GENERAL LATERAL CONDITIONS FOR
SOME DIFFUSION PROCESSES

E. B. DYNKIN
Moscow UNIVERSITY

1. Formulation of the problem and fundamental results

1.1. Let E be a plane domain bounded by a smooth contour L, and let v(z)
be a smoothly varying vector field on L. Let the point v € L be called exclu-
sive if the projection of the vector v(z) on the inner normal to L changes sign
at the point v. Let us say that the function u(z) satisfies the boundary condi-
tion @ if, at each nonexclusive point z of the contour L, the derivative of u in
the direction »(2) is zero. We are interested in solutions of the heat conduction
equation (du.(2)/dt) = Au.(z) in the domain E, which satisfy the initial condi-
tion u(2) = f(2) and the boundary condition @. More accurately, our problem
is_to describe the general form of the lateral conditions at exclusive points,
which will, together with the initial and boundary conditions, define a unique
solution u;(z2) of the heat éogduction equation, wherein: (a) u,(2) > 0if f(z) > 0;
®) |[udl < If]l (we understand ||f]| to be sup |f(z)| in the union E* of the
domain E and the set of all nonexclusive points of the contour L). (An analogous
problem for the system of differential equations of Kolmogorov which describes
Markov processes with countable phase space was studied by W. Feller [4].
However, Feller considered only a special class of supplementary conditions
corresponding to ‘“‘continuous exit”’ from the boundary. The supplementary con-
ditions we found cover the most general case.)

In terms of probability theory the problem may be stated as follows. The
heat conduction equation, together with the boundary condition @, prescribes
a Brownian motion process in the domain E with reflection from the boundary
in the domain E. The behavior of the trajectories after hitting an exclusive
point of the boundary is not determined here. The problem is to describe all
possible kinds of such behavior.

It is more convenient to pose and solve the problem in the terminology of
semigroups of linear operators. Let & be some set and ® some o-algebra of sub-
sets of &. Let B = B(€) the space of all bounded ®B-measurable functions on &
with the norm ||f|| = sup |f(z)|. The family of linear operators T,, (¢t > 0),
operating in the space B and satisfying the following conditions:

(1.LLA) T, f>0,iff>0,

(LLB) [Tl < (I,

(1.1.C) T.,T:= Tsyrcforanys, t > 0,
is called a Markov semigroup in the space &.
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18 FIFTH BERKELEY SYMPOSIUM: DYNKIN

The semigroup 7'; in the space E* defined by the formula T,f(x) = u.(x) cor-
responds to the boundary value problem described above for the heat conduction
equation. (The s-algebra of all Borel sets is always considered as the basic
o-algebra ® in the space E*.) Let  be some linear operator defined in the sub-
set Dy of the space B. The Markov semigroup 7', is called an U-semigroup if
the following conditions are satisfied.

(1.1.D) The infinitesimal generator A of the semigroup 7T, is a contraction
of the operator .

(1.1.E) The set B, of all elements f € B for which lim; ||T:f — f]| = 0, is

everywhere dense in B in the sense of convergence w. We say that f. 575, if
fa(x) = f(z) for all x € & and the sequence of norms ||f| is bounded.

Let us now define the e operator I as Y as follows. Let D be the set of all functions
from B(E*) having Holder-continuous first partlal derivatives 1{@;9 Hélder-
continuous-second partial dérivatives in E; and satlsfymg the boundary condi-
tiom@. Tet us consider thie Laplace operator A in the domain ®. It will be
proved that a minimum w-closed extension exists for this operator. We denote
this extension also by %. Our purpose is to describe all -semigroups.

1.2. Let us move along the contour L passing the exclusive point ¥ in the
direction of the vector »(y) and at the same time, observing the projection of
the vector »(z) on the inner normal to the contour L at the point 2. Let us put
v € Ty, if this projection changes sign from plus to minus, and y € T, if the
sign changes from minus to plus. Let us set T' = I'y U T (this is the set of all
exclusive points).

It is expedient to “split” each point v € T into two points v+ and y~. The
union of all such pairs is denoted by II. The decomposition of II into II, and
TI_ corresponds to the decomposition of T into T'y. and T'_. If F is a function in
E*, then F(y*), F(y™) are its limits when 2 tends to v along the contour L from
the positive and negative sides, respectively. It is proved that if F € Dy, then
the limiting values F(y*), F(y~) exist for all ¥ € T. To each a € IL_ there cor-
responds just one bounded harmonic function pe(z) satisfying the boundary
condition @ and such that p.(a) = 1 and p(8) = 0 for B € I, B # o. (If, say,
o = v+, then po(2) is the probability that the trajectory issuing from z will
approach v having touched L on the positive side of v.)

1.3. Let us suppose the following are given.

(1) The partition of the set IT, into classes. The set of these classes is denoted
by €.

(2) For each w € Q there is a set of nonnegative constants c,, o, ba,y, (y €Ty,
and a measure », in the space § = E* U II_ U Q.

Let E* denote the set of all points z of the set E* for which p(z, T'y) > e (the
distance between the point z and the set M is denoted by p(z, M)); Xv,c i &
function equal to |z — y|? for [z — y| < ¢ and zero for |z —v| > e Let ¢ =
p(z, L). Let us put w € Q' if ¢, = 0, b,,, = 0 for all y € T and »,(8) < =.

Let us assume that for every » € Q the following conditions are satisfied:

(1.3.A) v, (E¥) < w0 if e > 0, '
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(1.3.B) (¢, v.) < © wheret = {(z) = p(z, L),
and the integral of the function f in measure » (in the whole space &) is denoted
by (f, »).

(1.3.C) For any vy € I'y and any sufficiently small ¢ > 0, and

(1.1) Joo ol = Alde) < e,

(1.3.D) (pay v.) < » for a ¢ w;

(1.3.E) »,(0) = 0;

(1.3.F) b.,, = 0 if at least one of the points ¥+, v~ does not belong to w;

(1.3.G) »(@)=0forw e Q;

(1.3.H) at least one of the numbers v,(8), by,y, (v € T'y), €u, 6. i positive.

To each set U = {cu, 0w, bu,y, o} let us associate the manifold J(U) of all
functions F defined on E* and satisfying the following conditions:

(1.3.2) F € Dy;

(1.3.b) to each w € @ there corresponds a number (we call it F(w)) such that
F(a) = F(w) for all a € w;

(1.3.¢) if g, > 0, there exists an analogously defined value AF(w);

(1.3.d) if bu,y > 0, there exists

oF  ~ . F[(1 —t)y] = F(v),
(1-2) E;L (7) = 11&1 ¢ s

(1.3.e) for each w € Q the function F — F(w) is summable in »,-measure;
(1.3.f) for each w € Q,

(1.3) (F —F(w), v) + Z buy O an P - coF (w) — 0. UF(w) = 0.

We say that the ?I-semxgroup T, satisfies the lateral condition U, if Dy C J(U).
The lateral condition U is called a special one if ¢, = 0 for all w € Q.

1.4. The fundamental results of this paper are formulated in theorems 1.1—
1.3. (These results have been published without proof in [3].)

TureoreM 1.1. Every U-semigroup satisfies some special lateral condition U.
The arbitrary special lateral condition U uniquely determines some A-semigroup.

Theorem 1.1 solves the problem posed in section 1.1. However, the natural
question arises of what is the sense of the conditions U when some ¢, are pos-
itive? In this case it is necessary to extend the phase space E* by appending
to it all points w for which ¢, > 0. Let & denote the manifold of all such points,

“and let us put & = E* U . For any function F in the space & let F, denote

its contraction in the space E*. Let us set F € B = B(8) if Fo € B(E*). Let us
define the operator 2 in the space B by the formulas:

AF(2) = AFo(2) for 2z € E*,
UF (w) = al(.,{(F — F(w), v,) + v;' boy %—i (v) — ch(w)} for we.

The manifold ©§ of all functions F e~}§ for which Fy € Dy and the right side
of (1.4) has meaning, is the domain of 9. Let 3(u) denote the set of all functions

(1.4)
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F € B satisfying conditions (1.3.a), (1.3.b), (1.3.d), (1.3.¢), and (1.3.f). It is
necessary to replace % by % in (1.3.a) and (1.3.f) and F(w) in (1.3.b) must be
understood, for w € &, to be the value of the function F at the point w. (Let
us note that for w € & condition (1.3.f) is automatically satisfied by virtue of
the definition of the operator 91.)

THEOREM 1.2. To an arbitrary set W = {Cu, 0wy Du.y, vu} Satisfying the require-
ments (1.3.A)-(1.3.H) corresponds a uniquely defined Markov semigroup in the
space & for which the infinitesimal generator A is a contraction of N, and D4 < ().

Let w(z) be a function conformally mapping the domain E into the unit
circle. Let P denote the manifold of all functions of the kind

(1.5) FO) = X kyarg (1 - 29) + 1)

where %, are constants, and Fy(z) is a function continuous in the closed domain
E U L. Each function F € P is extended naturally to the manifold E* U II.
Let Pg denote the set of all functions F € P, for which the value F(a) is constant,
in each class w from Q.

TreEoREM 1.3. For the Markov semigroup described in theorem 1.2, the space
By = By(8) consists of all functions F € Pg satisfying the conditions

(1.6) (F — F(w), va) — cF(w) = 0 forall »e?.

The domain of the infinitesimal generator consists of all functions F € 3(U) for
which AF € By(8).

1.5. Let us clarify the assumptions which have been made relative to the
contour L and the vector field »(z). It is assumed that the contour L is given
by the equation z = 2(¢), where the function z(¢) is differentiable and its deriv-
ative 2’(t) vanishes nowhere and is Holder-continuous. It is furthermore assumed
that the function »[2(¢)] has a Holder-continuous derivative with respect to ¢.
The function F satisfies the boundary condition @ if for any nonexclusive point
2o of the contour L a neighborhood is found in which the partial derivatives
dF /ox and 9F/dy exist and are Ht‘)lder-continuous, and

(1.7) vl(zo) (Zo) + 112(20) Fve (20) =0

(v; and ve denote the coordinates of the vector v).

