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1. Introduction

When humans are presented with information, they tend to search for struc-
ture in the information-to encode it, to organize it, to look for regularities. The
existence of this structure-seeking behavior can be seen in the behavior of subjects
predicting a random sequence of binary events and in the behavior of subjects
predicting more highly structured sequences. (A random sequence is a colloquial-
ism for a sequence generated by a mechanism which for two events, 1 and 0, has
P{1} = 7r and P{0} = 1 - 7r. A more highly structured sequence contains ad-
ditional constraints on conditional probabilities. A completely deterministic se-
quence is generated by rules of the form "Si -O, 1" where the Si form a mutually
exclusive and exhaustive set of states for the events in the sequence, that is, each
event follows one and only one state.) Although it is quite clear that subjects
search for structure, the details of this structure-seeking behavior continue to
elude investigators. In pursuit of models of structure-seeking behavior, investi-
gators have studied behavior on completely deterministic sequences as well as on
random and more highly structured sequences. The focus of the present paper
will be on models of behavior in experiments using completely deterministic
sequences. Two models proposed by other investigators will be reviewed and a
third model will be proposed.

2. The stimulus-pattern model

In the typical experimental situation of concern here, the subject is asked to
predict each symbol in a sequence of binary events. The event sequence consists
of repetitions of a basic period, for example, 101010 *--, 110010110010 -- .
After each prediction, the subject is informed of the event. Thus the experiment
consists of an alternation of predictions and events-P1E1P2E2P3E3 ... . The
subject continues to make predictions until he reaches a criterion, for example,
a number of consecutive correct predictions equal to twice the length of a period.

In the stimulus-pattern (SP) model (Kochen and Galanter [4]) the subject
is depicted as learning the sequence by learning the conditional relations that
define the sequence. For example, to learn the sequence 1010 *--, the subject
learns that 1 -O 0 and 0 -O 1. More complex sequences are learned by learning

53



54 FIFTH BERKELEY SYMPOSIUM: FELDMAN

higher-order conditional relations, after the lower-order ones fail, for example,
110110 ... requires learning the second-order conditional relations 11 0,
10 -*1, 01 -> 1.
After developing this model, Kochen and Galanter ([4], pp. 284-285) ".

tried the experiment with one highly sophisticated S[ubject]. The S was, more-
over, permitted to keep a written record of acquired information and knew that
he was searching for a periodic pattern. The S was tested on . . . seven se-
quences, each of which was repeated ten times. The order in which the 70
sequences were selected was randomized. The smallest number of trials at which
the correct pattern was first suspected is indicated in table [I] for 10 repetitions
of each of the sequences. (The predictions of the SP model are also in table I.)

TABLE I

OBSERVED NUMBER OF TRIALS TO "DIscovER"
THE PATTERN IN PERIOLIC SEQUENCES

(Source: table III, [4])
Note: the number marked by asterisk should be 3 (JF).

Median Prediction of
Sequence Behavior SP Model

01 4 4*
001 5.5 5
0011 5.5 6
01001 7.5 8
000111 7 8
111010 8.5 9
1100111100 15 15

This pilot experiment, hardly to be considered conclusive evidence for the pro-
posed program [model], does nevertheless lend a certain plausibility to such a
program [model]."
Kochen and Galanter also tried to fit the stimulus-pattern model to data pre-

viously reported by Galanter and Smith [2]. In the Galanter and Smith experi-

TABLE II

TRIALS TO SOLUTION IN GALANTER AND SMITH EXPERIMENT
(Source: table I, [2] and table IV, [4])

Note: the asterisks indicate that predictions of the model were not supplied.

