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1. Formulation of the problem and fundamental results

1.1. Let E be a plane domain bounded by a smooth contour L, and let v(z)
be a smoothly varying vector field on L. Let the point y E L be called exclu-
sive if the projection of the vector v(z) on the inner normal to L changes sign
at the point y. Let us say that the function u(z) satisfies the boundary condi-
tion a if, at each nonexclusive point z of the contour L, the derivative of u in
the direction v(z) is zero. We are interested in solutions of the heat conduction
equation (aut(z)/Ot) = Aut(z) in the domain E, which satisfy the initial condi-
tion uo(z) = f(z) and the boundary condition (t. More accurately, our problem
is to describe the general form of the lateral conditions at exclusive points,
which will, together with the initial and boundary conditions, define a unique
solution ut(z) of the heat conduction equation, wherein: (a) ut(z) 2 0 iff(z) > 0;
(b) h1ut!! < l!f{l (we understand llf l to besup If(z)l in the union E* of the
domain E and the set of all nonexclusive points of the contour L). (An analogous
problem for the,system of differential equations of Kolmogorov which describes
Markov processes with countable phase space was studied by W. Feller [4].
However, Feller considered only a special class of supplementary conditions
corresponding to "continuous exit" from the boundary. The supplementary con-
ditions we found cover the most general case.)

In terms of probability theory the problem may be stated as follows. The
heat conduction equation, together with the boundary condition a, prescribes
a Brownian motion process in the domain E with reflection from the boundary
in the domain E. The behavior of the trajectories after hitting an exclusive
point of the boundary is not determined here. The problem is to describe all
possible kinds of such behavior.

It is more convenient to pose and solve the problem in the terminology of
semigroups of linear operators. Let g be some set and 6 some a-algebra of sub-
sets of £. Let B = B(&) the space of all bounded 63-measurable functions on E
with the norm Ilf I = sup If(z)|. The family of linear operators Tt, (t > 0),
operating in the space B and satisfying the following conditions:

(1.1.A) Tf > 0, if f > 0,
(1.1.B) ITtfll S IlfIl,
(1.l.C) T.Tt = T.+t for any s, t > 0,

is called a Markov semigroup in the space 8.
17
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The semigroup Tt in the space E* defined by the formula Ttf(x) = ut(x) cor-
responds to the boundary value problem described above for the heat conduction
equation. (The a-algebra of all Borel sets is always considered as the basic
a-algebra B in the space E*.) Let be some linear operator defined in the sub-
set D of the space B. The Markov semigroup Tt is called an W-semigroup if
the following conditions are satisfied.

(1.1.D) The infinitesimal generator A of the semigroup Tt is a contraction
of the operator 2W.

(1.1.E) The set Bo of all elements f E B for which limt-o IITif - f = 0, is

everywhere dense in B in the sense of convergence w. We say that fn f, if
f7(x) -4f(x) for all x E 8 and the sequence of norms l1f.11 is bounded.

Let us now define the operator 9a as follows. Let 5D be the set of all functions
from B(Ehavin 6Holder-coiinf1iUS first partial derivatives i61andHolder-
conti-nmmuortia rdriv-afnes E, a-nd satisfying the bl d i-
tioP.tet-Xu-s-nmIider -thLaplace-operator Ain the domain a). It will be
proved that a minimum w-closed extension exists for this operator. We denote
this extension also by W. Our purpose is to describe all 2X-semigroups.

1.2. Let us move along the contour L passing the exclusive point -y in the
direction of the vector v(y) and at the same time, observing the projection of
the vector v(z) on the inner normal to the contour L at the point z. Let us put
-y E r+, if this projection changes sign from plus to minus, and -y e r_, if the
sign changes from minus to plus. Let us set r = r+ U r_ (this is the set of all
exclusive points).

It is expedient to "split" each point -y c r into two points a+ and y-. The
union of all such pairs is denoted by I. The decomposition of II into H+ and
II_ corresponds to the decomposition of r into r+ and r_. If F is a function in
E*, then F(-y+), F(y-) are its limits when z tends to y along the contour L from
the positive and negative sides, respectively. It is proved that if F c Dw, then
the limiting values F(-y+), F(,y-) exist for all dy E r. To each a C H_ there cor-
responds just one bounded harmonic function pLz) satisfying the boundary
condition e and such that pat(a) = 1 and pa(#1) = 0 for , e ]II+, SB 5- a. (If, say,
a = -y+, then pa,,(z) is the probability that the trajectory issuing from z will
approach oy having touched L on the positive side of y.)

1.3. Let us suppose the following are given.
(1) The partition of the set H+ into classes. The set of these classes is denoted

by U.
(2) For each w e Q there is a set of nonnegative constants c<.,, b,b<, (-y c r+),

and a measure v. in the space 8 = E* U H- U S.
Let E* denote the set of all points z of the set E* for which p(z, r+) 2 e (the

distance between the point z and the set M is denoted by p(z, M)); xz,e is a
function equal to z - -yl2 for Iz - yr < E and zero for Iz - yJ > e. Let t =
p(z, L). Let us put w e Q' if a. = 0, b.,, = 0 for all y e r+ and v.(&) < .

Let us assume that for every w c Q2 the following conditions are satisfied:
(1.3.A) v,(E*) < oo if e > 0,
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(1.3.B) (t, v.,) < oo where t = t(z) = p(z, L),
and the integral of the function f in measure v (in the whole space 8) is denoted
by (f, v).

(1.3.C) For any zy e F+ and any sufficiently small E > 0, and

(1.1) |fZ'< IZ - Yj2'.(dz) < oc,

(1.3.D) (pa, v,) < °° for a t w;
(1.3.E) vc(w) = 0;
(1.3.F) b,,,, = 0 if at least one of the points 'y+, -y- does not belong to w;
(1.3.G) v',(Q') = 0 for X e Q';
(1.3.H) at least one of the numbers v(,(8), b,,,,,, (-y E F+), c,,, o,, is positive.
To each set cu = {c,,,, o,,, b,,,,, v<,,} let us associate the manifold 3(¶L) of all

functions F defined on E* and satisfying the following conditions:
(1-3-a) F e D!K;
(1.3.b) to each w e Q there corresponds a number (we call it F(cw)) such that

F(a) = F(co) for all a co;
(1.3.c) if oa,, > 0, there exists an analogously defined value 21F(W);
(1.3.d) if be,,, > 0, there exists

(1.2) dF ( Y) = liF F[(1- t)y] - F(y)

(1.3.e) for each w E Q the function F - F(w) is summable in v.-measure;
(1.3.f) for each co E Q,

(1.3) (F - F(w), v.) + E b,,adny) - cjF(w) -aJ,F(w) = 0.
'YGF+ an

We say that the W-semigroup Tt satisfies the lateral condition Al, if Da C 3(ql).
The lateral condition cU is called a special one if a<,, = 0 for all co E U.

1.4. The fundamental results of this paper are formulated in theorems 1.1-
1.3. (These results have been published without proof in [3].)
THEOREM 1.1. Every 21-semigroup satisfies some special lateral condition cu.

The arbitrary special lateral condition 'U uniquely determines some 91-semigroup.
Theorem 1.1 solves the problem posed in section 1.1. However, the natural

question arises of what is the sense of the conditions it when some o, are pos-
itive? In this case it is necessary to extend the phase space E* by appending
to it all points w for which oa > 0. Let Q denote the manifold of all such points,
and let us put 9 = E* U Q. For any funietion F in the space 9 let Fo denote
its contraction in the space E*. Let us set F E = B(9) if Fo c B(E*). Let us
define the operator 2[ in the space B by the formulas:

f[F(z) = 2{Fo(z) for z E E*,
(1.4) - r

b,
OF

(ry)-c.F for w E Q.

0'(O y~~~EzI'+ aOn
The manifold s of all functions F e B for which Fo e Dx aind the right side
of (1.4) has meaning, is the domain of W. Let 5('U) denote the set of all functions
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F e B satisfying conditions (1.3.a), (1.3.b), (1.3.d), (1.3.e), and (1.3.f). It is
necessary to replace 2f by t in (1.3.a) and (1.3.f) and F(w) in (1.3.b) must be
understood, for w e Q2, to be the value of the function F at the point W. (Let
us note that for co c Q condition (1.3.f) is automatically satisfied by virtue of
the definition of the operator t.)
THEOREM 1.2. To an arbitrary set Il = {c., a., b,,, vP,} satisfying the require-

ments (1.3.A)-(1.3.H) corresponds a uniquely defined Markov semigroup in the
space Efor which the infinitesimal generator A is a contraction of ft, and DA C (c1) .

Let w(z) be a function conformally mapping the domain E into the unit
circle. Let P denote the manifold of all functions of the kind

(1.5) F(z) =
_ k, arg (1 W )))+ Fo(z)

where k, are constants, and Fo(z) is a function continuous in the closed domain
E U L. Each function F e P is extended naturally to the manifold E* U H.
Let Po denote the set of all functions F e P, for which the value F(a) is constant
in each class co from U.
THEOREM 1.3. For the Markov semigroup described in theorem 1.2, the space

Bo = Bo(g) consists of all functions F e Po satisfying the conditions

(1.6) (F - F(w), v0)- cjF(w) = 0 for all co E Q'.
The domain of the infinitesimal generator consists of all functions F C 5Q(l) for
which 2fF C Bo(g).

1.5. Let us clarify the assumptions which have been made relative to the
contour L and the vector field v(z). It is assumed that the contour L is given
by the equation z = z(t), where the function z(t) is differentiable and its deriv-
ative z'(t) vanishes nowhere and is H6lder-continuous. It is furthermore assumed
that the function v[z(t)] has a Holder-continuous derivative with respect to t.
The function F satisfies the boundary condition a if for any nonexclusive point
zo of the contour L a neighborhood is found in which the partial derivatives
dF/dx and dF/dy exist and are H61der-continuous, and

(1.7) Vj(zo) aF (ZO) + V2(zO) aF (zo) = 0

(v1 and V2 denote the coordinates of the vector v).
Under the assumptions we have made, a function w(z) may be constructed

which has a H6lder-continuous derivative in the closed domain E U L and
maps this domain conformally onto the unit circle {z: lzl < 1} (see [5], p. 468,
for instance). Hence, without any loss of generality, it may be assumed that
E = {z: lzl < 1}, L = {z: lzl = 1}. (See [2] for details.)

