lii.m_1] + (1-Pi)Aii,rM-i,

IAik,m = a (PiALSk,m-1 + PkIlSi,m-1) + [I + ( p + Pk)] llik,m-1J

i 5- k.

2.5.2. Equiprobable case. In the equiprobable case we now show that instead
of j(j + 1)/2 covariances, in general, there are only four distinct values, namely,

(i) ISS&,m,

(2.50) (ii) I.LSi,m =/LSk,m,
(iii) /ii,m = Akk,m,

(iV) JihA,m = Irs,rn i #- k, r ' s,

for i, k, r, s = 1, 2, *j*, - 1.
This is intuitively feasible, for when the communicating valves behave

equivalently, probabilistically, it seems clear that at stage m the system con-
sists of a random variable Cs,. for the stream and amounts Xi, X2, * * *,X,-1
for the peripheral compartments; the latter j - 1 variates being identically
distributed.
To prove that there are only four distinct covariances we write (2.49) as

I.Si,m = kls.i,mij + k2Jujj,m_j + Ki,m_j + k3,

(2.51) /ii,m = mlSi,m-1 + t2j.ii,m-1 + e3,

Ki,m = mIAssi,m- + m2Ki,m1j + m3,

m = 1, 2, i-,= 1,2, *-,-

where ki, k2, ks, 4i, 42, t3, Ml,M2, m3 are constants independent of i and
j-l

(2.52) Ki, =

Equation (2.51) may be written

Fisi.m ] [ki k2 1 FMsim,m-1 Fk(2.53) |Kii,m| = | 2 0 ||LAiim-1j + |3
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or Ai,. = KAi,mi_ + L, say. Hence,

(2.54) Ai,m = (I + K + K2 + * + Km-l)L + KmAi,o,
and Ai,m is independent of i if Aj,o is independent of i. This can also be seen by
using induction on equations (2.49).
We have thus indicated that the j compartment system with equiprobable

conununicating valves has only four distinct terms in its covariance structure,
provided the initial amounts in the peripheral compartments are independent
of the peripheral compartment description. From (2.49) it is now easily shown
that
(2.55)

IISS,m ~(j - 1) 2(j - 1)2a2 (j -1)2a2 u2JASS,n ~j2 32j 0u

a2 a 2a .j-2 a2 a(j-2) u(1-u)Si =- j -1

a2 2a2 a2 i-2 (1- u)2
-1j2(j-) j2(j -1) j2(j -) i-1 (j _1)2

j(-1 0 (a-, (1
s

Aik-m _ 0 1 + _ 1 J.- _(j1)2_
m = 1, 2, ** ,j = 3,4, -***-,

where the initial amounts are u in the stream and (1 - u)/(j - 1) in each
peripheral compartment.

3. Further problems
3.1. General remarks. There are several possible directions for further

research. The most interesting seem to be related to
(i) alternative models for a system,
(ii) models which involve a continuous time variable,

(iii) sample spaces and their definition and limits.
We discuss each of these briefly.

3.2. Other models. Different models from that considered can be constructed
by changing the connectivity of the system, or the complex of communication,
or the probability structure associated with the communicating valves.
A system with a different communicating complex would be the "catenary"

system referred to by Sheppard and Householder [7]. In this, each peripheral
compartment is connected to two neighboring compartments, with two excep-
tions; the first peripheral compartment is connected to the stream and its neigh-
boring peripheral compartment, whereas the outermost peripheral compartment
has only one connection which is to its neighbor. It is fairly clear that a system
of this kind with a large number of compartments could retain material for long
intervals of time-this could happen if initially all the material was located in
the extreme peripheral compartment which communicated with its neighbor
but rarely.
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Other systems could consist of a combination of mammillary and catenary
systems; here the possibilities are extensive.
With regard to a different probability structure than the one already discussed

we mention the case where each valve operates independently of all others. To
illustrate, consider a three compartment system such as figure 5, but where the

Prob. of valve - 2 < - Prob. of valve
opening pl openingI-pn -P

S

FIGURE 5
Three compartment model.