Median Prediction of Prediction of
Sequence Behavior SP Model Modified SP Model

01 5.5 4 7
001 14.0 5 14
0011 14.0 0 14
0001 14.0 * *
00001 26.5 * *
01001 49.0 8 50
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ment, a separate group of 15 to 20 subjects predicted each of six sequences. The
subjects were instructed along the following lines: "I am thinking of a zero or a
one. I want you to guess which it is. After you have guessed, I will tell you what
it is, and then you are to guess again. You are to try to anticipate what I will
say each time." The description of the experiment is again unclear on the details
of the method used to present the sequence and on the criterion of solution. The
median number of trials to solution is presented in column 2 of table II. The
predictions of the basic SP model are given in column 3 of table II. Kochen and
Galanter suggested that since the subjects of the Galanter and Smith experiment
were not permitted to keep a written record, the model should be modified to take
this procedural difference into account. Kochen and Galanter presented revised
predictions for four sequences (column 4 of table II). Although the fit appears
somewhat better, the modifications required to generate these fits are not uni-
form, that is, a different parameter is required for each of the four sequences.

3. The run-structure model

In this model, the subject is depicted as recoding the binary sequence into a
sequence of integers representing the run lengths (for example, 1010 * -* * 1:1
and 11001100 * --> 2:2), and learning the recoded sequence as a serial list
(Keller [3]). The run-structure (RS) model derives from the work of Restle and
others who have emphasized the importance of runs of events as stimuli in
binary-choice experiments with random and structured sequences. The strong
effect of the number of runs in the period on the number of trials required to
learn completely deterministic sequences can be seen in the Galanter and Smith
data (table II). Hence evidence for the plausibility of the RS model is available
from behavior on random, structured, and completely deterministic sequences.
To obtain more conclusive evidence of the importance of the number of runs

in the period (or the code length of the period) on the behavior of subjects
predicting completely deterministic sequences, Keller conducted a lengthy study
in which he manipulated period length, code length, and the number of different
runs in the period. The number of different runs in the period is the number of
runs, that is, the code length, less any duplicates (any runs of the same symbol
of the same length) for example, 111001100100 ... has period length twelve,
code length six, and four different runs. The periods of Keller's sequences were
generated by combining period lengths of six, nine and twelve with code lengths
of two, four, and six. The 32 periods used are indicated in table III. Each subject
predicted only one sequence, and each sequence was predicted by four subjects.
The subjects were asked simply to predict; they were not told that the sequence
contained a pattern but only that their performance should improve as the
experiment progressed. The events were presented via light bulbs oIn a panel in
front of the subject. Only three 0's were used in the first run for sequences of
code length two. Ten subjects failed to meet the criterion of no errors in a
sequence of trials equal to three period lengths.
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TABLE III

MEAN TRIAL OF LAST ERROR IN KELLER EXPERIMENT
(Source: tables 1 anld BI, [3])

Sequence Mean Sequence Mean

1. 000011 47.25 17. 010000101 172.25
2. 000011 19.25 18. 001001011 289.75
3. 000001 26.50 19. 000100101 167.50
4. 000001 60.75 20. 001100101 133.50
5. 001101 98.75 21. 000000001111 63.75
6. 001101 113.25 22. 000000000111 91.25
7. 010001 69.50 23. 000000000011 90.50
8. 010001 130.75 24. 000000000001 63.25
9. 000001111 72.75 25. 000110000011 142.25

10. 000000111 42.75 26. 010000000001 78.75
11. 000000011 64.75 27. 000100000011 238.25
12. 000000001 54.75 28. 001111000001 104.25
13. 001100011 51.25 29. 001000001001 186.00
14. 010000001 58.75 30. 010000000101 106.25
15. 000100111 129.25 31. 001100011011 310.00
16. 001000011 109.25 32. 000100001001 110.00

The effects of code length and period length in Keller's data are summarized
in table IV. As period length increased, the mean trial of the last error increased

TABLE IV

MIEANS FOR TRIAL OF LAST ERROR IN 1KELLEit ExPERIIMENT
(Source: table 3, [3])

Period Code Length
Length 2 4 6 Total

6 38.44 103.06 70.75
9 58.75 87.12 190.75 112.21
12 77.19 140.88 178.06 132.04

Total 58.12 110.35 184.41 109.28

regularly for code length two. In code lengths four and six, inversionis were
obtained. As the code length increased, the number of trials to criterion increased
for each period length. While the data were regular for each period, some interest-
inig overlapping occurred, for example, for period length six and code length four,
the mean was 103.06, while for period length nine and code length two, the mean
was 58.75. The cause of the inversions might have been the increased vari-
ability in behavior at longer code lengths. Keller also showed that the number of
different runs had a regular effect. Subjects required more trials to learn periods
containing four different runs than three different runs.