2. Minimum principle. Green's operator

2.1. The minimum principle for the boundary value problem (a is formulated
asfollows.
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THEOREM 2.1. Let us assume that the function F is boundedfrom below, satisfies
the boundary condition et and the following conditions:

(2.1.A) for all z e E, XF(z) - AF(z) > 0 where X is a nonnegative constant;
(2.1.B) lim inf2-,, F(z) > 0 for all y e r+.

Then the function F is nonnegative.
When X = 0, and condition (2.1.A) is satisfied with the equality sign, this

theorem was proved in ([2], section 5). Additions to this proof, required in the
general case, are presented in appendix A. Among the lemmas on which the
proof of theorem 2.1 relies, is one which is of independent interest for the sequel.
It is the following.
LEMMA 2.1. Let a function F, not a constant, be given in the domain E bounded

by the smooth contour L, and let XF(z) - AF(z) > 0 for all z e E and for a non-
negative constant X. Let zo E L and
(2.1) F(zo) < F(z) for all z e E.
If F has a derivative in the direction of some vector v making an acute angle with
the inner normal at the point zo, then this derivative is positive.

(Here and henceforth, the value F(zo) of the function F at the boundary
point zo is the limit of F(z) when z tends to zo along the set E.)

2.2. In appendix B, a function g(z, w) = gw(z), (w e E, z E E U L, w F! z)
is constructed under the assumption that the set r+ is nonempty such that for
each w C E:

(2.2.A) gw(z) = -(27r) ln Iz - wl + hw(z), where h,(z) is a harmonic func-
tion in E;

(2.2.B) gw(z) satisfies the boundary condition a;
(2.2.C) gw(z) is bounded in a neighborhood of each point y E r;
(2.2.D) g (-y) = 0 for y E r+.
From the minimum principle (theorem 2.1) it follows at once that the condi-

tions (2.2.A)-(2.2.D) define the function gw(z) uniquely. We shall call it the
Green function.

It is proved in appendix B that the function gw(z) is nonnegative and has
the following property:

(2.2.E) the function Iz - wlg,,,(z) is bounded in the domain z E E U L,
w e E.

2.3. The functions p,(z), (-y E r+, z e E), defined by the conditions:
(2.3.A) p,(z) is a harmonic function in E;
(2.3.B) p, satisfies the boundary condition a;
(2.3.C) p, is bounded;
(2.3.D) p-(-y) = 1; p-,(#) = 0 for d E r+, y,

play an important part in the construction of the Green function.
From the minimum nciDle it follows that these conditions define the func-

tion p.,, jihue y, an that 0 < py(z) < 1. See appendix B for theco5nfiuction
of the function p.. The same appeniMx also gives a proof of the following
property:

(2.3.E) p,(z) = ser#a#(z) + He,(z)
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where pon(z) = (l/7r) arg (1 - (z/f)) (the value of the argument is taken be-
tween - r/2 and 7r/2); an are constants, and the function H,(z) has Holder-
continuous partial derivatives in the closed circle {Izl < 1} and Holder-contin-
uous second derivatives outside rF.

2.4. Let us consider the integral equation

(2.2) F(z) + X JIff(z, w)F(w) dw = f(z), (f E B = B(E*)).
By virtue of (2.2.E), Fredholm theory is applicable to equation (2.2) (see [6],
no. 563, say). Therefore, if for some X equation (2.2) has no nonzero solutions
for f = 0, then (2.2) has a single solution defined by the formula

(2.3) F(z) = f(z) - XJE gx(z, w)f(w) dw
where gx(z, w) is a functioni satisfyinig the equation G

(2.4) 9x(z, U) - X fI g(z, w)gx(w, u) dw = g(z,u).
The functioni gx(z, w) is c ato o n (2.2). It is found as the
ratio D(z, w; X)/D(X) of two power series in X, which converge in the whole
complex plane. The solution F defined by (2.3) is continuous in E U L if f is
continuous in E U L. It is seen from (2.4) that go(z, u) = g(z, u).
The operator

(2.5) Gxf(z) = ff| gx(z, w)f(w) dw, (f E B)
is called the Green operator. Let us put Go = G. Substituting F from (2.3) into
(2.2), we arrive at the identity

(2.6) Gf = G[f-XGAf]
2.5. Let us list a number of properties of the Green operator. Let F = GXf,

(f e B). Then
(2.5.A) F e B; if fn 13*f, then jjGxf, - Fl --|0;
(2.5.B) F(y) = 0 for y E r+;
(2.5.C) F(z) = P(z) + -,er- cw(z),

where c, are constants, (p, is defined by (2.1), and the function P has Holder-
continuous derivatives in the closed circle {IzI < 1};

(2.5.D) F satisfies the boundary condition a;
(2.5.E) the partial derivatives of the function F are given by the formulas

OF = ff 9x f(w) dw;
Ox axB

(2.7)
aF JJE f(w) dw, (weE;z=x+iyEEU L\r-).

(2.5.F) The derivative of F at the point 'y E F+ in the direction of the iiner
normal to L is given b)y
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(2.8) aF (y) = f B(w)f(w) dw

where

(2.9) B?(w) = lim gx((l- t)y, w)
uio t

(2.5.G) If f is Hilder-continuous in E, then F is twice H6lder-continuously
differentiable in E and AF(z) = XF(z) - f(z), (z e E).
The validity of conditions (2.5.A)-(2.5.G) in the X = 0 case is proved in

appendix B. Their validity for every X for which the operator Gx is defined,
results from relationships (2.4) and (2.6).

Let C° denote the set of all H61der-continuous functions in the set E*. From
(2.5.C), (2.5.D), and (2.5.G) follows the imbedding
(2.10) GA(CO) C D

Now, let us show that the operator Gx is defined for all X> 0. As has already
been remarked in section 2.4, to do this it is sufficient to verify that (2.2) has
only a trivial solution for X > 0 and f = 0. For this verification we shall use
properties (2.5.A)-(2.5.G) for X = 0. If F + XGF = 0, then according to (2.5.C),
F e Co. By virtue of (2.10), (2.5.G), and (2.5.B), F G D, XF - AF = 0 and
F = 0 on r+. By the minimum principle, F = 0.

2.6. We shall now prove several new properties of the Green operator.
(2.6.A) For every X > 0, the general form of the function F E SD is given by

the formula
(2.11) F = Gxf + hx, (f e C°, hx e D, Xhx- Ahx = 0),
where AF = XF -f;

(2.6.B) 0 < Gxf< Gf forf . 0;
(2.6.C) XGxl < 1;
(2.6.1)) 11),GxJ1 < Ilfil.
PROOF OF (2.6.A). Let f E C°. Then by virtue of (2.10), Gx! e D. Hence,

F E OD. On the contrary, if F E 1), thenf = XF - AF e C. According to (2.10),
F = Gxf e O; by virtue of (2.5.G), XFP- = f. Hence, h, = F - P e D and
Xh- Ahx = 0.
PROOF OF (2.6.B). If f E C°, then according to (2.10) and (2.5.G), the func-

tion F = Gxf belongs to OE and satisfies the equation XF - AF = f> 0. By
the minimum principle, F > 0. Furthermore, it follows from (2.6) that Gxf < Gf,
and (2.6.B) results from the validity of the inequality 0 < Gxf < Gf for all
f E C°.
PROOF OF (2.6.C). According to (2.5.G), the function F = 1 - XGxl sat-

isfies the equation AF = XF. Furthermore, F(a) = 1 for a c r+ and F E D.
By the minimum principle, F > 0.
PROOF OF (2.6.D). By virtue of (2.6.B), the inequality -lfll < f < lIfl

implies that - lfhIXGxl < XGxf < IlfhIXGxl, that is, IxG,J < lhif iXGX1. Hence,
(2.6.D) follows by virtue of (2.6.C).
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3. Structure of functions of class D

3.1. We shall start from proposition (2.6.A), according to which the general
form of the function F E 50 is given by (2.11) (for any X > 0). Let us first study
the class tDx of all functions hx E D satisfying the equation Xh,,- Ah = 0.
LEMMA 3.1. The formula

(3.1) h = \Ghx + hx
establishes a one-to-one correspondence between hx EDe and h E D0o.
PROOF. According to section 2.4, each h E B is uniquely represented in the

form (3.1) in terms of some hx E B. If h E D, then hx E CO by virtue of (2.5.C),
and Ghx E 1 by virtue of (2.10). Therefore, hx = h - XGhx E D. On the other
hand, if hx E X, then h e D, according to (2.10). By virtue of (2.5.G), Ah =
-Xhx + Ahx. Hence, h E 2D0 if and only if hx e Dx.
The set D0 is studied in ([2], section 8). Namely, it has been shown in [2]

that
(3.1.A) to each a E fl+ corresponds a function pa. E Do such that pa(a) = 1;

pa(/3) = 0 for j3 F a,13 E 1I+.
'(The definition of the set II+ is given in section 1.2.)
(3.1.B) Every function h E 20 is represented uniquely as a linear combina-

tion of functions pz, (-y EIH+). In particular, the functions p., (y E 1r+) in-
troduced in section 2.3, are expressed in terms of pa, (a E ]1+) by means of the
formula p- = p-+ + p-i-.