communicating valves operate independently; thus, the first valve opens in a
time interval At with probability pi and remains closed with probability 1 -p,
whereas the second valve opens and closes with probabilities P2 and 1 - P2,
respectively. As before we associate with valves 1 and 2 random variables X
and Y, where for example, X = 1 if valve 1 is open and X = 0 if valve 1 is
closed. The communicating valves now have four states which can be associated
with the random variables XY, X(1- Y), (1 - X)Y, (1 - X)(1 - Y). Now
let us assume the same concentration principle as was illustrated in section 2.1.
Then the amounts in the three compartments at the time mAt are given by

a a a 2a 2a
Cs,. - - 0

a- a a-
(3.1) Clm XmY. a a a + Xm(1-Y.) 3a 04 44 3 3

a a a
C2,m 00 1

2a 0 2a
a 0 0

+ (1 Xm)Ym 0 1 0 + (1 Xm)(1 Ym) 0 1 0

a 0 00L 1 C2,.m-133

m =1, 2, *.*.*

where Xm, aiid so forth, refer to the random variable occurring in the mth time
interval. We can write (3.1) as
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(3.2) Cm = [X,nYmAll + XmW(1 - Y )Al2 + (1 -XXm)Y-nA21
+ (1 -Xm)(I - Ym)A2I]Cm-li

so that C. is the ordered product
m

(3.3) Cm = II [XrYrAll + Xr(1 - Y,)Al2 + (1 -Xr)YrA21r=l
+ (1 - Xr)( - Yr)A22]Co.

Mean amounts in the compartments and eovariances can be worked out following
the methods outlined in section 2. The sample space, however, is difficult to set
out in closed form.

This type of model can be generalized so that there are j - 1 valves associated
with the j -1 independent random variates XI, X2, ... , X-,1, where, for ex-
ample, Xi = 1 with probability pi when valve i is open and Xi = 0 with prob-
ability 1 - pi when valve i is closed.

Evidently with this type of model, since more than one valve can open at the
same time, the material in the system would be expected to decay faster than
would be the case with valves operating one at a time. Moreover, an increase
in the number of peripheral compartments would scarcely alter the state of
affairs.

3.3. Models operating in continuous time. We now consider a system acting
over a time period mAt = t, where At is now taken to be small. It is relatively
difficult now to produce a probabilistic complex which can be sustained for
infinitesimal values of At. Thus, a system in which one and only one valve opens
during At entails conceptual difficulties. However, a system ill which valves
operate independently seems feasible. A natural structure is to assume that a
valve opens in time At with probability p(t)At, and closes with probability
1 - p(t),At, where p(t) is a constant or a time dependent parameter. This struc-
ture is equivalent to assuming that the probability structure of the valves
follows a Ploisson process in time. We consider two systems from this point of
view.

3.3.1. Two compartment system with "Poisson" communicating valves. Let
the concentration exchange principle be that illustrated in section 2.1. Referring
to figure 1 we assume that X. is the random variable associated with the valve
in the nth interval of time of duration At. Let

4Pr{Xn = 1} = p(t),At,
(3X)Pr{X = O = 1 - p(t)At,

to the first order of small quantities At. Also, let Cs(t) and CB(t) be the random
amounts in the stream and peripheral compartments at time t. Then,

Cs(t + At) = 2 aXt+At[Cs(t) + CB(t)] + a(1 - Xt+AL)CS(t)
(3.5)

CB(t + At) = 2 aXt+AL[Cs(t) + CB(t)] + (1 - Xt+At)CB(t).
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Now the "decay" factor a = exp (-kAt); that is, in a small interval of time
the amount of material in the stream (or in communication with the stream)
suffers a reduction proportional to At. Now assuming independence of the random
variables on the right side of (3.5), we take expectations to find

JAS(t + At) = - e kAtp(t)At[jsS(t) + /B(t)] + e k*l[l - p(t)At]As(t),
(3.6) 1

IB(t + At) = 2-e p(t)At[pS(t) + I.B(t)] + [1 - p(t)At]IB(t),2
so that when At tends to zero we have

tdp p(t)- !@)ABus( -[ + lp(t)]As(t),(3.7) dt 2 [

dt = -P(t);s(t) - 2P(t)IB(t)-dt 2

By elimination we have for the mean amounts in each compartment the differ-
ential equations
(3.8)

d2(t) + {p(t) + k + p(t) d 1 dt(() ! kp(t)IAB(t) = 0,-dt2 d-t ~

p(t)f dt +2
d2 s(t) fddI1 ds (t) =

dl
dt2 + {p(t) + k + p(t) dt p(t)} dt + kp(t 2 p(t) 0

If at t = 0 the amounts in the stream and peripheral compartments are unity
and zero, respectively, then from (3.7) the initial conditions for (3.8) are