In addition to presenting the foregoing analyses of his data which are con-
sistent with the RS model he presented, Keller analyzed his data for evidence of
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agreement with the SP model. He did not find any orderly relation between the
conditional structure of the sequences and the behavior of his subjects. Keller
also examined a variant of the SP model which uses variable length stimuli. For
example for the period 00C01, the variable length stimuli and the associated
responses would be 1 -* 0, 10 -*0, 100 -* 0, 1000 -* 0, 10000 -* 1, the compa-
rable equal length stimuli would be 0000 -* 1, 0001 -*0, 0010 -*0, 0100 -+ 0,
1000 -*0. Keller did not find any orderly relation between stimulus length as
represented in this model and the difficulty of the sequence.

4. The stimulus-pattern-response-string model

A third model, the stimulus-pattern-response-string (SPRS) model is a devel-
opment of the application of a SP model to a structured sequence (Feldman and
Hanna, [1]). Although the results of this application were surprisingly successful,
the manner in which subjects reeled off a string of responses indicated that a
modification of the SP model might be appropriate.
The general form of the SPRS model resembles the SP model-both models

consist of a set of conditional relations of the form S -* R. The principal differ-
ence between the models is in the structure of R. In the SP model, R is a single
response. In the SPRS model, R is a string of responses. The development of
either model for a particular sequence begins with the development of a con-
ditional relation with S a 0 or 1 and R a 0 or 1. The failure of either model to
make a correct prediction results in a mcdification of S and the addition of a new
S -* R relationship. In the SP model, each response is generated by matching
the preceding events with a stimulus S; the appropriate response is the one
associated with the stimulus. In the SPRS model each stimulus has associated
with it a string of responses, and a response can be generated either as in the SP
model or by selecting the next response on the response string. In general after
an incorrect prediction, there is a search for a new stimulus; after a correct
prediction, the next response is obtained from the response string. When the
response string is exhausted, a new stimulus is found and the response string of
that stimulus is used.
One way of contrasting the SP model and the SPRS model is that the SP

model grows by modifying S-strings or by adding new S-strings, while the SPRS
model caii modify both S and R strings. For example, the SP model develops a
represenitation of the sequence llCC11(O ... in the following fashion. First, it
establishes that 1-*1. When that fails on trial 3, the model modifies 1 -*1 to
11 -*0. Similarly 10 -*0, 00 -* 1, and 01 --+1 are developed. On the same se-
quence the SPRS model will develop the string 11 and then the string 00. These
two strings will then be joined into the string 1100.
A first version of the SPRS model (see appendix) has been used to predict the

set of 26 periodic event sequences listed in table V. This set of sequences was
developed by examining all binary sequences of lengths two, three, four, five,
and six and eliminating sequences which could be obtained from other sequences
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by the operations of rotation and/or complementation. For example, 0100 cani
be obtained from 1000 by rotation-repeated circular shifting of the sequence
to the right-100 can be obtained from 011 by complementationi-replacing l's
with 0's and 0's with l's. 1011 can be obtained from 0001 by apply;iig both oper-
ations. This procedure provided a list of twelve basic periods for the stimulus
sequences: 01, 001, 0011, 0001, 00001, G0011, G0101, CCCIII, 000011, 000001,
000101, 001101. Each of these basic periods or its complemenit was used as the
period of a sequence. A rotation of the basic sequence or a complement of the
rotation was the period of another sequence except that 01 was only presented
once. The addition of sequences with periods 0C001111, iCGCOall, and 10111
completes the list of 26 sequences.
These sequences were presented by Feldmani anid Janet C. (ornsweet to 40