3.2. Let px denote the solution of the integral equation (3.1) for h = pa. Let
us list some properties of the function pa:

(3.2.A) pa(a) =1; p.() =0 for,B a ,B3 Ef +;
(3.2.B) Xp (z) -Apa(z) = 0, (z E E);
(3.2.C) every function hx E i)x is represented uniquely as a linear combina-

tion of the functions px, (a E 11+);
(3.2.D) for every a E II+,

(3.2) px = -_ .(z) + E A'o,,,(z) + hg(z)
where

(3.3) Pa.={ for a =y-sop,for a =-

Ax,,, are constants, and hg are functions with H6lder-continuous first and second
derivatives in the closed circle E U L.
For X = 0, the statements (3.2.A)-(3.2.C) are valid according to section 3.1,

and statement (3.2.D) is proved in [2] (see section 8.2). The case of arbitrary
X > 0 is reduced to the case X = 0 with the aid of relationship (3.1).
LEMMA 3.2. Every function F e D is represented as

(3.4) F = -G(AF) + E F(a)pa.
aEil
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If F(-y+) = FQ(y-) at some point y E r+, then the function F is continuously
differentiable in the neighborhood of this point.
PROOF. According to (2.6.A), F = Gf + h, wheref = -AF and h E 50. By

virtue of (3. 1.A)-(3.1.B), h = E h(a)pa. There remains to note that F(a) = h(a),
because Gf = 0 on II+, and that the functions G(AF), py = p,+ + p, and pa
(for a different from y+ and 'y-) are continuously differentiable in the neigh-
borhood of y E r+ (see (2.3.E), (2.5.C), and (3.2.D)).

3.3. Comparing (3.2.D) and lemma 3.2, we remark that each function
F E D is represented as

(3.5) F = , k7ro + F,
,Er

where k, is a constant, and the function F may be extended continuously on
the domain E U L. Let P denote the class of all functions F in the set E* which
are representable as (3.5). Each function F has a natural extension to the set
E U L. We shall denote the extended functions with the same letters as the
originals.
The set P is a Banach space relative to the norm IIFII = sup,EE* IF(z)l. The

following lemma describes the general form of the linear functionals in this
space.
LEMMA 3.3. The arbitrary linear functional t in the space P is written as

(3.6) C(F) = (F, p)

where ,u is a finite signed measure in the space E* U H and (F, g) is the integral
of the function F with respect to the measure ,u. If the functional t is nonnegative,
the measure ,u is also nonnegative.
PROOF. The functional t induces a linear functional in the space C(E U L),

contained in P, of all continuous functions in the closed circle E U L. Hence,
there exists a measure v on E U L such that for all F e C(E U L),

(3.7) t(F) = JEUL F(z)v(dz)
If F E P, then
(3.8) F1 = F- E {F(y-O)-F(y + 0)}p, EC(E U L).

-,Er

Hence,

(3.9) t(F) = f F(z)v(dz) + F_ b.F(a)

where

(3.10) b. = {-St('o) + ('p7 P) + 1^(-y) for a = y+,
t(z)- (<,P v) + 2p(-y) for a = y-.

Defining the measure pi by means of ,A(M) = v(M n E*) + e fnnM ba, one
can rewrite (3.9) as (3.6).
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If the functional t is nonnegative, then the measure v is also noinegative.
Let us prove that ba > 0. Let a = y+ or a = y-. Let us consider a continuous
function Fn(z) which is bounded by zero and one and is equal to pa(z)
for Iz - -yl < 1/n, and equal to zero for Iz - yv > 2/n. From the relationship
*t(F.) -- ba there follows that ba > 0.

3.4. Let us now investigate the structure of the class D near the set r+ in
more detail. Let us fix some point y E r+. The vector v(-y) is tangent to the
contour L at the point y. Without restricting the generality, it may be con-
sidered that its direction agrees with the positive direction of the contour L
(otherwise, the field v could be multiplied by -1). Every point z sufficiently
close to -y is represented uniquely in the form

(3.11) z = 'Yei8(1- t), (Is! < 7r).
Hence, the numbers s, t may be considered as local coordinates in the neigh-
borhood of y. Evidently t = 0 for z G L and t > 0 for z e E. We shall denote
a point with coordinates s, t by z(s, t). Let us put z, = z(s, 0) = zyei. Let 0(s)
denote an angle which the vector v(z,) forms with the positive direction of the
contour L at the point s. Let us note that 0(0) = 0 and 0 changes sign from
plus to minus at the point 0. Hence, K = - 0'(0) > 0. It is easy to see that

(3.12) d9 (Z8) = dF (Z,) cos 0(s) + dt (z5) sin 0(s).

If F (E D, then (aF/Ov)(z8) = 0 for zs t r, and therefore

OIF aF
(3.13) - (zn) = -tan 0(s) -d (z.), (z r).

Let y E 1+. If F(Qy+) = F(y-), then by virtue of lemma 3.2, the equality (3.13)
holds even for s = 0, and we shall have

(3.14) aFOF
Let us note that

(3.15) OF ( O)dF ( )

If the function F is twice continuously differentiable in the neighborhood of -y,
then differentiating (3.13) with respect to s we have

(3.16) 02F ( O)K dF

By the Taylor formula

(3.17) F(z) = F(y) + OF ( F)+
aF

(z)

a[d2F a+ 2F +]
+ I (,y)82 + 2 sO (y)St + 02F (y)t2] + Q(S2 + t2).



DIFFUSION PROCESSES 27

Taking into account (3.14)-(3.16), we have

(3.18) F(z) = F(,y) + aF (-Y) [t + 'KS2] + 0(s2 + t).

THEOREM 3.1. If the function F e 5 is continuous at the point y E r+, then
the asymptotic formula (3.18) is valid as z -- 'y.
PROOF. According to lemma 3.2, the function F is continuously differentiable

in the neighborhood of y. Let us first assume that (OF/On)( y) = 0. By the
theorem of Lagrange,
(3.19) F(z) - F(y) = F(s, t) - F(O, 0) = F(s, 0) - F(O, 0) + F'(s, t)t,

(O < t < t).
For z -y,

(3.20) FI(s, t) -+ F1(0, 0) =aF(OY) =F

Furthermore,
(3.21) F(s, 0) - F(O, 0) = F'(s, O)s
where s lies between 0 and s. According to (3.13),
(3.22) F'(s, 0) = -tan 0(s)FI(s, 0).
For s -+ 0, Ft(s, 0) -* F'(0, 0) = 0, and therefore,
(3.23) F'(s, 0) = o[tan 0(s)] = o[o(s)] = o(s).
By virtue of (3.21) and (3.23), F(s, 0) - F(O, 0) = o(s2) and (3.18) results
from (3.19) and (3.20).

Let us now note that the function p, belongs to 5D and is twice continuously
differentiable in the neighborhood of y (see (2.10) and (2.3.E)). Hence, (3.18) is
valid for p. Since Ap, = 0, then by lemma 2.1, (ap,/On)(7) = c > 0.

Finally, let F be an arbitrary function from 1 continuous at y. Then the
function

(3.24) Fi(z) = F(z) - P(Z)c O9n
satisfies the condition (OFi/On)(-y) = 0. According to the above, (3.18) is sat-
isfied for F,. Since it is also satisfied for p,, it is then satisfied also for F.

3.5. The following theorem holds.
THEOREM 3.2. Let 'y E r+ and a = y- or a = -y+. Then

(3.25) lim MO =+ .

PROOF 1. For definiteness, let a = y-. According to (3.2.D),
(3.26) pa(z) = p(z) + h(z)
where h is twice continuously differentiable in the neighborhood of -Y and

(3.27) sp(z) = .p7(z) = -arg 1 - -) = -- arctan 1 -(1 t) cos s
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Let us note that

,s _ 1 for s > 0,
(3.28) °p(z.) = 1 arg (1 -eis)

L-+ for s9 < O.

For s J 0, pa(zs) pPa(y+) = 0; (p(z.) -*- Hence,
(3.29) h(y) 21
Furthermore, let us note that

{pso(Za) = 1 ;

(3.30) {.(z) = sin2 [7lr(p(Z) s (z) = 2 - 21
Isin 12~~~~~~~~7s 2

For s # 0,

(3.31) ° = Pap (z.) = 9Psa (z,,Z8s) + ap. (z,) sin 0(s).(zn) -as coa( t

By virtue of (3.21) and (3.27),

1 _ ~~~~~~~sin2 [- 2l+ ((3.32) ds (z8) = 1 + h'(z); d-t (Z8) - 2sin s + ht(z)

Substituting these values in (3.31), and letting s -O 0, we have 0 = (l/27r) +
h'(y)- (K/7r). This means

(3.33) h.(y) = K_
7r 27r

PROOF 2. If the statement of the theorem is false, a sequence zn= Z(Sn, tn) 7'
will be found for which

(3.34) pa(Z.) < C(tn + 2KS )

where c is some constant. Hence, pa(Zn) -*0, and by virtue of (3.26) and (3.29),
p(z.) - - 2. Hence, it follows that (sn/tn) -- +00. This means (tn/sn) -+ 0 and
sn > 0 starting with some n.
By the Lagrange theorem

(3.35) pa(S, t) = pa(s, 0) + pa(tS t

where 0 < t < t. By virtue of (3.26), (3.28), (3.29), and (3.33),

(3.36) Pa(s, 0) = s _ + h(s, 0) = h(s, 0) - h(O, 0)

- h5(0, 0)s+ = - + O(s2).Hr 7r

Hence, it follows from (3.34) and (3.35) that
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(3.37) c(t_ + 'KS2) > pa(sn, t.) > pa(sn, 0) = -+ O(s).7r

Dividing both sides by s, > 0, and taking into account that (t./s.) -O 0, we
have 0 > K/7r. This means K = 0. But for K = 0, we have from (3.34) and
(3.35) that
(3.38) >p>,(z) > dpa(Sn tn)

However, it is seen from (3.30) that So'(s., tn) +Xo. At the same time,
ht(sn, tn) - h'(O, 0) < m. Hence, the relation (3.38) may not be satisfied. The
obtained contradiction proves the theorem.

3.6. We shall now examine the constant K and the local coordinate system
introduced in section 3.4, for different points Sy c r+ simultaneously. The point
y will hence be given in the form of a subscript (let us note that t, does not
actually depend on -y, and coordinates s7 differ only by a constant factor). In
E U L, for each 7 E r+ let us construct a continuous nonnegative function T,
which coincides with t + 'K,S, in the neighborhood of y and is equal to zero in the
neighborhood of all the rest of the points of the set r. Furthermore, let us con-
struct a function q, continuous in E U L, coinciding with t + s2 in some neigh-
borhood of y for any y e r+, positive everywhere in E U L\r+ and equal to 1
in some neighborhood of r_.