PS(O) = 1, IB(0) = 0,

(3.9) dt |t=o { + ()
dpAB 1P()
dt =O 2p(O)

If p(t) is independent of t, then ps(t) and IAB(t) satisfy the second order linear
differential equation with constant coefficients

(3.10) dt2 + (k + p) dY + - kpy = 0,

so that using (3.9) the solution is

(3.11) pS(t) = {cosh (2 Lt) - sinh ( Lt)} exp [ (k + p)t

AB(t) =- sinh (2Lt) exp [ (k + p)t].
3.3.2. General case. Similarly a j compartment model could be considered in

which each communicating valve operates independently, the ith valve opening
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in the nth time interval with probability pi(t)At and closing with probability
1 - pi(t)At. Solutions would consist of exponential sums provided pi(t) was
independent of t.
However it must be remarked that whereas there is no difficulty in setting up

expressions for higher moments, this is not the case in attempting expressions
for thc sample space.

3.4. Sample space problems. A detailed description of the sample space for
a three compartment system when a = 1 is given in section 2.2.2, where it is
shown that products of the matrices A1 and A2 can take one and only one of
four forms (see (3.5)) whenever such a product is not degenerate (for example,
since the A are idempotent, a power of A1 is called degenerate).
With a more general compartment model which has the property of connec-

tivity, we can introduce a set of mutually exclusive events associated with the
communicating valves. Each of these exclusive events E, is related to a phase
of the system and to a matrix A., say; these events and matrices are set out for
one system in section 2.1 and (2.2). Now if the decay factor a is taken to be unity,
then if E, occurs twice in succession the state of the system does not change. If
Cn is the state of the system at any time (or stage), we may write
(3.12) AzCn = A,Cn, a = 1,
which gives an indication that the A, may be expected to be idempotent. In
addition, it is not difficult to see that these matrices are asymptotically (a -+ 1)
stochastic. We have shown in section 3.2 that in general for the three compart-
ment system that products of the matrices A1 and A2 in any order tend to one
limiting value whenever the product is not degenerate, the product consisting
of an infinite number of terms. Does this property in modified form hold with
more general connected systems whenever the decay factor a is taken to be unity?

The authors wish to put on record their indebtedness to Mrs. Barbara I.
Bombay and Mr. John A. Carpenter of the Mathematics Division of Oak Ridge
National Laboratory for assistance in the computational aspects of the problem.

APPENDIX

THREE COMPARTMENT MODEL

A.1. Description

The general ideas discussed in section 2 will now be considered in detail by
reference to a system consisting of the stream and two peripheral compartments,
j = 3 (see figure 5). Let the total volume of the peripheral compartments be
equal to that of the stream, and let each of the two peripheral compartments be
of the same volume. At any instant of time mAt, m = 1, 2, - - *, let (El, E2) refer
to the state of the values between the stream and the two compartments; thus
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if compartment 1 is in communication with the stream, then (El, E2) = (1, 0)
with probability Pi > 0, and if compartment 2 is in communication with the
stream, then (E1, E2) = (0, 1) with probability 1 -P = P2. Let Cs,., Cl.,m
C2,m denote the random amounts at the mth stage in the stream and the com-
partments 1 and 2, respectively. The state of the system initially (m = 0) is
assumed to be C'o = (Cs,o, CI,, C2,0) = (u, v, 1 - u - v), where u, v 2 0 and
U + V _ 1.
At any instant of time mAt, if the first compartment is in communication with

the stream, that is, (E1, E2) = (1, 0), then instantly the random amount in the
stream becomes Cs,m = (2a/3) (Cs,m.- + Ci,m_-) and the random amount in the
first compartment becomes C,m = (a/3)(Cs,m-i + Cl,m-), and the random
amount in the second compartment will be C2,m = C2,m-l. Similar remarks apply
if the second peripheral compartment is in communication with the stream.
We are thus led to the recursive relation