subjects in a 2 X 2 design. One dimension was the order of presentation. The
first order of presentation was constrainied so that if the basic sequence or its
complement was in one half of the list, the rotation or its complement was in
the other half of the list. If the first order is Si, S2, S3, - * * , 826, then the second
order is the reverse of the first-S26, S25, S24, *, Si. Half of the subjects were
given the sequences in this first order, anid the other half were given the sequences
in the second order. The second dimenision was availability of history. Half of
the subjects (the history conditioni) had available to them a printed record of
the events preceding the event to be predicted; the other half of the subjects
(the no-history condition) did not have such a record available to them.
An analysis of the behavior of these 40 subjects indicated that order anid

history had the expected effects. Subjects did better on the sequences presented
later than the ones presented earlier. The prinicipal deviation from this general
finding was for sequences with code length two. This raises the question whether
experience with more complex sequences does niot hamper the subject's ability to

TABLE V

MEDIAN TIIAL OF LAST ERROR IN FELDMAN AND CORNSWEET EXPERIMENT

No No
Sequence History Ifistory Model Sequence History History Model

1. 01 3.0 3.0 3 14. 10101 7.5 6.0 19
2. 001 6.0 5.5 4 15. 111110 7.0 6.0 7
3. 101 9.5 5.( 4 16. 001000 14.5 8.( 8
4. 1110 5.0 5.0 5 17. 000011 7.0 7.0 7
5. 0100 9.0 5.0 5 18. 110011 8.5 8.0 8
6. 1100 4.0 5.0 5 19. 000111 6.0 5.0 7
7. 0110 7.0 5.0 5 20. 110001 9.5 8.0 8
8. 00001 6.0 6.5 6 21. 111010 10.5 6.0 12
9. 10111 9.5 6.0 6 22. 010100 11.0 9.0 19

10. 11011 10.5 8.0 7 23. 110010 12.0 8.5 19
11. 111(0 5.0 6.0 6 24. 011010 21.0 8.0 32
12. 00110 9.0 8.0 7 25. 00001111 8.0 7.0 9
13. 00101 8.5 5.5 10 26. 11000011 13.5 9.( 10
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recognize simpler sequences. In general, the median trial of the last error for
subjects who had the preceding events available to them was less than for the
subjects who did not have a history available. OIn the 26 sequences, the history
subjects did better on 20, the no-history subjects did better oI 3, and there were
3 ties. Again the contrary sequences were of code length two (see table V).
The experiment also provided some informationi on the effect of the two

characteristics of periods considered above, period length and code length, and
a third characteristic, rotation. The length of the period appears to be a lower
bound on the trial of the last error. Code length had the same effect reported in
the Keller and Galanter and Smith experiments. The period characteristic unique
to this experiment was rotation. Of the 13 comparisons in the no-history con-
dition, only one violates the anticipated effect that rotated sequences have a
higher number of trials to criterion than basic sequences. In the history condition,
there are two ties and three inversions in the 13 comparisons (see table V). This
strong result on the effect of rotation is quite significant for the SP model de-
scribed above. That model does not distinguish between basic sequences and
rotated sequences. Subjects clearly do. Thus, the Feldmaii and Cornsweet data
also tend to contradict the simple SP model.
The trial of the last error of the SPRS model is presented in column 4 of

table V. The average discrepancy between the behavior of the model aiid the
behavior of both the no-history and the history conditions is the same, 3.04
trials. This is not a particularly impressive statistic. H-Iowever, four sequences
10101, 010100, 110010, 011010 account for a large part of this discrepancy. In
the no-history conditioni these four sequences account for 37.5 of the 79.0 dis-
crepant trials. The average discrepanicy for the remaininig 22 sequences is 1.9.
In the history conditioni, these four sequences accounit for 57.5 of the 79.0 dis-
crepant trials. The average discrepancy for the remaininig 22 sequences in the
history conditioni is 0.98 trials.