Let P denote the set of all functions F E P which vanish on the set r+, and
let us put F e P1 if

(3.39) F = E k7r, + qFl
Mer+

where k, are constants and F1 e P. It is easy to verify that every function
F E P1 has a normal derivative at the points y c r+ and

(3.40) k dF(= ) (-y E r+).
The imbedding
(3.41) nPcP,
results from theorem 3.1. Furthermore, evidently P, C P C P.

Let us introduce a norm into P1 by putting IIFII = max,E* IF(z)/n1(z)j. Every
linear functional in the space P induces some linear functional in P,. In fact,
if F E P1, then
(3.42) 4(F) < k max IF(z)I < k max 1In(z)IIIFiI
(here the maximum is taken in E U L; k is a positive constant).

3.7. Linear functionals on P1 can be characterized as follows.
LEMMA 3.4. An arbitrary linear nonnegative functional 4 in the space P1 has

the form
(3.43) t(F) = (F, j1) + Er b,79F(O )

where b, are nonnegative constants, ,u is a measure on E* U II such that (1, .) < Xo
and,u(H+) = 0.
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PROOF. The formula ?(F1) = t(7F1), (Fi e P) defines a liecar funietionial in
the space P. This means that there is a finite measure v on the space E* U II
such that 1(F1) = (F1, v), (F1 e P). Without loss of generality, it may be coIn-
sidered that v(11+) = 0. Let us put ,u(dz) = (1/j)v(dz). Then (rm, A) < 00,
,u(II+) = 0, and t(rqF,) = 1(F1) = (F1, v) = (-qF, ,u;). If F E P1, then by virtue
of (3.39) and (3.40),

(3.44) F - Fa (y)T, = 7F,, (Fl
Hence,

(3.45) t{F - (a)nej = e(nF1) = (q1, ii).

Putting b, = t(T,) - (T, ,.), we have (3.41). The proof of the nomliegativity
of b, is carried out exactly as in section 3.3.

4. The operator W{. Resolvents of 2I-semigroups
4.1. Let us put F e 5w, and W2F = XF - f if

(4.1) F = Gxf + h, wlhere f e B, hc OX
(let us recall that according to section 3.1, DX denlotes the set of all h E X, for
which Xh - Ah = 0).
THEOREM 4.1. For every X > 0 the operator 2[x is a w-closutre of the operator A,

defined in the domain a).
To prove this theorem, we shall rely upon the following lemma.
LEMMA 4.1. If hn e 5)and hn > h, then h e 5x-
For X = 0, this lemma was proved in [2] (see section 4.7). The X > 0 case

reduces to the X = 0 case by the use of lemma 3.1 and (2.5.A).
PROOF OF THEOREM 4.1. According to (2.6.A), the operator Afx is all exteni-

sion of the operator A considered in the domain D.
Let us prove that the operator 2Ix is w-closed. In fact, if F,, c D, Fn -4 F,

%1Fn (p, then Fn = Gxfn+ hn, (fn E B, hn C 5DX) where fn = XF& - %&Fn. It
is clear that fn 2 XF - so. According to (2.5.A), Gxfn -_- Gx(XF - p). Therefore,
h. -n h = F + G((P - XF). By lemma 4.1, h E DA, and by definition of 21A,
F = G(XF -so) + h c Da, and 2SxF = so-

Finally, let us consider an arbitrary w-closed extension 21' of the operator A.
Let us put f E Q if F = GXf + h c Da. n j)w, for any h e SD, and if W2F =
!ff'F = XF-f. By virtue of (2.10) and (2.5.G), CO C Q. Furthermore, let
fn eQandfn f. TheiiFn = Gxfn + h Gxf+ h = F, 2t'Fn = ASxFn = XFn-

fn -'+ XF - f, and by virtue of the closedness of 21' and WA, Fe nDfl., and
2['F = WXF = XF - f. This means Q is w-closed. Since the w-closure C° coin-
cides with B, then Q D B and 2' D WA.

It results from theorem 4.1 that: (a) the w-closure 21 of the operator A defined
in the domain D has been determined; (b) Wx = 21 for any X > 0.
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4.2. The operator

(4.2) Rxf(z) = f0o e-)tTtf(z) dt

is called the resolvent of the semigroup Tt. This operator has the following
properties:

(4.2.A) if f > 0, then Rxf > 0;

(4.2.B) IIRjfiI I IlfI;
(4.2.C) for every X > 0, Rx maps Bo in a one-to-one way on DA. The inverse

mapping is determined by the operator Xg- A (where g denotes the identity
operator);

(4.2.D) if fn 4f, theni Rxfn - Rxf;
(4.2.E) Rx(B) C Bo.
The properties (4.2.A), (4.2.B), and (4.2.D) are obvious. The property (4.2.C)

has been proved in [1] (see section 1.4). The property (4.2.E) is verified by a
simple computation.
LEMMA 4.2. If RA is the resolvent of some W2-semigroup, then F = Rxf E lI:w

and XF - 9IF = f for every f E B.
PROOF. Let 3C denote the set of all functions f for which the statement of

the lemma is satisfied. Let f. E C, f.n f. According to (4.2.D), F. = Rxfnt4
Rxf = F. We have 52Fn= XF. - f. -+ XE - f. Since the operator a[ is w-closed,
then F e 5D9 and 2WF = XF - f. Therefore, the set 3a is w-closed. According to
(4.2.C), aC DBq,and byvirtue of (4.2.D), xc B.
TTfY Let RA be the resolvent of some W-semigroup. According to lemma 4.2,

for any f e B, Rxf e 0, and by virtue of section 4.1, Rf = GAf + h where
h c OA- By virtue of (3.2.C), this formula may be rewritten as

(4-3) Rxf =Gxf + E Qapa

(Qa are constants dependent onf). From (4.3), (2.5.C), and (3.2.D) there follows
that the function RAf belongs to the space P described in section 3.3 for every
f E B. Taking into account (4.2.C), we have
(4.4) DA C Rx(Bo) C Rx(B) C P.

As is known (see [2], (1.3.B) say) the set Da is everywhere dense in Bo in the
sense of convergence in the norm. Hence Bo C P and

(4-5) DA C Rx(P).
By virtue of (3.2.A), there results from (4.3) that

(4.6) Qa(f) = Rxf(a), (a E 11+).
4.4. Let a, i3 E II+. Let us put a '- , if F(a) = F(f3) for all F E DA. Hence,

the validity of the equality F(a) = F(G) for all F e Bo follows. Let us note that
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a - (3 if for some X > 0, QA(f) = QA(f) for allf E B. In fact, according to (4.6),
the equality RAf(a) = RAf(,) results from the equality QA(f) = Q'f(f), and,
therefore (see (4.4)), so does the equality F(a) = F(3) for all F c DA-

Let Q denote the set obtained from II+ by identification of equivalent points.
The elements of the set Q (that is, the classes of equivalent points of the set 11+)
will be denoted by the letters w, r, t. Let us put

(4.7) ~~~pA = E_ pa; Q.' = Q., (a/ E o

Formulas (4.3) and (4.6) may be rewritten as

(4.8) Rxf = GAj + E Q.p.e,
(4.9) Q.(f) = Rxf(w), (c E Q)-
Let Po denote the set of all functions F e P for which F(a) = F(f3) for a ',1.
There results from (4.4) and (4.8) that

(4.10) 5A C RA(B) C Pa.
Let us prove that

(4.11) 1 - XGa 1 - E pa = 0.
aEEH+

Let us denote by u the function in the left side of (4.11). By virtue of (2.5.D)
and (2.5.G) this function satisfies the boundary condition A and the equation
Xu - Au = 0. By virtue of (3.2.A), u(a) = 0 for all aeEFr+. By the minimum
principle (see theorem 2.1), u > 0 and -u > 0; therefore u = 0.

4.5. The resolvents satisfy the following lemma.
LEMMA 4.3. In order that the operator RA defined by (4.8) satisfy condition

(4.2.A), it is necessary and sufficient that the functionals QA(W e Q) satisfy the
condition

(4.5.A) QA(f) > Oforf > 0.

Under these circumstances, condition (4.2.B) is equivalent to the condition

(4.5.B) XQ,),(1) < 1.
PROOF. Since Gxf > 0 for f > 0, the equivalence of (4.2.A) and (4.5.A)

follows from (4.8) and (4.9). Furthermore, it is easy to see that under condition
(4.2.A) the condition (4.2.B) is equivalent to the inequality
(4.12) XRA1 < 1.

According to (4.9), the value of the function XRx1 at the point w is XQA(1).
Hence, (4.12) implies (4.5.B). On the other hand, if (4.5.B) is satisfied, then,
by virtue of (4.8) and (4.11),
(4.13) XRxl = XGA1 + X E Q(1)p. < 1.

4.6. Let us show, in conclusion, that the infinitesimal operator (a is the
closure of the Laplace operator A if the latter is considered on a suitable class
of functions.
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LEMMA 4.4. The strong closure of the operator A considered on the set Da n 5D
coincides with A.
PROOF. If F E 5DA n X, then AF = WIF = AF. The operator A is closed.

Hence, it is sufficient to prove that for each F E DA there is a sequence
F. EF DA n 5D such that IFFn - Fll -*0 and IIAFn - AFII 0. According to
(4.2.C), f = XF - AF e Bo. Hence, there exist functions f, E DA such that
llfn - fll O 0. According to (4.2.C), Fn = R,fJ E DA and AFn= XFn - fn. By
virtue of (4.2.B), IFFn - Fll -*0. This means that
(4.14) IIAFn - AFIi = IIX(F. - F) + fn - fII -, 0.
By virtue of (4.4), fn e Rx(B), and from (4.8) and (2.5.C), it follows thatfn E4CO.
According to (2.10), Gx(CO) C 1D. Hence, F. = RfJ, E 3).