Under the assumptions we have made, a function w(z) may be constructed
which has a Hélder-continuous derivative in the closed domain £ \U L and
maps this domain conformally onto the unit circle {z: |2] £ 1} (see [5], p. 468,
for instance). Hence, without any loss of generality, it may be assumed that
E = {z: 2| <1}, L = {z: |zg| = 1}. (See [2] for details.)

2 Mmlmum pnnclple Green’s operator \
‘\

2.1. The minimum prmmple for the boundary value problem @ is formulated
as follows.
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TuEOREM 2.1. Let us assume that the function F is bounded from below, satisfies
the boundary condition G and the following conditions:

(2.1.A) for all z € E, NF(z) — AF(z) > 0 where \ is a nonnegative constant,

(2.1.B) lim inf,—., F(z) > 0 for all y € T,.

Then the function F is nonnegative.

When N\ = 0, and condition (2.1.A) is satisfied with the equality sign, this
theorem was proved in ([2], section 5). Additions to this proof, required in the
general case, are presented in appendix A. Among the lemmas on which the
proof of theorem 2.1 relies, is one which is of independent interest for the sequel.
It is the following.

LemMa 2.1, Let a function F, not a constant, be given in the domain E bounded
by the smooth contour L, and let NF(z) — AF(2) > 0 for all z € E and for a non-
negative constant N. Let 2o € L and

2.1) F(z0) < F(2) forall ze E.

If F has a derivative in the direction of some vector v making an acute angle with
the inner normal at the point 2y, then this derivative is positive.

(Here and henceforth, the value F(z,) of the function F at the boundary
point z, is the limit of F(z) when z tends to 2, along the set E.)

2.2. In appendix B, a function g(z, w) = gu(2), W€ E,2€ E\U L, w 5 2)
is constructed under the assumption that the set I'; is nonempty such that for
eachw € E: —_— T

(2.2.A) gu(2) = —@3r) In |2 — w| + hu(2), where hy,(z) is a harmonic func-
tion in E;

(2.2.B) g.(2) satisfies the boundary condition @;

(2.2.C) g.,(2) is bounded in a neighborhood of each point v € T;

(2.2.D) gu(y) =0fory e I'y.

From the minimum principle (theorem 2.1) it follows at once that the condi-
tions (2.2.A)-(2.2.D) define the function g,(z) uniquely. We shall call it the
Green function.

It is proved in appendix B that the function ¢,(z) is nonnegative and has
the following property:

(2.2.E) the function |z — w|g,(z) is bounded in the domain z€ E U L,
we k.

2.3. The functions py(2), (v € Ty, 2 € E), defined by the conditions:

(2.3.A) p,(2) is a harmonic function in E;

(2.3.B) p, satisfies the boundary condition @;

(2.3.C) p, is bounded;

(2.3.D) py(v) = 1;p4(B) = 0 for B € Ty, B #~ v,
play an important part in the construction of the Green function.

From the minimum principle it follows that these conditions define the func-
w Iy, and that 0 < Ap.,(z) <1, See appendlx B for the construction
of the function p,. The same appendix also gives a proof of the following
property:

(2.3.E) py(2) = Lser. apes(e) + Hq(2)
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where ¢g(2) = (1/7) arg (1 — (2/8)) (the value of the argument is taken be-
tween —m/2 and 7/2); a} are constants, and the function H,(z) has Holder-
continuous partial derivatives in the closed circle {|z| < 1} and Hélder-contin-
uous second derivatives outside I'_.

2.4. Let us consider the integral equation

——

(22) FG) + 2 [, oo w)F ) dw = 1G2), (f € B = BE*).

By virtue of (2.2.E), I'redholm theory is applicable to cquation (2.2) (see [6],
no. 563, say). Therefore, if for some N equation (2.2) has no nonzero solutions
for f = 0, then (2.2) has a single solution defined by the formula

23) F@ = 1) = [[; e, ) dw

where g\(z, w) is a functlou batlsfymg the equatlon - ‘»&

@4) ey w) = ], 06 0)nw, 0 dw = g0z, ). J
The function (2, w) is calle e resolvent o cquatlon (2.2). It is found as the

ratio D(z, w; N)/D(\) of two power series in X, which converge in the whole
complex plane The solution F defined by (2.3) is continuous in £ U L if f is
continuous in E \J L. It is seen from (2.4) that go(z, u) = g(z, u).

The operator —

2.5) &) = [[, e wiw) dw, (f€B)

is called the Green operator. Let us put Gy = @. Substituting ¥ from (2.3) into
(2.2), we arrive at the 1dent1ty

2.5. Let us list a number of properties of the Green operator. Let F = G,f,

(f € B). Then

(2.5.A) F € B; if f. >, then |Ghfn — F|| — 0;

(2.5.B) F(y) =0fory e Ty;

(2.5.0) F(2) = F(2) + Ler- cyer(2),
where ¢, are constants, ¢, is defined by (2.1), and the function F has Hélder-
continuous derivatives in the closed circle {|z] < 1};

(2.5.D) F satisfies the boundary condition @;

(2.5.E) the partial derivatives of the function F are given by the formulas

¥ / / e 1) s

/fag“’ f(w) dw, (weE;z=xz+tyeEUL\I-).

(2.5.F) The denvatwe of F at the point ¥ € T in the direction of the inner
normal to L is given by

2.7)
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28) P =[] B au
where
2.9) Bw) = lim 0L = 0. 2),

(2.5.G) If f is Hélder-continuous in £, then F is twice Holder-continuously
differentiable in E and AF(2) = NF(z) — f(2), (z € E).

The validity of conditions (2.5.A)-(2.5.G) in the A = 0 case is proved in
appendix B. Their validity for every \ for which the operator G, is defined,
results from relationships (2.4) and (2.6).

Let C° denote the set of all Holder-continuous functions in the set E*. From
2.5.C), (2.5.D), and (2.5.G) follows the ﬂdding

(2.10) \3&(00) C .

Now, let us show that the operator G, is defined for all X > 0. As has already
been remarked in section 2.4, to do this it is sufficient to verify that (2.2) has
only a trivial solution for A > 0 and f = 0. For this verification we shall use
properties (2.5.A)—(2.5.G) for A = 0. If F + AGF = 0, then according to (2.5.C),
F € C° By virtue of (2.10), (2.5.G), and (2.5.B), F € D, \F — AF = 0 and
F = 0 on T',. By the minimum principle, ¥ = 0.

2.6. We shall now prove several new properties of the Green operator.

(2.6.A) For every A > 0, the general form of the function F € D is given by
the formula

(211) F = G)‘f + ha, (f (S Cu, h € D, Ny — Ahy = 0),

where AF = \F — f;

2.6.B) 0 <G\ f<Gfforf>0;

(2.6.C) M\G\1 £ 1;

(2.6.D) MGl < (111

Proor oF (2.6.A). Let f € C°% Then by virtue of (2.10), Ghf € D. Hence,
F € . On the contrary, if F € ©, then f = A\F — AF € C° According to (2.10),
F = G\f € ©; by virtue of (2.5.G), \NF — AF = f. Hence, hy = F — F € ® and
M — Ahy = 0.

Proor or (2.6.B). If f € C? then according to (2.10) and (2.5.G), the func-
tion F = G\f belongs to D and satisfies the equation A\F — AF = f > 0. By
the minimum principle, F > 0. Furthermore, it follows from (2.6) that Ghf < GY,
and (2.6.B) results from the validity of the inequality 0 < Ghf < Gf for all
feco

Proor oF (2.6.C). According to (2.5.G), the function F = 1 — AGh1 sat-
isfies the equation AF = AF. Furthermore, F(a) = 1 for a € Ty and F € D.
By the minimum principle, F > 0.

Proor or (2.6.D). By virtue of (2.6.B), the inequality —||f]l <7 < ISl
implies that —[|f|]AGA1 < MG < |If||MGAL, that is, NGAf| < ||f|AGA1l. Hence,
(2.6.D) follows by virtue of (2.6.C).
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3. Structure of functions of class D

3.1. We shall start from proposition (2.6.A), according to which the general
form of the function F € D is given by (2.11) (for any A > 0). Let us first study
the class D) of all functions i\ € D satisfying the equation Ny — Ak, = 0.

LemmA 3.1.  The formula

3.1) b = AGh\ + ha

establishes a one-to-one correspondence between hy € D\ and h € Dy.

Proor. According to section 2.4, each h € B is uniquely represented in the
form (3.1) in terms of some k) € B. If h € D, then hy € C° by virtue of (2.5.C),
and Ghy, € D by virtue of (2.10). Therefore, hx = h — AGhy € D. On the other
hand, if h\ € D, then h € D, according to (2.10). By virtue of (2.5.G), Ak =
—\hy + Ahy. Hence, h € D if and only if k) € D;.

The set D is studied in ([2], section 8). Namely, it has been shown in [2]
that

(8.1.A) to each a € I1, corresponds a function p, € Do such that p.(a) = 1;
Pa(B) = 0 for B = a, B € I,.

(The definition of the set II is given in section 1.2.)

(3.1.B) Every function h € 9y is represented uniquely as a linear combina-
tion of functions p,, (v € II;). In particular, the functions p,, (y € I'y) in-
troduced in section 2.3, are expressed in terms of p,, (o € II,) by means of the
formula p, = Pyt + py—.

3.2. Let p} denote the solution of the integral equation (3.1) for A = p,. Let
us list some properties of the function p):

(8.2.A) pi(a) = 1; pa(B) = 0 for B = a, B € 1I;

(3.2.B) Mpi(z) — Api(2) = 0, (2 € E);

(8.2.C) every function hy € D, is represented uniquely as a linear combina~
tion of the functions p}, (e € II,);

(3.2.D) for every a € I14,

(3.2) Pa = —oal2) + 7%; Al yeq(2) + B(2)
where

_ foy for a= 4%
33) o = {—soy for =7~

A}, are constants, and k) are functions with Hélder-continuous first and second
derivatives in the closed circle £ U L.