5. Discussion

While the experimental evidence on the recognition of periodic patternis in
binary sequences contains large variations, the evidence is consistent in direction
with intuitive expectations. The number of trials required to recognize a pattern
is directly related to the leilgth of the period, the number of runs (code length)
in the period, the presence of noise ill the form of part of a run at the beginniilg
of the sequeiice (rotation), aild the inexperienee of subjects with similar se-
quences. Perhaps the only surprise in the data is the strength of the effects of
code length and rotation.
Although the factors affecting recognition of periodic patterns in binary se-

quence are readily identifiable, the identification or synthesis of a satisfactory
model of this behavior has been much less tractable. First, none of the models
that have been suggested contains an adequate model of memory, and all of the
models provide better fits to data obtained where subjects have the previous
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history of the sequence available to them. Nevertheless, how well do the models
fit the history data and the general characteristics of the no-history data?
The naive model underlying all of the experimental and theoretical work on

this problem is the period-length model. According to this model, the subject
will make his last error on trial p where p is the length of the period. While this
model (or rather a slight variant which says that the last error is on trial p + 1)
provides a close fit to the data (the average error on the Feldman and Cornsweet
no-history condition is 1.95 trials for 22 sequences, and the corresponding statistic
for the history condition is .59 trials), the model has certain serious flaws: it
cannot predict the observed effect of code length and rotation.
Before presenting their SP model Kochen and Galanter [4] discussed the X

model, a variant of the period-length model proposed by Bush. In the X model,
the pattern used to predict event t of the sequence is the smallest period con-
sistent with events 1 through t - 1. The tentative period length is X. While the
X model was rejected by Kochen and Galanter as psychologically unrealistic, the
fit of the X model to the Feldman and Cornsweet data is quite impressive. The
average error on the Feldman and Cornsweet no-history condition is 1.98 for
22 sequences, and the corresponding statistic for the history condition is .57
trials. The major difficulty with the predictions of the X model (as opposed to the
reservations about the assumptions) is the inability of the model to predict the
observed effect of code length. The X model is consistent with rotation effect.
The first of the models described above, the SP model of Kochen and Galanter,

is intuitively appealing. The fit to the single subject data presented by Kochen
and Galanter is impressive. While the discrepancy between the SP model and
the Keller and Galanter and Smith data may be largely a function of the absence
of a memory model, the qualitative differences are discouraging. The SP model is
also unable to account for the rotation effect observed by Feldman and
Cornsweet.
The RS model of Keller appears promising. It is unfortunate that the model

is not completely specified so that it could generate trial-by-trial predictions.
The Keller model resembles the Simon and Kotovsky [5] model of pattern
recognition and the Simon and Kotovsky model might be adapted to investigate
Keller's hypotheses.
The version of the SPRS model, presented in this paper is, like its competitors,

a better predictor of history conditions than no-history conditions. While there
are a few large discrepancies for certain patterns between the Feldman and
Cornsweet data and the model, the SPRS model is more consistent with the
qualitative features of the data-effect of code length and rotation-than any
of the other models discussed. Furthermore, the SPRS model is consistent with
other observations on the differences between behavior after correct and in-
correct prediction and on the tendency of subjects to make long strings of
predictions when permitted to do so. Thus the SPRS model appears promising.

While we do not yet have a complete understanding of the processes under-
lyinig the recognition of patterns in binary sequences, the empirical and the-
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oretical efforts that have been made are encouraging and point to several
additional areas of investigation. The large variances that have been reported
suggest further study of individual differences and the parameters associated
with individual behavior. Of particular interest are the biases or initial sets that
subjects bring into the experimental situation. A second major area for further
study is the development of models with the ability to treat hypotheses (about
the structure of the sequence) as entities. While some of the models discussed
above suggest that the important units are larger than a single symbol, all of
these models are far less sophisticated information processors than the subjects
they purport to represent.

The SPRS program was written in SNOBOL and executed at the Western
Data Processing Center, UCLA, utilizing a terminal at Irvine and the WDCOM
teleprocessing system. The WDPC staff was most generous in permitting me
to utilize a preliminary version of the WDCOM system.
The author is indebted to Dr. L. Keller for permission to reprint material

from [3].
The research reported here has been supported in part by a grant from the

Carnegie Corporation of New York.