5. Lateral conditions for smooth functions

5.1. It will be shown herein that for any W-semigroup Tt a set It is found
which satisfies conditions (1.3.A)-(1.3.H) and such that DA nl D c3(l). (The
set 3('U) has been defined in section 1.3.)
LEMMA 5.1. Every function F E DA fAD satisfies for every X > 0 the following

conditions:

(5.1) F(,,) = f' (F- 1 AF (w EF 0)
where 4x is a linear nonnegative functional on the space Po such that 4X(1) < 1.
PROOF. According to (4.8), every function F E DA is representable as

F = Rxf, where f e P. By virtue of (4.12), F(w) = Q.(f). But f = XF - AF,
and hence, F(w) = XQ [F - (1/X)AF] so that relation (5.1) is satisfied for the
functional t) = XQ.. The properties of this functional mentioned in the formula-
tion of the lemma follow from lemma 4.2.
REMARK. According to lemma 3.3, an arbitrary nonnegative linear func-

tional 4 on the space P is defined by (3.6) in terms of some finite measure ;I on
the space E* U H. It follows that every nonnegative linear functional on the
space Po is described by the same formula in terms of some measure Mi on the
space 8 = E* U 111- U R.

5.2. The space Po is separable. Hence (see, for example, [7], section 24),
a convergent subsequence may be selected from every sequence of linear func-
tionals which is bounded in norm. It is easy to see that the norms of all the
functionals 4 do not exceed 1. Therefore, one can find linear functionals 4. and
a sequence XA-* oo such that 4Xn(f) -4,,(f) for every f e Po and any w e U.
For X -* oo, i4t((1/X)AF)I < 11(1/X)AFI -*0. Hence, from equality (5.1) we obtain
in the limit
(5.2) F(w) = 40(F).
According to the remark at the end of section 5.1,
(5.3) 4@(F) = (F, ,.)
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where it. is a finite measure on the space 8. We have

(5.4) (1, A.O) = 4f,(M < 1.

From (5.2) and (5.3) we have

(.5) F(w) = (F, )

5.3. Let us put X e Q1 if ji. is a unit measure concentrated at the point w,
and let Q2o = Q\0i. For co e 1, equation (5.5) becomes an identity which all the
functions F satisfy. In this case, another passage to the limit is necessary.

Let us note that for co e 01,
(5.6) lim 4(f) = 4(f) = (f, t)=f(= W), (f e P)

(the limit is taken over some sequence of values of X which tend to +0X). Let
us put

Fo F - E F(r)pr,
(5.7) F0+ F(-Gp.

tF=Fo + E_ AF(f)apr.
Evidently,
(5.8) AP= AF - E AF(r)pr.

From (5.1), (5.7), and (5.8), we have

(5.9) e4(Fo) + , 4.(pr)[F(r) _ F()] - [1 - (1)]F(,w) - t24(A

-1 , ~4(pr)[AF(r)- AF(w)] e(1) zF(w) = 0.

When X -- +co along the sequence selected earlier, then according to (5.6),
(5.10) 4.(Fo) - 0, d(AP) -* 0, Cx(p) - 0, for r ^^ w, AX(1) -+ 1.

The function Fo belongs to the space P defined in 3.6. By virtue of (3.41),
Fo e P1. According to the remark at the end of section 3.6, the functional Ix in-
duces some linear functional on the space P1. Let nx denote the norm of this
induced functional. Let us put Q<, = Q\{w},

(5.11) = nx + E7(p, ) + + 1-

For anyf E P1, [t(f)l < nXIIfl p1. The space P1 is separable. Hence, linear func-
tionals 4, may be constructed in P1, and a sequence of values X may be selected
which converges to +o) such that f (f) -<4(f) for all f E P1. Passing to a sub-
sequence, if necessary, one can satisfy relations (5.6) and (5.10), and at the
same time insure the existence of the limits

(5.12) lim = q.r(¢ F4); lim 1 cW; lim =1 f
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Passing to the limit in (5.9), we have
(5.13) 4(Fo) + E q,[F(r)- F(w)] - c.F(w) - ,, AF(w) = 0.

Here A, are nonnegative functionals in P1, q-,,r c,,, o-a are nonnegative constants,
and 11411 + Q,q + c., + ,T = 1.
LEMMA 5.2. The functional t in (5.13) has the form

(5.14) (f) = (f, ) + Z b A (y)
where i, is the measure in E* U ll._ such that (n, i,) < oo; be,,., are nonnegative
constants satisfying condition (1.3.F); if b,,,, > 0, then all the functions p'(z),
(D E Q, X > 0) are continuously differentiable in the neighborhood of the point -Y
and for r F$ w,

(5.15) 4.,r = q.,r - (pr, i,)- , b.,7 Opr(,) > °.,ycr+ cln -

PROOF 1. The representation (5.14) of the functional 4, results from lemma
3.4. Let us show that (1.3.F) is satisfied. Let a be that one of the two points
ly ry- which does not belong to , and let r be a class from Q, containing a.
By virtue of (5.12) there exists a constant c such that for all X of the sequence
under consideration
(5.16) 4(pr) < c6X.
According to theorem 3.2, for every N > 0 there exists e > 0 such that

(5.17) pa(z) > NrT(z) for Iz - y1 < e.

Let us consider a function #(z) given in E U L which satisfies the inequalities
0 < y1 < 1 everywhere, is zero for Iz - y1 2 2e, and one for Iz - yj < e. Ev-
idently for all z E E U L, pr(z) 2 pa(z) 2 N,,(z)+(z), and hence

(5.18) t(pr) 2 Nt4(TrA).
Let us note that T7r/ E P1. Hence

(5.19) lim = t(Tr,) = (T#, i@) + b,7,.
From (5.16), (5.18), and (5.19), we have b,,, . c/N, and b<,, = 0 because of
the arbitrariness of N.
PROOF 2. Now, let r E Q and b, ., > 0. According to (4.6), pr (z) is represented

as the sum of functions pa(z), (a E ;). Since r either does not contain any of
the points -, y+ or contains both, and since the functions pa, (a e 1I+, a$l!£-
a $4 y+) and py = p, + p-+ are continuously differentiable in the neighborhood
of y; this is also true for the function pt.

Let us put y E rI, if b,,7 > 0, and let us consider the continuous function
fn(z) in E*, which equals pr(z) for p(z, ra,) S 1/n, equals zero for p(z, ra) 2 2/n
and is everywhere between zero and one. The function fn coincides with p. near
ra and equals zero near r+\ra, (for sufficiently large n). Hence, fn e P1 and
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(5.20) £ t(f-) - f ) = (f, P.) + E b^,,yapt f) (f).
But 4.(pr) > 4(fn). Therefore,

(5.21) lim4( >t>(fn) = (fn, i) + E_ b6 apt (,y).

Sincef. - pr for n -- o, then (5.15) results from (5.21).
5.5. The expression (5.7) for the function Fo may be rewritten as follows:

(5.22) Fo = F - F(w) - E [F(r) - F(w)]pr.rn
Substituting this expression into (5.13) and taking into account lemma 5.2, we
have

O9F(5.23) (F - F(wo), iP) + _ b z d (y) + , qAF( )-F(T)]
- cjF(w) - a AF(w) = 0.

Let Pv. denote the measure in the space E = E* U 11+ U Qwhich coincides with i,
in E* U ]I-, equals . ,r at the point r E D., and equals zero at the point w.
Then the relation (5.23) may be rewritten as

(5.24) (F - F(w), iP) + , b,X,,9F (y) - c.F(w) - o- AF(w) = 0.
-yEr+ On

THEOREM 5.1. For any W-semigroup, there exists a set 'U = (cw, a,, bw, ,,, Pv,,)
satisfying conditions (1.3.A)-(1.3.H), such that a) n ODA C 3(ut)-
PROOF. For w E f1 the set c, a, b,,,, v,, has been constructed in section 5.3.

In the co e D case we put
(5.25) c. = 1 - (1, p,u); b.,,, = a. = 0; vP(M) = Em n {w\i}].
Let F e DA n D; then WF = AF. Evidently F satisfies conditions (1.3.a)-(1.3.f).
Therefore, F E 5(cl).

It is necessary to be convinced of the validity of properties (1.3.A)-(1.3.H).
All these properties, except (1.3.G), are evident for X E go and follow easily
from lemma 5.2, for w E 01. The condition (1.3.G) may not be satisfied, but
we show that the system of relations constructed here can be replaced by an
equivalent system satisfying all the conditions (1.3.A)-(1.3.H).

Let us note first that according to the definition of Q (see section 4.4), for
any two points co F4- W2 from Q there exists a function F E DA such that F(WI) FS
F(w2). According to lemma 4.4, any function from 5DA may be approximated
uniformly by functions from DA n D. Hence F(wi) 5D F(W2) for some function
F e DA nf .
For w e Q' the relation (1.1) takes the form

(5.26) (F - F(w), V,,) - c,.F(w) = 0,
or equivalently,

(5.27) F(w)- , p(w, fjF(r) = (F, V)wcQ
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where

(5.28) p(w,') + (M) = C + M n MC.+ v.&' - 1,+ V. {M)
Evidently YEn p(w, r) < 1. Hence, lemma 1 of appendix C is applicable. Let
us assume that the set K defined in this lemma is not empty. We know that if
co E K, then p(w, P) = 0 for ($ K. This means v.(2'\K) = 0 for w C K. From
the condition Y_na p(c, P) = 1 it follows that cs, = v0(8\i) = 0. This means

,(&\K) = 0. From (5.27) we have

(5.29) F(w) - E p(w, )F(;) 0,(, E K).
I-EK

Let F1, *-- , F, be a fundamental system of solutions of (5.29). Let us put
Ko = K and let Km be the set of points w E Km., at which Fm achieves its
greatest value on Km.,, m = 1, 2, -.. , r. By induction we confirm that if
co E Km and r ¢ Ki, then p(w, t) = 0. Since p(w, w) = 0, each set Km consists
of not less than two points. All the functions F1, *-- X F, are constants in the
set K,; therefore, all the solutions of (5.29) are constants in Kr. Since this
contradicts the previous paragraph, the set K should be empty. According to
lemma 1 of appendix C, the matrix Q = (I - p)-' = Fn=O pn has nonnegative
elements. Hence, the system (5.27) is equivalent to the system
(5.30) (F - F(), i)j-F(w) 0

where
(5.31) = ¢q(w,k 0 = 1-i8

It is easy to verify that

(5.32) & - E p("O Cc<,+ 0

Hence,

(5.33) C,=E q(, .) c+ > 0.r&2172 cr + vr( )

Replacing (5.26) by the equivalent relation (5.30) we obtain the lateral condi-
tion satisfying all the requirements (1.3.A)-(1.3.H).