For A = 0, the statements (3.2.A)—(3.2.C) are valid according to section 3.1,
and statement (3.2.D) is proved in [2] (see section 8.2). The case of arbitrary
N\ > 0 is reduced to the case A = 0 with the aid of relationship (3.1).

LemMa 3.2.  Every function F € D s represented as

(3.4) F = —G(AF) + EH F(a)pe.
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If F(y*) = F(y~) at some point v € Ty, then the function F is continuously
differentiable in the neighborhood of this point.

Proor. According to (2.6.A), F = Gf 4+ h, where f = —AF and h € D,. By
virtue of (3.1.A)—(3.1.B), b = 3 h(e)pa.. There remains to note that F(«) = h(a),
because Gf = 0 on II;, and that the functions G(AF), py = py+ + py— and p,
(for a different from 4+ and 4~) are continuously differentiable in the neigh-
borhood of v € T'; (see (2.3.E), (2.5.C), and (3.2.D)).

3.3. Comparing (3.2.D) and lemma 3.2, we remark that each function
F € D is represented as

(3.5) F=% kyoy + F:
yE€r

where k, is a constant, and the function F may be extended continuously on
the domain E U L. Let P denote the class of all functions F in the set E* which
are representable as (3.5). Each function F has a natural extension to the set
E U L. We shall denote the extended functions with the same letters as the
originals.

The set P is a Banach space relative to the norm ||F|| = sup.cg+ |F(z)|. The
following lemma describes the general form of the linear functionals in this
space.

Lemma 3.3. The arbitrary linear functional £ in the space P is written as

(3.6) {F) = (F, u)

where u 1s a finite signed measure in the space E* \J Il and (F, u) 1s the integral
of the function F with respect to the measure . If the functional £ is nonnegative,
the measure p s also nonnegative.

Proor. The functional £ induces a linear functional in the space C(£ U L),
contained in P, of all continuous functions in the closed circle £ \U L. Hence,
there exists a measure » on E U L such that for all F € C(E U L),

3.7) U(F) = [EUL F(2)v(d2).
If F € P, then
(3.8) F1=F—7é~ {F(y —0) — F(y + 0)}o, € C(EU L).
Hence,
(3.9) «F) = [m Fe)w(dz) + T bu(a)
where
— _{(ﬂo‘Y) + (¢7: V) + %V('Y) for a= 'Y+)
(8.10) b2 =1 ton) = (om 1) + B(0) for =

Defining the measure p by means of w(M) = v(M N E*) + X acnnn ba, One
can rewrite (3.9) as (3.6).
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If the functional £ is nonnegative, then the measure » is also nonnegative.
Let us prove that b, > 0. Let @ = 4+ or a = y~. Let us consider a continuous
function F,(z) which is bounded by zero and one and is equal to p.(2)
for |z — 4| < 1/n, and equal to zero for |z — y| > 2/n. From the relationship
{(F,) — b, there follows that b, > 0.

3.4. Let us now investigate the structure of the class D near the set I'y in
more detail. Let us fix some point vy € T'y. The vector »(y) is tangent to the
contour L at the point v. Without restricting the generality, it may be con-
sidered that its direction agrees with the positive direction of the contour L
(otherwise, the field » could be multiplied by —1). Every point z sufficiently
close to v is represented uniquely in the form

3.11) , z = vei(1 — ¢), (Is| < ).

Hence, the numbers s, ¢ may be considered as local coordinates in the neigh-
borhood of v. Evidently ¢t = 0 for z € L and ¢ > 0 for z € E. We shall denote
a point with coordinates s, ¢ by z(s, t). Let us put z, = 2(s, 0) = ve®. Let 6(s)
denote an angle which the vector v(z,) forms with the positive direction of the
contour L at the point s. Let us note that 6(0) = 0 and 6 changes sign from
plus to minus at the point 0. Hence, « = —0'(0) > 0. It is easy to see that

(3.12) ‘zi: @) = (zs) cos 6(s) + (zs) sin 6(s).
IfFe o, then (8F/dv)(z;) = O for z; ¢ T, and therefore
(3.13) f’£ () = —tan 0(8) (zs), (2 & T).

Let v € Ty If F(yt) = F(y™), then by virtue of lemma 3.2, the equahty (3.13)
holds even for s = 0, and we shall have

aF
Let us note that
oF oF
(3.15) 5 =35, ™

If the function F is twice continuously differentiable in the neighborhood of v,
then differentiating (3.13) with respect to s we have

(3.16) (7) = x - (v)-

782
By the Taylor formula

@17)  F() = F(‘Y)+ (7)s+—-(7)t

. [ W +2 28 et + G ()] + 06 + ).
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Taking into account (3.14)—(3.16), we have

(3.18) FG) = FO) + 3 () [t + $est] + O(s? + ).

TaEOREM 3.1. If the function F € D is continuous at the point v € T'y, then
the asymptotic formula (3.18) 7s valid as z — v.

Proor. According to lemma 3.2, the function F is continuously differentiable
in the neighborhood of v. Let us first assume that (8F/dn)(y) = 0. By the
theorem of Lagrange,

©0<iL.
For z — v,
7] A 14 aF

(3.20) Fi(s, t) > Fi(0,0) = an (y)=0.
Furthermore,
(3.21) F(s, 0) — F(0,0) = Fi(§, 0)s
where § lies between 0 and s. According to (3.13),
(3.22) Fi(s, 0) = —tan 6(s)Fi(s, 0).
For s — 0, Fi(s, 0) — Fi(0, 0) = 0, and therefore,
(3.23) Fi(s, 0) = o[tan 8(s)] = o[0(s)] = o(s).

By virtue of (3.21) and (3.23), F(s, 0) — F(0, 0) = o(s?) and (3.18) results
from (3.19) and (3.20).

Let us now note that the function p, belongs to © and is twice continuously
differentiable in the neighborhood of v (see (2.10) and (2.3.E)). Hence, (3.18) is
valid for p,. Since Ap, = 0, then by lemma 2.1, (dp,/dn)(y) = ¢ > 0.

Finally, let F be an arbitrary function from D continuous at v. Then the
function ’

(3.24) Fi@) = F@) — 1 () 90

satisfies the condition (8F,/dn)(y) = 0. According to the above, (3.18) is sat-
isfied for F,. Since it is also satisfied for p,, it is then satisfied also for F.

3.5. The following theorem holds.

THEOREM 3.2. LetyeT,and a = v~ or a = v+. Then

(3.25) fim 2@ _ 4o

2y t + %K82
Proor 1. For definiteness, let @ = y~. According to (3.2.D),
(3.26) Pa(z) = ¢(2) + h(z)

where h is twice continuously differentiable in the neighborhood of v and

_ 1 2\ _ 1 (1—1t)sins
B27)  (2) = ¢y(2) = = M8 (1 7) = —arctan y— (I —1t)coss




28 FIFTH BERKELEY SYMPOSIUM: DYNKIN
Let us note that

1 iﬂ_ -3 for s> 0,
(3.28) o(z,) = - 818 (1 —e) = .
S 4
o + 3 for s<0.
Fors | 0, pa(2:) = pu(y*) = 0; ¢(2;) — — . Hence,
(3.29) h(v) = %
Furthermore, let us note that
1
os(2,) = 2_1‘_;
(3.30) qafe_®
1y Sin?[7rp(2)] | _ [5 - 5]
eile) = w(1 — t)?sin §’ eiles) = wsins
For s # 0,
(3.31) 0 = 22 ) = 2= ) cos o(s) + 2 (z,) sin 0(s).

By virtue of (3.21) and (3.27),

TSIn s

sin? [— - —:I
a ! a 2 ’
639 Pre) =+ He); L) = —22 1),

Substituting these values in (3.31), and letting s — 0, we have 0 = (1/27) +
hi(y) — («/7). This means

(3.33) ha(y) = = — 5=

Proor 2. If thestatement of the theorem is false, a sequence z, = 2(s,, t,) = v
will be found for which
(3.34) Pal2a) < c(ts + $xs7)

where ¢ is some constant. Hence, p.(2:) — 0, and by virtue of (3.26) and (3.29),
¢(2,) — — 1. Hence, it follows that (s,/t,) — +. This means ({,/s,) — 0 and
8, > 0 starting with some n.

By the Lagrange theorem

(3.35) pals, £) = pa(s, 0) + ap“(s’ 0,
where 0 < { < t. By virtue of (3.26), (3.28), (3.29), and (3.33),
(336)  pals, 0) = 5= —  + h(s, 0) = h(s, 0) — h(0, 0)

— R0, 0)s + ;‘—r = ﬁs + 0(s?).
Hence, it follows from (3.34) and (3.35) that
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(337) C(tn + %KS?;) > pa(sm tn) _>_ pa(sn) 0) = % + O(S?l)

Dividing both sides by s, > 0, and taking into account that (1,/s,) — 0, we
have 0 > «/x. This means « = 0. But for x = 0, we have from (3.34) and
(3.35) that .
(338) c> pa(zn) > apa(sm tn)

[ at
However, it is seen from (3.30) that ¢}(s., &) — +o. At the same time,
hi(sn, t.) — K50, 0) < «. Hence, the relation (3.38) may not be satisfied. The
obtained contradiction proves the theorem.

3.6. We shall now examine the constant x and the local coordinate system
introduced in section 3.4, for different points y € T, simultaneously. The point
v will hence be given in the form of a subseript (let us note that ¢, does not
actually depend on +, and coordinates s, differ only by a constant factor). In
E U L, for each vy € T';. let us construct a continuous nonnegative function 7,
which coincides with ¢ 4 }«,s2 in the neighborhood of v and is equal to zero in the
neighborhood of all the rest of the points of the set T. Furthermore, let us con-
struct a function #, continuous in E U L, coinciding with ¢ + s2 in some neigh-
borhood of v for any v € I'y, positive everywhere in E U L\T and equal to 1
in some neighborhood of T_.