C8,m 2a 2a El 2a E2 CS.m-l

a a
(A.1.1) Cm = Cl,m = E, -El + E2 0 Cl,m-l3 3

C2,m E2 0 -El + El C2,m-i

TCm-i, ly 2, 3, * *

say, where T = E1A1 + E2A2 and

2a 2a 2a 0 2a
~~~3

(A.1.2) A1= a a 0X A2= 0 1 0.

0 0 1
a

0
aL3 3j

A.2. Sample space

Suppose the state of the system at the ith stage is (Ef) E21)). Then,

(A.2.1) Cm = (Em()A, + E2m)A2)(Ein-l)Al + E2"-m)A2) ... (E(')AI + E21)A2)Co
describes the sample space of C., where we assume that (E(', E2(") is inde-
pendent of (EI'-), EY-1)), i = 1, 2, * . . Thus, in particular if m = 2,

(A.2.2) C_ (E- EV)A + E)E2(1)A1A2 + ETEP1)A2A, + E2 )E2( U2
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This appears as a branchiing process in figure 6 where the probabilities are
indicated in parentheses.

Co

A,Co A2CA
(p, )(P2= 1 Pi)

2~~~~~~~~~~~~~~~~~~~~~A2cA, Co A2AjCQ A,A2C0 A2C
(PW) (P2p1) (Pp2) (P2)

FIGURE 6

Illustration of branching process.

Table II represents the total probability associated with each distinct point
in the sample space, of three different random variables, at the same stage.
Table III gives the grouped distributions of the amount in stream at further
stages. The multimodal characteristic of these distributions is noteworthy.

TABLE II

PROBABILITY DISTRIBUTIONS OF THE AMOUNTS IN THE STREAM AND
PERIPHERAL COMPARTMENTS FOR A THREE COMPARTMENT SYSTEM

a = 0.9, pi = 0.3, P2 = 0.7, m = 5, C0 = (1, 0, 0)

Total in the
Stream Peripheral Compartmnents Total Amount

Amount Probability Amount Probability Amount Probability

0.26244 0.2436 0.19683 0.1705 0.59049 0.1705
0.31104 0.0882 0.30618 0.0777 0.61236 0.0777
0.32076 0.2331 0.31438 0.0441 0.62694 0.0777
0.32184 0.0882 0.32238 0.0777 0.63666 0.0441
0.32616 0.0441 0.32328 0.0441 0.64314 0.0777
0.33696 0.0882 0.33048 0.0441 0.64476 0.0441
0.35496 0.0441 0.33372 0.0441 0.65124 0.0441
0.39366 0.1705 0.33588 0.0441 0.66096 0.0441

1.0000 0.33912 0.0441 0.66114 0.0777
0.34038 0.0777 0.66204 0.0441
0.34812 0.0441 0.66366 0.0441
0.34992 0.0777 0.66456 0.0441
0.35352 0.0441 0.66744 0.0441
0.37422 0.0441 0.66996 0.0441
0.40122 0.0441 0.67824 0.0441
0.43122 0.0777 0.69366 0.0777

1.0000 1.0000
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TABLE III

PROBABILITY DISTRIBUTION OF THE AMOUNT IN THE STREAM
FOR A THREE COMPARTMENT SYSTEM

a = 0.9, pi = 0.3, P2 = 0.7

m =9 m 10

Interval Probability Interval Probability

1.72S x < 1.82 0.060462 1.52 < x < 1.62 0.042351
1.82 S 1.92 0.000000 1.62 S 1.72 0.000000
1.92 _ 2.02 0.000000 1.72 S 1.82 0.000000
2.02 5 2.12 0.183687 1.82 5 1.92 0.140851
2.12 5 2.22 0.163942 1.92 < 2.02 0.185102
2.22 S 2.32 0.207477 2.02 . 2.12 0.192618
2.32 S 2.42 0.230281 2.12 S 2.22 0.261237
2.42 S 2.52 0.076439 2.22 S 2.32 0.099787
2.52 S 2.62 0.063341 2.32 S 2.42 0.064861
2.62 S 2.72 0.000000 2.42 < 2.52 0.003384
2.72 < 2.82 0.006853 2.52 S 2.62 0.000000
2.82 5 2.92 0.000000 2.62 5 2.72 0.004597
2.92 S 3.02 0.007519 2.72 5 2.82 0.000000

1.000001 2.82 5 2.92 0.005220
1.000008

A.3. Mean amounts in the system

We have
(A.3.1) ,m = E(Cm)

= E{[Ei7'A, + E2(mA2] ... [EI'm)Al + E2m)A2]}C0
= { II E[Et()A1 + E2()A2]}CO.

Hence, the mean vectors are given by

(A.3.2) Pm = MMCo, m = 0,1, *--
where

2a 2a 2a
- Pi P3 3 ' P

(A.3.3) M= aPi api + p 0

a pi 0 aP2 + P1

We note that M is a stochastic matrix when a = 1, in which case the three
eigenvalues of M are easily seen to be

(A.3.4) 1, 2 {1 + [(1.-32PP2)]1"2}, 2 {1-- [(
3

PIP2)]1/2}.