6. Investigation of the class 3(cu)
6.1. To each set Al satisfying the conditions (1.3.A)-(1.3.H) and each X > 0

there corresponds a matrix (a, r), (w, 0E Q) which is defined by the following
formulas:

a'= - (pt, v<,)- : ,r for X #c ,

(6.1) tax<, = E b,,yXfBy, 1} + (XGx1, vP) + c,, + Xo<r- E ,
7 En
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Here B?x is defined by (2.9); the integral of the product fJ2 over the circle E
is denoted by {ff, f2}, and

(6.2) m7 = lim P [(-t)y] = dpn()
t40 t an

It is clear that B?x and mvz., are nonnegative. From lemma 2.1 it follows that
mn > 0. Indeed, pr satisfies the equation Xf - Af = 0 and p'(z) > p'r(y) = 0
for all z e E. From these remarks there results

(6.3) > 0, a,,, r < 0 for X #

(6.4) , a,, . 0.

If the equality sign holds in (6.4), then

(6.5) ko = ,,,= c. = v. (\\Q) = 0.

It follows from (6.5) that w e Q'.
LEMMA 6.1. For the matrix (a' r) there exists an inverse matrix (ru). Here

r.,r > 0.
PROOF. According to (6.3)-(6.4), lemma 2 of appendix C is applicable to

the matrix (axr). In order to prove lemma 6.1, it is sufficient to verify that the
set K described in lemma 2 is empty. We know that if w e K, the equality
sign holds in (6.4) and a,,,r = 0 for co e K, s ¢ K. Hence, the equality
vf,(U\K) = 0 follows, as does (6.5). It is clear that K C S2'. But according to
(1.3.G), v,,(Q') = 0. Hence, v,,(K) = 0. However, v.,(K) = v,,(Q\K) = 0 together
with (6.5) contradict (1.3.H).

6.2. According to section 1.4, we put E = E* U S2, where 52 is the set of all
cE fl, for which o, > 0. We shall also use the notation B, Xf, 5(cL) introduced

in section 1.4. We shall write!,, -w'f if f,(z) -*f(z) for all z E g and the sequence
i!fnII is bounded.
For each f e B we put

(6.6) H.(f) = (Gxf, vP) + jf(w) + E,bI, fB, f},

(6.7) Q.(f) = E r, H'(f)
where r, r are defined in lemma 6.1. In the space B let us consider the operators
RA defined by the formula

(6.8) Rxj = Gxf + E Qx (f)pX.

THEOREM 6.1. For any X > 0 the operator Rx maps B in a one-to-one way
onto 5('U). The inverse mapping is given by the operator X5 - .

PROOF. According to sections 4.1 and (3.2.C), the general form of the func-
tionis satisfying conditions (1.3.a)-(1.3.b) is given by
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(6.9) F = Gxf + E QXpX.-

All these functions automatically satisfy conditions (1.3.d) and (1.3.e). Let
F e 5(QU). According to the above, F has the form (6.9). According to sections
1.4 and 4.1,
(6.10) XF(z) - !RF(z) = XF(z) - %F(z) = f(z) for z E E*.

The values of f(w) remain undetermined as yet for w E Q. Let us put f(w) =
XF(w) - !RF(w). Let us recall that WF(co) is defined by (1.4). Let us now note
that the function F defined by (6.9) satisfies condition (1.3.f) if and only if the
constants QX satisfy the system of equations

(6.11) E aXQ = HX(f).

By virtue of lemma 6.1, (6.11) is equivalent to (6.7). Hence, the conldition
F e 3(%L) is equivalent to the condition F = Rxf, (f E B). From the relation
(XM - !)R^f = f already proved, the remaining statements of the theorem
result.

6.3. Condition (1.3) takes the form (1.6) for w E Q'. We may rewrite it as

(6.12) F(w) = (F, i.)
where i, = ((vP)/(l, P.,) + c). Evidently, (i,, 1) < 1.

Let P(¶L) denote the set of all functions F e Pe satisfying the conditions
(6.12) for all w E Q'. Let us put F e D(%1) if F e 3(cU), and 2WF E P(9). It is
clear that fD('u) C P(91). There results from theorem 6.1 that for any X > 0

(6.13) 0(ql) = RA[P(cU)].
Our purpose is to prove the following theorem.
THEOREM 6.2. The set D(%t) is everywhere dense in P(cl) (in the sense of

uniform convergence).
Let us first prove some auxiliary propositions:
(6.3.A) P(%t) is everywhere dense in li (in the sense of w-convergence);
(6.3.B) if fn -w*f, then IIRxfn - RxfII -O0;
(6.3.C) the strong closures of the sets D(clt) and RJ(B) coincide.
PROOF OF (6.3.A). Let opn be a continuous function in E U L satisfying the

inequalities 0 < (,n < 1, which equals 1 for p(z, r+) < (1/n) and zero for
p(z, r+) > (2/n). Evidently, sor = PnP.p e Pa. Letf E Pa. In order for the function

(6.14) fn = f + n2 xtr(

to belong to P(QI), it is necessary and sufficient that the numbers xr satisfy
the system of equations
(6.15) x,- L IIxr = (f, iE) - f(w) (( Q')

where ,lr = ((,S P.). But IIn4 0O(because po¢(z) -O 0 for z ¢ Q7' and v.,(Q') = 0
by virtue of (1.3.G). According to lemma 1 of appendix C, the system (6.15)
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has a unique solution for sufficiently large n. Evidently it is bounded for n oo,
and according to (6.14), fn -_ f. Thus, P(QU) is everywhere dense in PQ. But as
is easy to see, the w-closure of PQ coincides with B. Therefore the w-closure of
P(Qt) is also equal to B.

In order to prove (6.3.B), it is sufficient to compare (6.6)-(6.8) with (2.5.A).
The statement of (6.3.C) results from (6.3.A) and (6.3.B).

6.4. Let r, denote the set of all points of the contour L at which the vector
field v(z) is tangent to L. Evidently r, D ]r.
LEMMA 6.2. For any thrice continuously differentiable function a(z) on the

contour L which is zero in the neighborhood of F,, there exists a function A(z)
coinciding with a(z) on L.

For each -y E r+ and any sufficiently small E > 0 a function B,(z) may be con-
structed which is continuously differentiable in E U L, equal to 1 for p(z, y) < Ef
equal to zero for p(z, -y) > 2e, and satisfying the inequalities 0 < B < 1 everywhere-
For any point yfrom IF afunction C,(z) may be constructed such that C,(y) = 1

and C,(z) = 0 at all points of rP except y.
PROOF. Let 0(s) denote the angle between v(eis) and the positive direction

of L at the point eis. On the segment [0, 1] let us construct a twice continuously
differentiable function b(r) equal to 1 near 1, equal to zero near zero, and such
that 0 < b(r) < 1 for all r. A function A(z) may be given by the formula

(6.16) A (r i,,) = a
- (1 - r)b(r) da(eis)

(6.16) A(re ~) = a(eis) tan 0(s) ds
The functions Be and C, are obtained by means of the same formula. In order
to obtain Be, it is possible to start from the function a, which equals 1 for
Iz - -i < 2f, equals zero for Iz - -i > e}, and satisfies the inequality 0 < a < 1
at all the rest of the points of the contour L. The function b(r) must be selected
so that it equals zero for r < 1 - 'e. In order to determine C7, it is sufficient
to construct the function a(z) on the contour L so that it equals zero in the
neighborhood of the set 1P\f{-y} and satisfies the equality

(6.17) a(eis) = 1 + | tan 0(s) ds

for s, - e < s < So + e (if y = exp (iso)).
LEMMA 6.3. If for all Holder-continuous functions f

(6.18) E k7[Gf(y+) - Gf(y-)] = 0,
yr-

then all the constants k7 are zero.
PROOF. Let fn(z) be Holder-continuous functions in E U L such that:

fn(z) = 0 for Iz - wl > (1/n), and {fn, 1} = 1. Relying on the minimum prin-
ciple, it is easy to show that the functions Gfn converge to g(z, w) uniformly
in the neighborhood of r_. Hence, from (6.18) there results
(6.19) E m7[g(-Y+, w) - g(y-, w)] = 0, (w e E).

7er-
To conclude, apply theorem 1 of appendix B.
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PROOF OF THEOREM 6.2. By virtue of the Hahn-Banach theorem and
(6.3.C), it is sufficient to prove that every linear functional 4 on the space Po
which vanishes on Rx(B), will vanish also on P(Q). According to lemma 3.3
and the remark of section 5.1, t(F) = (F, t), where t is a signed measure on the
space E. Thus, let
(6.20) (R4f, t) 0 for all f e B.
It is necessary to prove that (F, 0)= 0 for all F e P(%t).

1. Let us put
(6.21) = (p,A) r r= E

By virtue of (6.6)-(6.8), the relation (6.20) is equivalent to the relation

(6.22) (F, v) + rrarf(r) + X rrbr OF(y) =0
rG2 rEs2,,LEr+ 4dn

where F = G,j, v =P + Erea rrvp. Let b denote the set of all functions F c X,
which equal zero on r+. According to (2.6.A), every function F from :b may
be written in the form GAf, (f e B), where f = XF - AF. Hence, for any func-
tion F E b the following corollary of equality (6.22) is satisfied:

(6.23) (F, v) + E rr[WF(r)- AF(r)] + E rrbr , d- (,y) = 0.