Let P denote the set of all functions F € P which vanish on the set T, and
let us put ¥ € P, if

(3.39) F = % kyry+ nFy
yET+

where k, are constants and F; € P. It is easy to verify that every function
F € P, has a normal derivative at the points v € T';. and

oF
(3.40) by = = (¥), (y €Ty).
The imbedding
(3.41) PsNPCP

results from theorem 3.1. Furthermore, evidently P, C P C P.

Let us introduce a norm into P, by putting ||F|| = max.ce+ |F(2)/7(2)|. Every
linear functional in the space P induces some linear functional in P;. In fact,
if F € Py, then

(3.42) {(F) < k max |F(z)| < k max |n(z)|||F||

(here the maximum is taken in E U L; k is a positive constant).
3.7. Linear functionals on P, can be characterized as follows.
LemMa 3.4. An arbitrary linear nonnegative functional € in the space P; has
the form
oF

(3.43) UF) = (F, ) + 7é+ by 5, ()

where b, are nonnegative constants, u is a measure on E* \J 1I such that (g, p) <
and u(1l,) = 0.
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Proor. The formula £(F,) = {(nF.), (Fy € P) defines a lincar functional in
the space P. This means that there is a finite measure » on the space E* U II
such that Z(F,) = (F, »), (F1 € P). Without loss of generality, it may be con-
sidered that »(II.) = 0. Let us put u(dz) = (I1/9)v(d2). Then (9, u) < o,
u(Ily) = 0, and £(nF,) = UF.) = (F1, v) = (9Fy, p). If F € Py, then by virtue
of (3.39) and (3.40),

or .
(3.44) F— % 2 () =l (€ P).
¥Er, on
Hence,
oF .
(3.45) t{F X3, (7)77} = {(F1) = (nl'y, u).

Putting b, = €(ry) — (7v, 1), we have (3.41). The proof of the nonncgativity
of b, is carried out exactly as in section 3.3.

4, The operator . Res&l;énts of Y-semigroups

4.1, Letusput F € Dy, and F = N\F — fif
4.1) F=Gf+h, where fe€ B, h € D)

(let us recall that according to section 3.1, ©, denotes the set of all h € D, for
which My — AR = 0).

TaEOREM 4.1. For every A > 0 the operator Ay is a w-closure of the operator A,
defined in the domain D.

To prove this theorem, we shall rely upon the following lemma.

Lemma 4.1. If h, € D\ and h, => h, then h € D.

For A = 0, this lemma was proved in [2] (see section 4.7). The A > 0 case
reduces to the A = 0 case by the use of lemma 3.1 and (2.5.A).

ProoF oF THEOREM 4.1. According to (2.6.A), the operator ¥, is an exten-
sion of the operator A considered in the domain D.

Let us prove that the operator 2 is w-closed. In fact, if F, € Dy,, I, > F,
WF, = o, then F, = G\fo + hn, (fo € B, ha € D) where f, = N\F, — AF,. It
is clear that f, > A\F — ¢. According to (2.5.A), Gif. = G\(AF — ¢). Therefore,
hn = h = F 4+ G\(¢ — N\F). By lemma 4.1, h € Dy, and by definition of 2,
F = G\(F — ¢) + h € Dy, and ILF = o.

Finally, let us consider an arbitrary w-closed extension 3’ of the operator A.
Let usput f€ Q if F = Gf + h € Dy N Dy, for any h € Dy, and if IF =
A'F = AF — f. By virtue of (2.10) and (2.5.G), C°*C Q. Furthermore, let
freQandf, 5 f. ThenF, = G\fo + h 5> Gf+ h=F,AF, = WF, = \F, —
fn 2> N\F — f, and by virtue of the closedness of %’ and Ay, F € Dy N Dy, and
WF = Y\ F = AF — f. This means @ is w-closed. Since the w-closure C° coin-
cides with B, then Q © B and U’ 2 ..

It results from theorem 4.1 that: (a) the w-closure U of the operator A defined
in the domain © has been determined; (b) 2, = A for any A > 0.
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4.2. The operator
4.2) Rif(e) = ﬁ) ® e MT f(2) dt

is called the resolvent of the semigroup 7. This operator has the following
properties:

(4.2.A) if f > 0, then Ryf > 0;
@2B) Rl <3 I71;

(4.2.C) for every A > 0, Ry maps By in a one-to-one way on 4. The inverse
mapping is determined by the operator A9 — A (where g denotes the identity
operator);

(4.2.D) if f, = f, then Ryf, = Ruf;
(4.2.E) R\(B) € B,.

The properties (4.2.A), (4.2.B), and (4.2.D) are obvious. The property (4.2.C)
has been proved in [1] (see section 1.4). The property (4.2.E) is verified by a
simple computation.

LemMa 4.2. If Ry is the resolvent of some H-semigroup, then F = R\f € Dy
and \F — UF = f for every f € B.

Proor. Let 3¢ denote the set of all functions f for which the statement of
the lemma, is satisfied. Let f, € 3¢, f, = f. According to (4.2.D), F, = R\fu™>

R\f = F. We have AF, = \F, — f, = \F — f. Since the operator ¥ is w-closed,

then F € Dy and AF = AF — f. Therefore, the set 3¢ is w-closed. According to
(4.2.C), 3¢ 2 By and by virtue of (4.2.D), 3¢ 2 B.

7.3 Tet R\ be the resolvent of some YA-semigroup. According to lemma, 4.2,
for any f € B, R.f € Dy, and by virtue of section 4.1, R\f = G\f + h where
h € Dy By virtue of (3.2.C), this formula may be rewritten as

(4.3) Rf=Gf+ X Qi
oIl

(QX are constants dependent on f). From (4.3), (2.5.C), and (3.2.D) there follows
that the function R,f belongs to the space P described in section 3.3 for every
f € B. Taking into account (4.2.C), we have

(4.4) D4 € R\(By) © R\(B) S P.

As is known (see [2], (1.3.B) say) the set Dq is everywhere dense in By in the
sense of convergence in the norm. Hence By © P and

(4.5) D4 © R\(P).
By virtue of (3.2.A), there results from (4.3) that
(4.6) Qx(f) = Raf(a), (a € ILy).

44. Leta,B eI, Let us put a ~ B, if F(a) = F(B) for all F € D4. Hence,
the validity of the equality F(a) = F(B) for all F € B, follows. Let us note that
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a ~ B if for some A > 0, Qx(f) = QA(f) for all f € B. In fact, according to (4.6),
the equality Ryf(a) = R\f(8) results from the equality Qx(f) = @}(f), and,
therefore (see (4.4)), so does the equality F(a) = F(B) for all F € Dy4.

Let Q@ denote the set obtained from II, by identification of equivalent points.
The elements of the set @ (that is, the classes of equivalent points of the set II,)
will be denoted by the letters w, ¢, £ Let us put

4.7 py = }e’,wpé; Q= Q) (acw).
Formulas (4.3) and (4.6) may be rewritten as
(4.8) R\f=Gf + wZG:n Qs
(4.9) &) = Baf(o), (w € Q).

Let Py denote the set of all functions F € P for which F(a) = F(B) for o ~ 8.
There results from (4.4) and (4.8) that

(4.10) D4 C R\(B) C Po.
Let us prove that
(4.11) I1—-Mhl1— % ph=0.
alIl,

Let us denote by u the function in the left side of (4.11). By virtue of (2.5.D)
and (2.5.G) this function satisfies the boundary condition 4 and the equation
Az — Au = 0. By virtue of (8.2.A), u(a) = 0 for all « € I';. By the minimum
principle (see theorem 2.1), 4 > 0 and —u > 0; therefore u = 0.

4.5. The resolvents satisfy the following lemma.

LemMma 4.3. In order that the operator R\ defined by (4.8) satisfy condition
(4.2.A), it is necessary and sufficient that the functionals Qi(w € Q) satisfy the
condition

(4.5.4) Q) 2 0forf > 0.

Under these circumstances, condition (4.2.B) is equivalent to the condition

(4.5.B) \@Q(1) < 1.

Proor. Since Ghf > 0 for f > 0, the equivalence of (4.2.A) and (4.5.A)
follows from (4.8) and (4.9). Furthermore, it is easy to see that under condition
(4.2.A) the condition (4.2.B) is equivalent to the inequality

(4.12) AR < 1.

According to (4.9), the value of the function AR\l at the point w is AQA(1).
Hence, (4.12) implies (4.5.B). On the other hand, if (4.5.B) is satisfied, then,
by virtue of (4.8) and (4.11),

(4.13) AR = A1+ AT @Q()pd < 1.
4.6. Let us show, in conclusion, that the infinitesimal operator @ is the

closure of the Laplace operator A if the latter is considered on a suitable class
of functions.
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LeEmMMA 4.4. The strong closure of the operator A considered on the set Da N D
coincides with A.

Proor. If F € D4 N D, then AF = YF = AF. The operator A is closed.
Hence, it is sufficient to prove that for each F € D4 there is a sequence
F, € D4 N D such that |F, — F|| -0 and ||[AF, — AF| — 0. According to
(4.2.C), f = \F — AF € B,. Hence, there exist functions f, € D4 such that
lfa — fll = 0. According to (4.2.C), F, = R\f. € D4 and AF, = \F, — f,.. By
virtue of (4.2.B), ||F, — F|| — 0. This means that

(4.14) |AF, — AF| = [AMF» — F) + fu — fll = 0.