APPENDIX

Description of SPRS program, version 1. The basic premise of the SPRS pro-
gram is that the subject is trying to construct a model of the event sequence. The
model is a string of symbols representing a hypothetical period. The ultimate
model of a periodic sequence is the string of symbols that is the period.
The event sequence is represented by a string of E's: E1E2E3 ... E,_2E,-1. The

model is represented by a string of S's: S1S2S3 ... Sn.
The program uses the model and the events preceding trial t to generate a

prediction for trial t. The program also modifies the model to make it a more
adequate representation of the period and hence a better predictor of the se-
quence.
The program is represented in the flowchart of figure 1. The program begins

by selecting a model from its list of models. The model selected is the first model
on the list of models for which the first symbol of the model S, is the same as the
last event of the sequence Et-,.

After the model is selected, the program partitions the model into a stimulus
string and a response string. The stimulus string is that part of the model begin-
ning with S, and ending with Si that matches symbol-for-symbol a part of the
event sequence beginning with Et_i and ending with Et-1. The response string
begins at Si+1 and ends at S.. This matching is achieved by matching Et2 with
S, and Et-1 with S2. If these symbols match, then an attempt is made to match
Et-3 with Si, Et-2 with S2, and Et-1 with S3, and so forth. Thus if the event
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The tth event is then preseiited by a subprocess representing the experimenter.
The experimental procedure IIow checks to determine whether the program has
reached the criterion: a successive inumber of correct responses equal to twice the
length of the period of the event sequence. If the criterion has been reached, the
experiment moves on to the next sequence or terminates. If the criterion has not
been reached, the experiment continues.
The trial number is increased by one.
If the model was a secondary model, the responise string of the primary model

is augmented with the last eveint, that is, Sn+l becomes E,'t-1.
If responset1 was e(qual to eventt-1, then the partitioni of the model is moved

over oine symbol to the right. The last predictioii is added to the stimulus string
and taken away from the response strinig. The program then returns to the task
of generatinig the next response.

If the response was not eqjual to the event and the model was a secondary
model, the program starts over again with the selection of a new primary model.

If a primary model is predicted erroneously, then the program attempts to
modify the stimulus striing. The stimulus string will be augmented by prefacing
it with an S0 equal to S1 if the primary model predicted the end of a run pre-
maturely, that is, Et-1 = Et and responset # I'Et. If the primary model cannot
be modified, thein the program starts over again with the selection of a inew
primary model.

Example. The event sequence is 11111(111110111110
Trial 1. The program begins with a model list consisting of two models, 1 aind

0. On the first trial, there are no previous events, the model does not make a
response. The first event is 1.

Trial 2. The program selects the model represented by 1. However, matching
the one symbol of the model to the first event results in an empty response
striing. The model is theni treated as the response string of a secondary model
and the response 1 is geinerated. The event is 1. The criterion has not been
reached.

Trial 3. A 1 is added to the primary model. The responise was correct. The
program looks for a response on respoinse striing of the secondary model which is
now empty. (It was a 1 on trial 2.) The program searches for a secondary model
aind finds the primary model. The primary model is 11 aind the secondary model
is 11. The secondary model is treated as a period and generates the response 1.
Eveint 3 is 1.

Trial 4. A 1 is added to the primary model whiclh is now 111. The criteiioni
has not been reached. The response was correct. The program uses the second
1 on the seconidary model 11 for the response for trial 4. Event 4 is 1.

Trial 5. A 1 is added to the primary model which is now 11l. The criterioin
has not been reaclhed. The respoinse was correct. The response string of the
secondary model has beeni exhausted. A new sceoiidary model 1111 is selected.
It generates a responise, 1. The fifth evenit is 1.

Trial t;. A 1 is added to the primary model which is Iow11111. The criterion
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has not beeni reached. The response was correct. The response is 1. The event
is 0.

Trial 7. A 0 is added to the primary model which is 111110. Incorrect predic-
tion. The present models are abandoned. A new model, 0, is selected. Its response
is 0. The event is 1.

Trial 8. A 1 is added to the primary model, 01. Incorrect prediction. The new
model is 111110. The stimulus string is 1. The response string is 11110, and so
forth.
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