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A.4. Illustrations

(i) Let a = I -e with e > small quantity, pi = P2 = 1/2, and co = (1, 0, 0.)
Then,

u9 2 (1-4 e) 31 4

(A.4. 1) u m(1-- f). -41 (1) ^ X2

M2.m '%J (1 )3 (1) 1

(ii) If P2 iS small, X1 - 1- P2(1 -a/3), and X2 ' a + P2[1/3 - 5a/9], then

X^3 P232+ 29

(A.4.2) CO = (1, 0, 0),
2 + -X3

AS,. 2 - 3)

and A2,m is of the order as P2-
(iii) Let a = 0.9, Pi = 0.2, P2 = 0.8, X1 = 0.93, X2 = 0.80, and X3 = 0.17.

Then
I.LS=rn 0.35XY' + 0.26X' + 0.39Xn

ui,rn = 0.29Xr - 0.26X2' - 0.03X3X

A2.. = 0.17X1 + 0.17X2' - 0.34X3
Xt,m = /AS,m + Al ,. + M2,m

= 0.82X11 + 0.17XA + 0.01Xm.
REMARKS. It will be seen from (i) that when a is nearly unity and the two

peripheral compartments are equiprobable (Pi = p2), the mean amounts retained
in the compartments are dominated by the largest eigenvalue X = 1 - 3E/4,
and as mn increases the amounts become proportional to 2:1:1 (the compart-
mental volume distribution). If the connection between the stream and one of
the peripheral compartments has a small probability of opening (p2 small), then
the amount expected in this compartment at any time is of the same order as P2.
Moreover, the expected amount in the stream decays about as fast as 2a"/3,
and the amount in the peripheral compartment (from which is frequently con-
necting to the stream) decays with am/3.
In summary, if the attenuation term a is near unity then the mean amounts

are the compartments decay almost independent of pi and P2 (assuming neither
of these small), whereas if one peripheral compartment has a rare chance of
communicating with the stream the ultimate decay rate is dominated by the
value of a.
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A.5. Covariance evaluation
An alternative to the recursive system described in (2.45) is to proceed from

first principles and evaluate expressions such as

(A.5. 1) ECsm CE+ 1EC, m-1 + 2a E2C2,.-
Now (El, E2) really refers to the probabilities interpretation of the communi-
cating values at the mth stage, and so is independent of (CS,m-I, Cl,m-1, C2,m-l).
Hence,

(A.5.2) ECm = pE( 3 CSm.- + 3 Clm-l) + p2E( 3a CS,^_ + 3 C2m) 2

Treating E(Cs,mCs,), and so forth, in a similar way, we find
(A.5.3.)

4a' 4a2 4a' 8a2 8aa
^SS.m § 9PI 9 p2 29-2 p2 0 PSS.m-1

a2ap 2ap
P1I,m~~~7PI 7Pi + P2 0 Pi0 0 P1A.m-1

a2 a2 2a2I.L.- ~ P2 0 ~P2+Pi 0 ~ P2 0 JL22-m1

2a2 2a2 4a2 2a 2a
MS1.m g pi Pi 0 pi + P p2 0 Pp2 PS1,m-1

2a2 2a2 4a2 2a 2a
IJAS2.. 97 p2 0 92 0 gP2 + -PIpl P S2.m-1

a a a
1S12.m 0 0 0 p2 Pi - 12-.m 1

Using Vm for the column vector of covariances and V for the 6 X 6 transition
matrix, we have Vm = ViVo where Vo depends on the initial conditions.

TABLE IV

MEANS AND STANDARD DEVIATIONS FOR A THREE COMPARTMENT SYSTEM
a = 0.9, pi = 0.3, p2 = 0.7

Peripheral Peripheral Total Amount
Stage Stream Compartment 1 Compartment 2 in the System

Mean S.D. Mean S.D. Mean S.D. Mean S.D.
1 0.600 0.060 0.090 0.137 0.210 0.137 0.900 0.0000
2 0.464 0.089 0.125 0.129 0.233 0.084 0.822 0.0100
3 0.399 0.072 0.141 0.111 0.216 0.056 0.756 0.0228
4 0.356 0.055 0.147 0.094 0.194 0.041 0.697 0.0281
5 0.321 0.043 0.148 0.079 0.174 0.032 0.643 0.0313
6 0.292 0.033 0.146 0.067 0.156 0.025 0.594 0.0329
7 0.267 0.027 0.142 0.057 0.141 0.020 0.550 0.0335
8 0.245 0.023 0.136 0.049 0.128 0.016 0.509 0.0336
9 0.225 0.020 0.129 0.043 0.117 0.014 0.471 0.0330
10 0.208 0.019 0.123 0.038 0.107 0.012 0.438 0.0321