By virtue of (4.4), f, € Rx(B), and from (4.8) and (2.5.C), it follows that f, € C°.
According to (2.10), G\(C°) € D. Hence, F, = R\f. € D.

b. Lateral conditions for smooth functions

5.1. It will be shown herein that for any ¥-semigroup 7T'; a set U is found
which satisfies conditions (1.3.A)-(1.3.H) and such that D4 N D C 3(U). (The
set 3(U) has been defined in section 1.3.)

Lemma 5.1, Every function F € D4 (N D salisfies for every N > 0 the following
conditions:

.1) F) = & (F _ %AF), (weQ)

where £ is a linear nonnegative functional on the space Pq such that £3(1) < 1.

Proor. According to (4.8), every function F € D4 is representable as
F = R,f, where f € P. By virtue of (4.12), F(w) = Q)f). But f = \F — AF,
and hence, F(w) = MQA[F — (1/\)AF] so that relation (5.1) is satisfied for the
functional £ = A@%. The properties of this functional mentioned in the formula-
tion of the lemma follow from lemma, 4.2.

ReEmaRrk. According to lemma 3.3, an arbitrary nonnegative linear func-
tional £ on the space P is defined by (3.6) in terms of some finite measure x on
the space E* U II. It follows that every nonnegative linear functional on the
space Pq is described by the same formula in terms of some measure u on the
space § = E* U II_ U Q.

5.2. The space Pg is separable. Hence (see, for example, [7], section 24),
a convergent subsequence may be selected from every sequence of linear func-
tionals which is bounded in norm. It is easy to see that the norms of all the
functionals £} do not exceed 1. Therefore, one can find linear functionals £, and
a sequence A\, — o such that £)*(f) — £,(f) for every f € Py and any w € Q.
For A — o, [£5((1/MN)AF)| < ||(1/N)AF| — 0. Hence, from equality (5.1) we obtain
in the limit ’

(5.2) F(w) = £,(F).
According to the remark at the end of section 5.1,

(53) Lu(F) = (F, p)
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where p, is a finite measure on the space §. We have

From (5.2) and (5.3) we have
(5.5) F(w) = (F, p)-

5.3. Let us put w € O if u, is a unit measure concentrated at the point w,
and let Qo = Q\Q:. For w € @y, equation (5.5) becomes an identity which all the
functions F satisfy. In this case, another passage to the limit is necessary.

Let us note that for w € O,

(5-6) lim £&(f) = tu(f) = (f, p) = f(w), (fePp)

(the limit is taken over some sequence of values of A which tend to +«). Let
us put

Fo=F — % F()p;,
(5.7) e
F=Fy+ ¥ AF()Gpr.
€
Evidently,
(5.8) AF = AF — ¥ AF({)py.
=

From (5.1), (5.7), and (5.8), we have
(69 LF)+ T LEIFE) - Fe] = [ - ADIFE) - 26D

- %%} B@)AF () — AF(0)] — ’_@

When A — 4+ along the sequence selected earlier, then according to (5.6),
(5.10)  £(F) =0, £&AF)—0, f(py)—0, for ¢#ow, (1)1,

The function Fo belongs to the space P defined in 3.6. By virtue of (3.41),
Fy € P;. According to the remark at the end of section 3.6, the functional I} in-
duces some linear functional on the space P;. Let n denote the norm of this
induced functional. Let us put Q., = Q\{w},

AF(w) = 0.

(5.11) 2=+ T 8@ +3+1— 0.
fen

For any f € Py, |€3(f)| < n||f|l.. The space P; is separable. Hence, linear func-
tionals £, may be constructed in Py, and a sequence of values A may be selected
which converges to 4+ such that £3(f) — £.(f) for all f € P;. Passing to a sub-
sequence, if necessary, one can satisfy relations (5.6) and (5.10), and at the
same time insure the existence of the limits

-l . 1—aa .
(5.12) hmz—fg—) = got(§ #w);  lim 3—5() =c;  lim—=o.
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Passing to the limit in (5.9), we have
(6.13)  £u(Fo) + ré) 2 t[F(§) — F(w)] — coF(0) — 0, AF(w) = 0.

Here £, are nonnegative functionals in P, g, ;, €., 0. are nonnegative constants,
and [l + Xiea, got + o + 0o = 1.
LemMA 5.2. The functional £, in (5.13) has the form

(5.14) L) = G+ 5 bur L)

Y&l n
where 7, 1s the measure in E* \J II_ such that (n, 7,) < »; b,,, are nonnegative
constants satisfying condition (1.3.F); if b,y > 0, then all the functions p}(z),
(t € Q, N > 0) are continuously differentiable in the neighborhood of the point v
and for ¢ # w,

- - a
(5.15) Got = Qut — (P, ) — 2 buq pg(‘Y) 2 0.
YEl+ n

Proor 1. The representation (5.14) of the functional £, results from lemma
3.4. Let us show that (1.3.F) is satisfied. Let a be that one of the two points
v+, v~ which does not belong to w, and let { be a class from , containing c.
By virtue of (5.12) there exists a constant ¢ such that for all A of the sequence
under consideration

(5.16) fa(pr) < cdb.
According to theorem 3.2, for every N > 0 there exists e > 0 such that
(5.17) Pa(2) > N7y(2) for z—9|<e

Let us consider a function ¢(2) given in E \U L which satisfies the inequalities
0 < ¢ <1 everywhere, is zero for [z — v| > 2¢, and one for |¢ — v| < e. Ev-
idently for all z € E \J L, p;(2) = p«(2) = N.,(2)¢(z), and hence

(5.18) L(p) > NE(r).
Let us note that r,¢ € P1. Hence
A
(5.19) 1im‘“(6’—;‘”) — l(rd) = (4, 50) + bun.

w

From (5.16), (5.18), and (5.19), we have b,,, < ¢/N, and b,,, = 0 because of
the arbitrariness of N.

Proor 2. Now,let¢{ € Qand b, , > 0. According to (4.6), p}(z) is represented
as the sum of functions pi(z), (@ € ¢). Since ¢ either does not contain any of
the points y~, ¥+ or contains both, and since the functions p}, (a € I, & # v,
a # v1+) and p, = py— + P44 are continuously differentiable in the neighborhood
of «; this is also true for the function p}.

Let us put ¥y € T, if b,y > 0, and let us consider the continuous function
f»(2) in E*, which equals p¢(2) for p(z, T',) < 1/n, equals zero for p(z, I',) > 2/n
and is everywhere between zero and one. The function f, coincides with p; near
T, and equals zero near T',\TI', (for sufficiently large n). Hence, f, € P; and
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A
(5.20) B ) = G5 + S, B o)
But &(p;) > 6(f.). Therefore,
A
(5.21) Qu,t = limtw_;_{){) 2 Lu(fn) = (fr) %) + 2 bury gpr( ).

Since f, — p;¢ for n — «, then (5.15) results from (5.21).
5.5. The expression (5.7) for the function F, may be rewritten as follows:

(5.22) Fo=F — F(w) — %ﬂ [F) — F(w)lps.

Substituting this expression into (5.13) and taking into account lemma 5.2, we
have

- aF -
(523)  (F=F), %)+ X boy3 (1) + T GslF() — Flo)]
YET n teQ
— ¢.F(w) — 0, AF(w) = 0.
Let v, denote the measure in the space & = E* U Iy U Q which coincides with 7a

in E* U I, equals §..; at the point { € Q,, and equals zero at the point w.
Then the relation (5.23) may be rewritten as

(G24)  F=F@),5) + T buy o ) = cF @) = 0, 8F(@) = 0.
YET+ n

THEOREM 5.1. For any A-semigroup, there exists a set U = (Cuy 0wy Doy V)
satisfying conditions (1.3.A)—(1.3.H), such that D N Da C 3(U).

Proor. For w € Q, the set ¢4, o4, bs.y, 7. has been constructed in section 5.3.
In the v € 9 case we put

(525) c=1-—(1, I‘w); bo,y = 00 = 0; vo(M) = pa[M N {8\"’}]'

Let F € D4 N D; then AF = AF. Evidently F satisfies conditions (1.3.a)—(1.3.f).
Therefore, F € 3(U).

It is necessary to be convinced of the validity of properties (1.3.A)-(1.3.H).
All these properties, except (1.3.G), are evident for w € @ and follow easily
from lemma 5.2, for w € . The condition (1.3.G) may not be satisfied, but
we show that the system of relations constructed here can be replaced by an
equivalent system satisfying all the conditions (1.3.A)-(1.3.H).

Let us note first that according to the definition of @ (see section 4.4), for
any two points w; # we from @ there exists a function F € D4 such that F(w) #
F(w,). According to lemma 4.4, any function from D4 may be approximated
uniformly by functions from D4 N D. Hence F(w1) # F(w;) for some function
FedsND

For w € & the relation (1.1) takes the form

(5'26) (F - F(“’); Vo) — ch(w) =0,
or equivalently,

(5:27) Fw) — wé:ﬂ, p(w, OFE) = (F, )
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where

Vo) (f ) *
(528) P(w; f) (8)’ Vw(M) +
Evidently > :co p(w, g') < 1. Hence, lemma 1 of appendlx C is applicable. Let
us assume that the set K defined in this lemma is not empty. We know that if
w € K, then p(w, ¢) = 0 for ¢ ¢ K. This means »,(Q\K) = 0 for v« € K. From
the condition } ;co p(w, ¢) = 1 it follows that ¢, = »,(8\Q’) = 0. This means
v,(6\K) = 0. From (5.27) we have

(5.29) F(w) = 3 plw, OF(E) =0, (v € K).
&K

y vetM N (E\D)}

Let Fy, ---, F, be a fundamental system of solutions of (5.29). Let us put
Ky = K and let K,, be the set of points w € K,,_; at which F,, achieves its
greatest value on K, ,, m = 1,2, --- | r. By induction we confirm that if
w € K, and ¢ ¢ K., then p(w, {) = 0. Since p(w, w) = 0, each set K,, consists
of not less than two points. All the functions F, --- , F, are constants in the
set K,; therefore, all the solutions of (5.29) are constants in K,. Since this
contradicts the previous paragraph, the set K should be empty. According to
lemma 1 of appendix C, the matrix @ = (I — P)~! = > 7_, P" has nonnegative
elements. Hence, the system (5.27) is equivalent to the system

(5.30) (F — F(w), #,) — &F(w) =0
where
(5.31) Vo = KEZQ'Q(O’, f)”?: ¢ =1—#@8).