2. Let us prove that r, = 0 for all w E Q\Q'. Let b, > 0. Let us consider
the function B,, constructed in lemma 6.2. It is easy to see that for sufficiently
small E > 0 the function F, = B(1 - ps,) belongs to 0. For this function the
relation (6.23) becomes

(6.24) (F., v) - rWb.,, nP (-y) = 0.

Since (ap,,/an),y $ 0, and (F., P) -*0 as E -O0, then r,, = 0.
Analogously, considering the function F, = B,Gx1, we arrive at the relation

rtat = 0. Therefore, rr = 0 if oer > 0.
It is now seen from (6.23) that (F, v) = 0 for all F E t. Since b contains all

smooth functions which equal zero near L, then v is concentrated on &\E. Con-
sidering the functions A(z) and C,(z) constructed in lemma 6.2, we conclude
that P is concentrated on Q U II-, where v(-y+) + v(y-) = 0 for all y E r_.
Hence, the validity of the conditions of lemma 6.3 results from the equality
(Gf, v) = 0 (for k, = vQ(y+)). From lemma 6.3, it follows that k, = 0, ('y e rP).
This means the measure v is concentrated on Q..

Since the set Q is finite, the measure P is also finite. Therefore, X > (pu, v) =
(p., t) + ,_ rt(p., vt). For w # r, (p., vr) < a: (see (1.3.D)). Hence, if r. # 0,
then (p,, P.) < oo and therefore, the measure v,, is finite and w E W'.

3. Since the measure v is concentrated on Q, then (F, v) = 0 for any function
F equal to zero on Q, and therefore

(6.25) (F, r) =-E r¢(F, Pt).
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For any F E Po the function P = F - E, F(w)pX vanishes on Q, and hence
(6.26) (F, r)=-E rr(F, vr) =-, rr(F, vr) + E F(co) E rr(p,, vt).

From (6.21) it follows that Y2a,a<,rr = qr. Hence,
(6.27) (F, t) = (F, t) + E_ F(w)q = (F, ) + E F(w) Ear,rr.

From (6.26) and (6.27),
(6.28) (F, r)= , rr{-(F, Pr) + , F(w)[(p,, v') + at,,3)]}.

From (6.1) we remark that for E ',

(6.29) at ,= {- (p, r) for w ,

Substituting (6.29) into (6.28) and taking into account that rt = 0 for t e Q\Q',
we have

(6.30) (F, E)=-E r{(F - F(), vr) -cF(t)}.

It is clear that this expression is zero for all F e P(9t).

7. Proof of the fundamental theorems

Theorems 7.1-7.2 refining theorems 1.1-1.3 formulated in section 1 will be
proved in this section.
THEOREM 7.1. Every 9If-semigroup satisfies some special lateral condition 91.

Its resolvent is determined by (6.6)-(6.8). The domain of the infinitesimal operator
A isa4(%) and Bo = P(%).
PROOF 1. Let some W-semigroup be given, and let RA be its resolvent. Let

us consider the set cU = {c0, a,,, b,, v,)} defined in theorem 5.1, and let Rx
denote the operator given by (6.6)-(6.8). The operator Rx is defined in the space
B = B(9). Define the operator RA also in B by putting RAf = R(fo, where fo is
the restriction of f to E*.

Let f E Bo. Then F = RAf e DA and f = XF - AF. According to lemma 4.4,
there exists a sequence FnE DA such that |IF - F11 -+0 and fn= XF. - AF.
converges uniformly to f. According to theorem 6.1, F. = RAjn. Passing to the
limit, we obtain that F = RAf. On the other hand, according to (4.2.C), F = RAf.
Therefore
(7.1) Rf = RAj
for allf e Bo. It follows that DA C 5(C).

2. According to (4.10), 5DA C Pn. Therefore, DA C Po nf(cL) c P(Q1). Since
DOa is everywhere dense in Bo in the sense of uniform convergence, then Bo S P('u).
Relying on (4.2.C), (4.2.E) and 1, we have

(7.2) OA = RA(BO) = RA,(BO) 5 Rx{P(U)} = 2q C BO.
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According to theorem 6.2, the strong closure of D(%l) equals P(Q), and therefore
formula (7.2) implies that Bo = P('I). Comparing (6.13) and (4.2.C) we have
DA = D00-)

3. Let f. .'+ f (w-convergence in the space 8). By virtue of (6.3.B),
IlRxf. - Rxf II -+0. According to (4.2.D), Rif. .4 RxF. Relying on (6.3.A) we
conclude that the equality (7.1) holds for all f E B.

In particular, let f(w) = 1 for w E i and f(z) = 1 for all z E E*. Then Rf =
<, r,rarp . But evidently Rxf = 0. Hence, _ ,rXac = 0 and at = 0. The
condition ¶l is special.
THEOREM 7.2. For every set 'U satisfying conditions (1.3.A)-(1.3.H), there

exists one and only one Markov semigroup T, in the space 9 for which the infinites-
imal operator A is a contraction of the operator fI and 5Di C 3(Ql). The resolvent
for this semigroup is determined by the formula

(7.3) Rxf(z) = | rx(z, w)f(w) dw + ,.rE(Z t)f(r)

where

(7.4) rx(z, w) = gx(z, w) + E, rrp.(z)[ br,.,,B(w) + f, gx(z, w)vr(dz)]

rx(z, a)= r pX(z)r,.

We have Bo(g) = P(%, OA = D(%)). If the set 'I is special, then the semigroup Tt
may be considered in the space E*, and it is an W-semigroup.
PROOF 1. It is easy to see that (7.3)-(7.4) define the same operator as do

(6.6)-(6.8). Let us show that this operator satisfies conditions (4.2.A)-(4.2.B).
According to lemma 4.3, it is sufficient to verify conditions (4.5.A)-(4.5.B).
The first of these conditions is obvious. Let us verify the second.
From (6.1)

(7.5) E ar = E b.,7X{BX, 11 + (XGx1, P.)
ten yEr+

from which
(7.6) 1 = E r f{ E brX{By, 1} + cr + (XGx1, vr)}.

En 7Er+

Now, let us put f = 1 into (6.7), multiply the equality obtained by X, and
subtract from (7.6). We obtain
(7.7) 1 - XQ<,(1) = Ej r<,rcr > 0.

2. According to the Hille-Yosida theorem (see [7], section 21, say), the op-
erator A given in the set DA of a functional Banach space L is an infinitesimal
operator of some semigroup Tt satisfying conditions (1.1.A)-(1.1.B), and such
that as t - 0, IiTtf-fIO-+0 for allfeL if

(a) DA is everywhere dense in L (in the strong sense);
(b) the operator (X3 - A)-1 is defined for X > 0 in the whole space L and

satisfies requirements (4.2.A)-(4.2.B).
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Let us apply this theorem to the space P(Qu) and the contraction A of the
operator a in the domain 5D)('). By virtue of theorem 6.1 and (6.13), the op-
erator Rx, defined by (7.3)-(7.4) agrees with (X3 - A)-'. According to 1, condi-
tions (4.2.A)-(4.2.B) are satisfied, and according to theorem 6.2, requirement (a)
is satisfied. Therefore, A is an infinitesimal operator of the semigroup Ti sat-
isfying conditions (1.1.A)-(1.1.B) and continuous in P(¶U). There it follows
from lemma 3.3 that

(7.8) Ttf(x) = JS P(t, x, dy)f(y).

Hence, the operator Tt may be extended to the whole space A so that it will be
continuous relative to w-convergence. It easily follows that (7.8) defines a semi-
group Tt in the space A, which satisfies conditions (1.1.A)-(1.1.B).

3. The resolvent of the semigroup Tt is determined in the space P('t) by
(7.3)-(7.4). The arguments of paragraph 3 of the proof of theorem 7.1 show
that these formulas remain valid for all f E A. In particular,

(7.9) f P(t, x, r)e-xt dt = rx(Z, r).

Hence, it is seen that if ao = 0, then P(t, x, r) = 0 for all t, and the semigroup
Tt may be considered in the space E*. Evidently, condition (1.1.D) is satisfied
here. From (6.3.A) the validity of (1.1.E) follows so that we have an 21-semi-
group.

4. The considerations of paragraphs 1-2 of the proof of theorem 7.1 show
that if DA C 5('U) and A C a for the Markov semigroup Tt, then DA = D(Du).
By virtue of theorem 6.2 and proposition (6.3.A), the w-closure of FDA coincides
with P. According to the uniqueness theorem ([1], theorem 1.8), the semigroup
Tt is defined uniquely by its infinitesimal operator.

2 K K K O
APPENDIX A. The Minimum Principle

When X = 0 and condition (2.1.A) is satisfied with the equality sign, lemma
2.1 is proved in Petrovskii's book, say ([8], lemma 1, section 28). In the general
case the proof has also been carried out, only it is necessary to determine the
auxiliary function w by the formula

(1) W(X, y) = u(x, y) - u(xO, Yo) + V0) V(X, y).

In order to prove theorem 2.1, it is necessary to replace the assumption Ah = 0
by the assumption Xh - Ah > 0 in the formulations and proofs of lemmas 5.1-
5.4 of [2]. Hence, the proof of lemma 5.1 does not change. The coincidence of
the exact lower bounds of the function h on the two sets is stated in each of
the lemmas 5.2-5.4. In our case, these statements remain valid under the addi-
tional assumption that, each time, at least one of the two lower bounds under
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consideration is negative. Hence, in the proofs of lemmas 5.2 and 5.3 it is nec-
essary to consider the auxiliary function

(2) 3C&(z) = h(z)--k b(z)

and the function

(3) H(z) = h(z)-u-E + u g( ) +
q + 1

in the proof of lemma 5.4, where k = min (k, 0). After these modifications,
theorem 2.1 is derived from lemmas 5.1-5.2 exactly as theorem 5.1 has been
derived in [2].