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In concluding this section we remark that the means and standard deviations
for the first ten stages of a particular system are given in table IV.

A.6. Feasibility of the model

A.6. 1. Finding a model in agreement with a given set of data. Given that a set
of data has been fitted with a function consisting of a sum of exponential terms,
can a model be found in approximate agreement?
Now a number of examples of data in the literature are of the form

(A.6.1) f(t) = de-k,t + (1 - d)e-kt, 0 < d < 1, 0 < k, < k2.
The following are typical (see, for example, Bernard and Uppuluri [2]):

(a) f(t) = 0.65 exp (07t) + 0o35 exp (0.7t),

(b) f(t) = 0.43 exp (07t) + 0.57 exp (07t),

(c) f(t) = 0.28 exp 0.7t) + (072exp 0.7t)

(d) f(t) = 0.24 exp (-0.7t) + 0.76 cxp 0-7t),
(e) f(t) = 0.16 exp (-0.0002t) + 0.18 exp (-0.0046t)

+ 0.26 exp (-0.102t) + 0.40 exp (-0.748t).

Here f(t) refers to the total amount of radiation retained in tlle system (of
dogs) at time t. The corresponding data for the blood stream and regions of the
bone are not available at the time of writinlg.

In general, solutions for the amounts in a j compartment system lead to sums
of j exponential terms. However, there are exceptions which arise when a number
of peripheral compartments behave identically; this will be the case when a
number of the communicating valves operate with equal probabilities. A word
of caution is, however, in order here. Identical peripheral compartments arise
under equiprobable openings-the random amounts in these compartments are
identically distributed variables; a particular realizatioii at any time will show,
in general, different amounts in the equivalent peripheral compartments.
Another important point refers to the initial conditions C0 of the system. For

the data in (a) to (e) the initial conditions are not kinowni. We can experiment
with two cases: (i) assume that there is a unit amount in the blood stream;
(ii) assume that there is a ulnit amount in the system, apportioned in unknown
amounts among the stream and the peripheral compartments.

A.6.2. Solutions under the assumption that Cs.o = 1 and Ci,0 = 0 for i = 1,
2, * * *, j - 1. For data consisting of two exponential terms we consider the
case with (j - 1) equiprobable peripheral compartments, so that the system
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behaves, at least with respect to means, as a two compartment system. We
have for the total amounts from (2.25)

(A.G.2) jlt,rn = (a - X2)X' + (X1 -a)X2"
Al-2

where X1 > X2 are the roots of

(A.6.3) X2 - [a(j2J+ 2) + + a(j 2) =.

The stage m is related to the time t by m(At) =t, and moreover, the experi-
mentalists use the notation a = exp (-khAt).
Now let us suppose that (A.6.1) and (A.6.2) are identical; then we wish to

decide whether admissible parameters of the model cani be determined. The
three unknowns j, k At may be found from the e(luations

ki = (1/At) In (l/X,),
(A.6.4) l02 = (1/At) In (l/X2),

d = (a - X2)/(X1 - X2).
From (A.6.4) M2' = XV, and if we define k2/k1 = r(> 1) then

(A.6.5) X2= 21.
But now from (A.6.:3) and (A.6.5),

X + Xr= a(j2- 2j + 2) + -

(A.6.6) ~~~i(i ')
Xr(i _ a(j - 2)

.1

But also from (A.6.3) and (A.6.4)

(A.6.7) a = X(1- d) + X1d.
Hence, eliminating j and a from (A.6.6) and (A.6.7) we have

(A.6.8) (I - XI)(1 - Xr)X- = d(I - d)(l - Xr-1)2.