It is easy to verify that

Co
(5.32) & — rgz’ plo, $)& = PaE—e 20
Hence,
(5.33) Z (o, K’)c +v(8) 2 0.

Replacing (5.26) by the equlvalent relation (5.30) we obtain the lateral condi-
tion satisfying all the requirements (1.3.A)—(1.3.H).

6. Investigation of the class J(U)

6.1. To each set U satisfying the conditions (1.3.A)-(1.3.H) and each A > 0
there corresponds a matrix (al;), (v, ¢ € Q) which is defined by the following
formulas:

Aot '—(p?’ Vo) — 2 bw,'ym},,g' for w ¢,
6.1 M
( ) az"" Z b"’v"')\{B‘)Y" 1} + (AG)\I; Vw) + Co + )\O’w _ Z a"hf‘
v 1€Q,
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Here B) is defined by (2.9); the integral of the product fif; over the circle E
is denoted by {fi, f2}, and

A A
9 A Pl = O] _ dpa
It is clear that B} and m}, are nonnegative. From lemma 2.1 it follows that
my, > 0. Indeed, p} satisfies the equation A\f — Af = 0 and p}(z) > pi(y) = 0
for all z € E. From these remarks there results

(6.3) a.>0, a,;<0 for w#¢,
(6.4) 2 Qw2 0.
=

If the equality sign holds in (6.4), then
6.5) Doy = 0 = €y = 1,(8\Q) = 0.

It follows from (6.5) that v € Q.

LemMA 6.1. For the matriz (ab;) there exists an inverse matriz (rh;). Here
rag > 0.

Proor. According to (6.3)—(6.4), lemma 2 of appendix C is applicable to
the matrix (a};). In order to prove lemma 6.1, it is sufficient to verify that the
set K described in lemma 2 is empty. We know that if w € K, the equality
sign holds in (6.4) and @.; = 0 for w € K, { ¢ K. Hence, the equality
1o(Q\K) = 0 follows, as does (6.5). It is clear that K C @'. But according to
(1.3.G), »,(@") = 0. Hence, »,(K) = 0. However, v,(K) = v,(Q\K) = 0 together
with (6.5) contradict (1.3.H).

6.2. According to section 1.4, we put & = E* U , where { is the set of all
w € Q, for which ¢, > 0. We shall also use the notation 5, 9, 3(u) introduced

in section 1.4. We shall write f, 5 fif fu(2) = f(2) for all z € & and the sequence
[/l is bounded.

For each f € B we put
(66) Ht)-;(f) = (kay Vw) + a'wf(w) + 72 b”-'Y{B‘tl f}’
(6.7) Qi(f) = X riHy (),
=

where ) are defined in lemma 6.1. In the space B let us consider the operators
R) defined by the formula

(6.8) Bf =G + Eﬂ &)

TaeEoREM 6.1. For any X > 0 the operator R\ maps B 1’73 a one-to-one way
onto 3(U). The inverse mapping is given by the operator \3 — .

Proor. According to sections 4.1 and (3.2.C), the general form of the func-
tions satisfying conditions (1.3.a)—-(1.3.b) is given by
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(6.9) F=Gf+ éz Qpl.

All these functions automatically satisfy conditions (1.3.d) and (1.3.e). Let
F € 3(). According to the above, F has the form (6.9). According to sections
1.4 and 4.1,

(6.10) NF(z) — AF(z) = NF(2) — AF(2) = f(2) for z € E*.

The values of f(w) remain undetermined as yet for w € (. Let us put f(w) =
MF(w) — AF(w). Let us recall that AF(w) is defined by (1.4). Let us now note
that the function F defined by (6.9) satisfies condition (1.3.f) if and only if the
constants @ satisfy the system of equations

(6.11) T @ = HXJ).
S

By virtue of lemma 6.1, (6.11) is equivalent to (6.7). Hence, the condition
F € 3(U) is equivalent to the condition F = R,f, (f € B). From the relation
(A3 — AR\f = f already proved, the remaining statements of the theorem
result.

6.3. Condition (1.3) takes the form (1.6) for w € @'. We may rewrite it as

(6.12) F(w) = (F, )
where 7, = ((v,)/(1, v») + ¢). Evidently, (3,, 1) < 1.
Let P(U) denote the set of all functions F € Py satisfying the conditions

(6.12) for all w € @'. Let us put F € D(U) if F € 3(U), and AF € P(U). It is
clear that D(U) & P(U). There results from theorem 6.1 that for any A > 0
(6.13) D) = R[P()].
Our purpose is to prove the following theorem.

THEOREM 6.2. The set D(U) 7s everywhere dense in P(W) (in the sense of
uniform convergence).

Let us first prove some auxiliary propositions:

(6.3.A) P(A) is everywhere dense in B (in the sense of w-convergence);

(6.3.B) if f, — f, then ||Raf. — Bafl| — 0;

(6.3.C) the strong closures of the sets D(U) and Ry(B) coincide.

Proor oF (6.3.A). Let ¢ be a continuous function in £ U L satisfying the
inequalities 0 < ¢ < 1, which equals 1 for p(z, I'y) < (1/n) and zero for
o(z, Ty) 2 (2/n). Evidently, ¢} = ¢up, € Po. Let f € Po. In order for the function

(6.14) fo=F+ X x:0}
e’

to belong to P(U), it is necessary and sufficient that the numbers z; satisfy
the system of equations

(615) To — 2, G cxy = (f; i"w) - f(w)y (w € Ql)
e’

where II; ; = (¢", #,). But IIL ; — 0 (because ¢#(z) — 0 for z ¢ @' and », (') = 0
by virtue of (1.3.G). According to lemma 1 of appendix C, the system (6.15)
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has a unique solution for sufficiently large n. Evidently it is bounded for n — o,

and according to (6.14), £, 5 f. Thus, P(U) is everywhere dense in Pq. But as
is easy to see, the w-closure of Py coincides with B. Therefore the w-closure of
P() is also equal to B.

In order to prove (6.3.B), it is sufficient to compare (6.6)—(6.8) with (2.5.A).
The statement of (6.3.C) results from (6.3.A) and (6.3.B).

6.4. Let I'; denote the set of all points of the contour L at which the vector
field v(z) is tangent to L. Evidently T'; D T.

LEMMA 6.2. For any thrice continuously differentiable function a(z) on the
contour L which is zero in the neighborhood of T., there exists a function A(z)
cotnciding with a(z) on L.

For each v € T and any sufficiently small ¢ > 0 a function B(z) may be con-
structed which is continuously differentiable in E \U L, equal to 1 for p(z, v) < ¢
equal to zero for p(z, v) > 2¢, and satisfying the inequalities 0 < B < 1 everywhere:

For any point v from T. a function C,(z) may be constructed such that C,(y) =1
and Cy(z) = 0 at all points of T, except v.

Proor. Let 8(s) denote the angle between v(e®*) and the positive direction
of L at the point e%. On the segment [0, 1] let us construct a twice continuously
differentiable function b(r) equal to 1 near 1, equal to zero near zero, and such
that 0 < b(r) < 1 for all r. A function A(z) may be given by the formula

o (1 = nb(r) da(e®),

(6.16) A(rer) = ale®) — tan 0(s) s

The functions B, and C, are obtained by means of the same formula. In order
to obtain B, it is possible to start from the function @, which equals 1 for
|z — 7| < %, equals zero for |z — v| > ¢, and satisfies the inequality 0 < a <1
at all the rest of the points of the contour L. The function b(r) must be selected
so that it equals zero for r < 1 — %e. In order to determine C,, it is sufficient
to construct the function a(z) on the contour L so that it equals zero in the
neighborhood of the set T\ {7} and satisfies the equality

(6.17) ale®) =1+ _L: tan 6(s) ds

for sp — e < s < 8+ € (if ¥ = exp (1s0)).
LemMma 6.3. If for all Holder-continuous functions f

(6.18) veZF_ ky[Gf(v*) — GF(y7)] = 0,

then all the constants k., are zero.

Proor. Let f,(2) be Hélder-continuous functions in £ \J L such that:
fa(2) = 0 for |z — w| > (1/n), and {f,, 1} = 1. Relying on the minimum prin-
ciple, it is easy to show that the functions Gf, converge to g(z, w) uniformly
in the neighborhood of T—. Hence, from (6.18) there results

(6.19) >€:r my[givt, w) — g(v—, w)] = 0, (w € E).

To conclude, apply theorem 1 of appendix B.
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Proor oF THEOREM 6.2. By virtue of the Hahn-Banach theorem and
(6.3.C), it is sufficient to prove that every linear functional £ on the space Pq
which vanishes on R\(B), will vanish also on P(a). According to lemma 3.3
and the remark of section 5.1, £(F) = (F, £), where £ is a signed measure on the
space &. Thus, let

(6.20) (Rf, £) =0 forall fe B.
It is necessary to prove that (F, £) = 0 for all F € P(u).
1. Let us put
(6.21) Q= @8; rn= é} 752
By virtue of (6.6)—(6.8), the relation (6.20) is equivalent to the relation
oF

(6.22) (Fyv) + X roefO) + T ribry 5 (v) =0

{ESZ f€9,7€r+ n

where F = G\f, v = £ + X tca . Let O denote the set of all functions F € D,
which equal zero on I';. According to (2.6.A), every function F from D may
be written in the form G\f, (f € B), where f = \F — AF. Hence, for any func-
tion F € © the following corollary of equality (6.22) is satisfied:

628) () + T naFQ) — AP + T rebry 5o () = 0.