APPENDIX B. The Functions p,(z) and gw(z)

1. Functions p,(z), (ey E r+) satisfying conditions (2.3.A)-(2.3.D), have been
constructed in [2] (see theorem 5.2 and section 5.7). The property (2.3.E) results
from formulas of section 4.8 of [2].
The function gw(z) satisfying conditions (2.2.A)-(2.2.D) has been constructed

in section 6 of [2]. This function is nonnegative. It is determined by the formulas

(1) 27rg.(z) = qw(z) - F, q.(')p,(z),

(2) qw(z) = Re fo Gw(z) dz.

The form of the function G,(z) depends on the sign of the index t of the vector
field v(z). Let us first assume that t > 0. Then for w =s 0,

(3) G.(z) = eie(z)ze (eiU(w) 1 2 w + e_ (w)W*c+l 2 * +

where w* -w' and a(z) is an analytic function in the circle E, which has a
H6lder-continuous derivative d(z) in the closed circle E U L (see section 4.4
of [2]). This formula is not suitable for studying gw(z) for values of w near zero.
Let us put
(4) (Z) = e-iv (Z) Z2tW* e~Cw)>(4)~ ~ ~lw - z W* -zJ
It is easy to verify that the difference f(z) = Gw(z) - 0.(z) is regular in the
circle E for any w 0 0, continuous on E*, bounded in E U L, and satisfies the
relation Re {f(z)eiz(z)z-t} = 0 for z E L\r. Hence it follows that the function

(5) qw(z) = Re f z

w(z) dz, (zoeE)

differs from qw(z) by a bounded harmonic function satisfying the boundary
condition A, and by virtue of the minimum principle it follows from (1) that
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(6) 27rg.(z) = 4z)- 42(wy)P7'(Z).
(6) z~~~~~~~~er+

2. Let us select some p E (0, 1) and let zo = 3p. Let us putEp = {z: IzI < p};
EP = {z: p < lzl < 1}. Let us consider the functions

(7) R.(z) = Q.(z) + 2 Rw(z) = a(2.z) +

(8) rw(z) = Re fo Rw(z) dz = qw(z) + ln Iz - w-ln Iwl,

(9) I (z) = Re fJ R.(z.) dz = q,(z) + ln iz - wI - ln Izo- wl.
It is easy to verify that the functions Rw(z) and dRw(z)/dz are continuous and,
therefore, bounded in the domain z E E U L, w E EP. The functions R,(z) and
dR.(z)/dz are continuous in the domain z E E U L, w E EP and the estimates

(R.(z)j < X 1+ z 5C2

dRw(z) < IW3 3C4
dz -Iz-wI +z-W*12'

are satisfied for them (3Ci are constants dependent on p). From the relations

(ll) d w _ i dyw= RWY dx- y = RwOx Oy Ox Oy

there results that the functions (Of/Ox), (Owi/Oy), (a2fW/Ox2), (a2FW/oxay),
(a2r%/ay2) are continuous in the domain z e E U L, w E EP; the functions
(arwl/x), (arwl/y), (C2rw/Ox2), (C2rr/wxOy), (O2rw/Oy2) are continuous in the
domain z e E U L, w c EP, and the first two are majorized in absolute
value by the function 3C1 + (X2/z- w*i), and the last three functions by
(3C3/IZ- WI) + (iC4/jZ-W*12). Let us note that the functions rw(z) and iw(z)
are harmonic in the domain E.

3. It has been shown in ([2], §7) that qw(-y) -+0 as w -*y, (-y E r+) and
therefore, q,w(,y) is bounded in E. Hence, there results from (1), (8), and (10)
that the function Iz - wlgj(z) is bounded in the domain z E E U L, w E EP.
From (6) and (9) and the boundedness of R.(z) it follows that jz - wlg.(z) is
bounded in the domain z e E U L, w e Ep. Hence, the statement (2.2.E) is
valid.

4. Let f be a bounded measurable function in E. Let us put F(z) = Gf(z) =
fE g9(z)f(w) dw. From (1) and (6) there results that

(12) F(z) = p(z) - _pI(y)pe(z)
,Er+

where

(13) 27rp(z) = LE q.(z)f(w) dw + JE 4.(z)f(w) dw.

By virtue of (8) and (9), 27rp = s01 + Vp2 + V3, where
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(Pi(z) =-fIn Iz - wjf(w) dw,

(14) vo2(z) = JE [f.(z) + In Izo - wj]f(w) dw,

5p3(Z) = fED [r,(z) + In Iw!]f(w) dw.

It is known from potential th see [8], §35, say) that (1) pi has H6lder-
continuous first derivatives in U4; they may be found by differentiation
under the integral sign; (2) if f is Holder-continuous in E, then the second
derivatives of pi exist and are H6lder-continuous in E, and Api = -f.
There results from the properties of r, and 5. derived in section 2, that

(a) the first and second derivatives of the function (o2 exist and are H6lder-
continuous in E U L, and they may be obtained by differentiating under the
integral sign; (b) the first derivatives of so3 exist and are H6lder-continuous in
E U L and may be obtained by differentiation under the integral sign; and
(c) the functions V2 and j03 are harmonic in E.
The propositions (2.5.A)-(2.5.G) are derived without difficulty from these

results and the known properties of the functions p,(z).
5. When t < 0, the functions G.(z) and Gw(z) are no good in that they have

a pole at zero. Therefore, an expression of the form

(15) a,(w) z) z + -Y
-fGn 2i z-y

is added to G., and the expression
z + DY rn-ileiaz(16) i J(w) E2 bk(W)(Z-k + zk)ztei(z)

,YGr, 2i Z- =

mn-i
+ E b._k(w)i(zk - z-k)z1e-a(z)

k=1

to C., where rP is an arbitrary subsystem of the system r_ consisting of 2t - 1
points, and a7, d, bk are bounded harmonic functions. For example,

(17) a,(w) = -Re {ieiU(w)w-4-lP(w)}
where
(18) P7(w) = 'Yt-w1+4 I w-

#Eri,#X7 7-A
This modification to Gw and 0,,, require no essential changes in the derivations

of propositions (2.2.E) and (2.5.A)-(2.5.G) made in sections 2-4.
THEOREM 1. The functions g(y+)- gw('y-), (ry E r) are linearly in-

dependent.
PROOF. Let us assume that for some constants m7

(19) E m7[gw(,Y+) - g(-r)] = 0.
'Er-

It has been proved in ([2], §7) that if wn is a sequence approaching j3 e r+
along the normal, then cngw.(z) -* pO(z) for a suitable choice of the constants c",
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where the convergence is uniform outside an arbitrary neighborhood of the
points #. Hence, it follows from (19) that

(20) E2 my[pp(+) - pp(-Y-)] = 0.
eEr-

First let t > 0. Harmonic functions ha,, (a e rI) have been constructed in
section 4.8 of [2] such that ha(y+) - ha(j-) = 0, if a # -y and h,(-y+) -
h,(-y-) #d 0. From section 5.6 of [2] it easily follows that the functions ha are
linear combinations of the functions pp. Hence, it follows from (20) that
E, m,[h. (-y+) - ha(y-)] = 0, which means ma = 0.
Now, let t < 0. Let us fix some a e r_, and let us select the subsystem r,

of the system r_ such that a E r-. From (1), (19), and (20), one obtains

(21) L m7[q(QY+) - q.(y-)] = 0.
aEri

For t < 0 the function G.(z) differs by (15) from the function defined by (3).
Hence, it is easy to see that

(22) q.(-y+)- q.(,y-) = a,(w)A,, for y e rl,

(22)qy(+) - q (QY-) = 0 for y e r1\rl,
where A, are real constants different from zero. By virtue of (17) equality (21)
becomes
(23) Re {0 ieio(w)w-t-lm7APy(w)} = 0.

The function under the sign Re is regular in E and continuous in E U L. Hence,
it follows from (23) that this function equals the pure imaginary constant iAo.
Therefore,

(24) L m,,A.,,P(w) = Aoe-O(W)wI+1.

From the definition of the function o((w) (see [2], section 4.4) it follows that
for w = ei' the right side equals Ae-i(') (see section 3.4 for the definition of 0(t)).
The left side of (24) is real for w = ei'; hence A = 0. Now, putting w = a in
(24), we obtain Aama = 0, and therefore, ma = 0.

APPENDIX C. Lemmas on Inversion of the Matrices

LEMMA 1. Let P = (p.,r) be a matrix with nonnegative elements such that for
all c, s,,(P) =Er- p.,r < 1. Then s,,(Pn) < 1 for all X and n. Let us put co e K
if s,(Pn) = 1 for all n. Then p 0= 0for all w G K, r ¢ K. If the set K is empty,
then the series

(1)
E pn

n=O

converges and the matrix I - P has an inverse with nonnegative elements.
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PROOF. Let us note that for all m and n

(2) sp(Pm+n) = ,2 p 8r(p n).

Putting m = 1, we deduce by induction the first statement of the lemma.
Furthernore, if Cw E K, then for any n,

(3) p,r[1 - S,(pn)] = 0.

If r ¢ K, an n may be selected such that st(Pn) < 1, and then it follows from
(3) that p.,r = 0. Finally, if K is empty, then for any w there exists an n such
that s,(Pn) < 1. Relation (2) implies that S>(pm+fn) < s,,(P-). Hence, for some
no the inequality s,(Pn') < 1 is satisfied for all c and maxn Sw,(Pno) = c < 1.
From (2) it follows that

(4) 8<,(pkno) < CS.,(p(k-1)no).
Therefore, s,,,(Pn) < Ck for kno < n < (k + 1)no and the series (1) converges. Its
sum is the inverse matrix for I - P.
LEMMA 2. Let A = (a,=,,,) be a matrix satisfying the conditions

(5) a,,, > O, a,,Or< O for w a,¢ 2O.

Let us consider the matrix P with elements p.,, 0, p.,r =-(a, r/a,, ) for
co 5 r. If the set K, defined for this matrix in lemma 1 is empty, the matrix A
has an inverse with nonnegative elements.
PROOF. According to lemma 1, the matrix I - P has an inverse with non-

negative elements. But A = A(I - P), where A is a diagonal matrix with
diagonal elements a<,.. Hence, the statement of lemma 2 follows from the
formula A-1 = (I -P)-'A-'
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