F<'or giveni values of r and d the e(quation (A.6.8) determines values of Xi, in gell-
eral, more than one. However, it can be shown that there is at most one value
of Xi such that 0 < Xi < 1. For if

(A.6.9) {'(X) = (1 - X)(1 - Xr)Xrl-/(l - Xr-1)2, 1 > 1,
when '(0) = 0, usinig L'Hospital's rule, we have 46(1) = r/(l - 1)2. That 4'(1)
is indeed the maximum value of the function in (0, 1) is evident from continuity
considerations. Hence, (A.6.8) can only have a solution if r(r - 1)2 exceeds
d(I - d). Referring to examples (a) through (d), we have the comparisons in
table V.
Hence no parametrization of the model is feasible for these examples. A

plausible reason for this lies in the fact that in the examples given in section
A.6.1 oine of the exponenltial terms in each case is niear to unity, and this term
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T'ABLE V'

COMPARISONS OF r/(r - 1)2 AND d(l - d)
FOR EXAMPLES (a) TIIROUGH (d)

Example r/(r - 1)2 d(I - d)

(a) 0.026 0.23
(1)) 0.016 0.225
(c) 0.014 0.20
(1) 0.012 (.1S

(loes not appea1i uith a small coefficient. This suggests that there is some mechanismll
in the system which leads to the retention of material for excessively long periods
of time. In the theoretical model, if initially all the material is in the central
compartment (blood stream), then material cannot help but be lost more or less
rapidly. However, it seems intuitively clear that if initially material was stored
in small amounts in a large number of peripheral compartments then it wouldl
be retained for much longer periods.

A.6.3. Solution when Cso = i, Csi = (I - u)/(j - 1), i = 1, 2, j - 1.
We thus turn our attention to case (ii) wheni initially there is an amount u in the
stream and amouints (1 - u)/(j - 1) in each of the equiprobable peripheral
compartments. In this case we have the parameters a, j, At, u (relatilng to the
model) to align with the parameters d, I1,, k2 of the fitted exponentials to the
data. Here we have one degree of freedomnvhich can be disposed of in various
ways. A simple device is to decide on a value of At (= 1 say) and then find a, j,
i from the three determininig equations. Thus, from section A.6. 1, we have
k\1 = ln (l/Xi), k2 = In (1/X2) which determines a anid j and

(A.G.10) A-X[I + (j-1)\2] ± 0(1 -14)-X2} = (I

where

(A.6.1 1) 0 = a j-2

which now determines the value of u. Since a = exp (-kAt) where At is knowin,
we see that k = [In (1/a)]/At. Examples of this are giveni in table VI.

TABLE VIa

THEORETICAL MODEI, FROM (A.2.1) FITTED To EXPEIIMENTAL D)ATA
EXAMPLE (a): f(t) = 0.65 exp (-0.7t/240) + 0.35 exp (-0.7t/,6)

At At = 2 At = 4

Eigenvalues 0.997, 0.890 0.994, 0.792 0.988, 0.627
Number of compartmenlls 313.5 826 233
])ecay factor (.888 0.788 0.623
Amount in S initially 0.360 0.361 0.363



510 1BERNARD, SHENTON AND UTPPUTLITTRB

TABLE VIb

EXAMPLE (b): f(t) = 0.24 exp (-0.7t/'250) + 0.76 exp (-0.7t/3)

AI=1 At = 2 At = 4

Eigenvalues 0.997, 0.793 0.994, 0.629 0.989, 0.395
Number of compartments 1727 483 149
Decay factor 0.791 0.626 0.393
Amount in S initially 0.278 0.759 0.761

Evidently there is now no difficulty in determining the parameters for the
equiprobable multicompartment model with arbitrary initial conditions and
many parametrizations are possible. When data for the peripheral compart-
ments becomes available it may be possible to select a unique model to fit
experimental data.
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