2. Let us prove that r, = 0 for all w € Q\Q'. Let b,,, > 0. Let us consider
the function B,, constructed in lemma, 6.2. It is easy to see that for sufficiently
small ¢ > 0 the function F. = B.(1 — p,) belongs to 9. For this function the
relation (6.23) becomes

(6.24) (Fo#) = rabuy S22 () = 0.
Since (dp./dn)y # 0, and (F, ») > 0ase—0, thenr, = 0.

Analogously, considering the function F. = BG\1, we arrive at the relation
rioy = 0. Therefore, re = 0 if gy > 0.

It is now seen from (6.23) that (¥, ») = 0 for all F € 9. Since D contains all
smooth functions which equal zero near L, then » is concentrated on &\E. Con-
sidering the functions A(z) and C,(z) constructed in lemma 6.2, we conclude
that » is concentrated on Q@ U II_, where »(y*) + »(y~) = 0 for all y € T_.
Hence, the validity of the conditions of lemma 6.3 results from the equality
(Gf, v) = 0 (for ky, = »(y*)). From lemma 6.3, it follows that &, = 0, (v € T_).
This means the measure » is concentrated on Q.

Since the set Q is finite, the measure » is also finite. Therefore, © > (p,, ») =
(Poy &) + 2ot 1¢(Puy 7). For w # ¢, (Do, ) < o (see (1.3.D)). Hence, if r, = 0,
then (pu, vo) < « and therefore, the measure », is finite and w € Q’.

3. Since the measure v is concentrated on Q, then (F, ») = 0 for any function
F equal to zero on Q, and therefore

(6.25) (F, §) = —Z{: re(F, vp).
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For any F € P, the function F = F — 3, F(w)p) vanishes on €, and hence
(6.26) (F,¢) = —; re(F, v) = “Z;, rs(Fy v) + L F(w) ; (D%, v)-
From (6.21) it follows that 3" .a.:7» = ¢;. Hence,

(6.27) (F, &) =F o+ ; F(o)go = (F, &) + Zwl F(w) };. a ot

From (6.26) and (6.27),

(6.28) F, 8= Zr: re{—(F, v) + LF (@ [(@d ») + a:.0)1}
From (6.1) we remark that for ¢ € ',

_ [ ¢ for ¢ # w,
(6.29) B = {(1 — Dby va) + Co for ¢ = o.

Substituting (6.29) into (6.28) and taking into account that r; = 0 for { € O\,
we have

(6.30) (F, 8 = —% Tl = FQ), ) — eF (O}

It is clear that this expression is zero for all ¥ € P().

7. Proof of the fundamental theorems

Theorems 7.1-7.2 refining theorems 1.1-1.3 formulated in section 1 will be
proved in this section.

THEOREM 7.1. Every U-semigroup satisfies some special lateral condition .
Iis resolvent is determined by (6.6)—(6.8). The domain of the infinitesimal operator
A4 is D(U) and By = P(U).

Proor 1. Let some -semigroup be given, and let R be its resolvent. Let
us consider the set U = {c., 0u, bu,y, o} defined in theorem 5.1, and let R\
denote the operator given by (6.6)—(6.8). The operator R, is defined in the space
B = B(§). Define the operator Ry also in B by putting Rif = Rifo, where fo is
the restriction of f to E*.

Let f € By. Then F = R\f € D4 and f = A\F — AF. According to lemma 4.4,
there exists a sequence F, € D4 such that |F — F,|| — 0 and f, = A\F, — AF,
converges uniformly to f. According to theorem 6.1, F, = R,f,. Passing to the
limit, we obtain that F = R,f. On the other hand, according to (4.2.C), F = Rx/.
Therefore

(7.1) Rif = Raf

for all f € By. It follows that D4 & J(U).

2. According to (4.10), ®4 < Pq. Therefore, D4 S Po N J(U) S P(U). Since
Dq is everywhere dense in By in the sense of uniform convergence, then B, & P(U).
Relying on (4.2.C), (4.2.E) and 1, we have

(7.2) Ds = R)((Bn) = R\(By) € Ry\{P(W)} = Dy C B,.
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According to theorem 6.2, the strong closure of D(U) equals P(U), and therefore
formula (7.2) implies that B, = P(U). Comparing (6.13) and (4.2.C) we have
Dy = D(W).

3. Let f. % f (w-convergence in the space &). By virtue of (6.3.B),
|Bafs — Rafll = 0. According to (4.2.D), Rrf. = RiF. Relying on (6.3.A) we
conclude that the equality (7.1) holds for all f € B.

In particular, let f(w) = 1 for v € & and f(z) = 1 for all z € E*. Then R\f =
3o Thop). But evidently R{f = 0. Hence, Y, 750 = 0 and o; = 0. The
condition U is special.

THEOREM 7.2. For every set W satisfying conditions (1.3.A)—(1.3.H), there
exists one and only one Markov semigroup T in the space & for which the infinites-
imal operator A is a contraction of the operator A and Dx  3(U). The resolvent
Jor this semigroup is determined by the formula

(7.3) RA@) = [ w)f(w) dw + T G, 1)

where
74) 1 w) = 66 v) + ZAmELT braBiw) + [0 w)n(d)]
n(z, §) = ot % Pa(e)rls

We have Bo(€) = P(U, Dy = D(W)). If the set U is special, then the semigroup T,
may be considered in the space E*, and it is an A-semigroup.

Proor 1. It is easy to see that (7.3)—(7.4) define the same operator as do
(6.6)—(6.8). Let us show that this operator satisfies conditions (4.2.A)-(4.2.B).
According to lemma 4.3, it is sufficient to verify conditions (4.5.A)-(4.5.B).
The first of these conditions is obvious. Let us verify the second.

From (6.1)

(7.5) %ﬂ a; = g_r bu A {B), 1} + (MG, »,)
4 +
from which
(7.6) 1= %ﬂ Tt {75“ be M B, 1} + ¢t + (MGAL, »p)}.

Now, let us put f = 1 into (6.7), multiply the equality obtained by A, and
subtract from (7.6). We obtain

(7.7) 1— M) = X rhec; 2 0.
(=Y

2. According to the Hille-Yosida theorem (see [7], section 21, say), the op-
erator A given in the set D4 of a functional Banach space L is an infinitesimal
operator of some semigroup 7', satisfying conditions (1.1.A)—(1.1.B), and such
that ast — 0, | T.f — f]| = 0 for all f € L if

(a) D4 is everywhere dense in L (in the strong sense);

(b) the operator (\3 — A)~! is defined for A > 0 in the whole space L and
satisfies requirements (4.2.A)—(4.2.B).
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Let us g,pply this theorem to the space P(4U) and the contraction 4 of the
operator ¥ in the domain D(U). By virtue of theorem 6.1 and (6.13), the op-
erator R, defined by (7.3)—(7.4) agrees with (A\3 — A)~'. According to 1, condi-
tions (4.2.A)—(4.2.B) are satisfied, and according to theorem 6.2, requirement (a)
is satisfied. Therefore, A is an infinitesimal operator of the semigroup 7', sat-
isfying conditions (1.1.A)-(1.1.B) and continuous in P(U). There it follows
from lemma 3.3 that

(1.8) Tf@) = [, P 2 dy)f).

Hence, the operator T, may be extended to the whole space B so that it will be
continuous relative to w-convergence. It easily follows that (7.8) defines a semi-
group T'; in the space B, which satisfies conditions (1.1.A)~(1.1.B).

3. The resolvent of the semigroup 7', is determined in the space P(U) by
(7.3)—(7.4). The arguments of paragraph 3 of the proof of theorem 7.1 show
that these formulas remain valid for all f € B. In particular,

(7.9) L Pz, e dt = n, ©).

Hence, it is seen that if oy = 0, then P(¢, z, {) = 0 for all ¢, and the semigroup
T: may be considered in the space E*. Evidently, condition (1.1.D) is satisfied
here. From (6.3.A) the validity of (1.1.E) follows so that we have an N-semi-
group.

4. The considerations of paragraphs 1-2 of the proof of theorem 7.1 show
that if D4 S 5(u) and A € 9 for the Markov semigroup T, then D4 = D(U).
By virtue of theorem 6.2 and proposition (6.3.A), the w-closure of D4 coincides
with B. According to the uniqueness theorem ([1], theorem 1.8), the semigroup
T. is defined uniquely by its infinitesimal operator.

O

APPENDIX A. The Minimum Principle

When A = 0 and condition (2.1.A) is satisfied with the equality sign, lemma
2.1 is proved in Petrovskii’s book, say ([8], lemma 1, section 28). In the general
case the proof has also been carried out, only it is necessary to determine the
auxiliary function w by the formula

® w(, y) = ulz, ) — weo, o) + g gy 2 V-

In order to prove theorem 2.1, it is necessary to replace the assumption Ak = 0
by the assumption Ak — Ah > 0 in the formulations and proofs of lemmas 5.1-
5.4 of [2]. Hence, the proof of lemma 5.1 does not change. The coincidence of
the exact lower bounds of the function h on the two sets is stated in each of
the lemmas 5.2-5.4. In our case, these statements remain valid under the addi-
tional assumption that, each time, at least one of the two lower bounds under
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consideration is negative. Hence, in the proofs of lemmas 5.2 and 5.3 it is nec-
essary to consider the auxiliary function

@) Ses(z) = hz) — K — g ’%
and the function
®3) H(z)=h(z)—u—l§+u%

in the proof of lemma 5.4, where & = min (k, 0). After these modifications,
theorem 2.1 is derived from lemmas 5.1-5.2 exactly as theorem 5.1 has been
derived in [2].

O R R VR

APPENDIX B. The Functions p,(z) and ¢.(s)

1. Functions p,(2), (v € T'y) satisfying conditions (2.3.A)-(2.3.D), have been
constructed in [2] (see theorem 5.2 and section 5.7). The property (2.3.E) results
from formulas of section 4.8 of [2].

The function g,(z) satisfying conditions (2.2.A)-(2.2.D) has been constructed
in section 6 of [2]. This function is nonnegative. It is determined by the formulas

n 21g0(2) = gu(2) = 2, u(v)Pr(2),

@ gu(@) = Re [ Gu(2) dz.

The form of the function G ,(z) depends on the sign of the index £ of the vector
field »(z). Let us first assume that £ > 0. Then for w = 0,

—1i0(z to(w)yy—{— 'w+z — 10 (W), w*+z
3) Gu(z) = e @7 {e Wp=t=1 § -, — e ew %m}
where w* = w~! and ¢(z) is an analytic function in the circle E, which has a
Holder-continuous derivative o¢’(z) in the closed circle £ U L (see section 4.4
of [2]). This formula is not suitable for studying g.(z) for values of w near zero.
Let us put

io(w) —1to(w)
) Go(z) = ei@ {:; — — 2 S }

z w* — 2z

It is easy to verify that the difference f(2) = G,(2) — G.(2) is regular in the
circle E for any w = 0, continuous on E*, bounded in £ U L, and satisfies the
relation Re {f(z)ei*22z—¢} = 0 for z € L\I. Hence it follows that the function

) 7u(2) = Re [} Gu(e) dz, (w<E)

differs from ¢.,(z) by a bounded harmonic function satisfying the boundary
condition A, and by virtue of the minimum principle it follows from (1) that
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(6) 219u(2) = Gu(z) — 2 Gu(¥)Dy(2).
Y&+

2. Let us select some p € (0, 1) and let 2z, = $p. Let us put E, = {2: |2| < po};
Er» = {z: p < |2| < 1}. Let us consider the functions

(M) B = Q@) + = Ful@ = Quld) + 2
@) ro(2) = Re L *Rule) dz = gu(2) + 1n |2 — w| — In |w],
9) Fu(2) = Re [; R,(2)dz = Gu@) +1In |z — w| — In |z — w|.

It is easy to verify that the functions B, (z) and dRB.,(z)/dz are continuous and,
therefore, bounded in the domain z € E U L, w € E*. The functions R, (z) and
dR ,(2)/dz are continuous in the domain z € E U L, w € E? and the estimates

RW(2)] < 0+ 2

(10) |z — w¥|
de(Z) < Xs + Ka ,
dz |~ lz—wl |z — wH?

are satisfied for them (X; are constants dependent on p). From the relations

ar, .0ry, . oy 0w _ 5
(11) oz oy = B 5—135‘—&0
there results that the functions (8%,/0z), (9%./dy), (9% ./dx2), (8% ./0xdy),
(0% .,/0y?) are continuous in the domain z € E\U L, w € E°; the functions
(9rw/0x), (0r,/0y), (8%r,/02?), (9% ,/023Yy), (8% ./dy?) are continuous in the
domain z€ E UL, w € E», and the first two are majorized in absolute
value by the function %; + (X./|z — w*|), and the last three functions by
(Ks/|z — w|) + (%4/|z — w*|?). Let us note that the functions r,(2) and 7,(2)
are harmonic in the domain E.

3. It has been shown in ([2], §7) that ¢,(v) >0 as w— v, (y €T) and
therefore, q.,(y) is bounded in E. Hence, there results from (1), (8), and (10)
that the function |¢ — w|g.(z) is bounded in the domain z € E U L, w € E*.
From (6) and (9) and the boundedness of R, (z) it follows that |z — w|g.(2) is
bounded in the domain z € E U L, w € E,. Hence, the statement (2.2.E) is
valid.

4. Let f be a bounded measurable function in E. Let us put F(z) = Gf(z) =
J& gu(2)f(w) dw. From (1) and (6) there results that

(12) FG) = o2) = T enple)
where
(13) 2r0(2) = [, qu@f() dw + [, 1u((w) dw.

By virtue of (8) and (9), 2m¢ = ¢1 + @2 + @3, where
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ai(z) = —fEln lz — w|f(w) dw,
(14) o) = [, [Fule) + In |2y — w]1f(w) o,

es(2) = f, [ru(z) + In |w|]f(w) dw.

It is known from potential theory (see [8], §35, say) that (1) ¢ has Holder-
continuous first derivatives in ; they may be found by differentiation

under the integral sign; (2) if f i1s Hélder-continuous in E, then the second
derivatives of ¢, exist and are Holder-continuous in E, and Ag; = —f.

There results from the properties of r, and 7, derived in section 2, that
(a) the first and second derivatives of the funetion ¢, exist and are Hélder-
continuous in E U L, and they may be obtained by differentiating under the
integral sign; (b) the first derivatives of ¢; exist and are Holder-continuous in
E U L and may be obtained by differentiation under the integral sign; and
(c) the functions ¢, and ¢; are harmonic in E.

The propositions (2.5.A)—(2.5.G) are derived Wlthout difficulty from these
results and the known properties of the functions p,(2).

5. When £ < 0, the functions G,,(2) and G, (2) are no good in that they have
a pole at zero. Therefore, an expression of the form

z(e—l'a(z) 2 + %
(15) 7§n a‘Y(w) 21’ 22—

is added to G, and the expression
@ 2 + 'y _
(16) Z a,(w ) Z bu(w)(z~* + 2*)zle—i@
+ kZl b_r(w)i(zh — 27%)leic@

to G, where Iy is an arbitrary subsystem of the system I'_ consisting of 2£ — 1
points, and a,, d,, b are bounded harmonic functions. For example,

a7 a,(w) = —Re {le?w~t=1P, (w)}
where
(18) Pw) =yt @ 228

pEMB=y Y — B
This modification to G, and G, require no essential changes in the derivations
of propositions (2.2.E) and (2.5.A)-(2.5.G) made in sections 2—4.

THEOREM 1. The functions g.(v*) — guw(v™), (v €T.) are linearly in-
dependent.

Proor. Let us assume that for some constants m,
(19) 2. Mylgu(r?) — gu(y)] = 0.
7E€r-

It has been proved in ([2], §7) that if w, is a sequence approaching 8 € T'y
along the normal, then c,gw.(2) — ps(2) for a suitable choice of the constants c,,
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where the convergence is uniform outside an arbitrary neighborhood of the
points 3. Hence, it follows from (19) that

(20) Té_ my[ps(v*) — ps(v7)] = 0.

First let £ > 0. Harmonic functions h., (a« € T'.) have been constructed in
section 4.8 of [2] such that h.(yt) — he(y~) =0, if @ # v and h,(y+) —
hy(yv~) # 0. From section 5.6 of [2] it easily follows that the functions h, are
linear combinations of the functions ps. Hence, it follows from (20) that
>y My[ha(¥t) — ha(y™)] = 0, which means m, = 0.

Now, let £ < 0. Let us fix some a € IT'_, and let us select the subsystem TI'y
of the system I'_ such that e € T_. From (1), (19), and (20), one obtains

(21) 2 Mygu(¥?) — gu(v)] = 0.

T3 3
For £ < 0 the function G,(z) differs by (15) from the function defined by (3).
Hence, it is easy to see that
7u(1%) — qu(v7) = ay(w)4, for y€Ty,
2u(7*) — gu(v") =0 for v € I'_\I},

where A, are real constants different from zero. By virtue of (17) equality (21)
becomes

(23) Re {3 ety -1m, AP, (w)} = 0.
Y

(22)

The function under the sign Re is regular in £ and continuous in £ U L. Hence,
it follows from (23) that this function equals the pure imaginary constant 74,.
Therefore,

(24) > myA,PL(w) = Ageic(wyt+l,

v
From the definition of the function o(w) (see [2], section 4.4) it follows that
for w = e the right side equals Ae=#® (see section 3.4 for the definition of 6(¢)).

The left side of (24) is real for w = e*; hence A = 0. Now, putting w = « in
(24), we obtain A,m, = 0, and therefore, m, = 0.

o0 O O O
APPENDIX C. Lemmas on Inversion of the Matrices

LEmMMma 1. Let P = (pu,;) be a matrix with nonnegalive elements such that for
all @, 8,(P) = Xt Puy < 1. Then s,(P*) < 1 for all » and n. Let us put w € K
if s,(P*) = 1 for alln. Then poy = 0 for all w € K, { & K. If the set K is empty,
then the series

) P

converges and the mairiz I — P has an inverse with nonnegative elements.
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Proor.  Let us note that for all m and »
2) 8u(Pm) = ; PERsp(P).

Putting m = 1, we deduce by induction the first statement of the lemma.
Furthermore, if w € K, then for any n,

®3) Zr Pai[1 — s(Pm)] = 0.

If ¢ ¢ K, an n may be selected such that s;(P?) < 1, and then it follows from
(3) that p,,; = 0. Finally, if K is empty, then for any w there exists an n such
that s.(P") < 1. Relation (2) implies that s,(P™t") < s,(P™). Hence, for some
no the inequality s,(P™) < 1 is satisfied for all w and max, s,(P™) =¢ < 1.
From (2) it follows that

(4) 8o(PF) < ¢, (P&—Dmo),

Therefore, s,(P*) < ¢* for kng < n < (k + 1)n, and the series (1) converges. Its
sum is the inverse matrix for 7 — P.
Lemma 2. Let A = (a,.;) be a matrix satisfying the conditions

(5) Ou,0 > 0, <0 for w¢, > a,;>0.
3

Let us consider the malrixz P with elements puo = 0, Pur = —(Qu,t/00,w) for
o # . If the set K, defined for this matriz in lemma 1 is empty, the matrix A
has an tnverse with nonnegative elements.

Proor. According to lemma 1, the matrix I — P has an inverse with non-
negative elements. But A = A(l — P), where A is a diagonal matrix with
diagonal elements a,,.. Hence, the statement of lemma 2 follows from the
formula 4A—! = (I — P)7'A-L
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